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We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory,
incorporating a dimension 1

2
auxiliary spin-1

2
field Λ, in which there is an exact off-shell gauge invariance. In

Λ ¼ 0 gauge, which reduces to the original unextended theory, our results agreewith those found by Johnson
and Sudarshan, and later verified byVelo andZwanziger, which give a canonical Rarita-Schwinger fieldDirac
bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the
Rarita-Schwinger fields is nonsingular, but doesnot correspond to a positive semidefinite anticommutator, and
the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory.
These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be
canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the
questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by
path integral methods, or by appropriate couplings to conventional dimension 3

2
spin-1

2
fields.

DOI: 10.1103/PhysRevD.96.085005

I. INTRODUCTION

The conventional approach to grand unification of the
strong and electroweak forces assumes that gauge anoma-
lies are to be cancelled among spin-1

2
fermion fields. So far,

no definitive solution to the grand unification problem has
been achieved within this framework, raising the question
of whether the rules for constructing unification models
should be broadened, and in particular whether there may
be more general mechanisms for gauge anomaly cancela-
tion. In 1985 Marcus [1] noted that there are SUð8Þ
representations that cancel anomalies among spin-1

2
and

spin-3
2
fields, assuming that the gauge anomalies for spin-3

2

fields are a factor of 3 times the corresponding anomalies
for spin-1

2
fields, and Adler [2] recently constructed a

concrete model incorporating this observation. However,
anomaly cancellation using spin-3

2
raises again the old

question, first explored by Johnson and Sudarshan [3], and
by Velo and Zwanziger [4], of whether gauged Rarita-
Schwinger field theory is consistent in the first place, either
as a classical theory or as a quantized theory.
With these motivations, the consistency of gauged

Rarita-Scwhinger theory has been recently investigated
by Adler [5,6].1 In [5] he showed that the problem of
superluminal propagation, found by Velo and Zwanziger in
Rarita-Schwinger theory with kinematic mass terms that do
not arise through spontaneous symmetry breaking, is
absent in the massless theory. In [6], he showed that
imposing a fermionic analog of the covariant radiation
gauge condition leads to a Dirac bracket for the Rarita-
Schwinger fields that corresponds on quantization to a
positive semidefinite anticommutator. However, the
assumption that such a gauge condition can be imposed
is ad hoc, and subject to question, because the gauged
Rarita-Schwinger theory admits a fermionic gauge invari-
ance only on-shell, and not off-shell. Our purpose in the
present paper is to reexamine the Dirac bracket calculation
of [6], using the extended Rarita-Schwinger theory for-
mulated in [5], in which through adding a dimension 1

2
spin-

1
2
auxiliary field Λ, an exact off-shell fermionic gauge
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invariance is achieved. InΛ ¼ 0 gauge, the extended theory
reproduces the original results of [3,4]. In covariant
radiation gauge, we find that although certain calculations
of [6] carry over into the extended theory, extra terms are
present which spoil positivity of the anticommutator that
corresponds to the Rarita-Schwinger field Dirac bracket.
We also find in radiation gauge that the auxiliary field Dirac
bracket has a singularity for small fields that corresponds to
the singular behavior found in [3,4].
The issues discussed in this paper have not been dealt with

previously in the literature. There is extensive literature
showing that spin-3

2
fields are consistent within the context of

supergravity, where the number of fermionic propagating
degrees of freedom is not increased by the interaction; see for
example [8,9]. However, there is no supergravity theory
incorporating generalSUðNÞ, and in particularSUð8Þ, gauge
fields. The N-extended supergravity theories incorporate a
SOðNÞ vector multiplet for N ¼ 2;…; 8. The maximum
number of vector fields in the spin-3

2
supermultiplet that is

available for “gauging” is limited to 28, which occurs for
maximal (N ¼ 8) supergravity. Moreover, in the paper of
Freedman and Das constructing a gauged SOð3Þ super-
gravity [10], the authors explicitly state that their “perturba-
tive calculations do not directly address previous difficulties”
found in the earlier literature by Johnson and Sudarshan [3]
and by Velo and Zwanziger [4]. Similar comments on the
absence of a proof that “helicity 3=2 fields can interact
consistently only if they belong to the graviton supermultip-
let” were expressed by Strathdee [11]. On the other hand,
there are a number of calculations in the literature of the spin-
3
2
non-Abelian gauge anomaly [12–15] and gravitational

anomaly [13,14,16–18] for a general non-Abelian gauge
group. If the spin-3

2
non-Abelian gauge anomaly is calculable

for a general non-Abelian gauge group, then by implication
the quantization of a spin-3

