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We derive the trace and diffeomorphism anomalies of the Schrödinger field minimally coupled to the
Newton-Cartan background using Fujikawa’s path integral approach. This approach, in particular, enables us
to calculate the one-loop contributions due to all the fields of the Newton-Cartan structure. We determine the
coefficients and demonstrate that gravitational anomalies for this theory always arise in odd dimensions.
Because of the gauge field contribution of the background,we find that in2þ 1 dimensions, the trace anomaly
contains terms which have a form similar to that of the 1þ 1 and 3þ 1 dimensional relativistic trace
anomalies. The term similar to the 1þ 1 dimensional relativistic trace anomaly provides a typeA contribution
on Newton-Cartan backgrounds which satisfy the Frobenius condition, in contrast with the result of Lifshitz
spacetimes. As an application, we demonstrate that the coefficient of this term satisfies a c-theorem condition.
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I. INTRODUCTION

Classical relativistic conformal theories coupled to
curved backgrounds admit a stress-energy tensor, which
is symmetric, traceless, and conserved. In contrast, quan-
tum fields on curved backgrounds, in general, have a stress-
energy tensor which violate these symmetries, resulting in
gravitational anomalies [1–3]. In considering relativistic
systems with a symmetric stress-energy tensor, the trace
anomaly arises when the quantum stress-energy tensor is
not traceless, while its failure to be conserved results in the
diffeomorphism anomaly. These anomalies have important
consequences in black holes physics and cosmology [4–17]
as well as in the computation of transport coefficients and
response functions of condensed matter systems [18–28].
Gravitational anomalies are in addition background depen-
dent, as evident from the difference of Lifshitz anomalies
from those of relativistic backgrounds. Motivated by the
extension of these results to nonrelativistic systems on
curved backgrounds, we will be concerned with the trace
and diffeomorphism anomalies of the Schrödinger field on
the Newton-Cartan (NC) background. Note that while the
trace anomaly of the NC background has been considered
in [29–33] following the discrete light cone quantization
(DLCQ) technique from higher dimensional relativistic
backgrounds, our aim is to revisit the derivation starting
from an action on the NC background. The interesting
outcome of our derivation for the trace anomaly in 2þ 1
dimensions is that it takes the following general form:

h2 ~T0
0 þ ~Ti

ii ¼
1

mð4πÞ2
�

1

360
ðRμνhμνÞ2 þ 2m4ψ2

þm2

3
ðψRμνhμν − RμνvμvνÞ

�
; ð1:1Þ

where ψ ¼ τμAμ − 1
2
hμνAμAν and vμ ¼ τμ − hμνAν. The

noncurvature squared terms of Eq. (1.1) were absent in
the literature.
We will now briefly discuss the main results from prior

considerations of the NC trace anomalies. Beginning with
[29], the trace anomaly was described as those terms in the
most general Weyl variation which satisfy the Wess-
Zumino consistency condition. In 2þ 1 dimensions, this
was shown to be of the form of the 3þ 1 dimensional
relativistic trace anomaly. It was further argued that the
anomaly only arises in odd dimensions. In [30], following
the null background construction of [34,35], the anomaly
was shown to be present in the same number of dimensions
as relativistic theories. In [31], the trace anomaly was also
demonstrated to arise in odd dimensions, following the
embedding of the NC background in a relativistic back-
ground of one higher dimension [36]. The form of the
anomaly in 2þ 1 dimensions was shown to be that of the
3þ 1 dimensional relativistic trace anomaly. The result of
[31] was rederived in [32] using a heat kernel approach.
The results of [31,32] as well as our own are in disagree-
ment with that of [33].
Nonrelativistic anomalies can receive contributions due

to c−1 and m corrections of relativistic field theories,
resulting in terms unlike those in the relativistic theory.
This can be particularly appreciated through the derivation
of the nonrelativistic scale anomaly in [37]. Such subtleties
are best addressed within effective field theory approaches.
As mentioned in the literature, the metric structure of the
NC background introduces several obstacles. This back-
ground possesses two mutually orthogonal, degenerate
metrics and an additional gauge field Aμ [38]. Not only
are there more than one metric, but their variations must
satisfy certain relations among themselves to maintain the
NC structure. While this leads to several interesting
consequences for fields coupled to them, it significantly
complicates the computation of gravitational anomalies.
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The heat kernel approach in [31] describes some of these
complications in the process of deriving its results about
flat space, where in addition, the gauge field Aμ was set to
vanish. As we will describe, this gauge field is central to the
result we derive.
While several techniques may be employed in the calcu-