2
field with general non-Abelian

gauging should be consistent for at least some version of the
spin-3

2
theory, but this has never been demonstrated in the

literature. Thus a study of the consistency of gauged Rarita-
Schwinger fields, as undertaken in this paper, is warranted.
This paper is organized a follows. In Sec. II we review the

ungauged Rarita-Schwinger theory, which has an off-shell
fermionic gauge invariance, and count the degrees of free-
dom. In Sec. III we generalize to the gauged Rarita-
Schwinger theory, in which the fermionic gauge invariance
is only on-shell, and show that there are additional degrees of
freedom. In Sec. IV we present the extended Rarita-
Schwinger theory introduced in [6], which has a full off-
shell fermionic gauge invariance. The additional degrees of
freedom noted in Sec. III are now accounted for by the
auxiliary field Λ, and the second class constraints found in
Sec. III have nowbecome first class byvirtueof contributions
from the auxiliary field. In Sec. V we impose Λ ¼ 0 gauge,
and show that the formalism reproduces the results of [3,4]
for the Rarita-Schwinger field Dirac bracket. In Sec. VI, we
impose an analog of radiation gauge natural to the casewhen

the auxiliary field is nonzero, and compute the Rarita-
Schwinger field and auxiliary field Dirac brackets. In
Sec. VII we show that the corresponding anticommutators
for the Rarita-Schwinger and auxiliary fields are not positive
semidefinite, and in fact, the gauge field averaged anticom-
mutator for the auxiliary field is negative semidefinite. In
Sec.VIIIwe formulate path integral quantization in covariant
radiation gauge, and in Sec. IX we state brief conclusions.
Some useful identities from [5] that are used in the calcu-
lations of this paper are summarized in the Appendix.

II. THE FREE RARITA-SCHWINGER THEORY

We start from the action for the noninteracting classical
Rarita-Schwinger field, given in left chiral two-component
spinor form [5] by

S ¼ 1

2

Z
d4x½−Ψ†

0σ⃗ · ∇⃗ × Ψ⃗þ Ψ⃗† · σ⃗ × ∇⃗Ψ0

þ Ψ⃗† · ∇⃗ × Ψ⃗ − Ψ⃗† · σ⃗ × ∂0Ψ⃗�: ð1Þ
This action is invariant under the fermionic gauge trans-
formation

Ψ⃗ → Ψ⃗þ ∇⃗ϵ;

Ψ0 → Ψ0 þ ∂0ϵ; ð2Þ
with ϵ a fermionic gauge parameter. This gauge invariance
holds off-shell, that is without using the Euler-Lagrange
equations following from varying the action of Eq. (1).
Varying with respect to Ψ⃗† we get the Euler-Lagrange

equation for Ψ,

0 ¼ σ⃗ × ∇⃗Ψ0 þ ∇⃗ × Ψ⃗ − σ⃗ × ∂0Ψ⃗; ð3Þ
while varying with respect to Ψ†

0 we get the constraint

0 ¼ K ≡ 1

2
σ⃗ · ∇⃗ × Ψ⃗: ð4Þ

Varying with respect to Ψ0 gives, after integrating Eq. (1)
by parts, the adjoint constraint

0 ¼ K† ≡ −
1

2
Ψ⃗† · ð∇⃖ × σ⃗Þ ð5Þ

The action of Eq. (1) can now be rewritten in a form that
exhibits the Hamiltonian H,

S ¼
Z

dtL;

L ¼
Z

d3xðtime derivativesþ constraintsÞ

−H;

time derivatives ¼ 1

2
Ψ⃗† · ð−σ⃗ × ∂0Ψ⃗Þ;

constraints ¼ −Ψ†
0K − K†Ψ0;

H ¼ −
1

2

Z
d3xΨ⃗† · ∇⃗ × Ψ⃗: ð6Þ
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From this we read off the canonical momentum P⃗ con-

jugate to Ψ⃗,

P⃗¼ 1

2
Ψ⃗†× σ⃗; Ψ⃗† ¼ iP⃗− P⃗× σ⃗: ð7Þ

Using the canonical bracket definition

½Ψiαðx⃗Þ; Pjβðy⃗Þ� ¼ −δijδαβδ3ðx⃗ − y⃗Þ; ð8Þ
with i, j spatial indices and α, β spinor indices, we get the
further brackets

½Ψiαðx⃗Þ;Ψ†
jβðy⃗Þ� ¼ −iðσjσiÞαβδ3ðx⃗ − y⃗Þ;

½K;K†� ¼ 0;