lation of anomalies, we have found Fujikawa’s method
[2,39,40] particularly appropriate given the NC background.
Fujikawa’s approach recognizes the anomaly as the failure of
the measure of the path integral to remain invariant under the
given symmetry transformation. One of the ways to evaluate
the functional trace of the Jacobian for gravitational anoma-
lies is through a regulator and basis, for whichwewill use the
plane wave approach of [41,42]. This approach leads to the
correct result for the relativistic trace, chiral, and diffeo-
morphism anomalies. The regulator was introduced in [43],
which was further shown to be equivalent to Pauli-Villars
regularization in [44]. Evaluating the trace of the regulated
Jacobian leads to candidate anomaly terms, not all of which
are the true anomaly. The general expression contains terms
for which a counterterm can be included in the effective
action. Only those terms which cannot be written as a
counterterm constitute the anomaly. The significant draw-
backs of this approach are the Baker-Campbell-Haussdorff
(BCH) expansion to high orders and the evaluation of large k
integrals, making them unfeasible for higher dimensional
anomalies. Nevertheless, since the result follows only from a
plane wave expansion and the variations of the Schrödinger
fields, it turns out to be very useful for the NC background.
We also plan on exploring the implications of the

anomaly terms of Eq. (1.1) in the renormalization group
(RG) flow of the corresponding fields. It is well-known that
relativistic trace anomalies impose nontrivial constraints on
the infrared dynamics emerging from an ultraviolet unitary
theory. These constraints follow from imposing the
Wess-Zumino (WZ) consistency conditions on the local
Callan-Symanzik (CS) equation, which in two dimensions
provides a proof of the Zamolodchikov c theorem [45]. By
relying entirely on the Abelian nature of Weyl trans-
formations and the general form of the anomaly density,
this procedure can provide a nonperturbative proof without
the requirement of any particular renormalization scheme.
The formulation of the consistency conditions in z ¼ 2
theories has been considered in [46]. The consistency
conditions which result from the NC anomaly terms was
studied in [47]. We will demonstrate how the Weyl
consistency condition implies that the term Rμντ

μτν con-
tained in Eq. (1.1) satisfies a c-theorem condition. To
demonstrate that the anomaly coefficient satisfies a definite
monotonicity property, we would need to consider the
correlation functions of the Schrödinger fields. As the
derivation of these correlators lies beyond the scope of
the present work, we will address this in the future.
The organization of our paper is as follows. In Sec. II, we

review basic properties of the NC background which will

be relevant to our derivation. In Sec. III, we consider the
Schrödinger action on the NC background and its sym-
metries. In Sec. IV, we derive the diffeomorphism and trace
anomalies using Fujikawa’s approach in a plane wave basis.
In Sec. V, we demonstrate that the coefficient of the Rμντ

μτν

anomaly term satisfies a c-theorem condition. Finally, in
Sec. VI, we conclude with a discussion of our result and
their implications for systems on curved Newtonian back-
grounds. Appendix A provides details of the adapted
coordinate system for the NC background, which is used
to calculate the anomalies. Appendix B reviews Fujikawa’s
approach, the regulator used in relativistic field theories and
the regulator used in this work for nonrelativistic field
theories. Appendix C contains intermediate details needed
for the calculation provided in Sec. IV.

II. THE NEWTON-CARTAN BACKGROUND

The NC background was initially constructed by Cartan
in [48], as a covariant spacetime formulation of Newtonian
gravity. Further investigations detailed the geometric prop-
erties of the background [38,49], in particular, its relation to
the Bargmann algebra [50] and the minimal coupling of
fields to it [51–53]. This background has been subsequently
derived in a number of ways including the reduction from a
higher dimensional relativistic background [36,54], the
gauging of the Bargmann algebra [55,56], coset construc-
tion [57,58], and the localization of spacetime symmetries
of the Schrödinger field [59–61]. We will here review
certain properties of the metric and connection of the
torsion-free NC background relevant for later sections.
The NC background contains a degenerate inverse

spatial metric and a degenerate temporal 1-form satisfying
the following relations:

∇μhαβ ¼ 0 ∇μτν ¼ 0 ð2:1Þ
hμντμ ¼ 0: ð2:2Þ

Given that hμν and τμ are degenerate, their inverses do not
exist. We can formally define a generalized inverse for τμ

such that

τμτμ ¼ 1: ð2:3Þ
We can further define a spatial metric hμν that satisfies the
following relations:

hμντμ ¼ 0;

hμλhλν þ τμτν ¼ δμν : ð2:4Þ
Unlike hμν, the covariant derivative of hμν does not vanish.
The variation of hμν follows from Eq. (2.4),

δhμν ¼ −2hρðμτνÞδτρ: ð2:5Þ
Thus, variations and derivatives of hμν are not independent
of τμ, and we must choose either hμν or τμ as the
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independent field. Conventionally, τμ is taken to be the
independent field, which will also be followed in this paper.
A direct consequence of the metricity conditions is that

the connection is not uniquely determined by these metrics
alone. The most general linear, symmetric connection
which satisfies Eq. (2.1) has the form

Γρ
νμ ¼ τρ∂ðμτνÞ þ

1

2
hρσð∂μhσν þ ∂νhσμ − ∂σhμνÞ

þ hρλτðμKνÞλ; ð2:6Þ
where Kλμ is just an arbitrary two form at this stage. One
can now construct the Riemann tensor for a symmetric
connection in the usual way

½∇μ;∇ν�Vλ ¼ Rλ
σμνVσ; ð2:7Þ

where Rλ
σμν satisfy the following relations:

τρRρ
σμν¼ 0; Rλ

σðμνÞ ¼ 0; Rλ½σμν� ¼ 0; RðλσÞ
μν ¼ 0:

ð2:8Þ
The NC connection can be demonstrated as the Newtonian
limit of the connection of a Riemannian manifold provided
Trautman’s condition holds [52]

Rλ
σ
μ
ν ¼ Rμ

ν
λ
σ: ð2:9Þ

Indices were raised in Eq. (2.9) using the metric hμν. From
Eq. (2.6), we note that Eq. (2.9) is equivalent to requiring
dK ¼ 0. This implies that

Kλμ ¼ 2∂ ½λAμ�; ð2:10Þ
where Aμ is an arbitary 1-form. Nonrelativistic spacetimes
also do not have a preferred vector field τμ, and this leads to
an additional invariance under Milne boosts [58,62], which
are described by

τμ → τμ þ hμνkν;

hμν → hμν − 2τðμkνÞ þ τμτνhαβkαkβ;

Aμ → Aμ þ kμ −
1

2
τμhαβkαkβ; ð2:11Þ

where kμ is an arbitrary spatial vector, i.e., kμτμ ¼ 0. The
NC background and its torsion free connection Eq. (2.6) are
invariant under this transformation.
A covariant measure for the NC background follows by

defining the nowhere vanishing effective metric γμν ¼
hμν þ τμτν [58]. While this metric is neither Milne invariant
nor does it satisfy the metricity condition, its determinant
satisfies both. The calculations of our work will presume a
2þ 1 dimensional NC background, which satisfies the
Frobenius condition

τ ∧ dτ ¼ 0: ð2:12Þ

For such backgrounds, we can describe the determinant of
the metric as

jγj ¼ 1

3!
ϵμνσϵαβγγμαγνβγσγ ¼ jhj: ð2:13Þ

The second equality of Eq. (2.13) follows from Eq. (2.4)
and the unit lapse function of the NC spacetime
[Eq. (2.3)]. Thus, the measure of the NC background is
simply given by

ffiffiffi
h

p
when it satisfies the Frobenius

condition Eq. (2.12) [63].
The relations considered in this section are valid for the

symmetric connection of the NC background. The presence
of torsion leads to a NC background for which dτ ≠ 0. In
addition, such backgrounds require the construction of a
modified connection in order to ensure invariance under
both Milne andUð1Þ transformations. For further details on
NC backgrounds with torsion, we refer the reader to
[56,58]. All the calculations in this paper will be considered
on the NC background without torsion.

III. THE SCHRÖDINGER FIELD ON
THE NC BACKGROUND

The Schrödinger field on the NC background was
originally considered in [52], with the intent of providing
the (Galilean) covariant Schrödinger equation on curved
Newtonian backgrounds. More recently, this action has
received attention due to its many newfound applications in
condensed matter physics [60,64,65] and holography
[66,67]. In 2þ 1 dimensions, this action can be written as

S ¼
Z

dtd2x
ffiffiffi
h

p
L

¼
Z

dtd2x
ffiffiffi
h

p
½imðΦ�τμDμΦ −ΦτμD̄μΦ�Þ

− hμνDμΦD̄νΦ��; ð3:1Þ

where Dμ ¼ ∇μ − imAμ, D̄μ ¼ ∇μ þ imAμ, and ∇μ repre-
sents the usual covariant derivative of the spacetime. The
gauge field Aμ is a mass generating field which provides
particle number conservation on the NC background. It is
also the same field which appears in the NC connection
contained in ∇μ and is therefore on the same footing as all
other gravitational fields. In addition, the action Eq. (3.1) is
known to be invariant under Milne boosts [58]. In this
regard, it will be useful to define the Milne invariant
quantities

vμ ¼ τμ − hμνAν ¼ τμ − Aμ

ψ ¼ τμAμ −
1

2
hμνAμAν: ð3:2Þ

For convenience, we will also define ∂μ ¼ hμν∂ν. Note that
in Eq. (3.1), m is merely a passive parameter with no mass
dimension [37].
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Since we are interested in understanding the symmetries
of Eq. (3.1), let us first consider its total variation