½K;H� ¼ 0;

½K†; H� ¼ 0: ð9Þ
The second line of Eq. (9) shows that the constraints K and
K† are first class in the Dirac terminology, and one can
verify that they serve as generators of the fermionic gauge

transformations of Ψ⃗ and its adjoint introduced above. In
the free Rarita-Schwinger theory there are no second class
constraints (constraints for which the mutual brackets are
nonzero). The third line of Eq. (9) shows that the
Hamiltonian H is also first class so that there are no
further constraints. The Lagrange multipliersΨ0 andΨ

†
0 are

left undetermined by the equations of motion.
We can now apply the standard formula for counting

degrees of freedom [19],

degrees of freedom ¼ 1

2
ðN − 2F − SÞ; ð10Þ

in which N is the number of real canonical variables, F is
the number of real first class constraints, and S is the
number of real second class constraints. In our case we have
N ¼ 3 × 2 × 2 ¼ 12, F ¼ 2 × 2 ¼ 4, and S ¼ 0, giving 2
for the number of degrees of freedom for free left-handed
Rarita-Schwinger fields.

III. THE GAUGED RARITA-SCHWINGER
THEORY

To go over to the gauged Rarita-Schwinger theory, one
makes the minimal coupling replacements

∇⃗ → D⃗; ∂0 → D0; ð11Þ
with D⃗ and D0 the space and time components of the four-
vector gauge covariant derivative

Dν ≡ ∂ν þ gAν; ð12Þ
where Aν is the gauge potential, which can be Abelian or
non-Abelian. Apart from this replacement, the only change
in the formulas of the preceding section is in the second line
of Eq. (9), which becomes

½Kðx⃗Þ; K†ðy⃗Þ� ¼ −
i
2
gσ⃗ · B⃗δ3ðx⃗ − y⃗Þ; ð13Þ

with B⃗ the magnetic field part of the gauge field. Thus K
and K† are now second class constraints, and correspond-
ing to this one finds that the gauged action does not have an
off-shell gauge invariance (although as discussed in [5], it
has an on-shell invariance when a secondary constraint
following from the equations of motion is invoked). The
Lagrange multipliers Ψ0 and Ψ

†
0 are completely determined

by the equations of motion [5].
In the degrees of freedom formula of Eq. (10) one now

has N ¼ 12 as before, but F ¼ 0 and S ¼ 2 × 2 ¼ 4,
giving 4 for the number of degrees of freedom for gauged
left-handed Rarita-Schwinger fields. Thus, contrary to what
was suggested in [5], the number of degrees of freedom in
the gauged case is enlarged relative to the free case. The
discontinuity in the number of degrees of freedom as g → 0
would not in itself be a problem if the new degrees of
freedom behaved properly. This question is analyzed
below, after a more manageable reformulation of the
gauged theory is recalled.

IV. THE EXTENDED GAUGED
RARITA-SCHWINGER THEORY

We thus turn now to the extended gauged theory
introduced in [5], which has an exact off-shell fermionic
gauge invariance. This is achieved by introducing a
dimension 1

2
spin-1

2
field Λ coupled to the both the gauge

fields and the Rarita-Schwinger field. Writing the action in
the Hamiltonian form of Eq. (6), we have

S¼
Z

dtL;

L¼
Z

d3xðtime deivativesþconstraintsÞ−H;

time deivatives¼1

2
Ψ⃗† ·ð−σ⃗×∂0Ψ⃗Þ−

1

2
igΛ†σ⃗ · B⃗∂0Λ;

constraints¼−Ψ†
0K−K†Ψ0;

K¼1

2
σ⃗ ·D⃗× Ψ⃗−

1

2
igσ⃗ · B⃗Λ;

K†¼−
1

2
Ψ⃗† ·ðD⃖× σ⃗Þþ1

2
igΛ†σ⃗ · B⃗;

H¼−
1

2

Z
d3x½Ψ⃗† ·ðD⃗× Ψ⃗− σ⃗×gA0Ψ⃗Þ

− igΨ⃗† · C⃗Λþ igΛ†C⃗ · Ψ⃗þ igΛ†C⃗ ·D⃗Λ

− ig2Λ†σ⃗ · B⃗A0Λ�;
C⃗¼ B⃗þ σ⃗× E⃗: ð14Þ

As shown in [5], this action is invariant under the gauge
transformation
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Ψ0→Ψ0þD0ϵ; Ψ⃗→ Ψ⃗þ D⃗ϵ; Λ→Λ− ϵ: ð15Þ