δS ¼
Z

dtd2x
ffiffiffi
h

p
½−Pμνδhμν þ Rμδτ

μ − JμδAμ þ δΦ�DΦ

þ δΦD̄Φ��; ð3:3Þ

where we have defined

Pμν ¼
1

2
hμνLþDμΦD̄νΦ�

Rμ ¼ imðΦ�DμΦ −ΦD̄μΦ�Þ
Jμ ¼ −2m2ΦΦ�vμ þ imðΦ�∂μΦ −Φ∂μΦ�Þ

DΦ ¼ ð2imvμ∇μ þ im∇μvμ þ 2m2ψ þ hμν∇μ∇νÞΦ
D̄Φ� ¼ ð−2imvμ∇μ − im∇μvμ þ 2m2ψ þ hμν∇μ∇νÞΦ�:

ð3:4Þ

We note again that as variations of δhμν are not independent
of δτμ, they do not appear separately in Eq. (3.3). Let us
now consider the variations to be diffeomorphisms with
respect to some arbitrary vector field ξμ, i.e., δξ ¼ £ξ, with
£ denoting the Lie derivative. It is straightforward to
demonstrate δξS ¼ 0, and hence, Eq. (3.1) is invariant
under diffeomorphisms.
We further consider the on shell symmetries of the action

0 ¼ δξS ¼
Z

dtd2x
ffiffiffi
h

p
½−Pμν£ξhμν þ Rμ£ξτμ − Jμ£ξAμ�

¼
Z

dtd2x2
ffiffiffi
h

p
ξν
�
−∇μTμ

ν − Jμ∇½νAμ�

þ 1

2
Rμ∇ντ

μ

�
: ð3:5Þ

Here Tμ
ν is the stress tensor of the Schrödinger field on the

NC background, which is defined as

Tμ
ν ¼ PðνσÞhσμ −

1

2
Rντ

μ: ð3:6Þ

Thus, Eq. (3.1) remains invariant under on shell diffeo-
morphisms provided the stress tensor satisfies

∇μTμ
ν þ Jμ∇½νAμ� −

1

2
Rμ∇ντ

μ ¼ 0: ð3:7Þ

Let us now consider Weyl transformations, δΛ ¼ wΛ,
where w is the weight of the field and Λ is the parameter of
the transformation. It can be noted that the action Eq. (3.1)
is not Weyl invariant (δΛS ≠ 0) and thus cannot be used to
investigate the Weyl anomaly. Usually one could now
include a term proportional to RΦΦ� and determine the
proportionality constant which ensures invariance.

However, in 2þ 1 dimensions, we can construct a Weyl-
invariant action from Eq. (3.1) by replacing the scalar fields
with scalar densities. This trick is known to work for
relativistic scalar fields in 1þ 1 dimensions, where the
densitized fields are known as Fujikawa variables.
By substituting Φ ¼ ~Φh−

1
4 and Φ� ¼ ~Φ�h−1

4 in Eq. (3.1),
we have

eS ¼
Z

dtd2x
ffiffiffi
h

p
~L

¼
Z

dtd2x
ffiffiffi
h

p
½imh−

1
4ð ~Φ�τμDμð ~Φh−

1
4Þ

− ~ΦτμD̄μð ~Φ�h−
1
4ÞÞ

− hμνDμð ~Φh−
1
4ÞD̄νð ~Φ�h−1

4Þ�: ð3:8Þ

The fundamental fields of Eq. (3.8) are now
f ~Φ; ~Φ�; Aμ; hμν; τμ; τμg. The total variation of the action
Eq. (3.8) in this case can be expressed as

δeS ¼
Z

dtd2x½− ~Pμνδhμν þ ~Rμδτ
μ − ~JμδAμ

þ δ ~Φ�ℛ ~Φþ δ ~Φðℛ ~ΦÞ�� ð3:9Þ

with

~Pμν ¼
ffiffiffi
h

p

2
hμν ~Lþ

ffiffiffi
h

p
Dμð ~Φh−

1
4ÞD̄νð ~Φ�h−1

4Þ

−
1

4
hμνð ~Φ�ℛ ~Φþ ~Φðℛ ~ΦÞ�Þ

~Rμ ¼ imh
1
4ð ~Φ�Dμð ~Φh−

1
4Þ − ~ΦD̄μð ~Φ�h−1

4ÞÞ
~Jμ ¼ 2m2 ~Φ ~Φ�vμ þ imh

1
4ð ~Φ�∂μð ~Φh−

1
4Þ

− ~Φ∂μð ~Φ�h−1
4ÞÞ

ℛ ~Φ ¼ ðh1
4Dh−

1
4Þ ~Φ

¼ ½h1
4ð2imvμ∇μ þ im∇μvμ þ 2m2ψ

þ hμν∇μ∇νÞh−1
4� ~Φ

ðℛ ~ΦÞ� ¼ ðh1
4D̄h−

1
4Þ ~Φ�

¼ ½h1
4ð−2imvμ∇μ − im∇μvμ þ 2m2ψ

þ hμν∇μ∇νÞh−1
4� ~Φ�: ð3:10Þ

We now find that Eq. (3.9) vanishes under

δΛ ~Φ ¼ Λ ~Φ; δΛ ~Φ� ¼ Λ ~Φ�; ð3:11Þ

δΛhμν¼−2Λhμν; δΛτ
μ ¼−2Λτμ; δΛAμ ¼ 0: ð3:12Þ

Thus, the action Eq. (3.8) is invariant under Weyl trans-
formations. Considering the on shell invariance of Eq. (3.8)
under Weyl transformations, we find
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0 ¼ δΛeS ¼
Z

dtd2x
ffiffiffi
h

p
½− ~PμνδΛhμν þ ~RμδΛτ

μ�

¼
Z

dtd2x
ffiffiffi
h

p
2Λ½2 ~T0

0 þ ~Ti
i�; ð3:13Þ

where

2 ~T0
0 þ ~Ti

i ¼ −
1

2
ð ~Φ�ðh−1

4Dh−
1
4Þ ~Φþ ~Φðh−1

4D̄h−
1
4Þ ~Φ�Þ;

~T0
0 ≔ ~Tμ

ντ
ντμ; ~Ti

i ≔ ~Tμ
νhμαhαν: ð3:14Þ

It is evident from Eq. (3.13) that the on shell Weyl
invariance of Eq. (3.8) can be restored provided

2 ~T0
0 þ ~Ti

i ¼ 0: ð3:15Þ
We have thus demonstrated that the 2þ 1 dimensional
Schrödinger field on the Newton-Cartan background can be
used to investigate its invariance under both diffeomor-
phisms and Weyl transformations (the latter by densitizing
the Schrödinger fields). This will be particularly useful in
investigating both trace and diffeomorphism anomalies in
the following section.

IV. DERIVATION OF THE
GRAVITATIONAL ANOMALIES

The invariance of the path integral under the symmetries
provided in the previous section leads to anomalous on
shell stress tensor relations. Specifically, the path integral
average of the on shell stress tensor relations of Eq. (3.7)
and Eq. (3.15) are now equal to the functional trace of the
Jacobian of the Schrödinger fields under the given sym-
metry transformation. For the derivation of gravitational
anomalies, this trace is evaluated using an appropriate
regulator (R) and Jacobian (J). Following Eq. (B17), we
can write the actions of the previous section as

S ¼
Z

dtd2x
1

2
Ψ�TRΨ; ð4:1Þ

whereΨ and Ψ� are the quantum fields (which may now be
viewed as flat space fields) as all gravitational field
dependence is now absorbed into the definitions of T
and R. In this case, given δΨ ¼ KΨ, the Jacobian may be
written as

J ¼ K þ 1

2
T−1δT: ð4:2Þ

A detailed review behind this choice is provided in
Appendix B. The gravitational anomaly now results from
the following regulated trace:

AðxÞ ¼
Z

dtd2xAnðxÞ

AnðxÞ ¼ lim
M→∞

TrJe
R
M2 : ð4:3Þ

AnðxÞ refers to the anomaly (density) expressions we will
derive in this work. To evaluate the trace in Eq. (4.3), we
expandΨ andΨ� as flat space plane wave modes so that the
result follows from Gaussian integration. In the nonrela-
tivistic case, the regulated trace to be used is given by

lim
M→∞

TrJ¼ lim
M→∞

Z∞
0

dω
2π

Z∞
−∞

d2k
ð2πÞ2 e

−iωteikx½JðxÞe R
M2 �eiωte−ikx:

ð4:4Þ

The reason behind the above integral representation is
provided in B 3. We will now derive the trace and diffeo-
morphism anomalies by evaluating this integral.

A. The trace anomaly

To derive the trace anomaly, we consider the action
Eq. (3.8), which can be expressed as

S ¼
Z

dtd2x ~Φ�ℛ ~Φ; ð4:5Þ

where ~Φ and ~Φ� are the fundamental fields and ℛ is the
Hermitian operator defined in Eq. (3.10). The path integral
is given by

Z ¼
Z

D ~ΦD ~Φ�eiS½ ~Φ; ~Φ�;τμ;hμν;Aμ�: ð4:6Þ

Using Eq. (3.11), we find that the invariance of Eq. (4.6)
under Weyl transformations of the fields ~Φ and ~Φ� results
in the following anomalous Ward identity:

hΛ
ffiffiffi
h

p
ð2 ~T0

0 þ ~Ti
iÞi ~Φ ~Φ� ¼ hTrJi ~Φ ~Φ� ; ð4:7Þ

where h� � �i ~Φ ~Φ� denotes the path integral average with
respect to the variables ~Φ and ~Φ�. To proceed, we regulate
the trace occurring in Eq. (4.7)

hTrJi ~Φ ~Φ� → lim
M→∞

TrJe
R
M2 : ð4:8Þ

The Jacobian and the regulator to be used can be deter-
mined by comparing Eq. (4.5) with Eq. (4.1) and Eq. (4.2).
The Jacobian is simply J ¼ ΛðxÞ (since T ¼ 2) while the
regulator is