From Eq. (14) we read off the canonical momenta P⃗ and P

conjugate respectively to Ψ⃗ and Λ,

P⃗ ¼ 1

2
Ψ⃗† × σ⃗; Ψ⃗† ¼ iP⃗ − P⃗ × σ⃗;

P ¼ 1

2
igΛ†σ⃗ · B⃗; Λ† ¼ 2

ig
Pðσ⃗ · B⃗Þ−1: ð16Þ

Using the canonical bracket definitions

½Ψiαðx⃗Þ; Pjβðy⃗Þ� ¼ −δijδαβδ3ðx⃗ − y⃗Þ;
½Λαðx⃗Þ; Pβðy⃗Þ� ¼ −δαβδ3ðx⃗ − y⃗Þ; ð17Þ

with i, j spatial indices and α, β spinor indices, we get the
further brackets

½Ψiαðx⃗Þ; Ψ⃗†
jβðy⃗Þ� ¼ −iðσjσiÞαβδ3ðx⃗ − y⃗Þ;

½Λαðx⃗Þ;Λ†
βðy⃗Þ� ¼

2i
g

ðσ⃗Þαβ · B⃗
B⃗2

δ3ðx⃗ − y⃗Þ;

½K;K†� ¼ 0: ð18Þ

The last line of Eq. (18) shows that by virtue of the
auxiliary field contributions, the constraintsK andK† in the
extended gauged theory have become first class.
Correspondingly, the constraints K† and K generate the
gauge transformation of Eq. (15) on Ψ⃗;Λ (and their
adjoints) under the bracket operation of Eq. (17). For
example, noting that K ¼ P⃗ · D⃖þ P, we have

½Ψ⃗ðx⃗Þ;
Z

d3yK†ðy⃗Þϵðy⃗Þ� ¼ D⃗x⃗ × ϵðx⃗Þ;

½Λðx⃗Þ;
Z

d3yK†ðy⃗Þϵðy⃗Þ� ¼ −ϵðx⃗Þ: ð19Þ

We can again count degrees of freedom, using the
general formula of Eq. (10). For the Rarita-Schwinger
field, we again have N ¼ 12, F ¼ 4, and S ¼ 0, giving
2 degrees of freedom. But for the auxiliary field we have
N ¼ 2 × 2 ¼ 4, and F ¼ S ¼ 0, giving 2 additional
degrees of freedom, making 4 in all, in agreement with
the counting result for the gauged theory given in Sec. III.
Since we are now dealing with an off-shell gauge

invariant theory, we can introduce gauge fixing conditions
as additional constraints, so that the original first class
constraints become second class. We shall follow the
convention of labeling constraints involving only Ψ⃗ and

Λ as ϕ1;2, and labeling constraints involving only Ψ⃗† and

Λ†, or equivalently the conjugate momenta P⃗ and P, as χ1;2.
One of the ϕ will be proportional to K, and the other ϕ will
be a gauge fixing constraint; similarly, one of the χ will be
proportional to K†, and the other will be the adjoint gauge

fixing constraint. The nonvanishing brackets of the con-
straints will be denoted by

Mabðx⃗ − y⃗Þ ¼ ½ϕaðx⃗Þ; χbðy⃗Þ�; ð20Þ

and in terms of M the Dirac bracket of any FðΨ⃗Þ with any
GðΨ⃗; Ψ⃗†Þ is given by

½F;G�D ¼ ½F;G� −
X
a

X
b

½F; χa�M−1
ab ½ϕb; G�: ð21Þ

We now proceed to give the results of two specific choices
of the gauge fixing constraints.

V. Λ= 0 GAUGE

We first repeat the bracket calculation in Λ ¼ 0 gauge, to
see that this reduces to what is obtained from the unex-
tended Rarita-Schwinger action. The constraints now are

ϕ1 ¼ Λ;

ϕ2 ¼ σ⃗ × D⃗ · Ψ⃗ − igσ⃗ · B⃗Λ;

χ1 ¼ 2ðP⃗ · D⃖þ PÞ;
χ2 ¼ P; ð22Þ

which obey

ϕ†
2 ¼ χ1;

ϕ†
1 ¼ Λ† ¼ 2

ig
Pðσ⃗ · B⃗Þ−1 ¼ 2

ig
χ2ðσ⃗ · B⃗Þ−1: ð23Þ

For the bracket matrix we find

Mabðx⃗; y⃗Þ ¼ ½ϕaðx⃗Þ; χbðy⃗Þ� ¼
�−2 −1

0 igσ⃗ · B⃗

�
δ3ðx⃗ − y⃗Þ;