R ¼ ℛ ¼ h
1
4Dh−

1
4: ð4:9Þ

The regulated trace which needs to be evaluated is now
given by

lim
M→∞

TrΛðxÞe R
M2 ¼ lim

M→∞

Z∞
0

dω
2π

Z∞
−∞

d2k
ð2πÞ2

× e−iωteikx½ΛðxÞe R
M2 �eiωte−ikx: ð4:10Þ
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Because of the use of flat space nonrelativistic plane waves,
we expand R in the adapted coordinates described in A.
For the calculation to follow, it will be useful to decompose
the Milne invariant quantities in Eq. (3.2) as vμ ¼ fv0; vig
and ψ ¼ ϕþ ϕ̄, where

v0 ¼ τ0; vi ¼ τi − hijAj;

ϕ ¼ τ0A0; ϕ̄ ¼ τiAi −
1

2
hijAiAj: ð4:11Þ

With these definitions Eq. (4.9) can be written as

R¼ h
1
4½2imv0∂t þ 2imvi∂i þ hijð∂i∂j − Γk

ij∂kÞ− imC�h−1
4;

ð4:12Þ

where ∂t ¼ ∂
∂t and C are given by

C ¼ −∇ivi þ 2imðϕ̄þ ϕÞ: ð4:13Þ

We can nowmove the plane wave eiωte−ikx from the right of
the regulator in Eq. (4.10) to the left. By further rescaling
k → Mk and ω → M2ω, we have

lim
M→∞

TrΛðxÞe R
M2 ¼ lim

M→∞
M4

Z
dω
2π

Z
d2k
ð2πÞ2 ΛðxÞe

RðMk;M2ωÞ
M2 ;

ð4:14Þ

where the operator in the exponent now takes the form

RðMk;M2ωÞ
M2

¼ −k2 − 2mv0ωþ 1

M
ðikiΓi − 2iki∂i

þ 2mkivi − 2ih
1
4ki∂iðh−1

4ÞÞ

þ 1

M2
ðΔ − imC þ h

1
4Δh−1

4

þ 2h
1
4∂lðh−1

4Þ∂lÞ: ð4:15Þ

In Eq. (4.15), we have used the following definitions:

Γi ¼ hmnΓi
mn; k2 ¼ kikjhij;

Δ ¼ ∂i∂i − Γi∂i þ 2imv0∂t þ 2imvi∂i: ð4:16Þ

At this stage, we can factor out e−2mv0ω from e
RðMk;M2ωÞ

M2 since
it is a constant (v0 ¼ τ0 ¼ 1 in adapted coordinates).
Following this, the ω integral can be easily evaluated

Z∞
0

dω
2π

e−2mω ¼ 1

4πm
: ð4:17Þ

Concerning the k integral, we need to use the BCH

expansion to factor out e−k
2

from e
RðMk;M2ωÞ

M2 . By labeling

A ¼ −k2 and B as the M dependent terms of RðMk;M2ωÞ
M2 , we

can write

eAþB ¼ eAeE; ð4:18Þ

where E is given by

E ¼ B −
½A; B�
2

þ ½A; ½A;B��
6

þ ½B; ½A;B��
12

−
½A; ½B; ½A;B���

24

−
½A; ½A; ½A;B���

24
þ ½A½A; ½A; ½A; B����

120

þ ½A½A; ½B; ½A; B����
120

−
½A½B; ½B; ½A; B����

240

þ ½B½A; ½B; ½A;B����
180

−
½B½B; ½B; ½A; B����

720

þ ½B½A; ½A; ½A; B����
240

þ � � � : ð4:19Þ

The ellipsis in Eq. (4.19) refers to the fifth order onward
terms of the BCH expansion. The commutators in
Eq. (4.19) contain all contributions up to M−4 resulting
from the BCH expansion, whose expressions have been
provided in Eq. (C2). From Eq. (C2), we see that all terms
with even powers of M−1 contain an even number of k’s,
and likewise all terms with odd powers of M−1 contain an
odd number of k’s. This property will hold to all orders in
the BCH expansion.
Since E containsM−1 terms, we expand Eq. (4.18) up to

fourth order

eAþB ¼ eA
�
1þ Eþ E2

2
þ E3

3!
þ E4

4!

�
þOðE5Þ: ð4:20Þ

Equation (4.20) now contains all terms up to M−4 which
can contribute to the anomaly. We can now ignore all terms
with free derivatives, as they cannot contribute to the
anomaly. It will also be useful to separate those terms
which do contain derivatives acting on h−

1
4 from those that

do not. We thus write Eq. (4.20) as

eAþB ¼ eA
�
1þ Eþ E2

2
þ E3

3!
þ E4

4!

�
þOðE5Þ

≈ eA
�
1þ B1

M
þ B2

M2
þ B3

M3
þ B4

M4
þHðh−1

4Þ

þOðM−5Þ
�
: ð4:21Þ

The ≈ symbol in Eq. (4.21) indicates that we have dropped
all terms with free derivatives. Hðh−1

4Þ contains all terms
with ∂ðh−1

4Þ, while the Bi terms represent the order M−i

contributions which do not contain ∂ðh−1
4Þ. With Eq. (4.21),

we have the following expression:
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e
RðMk;M2ωÞ

M2 ¼e−2mωe−k
2

�
1þB1

M
þ B2

M2
þ B3

M3
þ B4

M4
þHðh−1

4Þ
�
;

ð4:22Þ

which will be needed to evaluate the integrals. Upon
substituting Eq. (4.22) and Eq. (4.17) in Eq. (4.14), we get

lim
M→∞

TrΛðxÞe R
M2

¼ lim
M→∞

M4
1

4πm

Z
d2k
ð2πÞ2 ΛðxÞe

−k2

×
�
1þ B1

M
þ B2

M2
þ B3

M3
þ B4

M4
þHðh−1

4Þ
�
: ð4:23Þ

Equation (4.23) can now be evaluated via the following
Gaussian integrals:Z

d2ke−k
2 ¼

ffiffiffi
h

p
π;Z

d2ke−k
2

kikj ¼
1

2

ffiffiffi
h

p
πhijZ

d2ke−k
2

kikjkmkn ¼
1

4

ffiffiffi
h

p
πðhijhmn þ himhnj þ hinhmjÞZ

d2ke−k
2

kikj � � � k2n−1k2n

¼ 1

2n

ffiffiffi
h

p
πðð2n − 1Þ!! permutations of hij � � � h2n−12nÞ:

ð4:24Þ

The k integrals vanish under symmetric integration when-
ever there are an odd number of k’s in the integrand. Thus,
B1 and B3 vanish under symmetric integration.Hðh−1

4Þ also
vanishes following symmetric integration. This result could
have been anticipated from the cyclicity of trace [68]. The
integral

Z
d2ke−k

2

�
1þ B2

M2

�
ð4:25Þ

is nonvanishing. These terms would be eliminated by
regularization in a one-loop calculation and do not con-
tribute in the final expression for the anomaly. For example,
within the Pauli-Villars scheme, one can include additional
copies of the PV fields with coefficients chosen so as to
cancel out these M dependent terms. Thus, these terms can
be ignored as well. Since the integral of B2 is somewhat
instructive, we have provided the terms contained in its
integrand in Eq. (C3), using which we have the following
result:

Z
d2ke−k

2 B2

M2
¼

ffiffiffi
h

p
π

�
1

6
Rijhij þ 2m2ϕ

�
: ð4:26Þ

The only contribution to the anomaly comes from the term
B4, and Eq. (4.23) reduces to

lim
M→∞

TrΛðxÞe R
M2 ¼ 1

4πm

Z
d2k
ð2πÞ2 ΛðxÞe

−k2B4: ð4:27Þ

The individual terms contained in B4 have been provided in
Eq. (C4), and the resulting k integral works out to give

Z
d2ke−k

2

B4

¼
ffiffiffi
h

p
π

�
1

180
ðRijmnRijmn − RijRij þ□RijhijÞ

þ 2m4ϕ2 þm2

3
ðϕRijhij − R00v0v0Þ

�
: ð4:28Þ

Substituting Eq. (4.28) in Eq. (4.27), we get the following
expression for the candidate anomaly:

lim
M→∞

TrΛðxÞe R
M2 ¼

ffiffiffi
h

p
ΛðxÞ

mð4πÞ2
�

1

180
ðRijmnRijmn

− RijRij þ□RijhijÞ þ 2m4ϕ2

þm2

3
ðϕRijhij − R00v0v0Þ

�
: ð4:29Þ

While the calculation leading to this result is considerably
involved, we note the following points related to the
derivation and the above result. The term R00v0v0 results
due to both the single derivative operator ∂t and imC
contained in Eq. (4.12), following the BCH expansion. If
Aμ were absent in our derivation, then so too would all the
terms in the second line of Eq. (4.29), thereby providing
only the curvature squared results already noted in the
literature. The choice of τμ ¼ ð1; 0; 0; 0Þ and the absence of
h0μ in adapted coordinates affects the expressions of C, the
Ricci and Riemann tensors, as well as the final result. The
absence of terms vi and ϕ̄ in the final answer is thus a
coordinate artifact which reflects our choice of time for the
hypersurface. Remarkably, all imaginary terms cancel out
in the calculation leading to Eq. (4.29). The absence of
imaginary terms as well as the split into “temporal” and
“spatial” parts in the expression may also be noted
in Eq. (4.26).
The curvature squared terms of Eq. (4.29) can be further

simplified. We first note that a local counterterm involving
ðRijhijÞ2 can be included in the effective action to eliminate
the term □Rijhij. Hence, this is not part of the final
anomaly result. Further, since ðRijmnRijmn − RijRijÞ is
constructed out of the 2D spatial metric on a NC back-
ground which satisfies the Frobenius condition, we can use
Rijmn ¼ 1