M−1
abðx⃗; y⃗Þ ¼

�− 1
2

− 1

2igσ⃗·B⃗

0 1

igσ⃗·B⃗

�
δ3ðx⃗ − y⃗Þ:

ð24Þ
From Eqs. (22)–(24), we find the following Dirac brackets:

½Λðx⃗Þ;Λ†ðy⃗Þ�D ¼ ½Λðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ 0;

½Ψiðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ −iσjσiδ3ðx⃗ − y⃗Þ þ 2iD⃗xi

δ3ðx⃗ − y⃗Þ
gσ⃗ · B⃗

D⃖yj

¼ −2i
��

δij −
1

2
σiσj

�
δ3ðx⃗ − y⃗Þ

− D⃗xi
δ3ðx⃗ − y⃗Þ
gσ⃗ · B⃗

D⃖yj

�
: ð25Þ

These agree with the results obtained by first setting Λ ¼ 0
and calculating Dirac brackets in the unextended Rarita-
Schwinger theory, in which the constraints are second class.
This gives a consistency check on the formalism.
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VI. EXTENDED GAUGE COVARIANT
RADIATION GAUGE

Since the auxiliary field Λ has mass dimension 1
2
, rather

than the standard 3
2
of a fermion field, we are free to add a

multiple of σ⃗ · B⃗Λ to D⃗ · Ψ to form an extended gauge

covariant radiation gauge constraint. The choice 0 ¼ ϕ1 ¼
D⃗ · Ψ⃗ − gσ⃗ · B⃗Λ leads to particularly simple formulas. To
see that this condition is attainable, we note that under the
gauge transformation of Eq. (15), ϕ1 transforms as

ϕ1 → ϕ1 þ ðD⃗2 þ gσ⃗ · B⃗Þϵ ¼ ϕ1 þ ðσ⃗ · D⃗Þ2ϵ: ð26Þ

Hence as long as ðσ⃗ · D⃗Þ2 is invertible, the constraint
ϕ1 ¼ 0 is attainable.
Let us define the inverse D of ðσ⃗ · D⃗Þ2 by the equations

ðσ⃗ · D⃗xÞ2Dðx⃗ − y⃗Þ ¼ −σ⃗ · D⃗xDðx⃗ − y⃗Þσ⃗ · D⃖y

¼ Dðx⃗ − y⃗Þðσ⃗ · D⃖yÞ2 ¼ δ3ðx⃗ − y⃗Þ;
Dðx⃗ − y⃗Þ† ¼ Dðy⃗ − x⃗Þ: ð27Þ

Then if initially ϕ1 has a nonzero value, it can be shifted to
zero by the gauge change of Eq. (26) with ϵ given by

ϵðx⃗Þ ¼ −
Z

d3yDðx⃗ − y⃗Þϕ1ðy⃗Þ: ð28Þ

The constraints that we use for gauge covariant radiation
gauge are as follows:

ϕ1 ¼ D⃗ ·Ψ − gσ⃗ · B⃗Λ;

ϕ2 ¼ σ⃗ × D⃗ · Ψ⃗ − igσ⃗ · B⃗Λ;

χ1 ¼ 2ðP⃗ · D⃖þ PÞ;
χ2 ¼ P⃗ · ðσ⃗ × D⃖Þ − iP: ð29Þ

The constraints χa are linear combinations of the adjoints of
the constraints ϕa,

ϕ†
2 ¼ χ1; ϕ†

1 ¼
1

2
iχ1 − χ2: ð30Þ

The nonvanishing brackets of the constraints are given by

Mabðx⃗ − y⃗Þ ¼ ½ϕaðx⃗Þ; χbðy⃗Þ� ¼ 2 × 1abðσ⃗ · D⃗xÞ2δ3ðx⃗ − y⃗Þ;
ð31Þ

with 1ab the 2 × 2 unit matrix. So the inverse of the bracket
matrix is

M−1
abðx⃗ − y⃗Þ ¼ 1

2
1abDðx⃗ − y⃗Þ: ð32Þ

We can now compute Dirac brackets using Eq. (21), with
the following results:

½Ψiðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ −iσjσiδ3ðx⃗ − y⃗Þ − iD⃗xiDðx⃗ − y⃗ÞD⃖yj

þ ðσ⃗ × D⃗xÞiDðx⃗ − y⃗ÞD⃖yj

− D⃗xiDðx⃗ − y⃗Þðσ⃗ × D⃖yÞj;

½Ψiðx⃗Þ;Λ†ðy⃗Þ�D ¼ 2iðD⃗x þ
1

2
iσ⃗ × D⃗xÞiDðx⃗ − y⃗Þ;

½Λðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ 2iDðx⃗ − y⃗ÞðD⃖y −

1

2
iσ⃗ × D⃖yÞj;

½Λðx⃗Þ;Λ†ðy⃗Þ�D ¼ 2i
g
σ⃗ · B⃗

B⃗2
δ3ðx⃗ − y⃗Þ − 3iDðx⃗ − y⃗Þ: ð33Þ

We see from these covariant radiation gauge formulas
that the Dirac bracket ½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�D is nonsingular for
small B⃗; the small B⃗ singularity found in [3,4] is present
only in the auxiliary field bracket ½Λðx⃗Þ;Λ†ðy⃗Þ�D. We also
can verify that

σi½Ψiðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ ½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�Dσj ¼ 0: ð34Þ
This is a direct consequence of the fact that

σ⃗ · D⃗xσiΨi ¼ ðD⃗x þ iσ⃗ × D⃗xÞiΨi ¼ ϕ1 þ iϕ2; ð35Þ
which was the motivation for the specific choice of the
extended covariant gauge constraint ϕ1.
To study the positivity of Dirac brackets when mapped to

anticommutators, we follow the method used in Eqs. (36)
and (37) of [6]. Defining (for F either Ψi or Λ)

~F ¼ F −
X
a;b

½F; χa�M−1
abϕb; ð36Þ

we have (for G either Ψ†
j or Λ†)

½F;G�D ¼ ½ ~F; ~G�: ð37Þ
Writing

~Ψiðx⃗Þ ¼
Z

d3y½Rijðx⃗; y⃗ÞΨjðy⃗Þ þ Riðx⃗; y⃗ÞΛðy⃗Þ�;

~Λðx⃗Þ ¼
Z

d3y½Rðx⃗; y⃗ÞΛðy⃗Þ þ R̂iðx⃗; y⃗ÞΨiðy⃗Þ� ð38Þ

we find

Rijðx⃗; y⃗Þ ¼ δijδ
3ðx⃗ − y⃗Þ þ D⃗xiDðx⃗ − y⃗ÞD⃖yj

þ 1

2
ðσ⃗ × D⃗xÞiDðx⃗ − y⃗Þðσ⃗ × D⃖yÞj;

Riðx⃗; y⃗Þ ¼ gðD⃗x þ
1

2
iσ⃗ × D⃗xÞiDðx⃗ − y⃗Þσ⃗ · B⃗ðy⃗Þ;

R̂iðx⃗; y⃗Þ ¼ −Dðx⃗ − y⃗ÞðD⃖y −
1

2
iσ⃗ × D⃖yÞi;

Rðx⃗; y⃗Þ ¼ δ3ðx⃗ − y⃗Þ − 3

2
gDðx⃗ − y⃗Þσ⃗ · B⃗ðy⃗Þ: ð39Þ
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One can now verify the following identities:

σiRij ¼ Rijσj ¼ 0;

σiRi ¼ R̂iσi ¼ 0: ð40Þ
From Eqs. (37)–(40), one now finds the following alter-
native expressions for the Dirac brackets

½Ψiðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ −2i

Z
d3wRilðx⃗; w⃗ÞR†

jlðy⃗; w⃗Þ

þ 2ig
Z

d3wðD⃗x þ
1

2
iσ⃗ × D⃗xÞi

×Dðx⃗ − w⃗Þσ⃗ · B⃗ðw⃗ÞDðw⃗ − y⃗Þ

×

�
D⃖y −

1

2
iσ⃗ × D⃖y

�
j
;

½Λðx⃗Þ;Λ†ðy⃗Þ�D ¼
Z

d3wRðx⃗; w⃗Þ 2i
g
σ⃗ · B⃗ðw⃗Þ
B⃗ðw⃗Þ2 Rðy⃗; w⃗Þ†

− 2i
Z

d3wR̂iðx⃗; w⃗ÞR̂†
i ðy⃗; w⃗Þ; ð41Þ

which by considerable algebra can be verified to agree with
the Dirac brackets of Eq. (33).
When multiplied by i to convert to an anticommutator,

the first term in the first line of Eq. (41) is positive
semedefinite [see Eq. (51) of [6] ]. So overall positivity
depends on a comparison of the first and second terms,
which in a special case is undertaken in the next section.
The anticommutator arising from the auxiliary field Dirac
bracket on the second line of Eq. (41) is singular for small B⃗
and is not positive semidefinite; this will also be studied
further in the next section.

VII. FAILURE OF POSITIVITY OF THE
CORRESPONDING ANTICOMMUTATORS

A. g= 0 Fourier analyis

The second line of Eq. (27) implies that the first line of
Eq. (41) can be rewritten as

−2i
Z

d3wRilðx⃗; w⃗ÞRljðw⃗; y⃗Þ ð42Þ

in which the indices and vector arguments are in natural
matrix multiplication order. Let us now study Eq. (27) and
the ½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�D Dirac bracket on the first line of
Eq. (41) in the limit g ¼ 0 of vanishing gauge coupling,

where D⃗ ¼ ∇⃗. Fourier transforming according to

δ3ðx⃗ − y⃗Þ ¼ ð2πÞ−3
Z

d3keik⃗·ðx⃗−y⃗Þ;

Dðx⃗ − y⃗Þ ¼ ð2πÞ−3
Z

d3kD½k⃗�eik⃗·ðx⃗−y⃗Þ;

Rijðx⃗ − y⃗Þ ¼ ð2πÞ−3
Z

d3kRij½k⃗�eik⃗·ðx⃗−y⃗Þ; ð43Þ

we have D½k⃗� ¼ −1=ðk⃗Þ2, and

Rij½k⃗� ¼ Rij½k̂� ¼ δij − k̂ik̂j −
1

2
ðσ⃗ × k̂Þiðσ⃗ × k̂Þj; ð44Þ

with k̂ ¼ k⃗=jk⃗j a unit vector. From this expression for
general k⃗, we can verify that σiRij ¼ 0, and we also see that
k̂iRij½k̂� ¼ 0, showing that ψ i ¼ k̂iχ†, with χ a general
spinor, is a zero eigenvector in Fourier space.
Taking k̂ ¼ ẑ one gets the following expression for

Rij½k̂�,

Rij½ẑ� ¼

0
BB@

1
2

− 1
2
iσ3 0

1
2
iσ3

1
2

0

0 0 0

1
CCA: ð45Þ

From this we find that R2 ¼ R, showing again there are
zero eigevectors, which can be calculated explicitly by first
going to a representation where σ3 is diagonal.

B. Small B⃗ nonpositivity of i½Ψiðx⃗Þ;Ψ†
j ðy⃗Þ�D

Let us now expand the Fourier transform of
½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�D in Eq. (41) in powers of gB⃗, assuming

spatially constant B⃗. Writing

Rij½B⃗; k⃗� ¼ Rij½k⃗� þ Rð1Þ
ij ½B⃗; k⃗�; ð46Þ

with Rij½k⃗� the zeroth order expression of Eq. (44) and

Rð1Þ
ij ½B⃗; k⃗� a correction that is first order in B⃗. Then since

k̂iRij½k̂� ¼ 0, we have

k̂iRij½B⃗; k⃗� ¼ k̂iR
ð1Þ
ij ½B⃗; k⃗� ¼ OðB⃗Þ: ð47Þ

Consider now a spatial function fiðx⃗Þ constructed as

fiðx⃗Þ ¼
Z

d3xe−ik⃗·x⃗k̂ifðjk⃗jÞ; ð48Þ

with fðjk⃗jÞ chosen to make the spatial integral converge. By
Eq. (47), fiðx⃗Þ is a zero eigenvector of Rijðx⃗; w⃗Þ, and so
forming

Z
d3x

Z
d3yfiðx⃗Þf�jðy⃗Þ½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�D; ð49Þ

the contribution of the first line of Eq. (41) is OððB⃗Þ2Þ. But
the contribution of the second line, in Fourier space, is
proportional to

k̂ik̂jjfðjk⃗jÞj2jk⃗j−4ðk⃗þ
1

2
iσ⃗ × k⃗Þiσ⃗ · B⃗ðk⃗ − 1

2
iσ⃗ × k⃗Þj

¼ jfðjk⃗jÞj2jk⃗j−2σ⃗ · B⃗; ð50Þ
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which is nonzero and indefinite in sign. Hence
i½Ψiðx⃗Þ;Ψ†

jðy⃗Þ�D is not positive semidefinite for small B⃗.

C. Negative semidefiniteness of the B⃗ averaged
i½Λðx⃗Þ;Λ†ðy⃗Þ�D

Consider now the ½Λ;Λ†�D Dirac bracket on the final line
of Eq. (41). Multiplying by i to get the corresponding
anticommutator, and averaging over the sign of B⃗, one gets
3 < Dðx⃗ − y⃗Þ >AV , since the singular term is odd in B⃗ and
drops out of the average. But D is the inverse of ðσ⃗ · D⃗Þ2,
which is negative semidefinite since σ⃗ · D⃗ is anti-self-
adjoint, and so D is also negative semidefinite. Thus the
averaged anticommutator involving the auxiliary field is
negative semidefinite, rather than positive semidefinite.

VIII. PATH INTEGRAL IN COVARIANT
RADIATION GAUGE

Returning to the constraints of Eq. (29), we give the
analog in the extended Rarita-Schwinger theory of the path
integral construction of Sec. VI of [6]. The functional
integral must now include an integration over Λ and its
conjugate momentum P. Integrating over Ψ0 and Ψ†

0, and
using the secondary constraint delta functions together with
the primary constraint delta functions, we find the same
simplifications as in Sec. VI of [6], and so only the four
constraints of Eq. (29) remain in the functional integration
measure. We then end up with the following path integral
formula (with P ¼ 1

2
igΛ†σ⃗ · B⃗):

houtjSjini∝
Z

exp

�
i

�Z
d4x

�
∂0ΛPþ∂0Ψ⃗ ·

1

2
Ψ⃗†× σ⃗

�

−
Z

dtH

��Y
t;x⃗

dμðΨ⃗;Ψ⃗†;Λ;PÞ;

dμðΨ⃗;Ψ⃗†;Λ;PÞ¼
Y
a¼1;2

δðϕaÞδðχaÞðdetMabÞ−1dΨ⃗dΨ⃗†dΛdP;

H¼−
1

2

Z
d3x½Ψ⃗† ·D⃗×Ψ⃗þigΛ†C⃗ ·D⃗Λ

−gA0ðΨ⃗† · σ⃗×Ψ⃗þigΛ†σ⃗ ·B⃗ΛÞ
−igΨ⃗† ·C⃗ΛþigΛ†C⃗ ·Ψ⃗�;

C⃗¼ B⃗þ σ⃗×E⃗: ð51Þ

In a gauge with A0 ¼ 0, the formula for H simplifies to

H ¼ −
1

2

Z
d3x½Ψ⃗† · D⃗ × Ψ⃗þ igΛ†C⃗ · D⃗Λ

− igΨ⃗† · C⃗Λþ igΛ†C⃗ · Ψ⃗�; ð52Þ

which when used in Eq. (51) gives the extension of Eq. (70)
of [6].

IX. DISCUSSION

We have seen that in the extended Rarita-Schwinger
theory, which has a full fermionic off-shell gauge invariance
but additional degrees of freedom with respect to the non-
interacting theory, the canonical anticommutators that cor-
respond to the covariant radiation gauge Dirac brackets are
not positive semidefinite. This means that canonical quan-
tization cannot be carried out within a conventional positive
semidefinite metric Hilbert space. This leaves several
possibilities:

1. The theory is not quantizable at all, as suggested
in [3,4].

2. The theory can be quantized, but requires use of an
indefinite metric Hilbert space, as in Lorentz gauge
quantum electrodynamics. This possibility is sug-
gested by the fact that it is the canonical brackets
associated with the auxiliary field that cause the
breakdown of positivity.

3. The theory can be quantized, but the issue of the
Hilbert space signature can be bypassed by getting
Feynman rules directly from the path integral for-
mulation, and then proceeding to calculation of the
gauge anomaly.

4. Consistency of the theory requires additional
couplings to standard dimension 3

2
spin-1

2
fermions.

Such couplings may play a role [20] in generating
masses for the Rarita-Schwinger fields in the model
of [2], and their effect on the analysis given here
remains to be explored. Nonminimal couplings, as
suggested in [21], might play an interesting role in
this respect.
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APPENDIX: SUMMARY OF IDENTITIES

We note the following identities [5] that are used in the sections above:

D⃗ × D⃗ ¼ D⃖ × D⃖ ¼ −igB⃗;

ðσ⃗ × D⃗Þ2 ¼ 2D⃗2 þ gσ⃗ · B⃗;

ðσ⃗ · D⃗Þ2 ¼ D⃗2 þ gσ⃗ · B⃗;

D⃗ · ðσ⃗ × D⃗Þ ¼ igσ⃗ · B⃗;

ðσ⃗ × D⃖Þ · D⃖ ¼ −igσ⃗ · B⃗;

σ⃗ × σ⃗ ¼ 2iσ⃗;

σ⃗ · v⃗σj ¼ vj þ iðσ⃗ × v⃗Þj;
σjσ⃗ · v⃗ ¼ vj − iðσ⃗ × v⃗Þj;

ðσ⃗ × v⃗Þiσjσi ¼ 2ivj: ðA1Þ
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