2
ðRlkhlkÞðhimhjn − hinhjmÞ to write
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RijmnRijmn − RijRij ¼ 1

2
ðRijhijÞ2: ð4:30Þ

Thus using Eq. (4.29) and Eq. (4.8), we can write the
following covariant result:

h2 ~T0
0 þ ~Ti

ii ¼
1

mð4πÞ2
�

1

360
ðRμνhμνÞ2 þ 2m4ψ2

þm2

3
ðψRμνhμν − RμνvμvνÞ

�
: ð4:31Þ

In going from Eq. (4.29) to Eq. (4.31), we have accounted
for the presence of h0μ terms, which should have been
present in the expressions of v0 and ϕ for coordinate
choices other than adapted coordinates. This covariant
result has been inferred from Eq. (4.29) by noting the
Milne invariance of the regulator we considered in
Eq. (4.12), as well as the absence of “Milne gravitational
anomalies” [69]. While in principle any h0μ contribution of
Eq. (4.29) could have been involved in the final answer,
only one specific choice leads to the Milne invariant result
of Eq. (4.31).
On the other hand, it may be noted that Eq. (4.31) violates

Uð1Þ invariance. We have been unable to find counterterms
which would help eliminate the ψRμνhμν and ψ2 terms of
Eq. (4.31), and they do appear to comprise the true anomaly.
A similar situation arises in relativistic systems which
involve gauge and gravitational anomalies. A characteristic
example arises in the four-dimensional mixed gravitational
anomaly which involves both Uð1Þ and diffeomorphism
anomalies, where the latter violates Uð1Þ invariance.
However, one can find a counterterm to make the gauge
current anomaly free, which in turn leads to the diffeo-
morphism anomaly being Uð1Þ invariant [26]. We believe a
situation similar to this would arise for the NC background.
The key difference with the relativistic case is that the
anomalous current hJμi is also a gravitational anomaly
due to the presence of the gauge field in the connection.
To conclude, we point out some further generalities

which may be deduced from our calculation. We note that
the trace anomaly can only arise in odd dimensions. Since
z ¼ 2 and all BCH expansion terms involve an even (odd)
number of k’s for terms with an even (odd) power of M−1,
the anomalies can only occur when there are an even
number of spatial dimensions. Thus, NC trace anomalies
always arise in odd spacetime dimensions.
While our result concerned NC backgrounds without

torsion, which allowed us to use Eq. (4.30), in general, we
would have instead

RijmnRijmn − RijRij ¼ 1

2
ð−Ē4 þ 3C̄2Þ; ð4:32Þ

where E4 and C2 represent the four-dimensional Euler
density and the square of the Weyl tensor, respectively, as
follows:

E4 ¼ RμνρσRμνρσ − 4RμνRμν þ R2;

C2 ¼ RμνρσRμνρσ − 2RμνRμν þ 1

3
R2; ð4:33Þ

while the overbar implies that these tensors are contracted
only with the (two dimensional) spatial metric hαβ.
The general result, following Eq. (4.31), will then be
modified to

h2 ~T0
0 þ ~Ti

ii ¼
1

mð4πÞ2
�

1

360
ð−Ē4 þ 3C̄2Þ þ 2m4ψ2

þm2

3
ðψRμνhμν − RμνvμvνÞ

�
þ additional terms: ð4:34Þ

This result, apart from the τμ and Aμ dependent terms, is in
agreement with the results provided in [29,31]. The
coefficients of the curvature squared terms are in addition
identical to those derived using the heat kernel approach
of [32].

B. The diffeomorphism anomaly

The diffeomorphism anomaly can be computed from
Eq. (3.1) using the procedure of the previous section. The
fundamental fields are now Φ and Φ� with the following
action:

S ¼
Z

dtd2xΦ� ffiffiffi
h

p
DΦ:

The path integral in this case is given by

Z ¼
Z

DΦDΦ�eiS½Φ;Φ�;τμ;hμν;Aμ�: ð4:35Þ

UsingEq. (3.5), the invariance ofEq. (4.35) under δΦ ¼ £ξΦ
and δΦ� ¼ £ξΦ� results in the following anomalous Ward
identity:�
−

ffiffiffi
h

p
ξμ
�
∇νTν

μþJν∇½μAν�−
1

2
Rν∇μτ

ν

��
ΦΦ�

¼ hTrJiΦΦ� :

ð4:36Þ

From Eq. (4.1), we have R ¼ D, which ensures that it is
symmetric [70]. Here, T ¼ 2

ffiffiffi
h

p
, and hence from Eq. (4.2),

the Jacobian to consider is

J ¼ ξμ∂μ þ
1

2
ffiffiffi
h

p £ξ
ffiffiffi
h

p

¼ ξμ∂μ þ
1

2
ffiffiffi
h

p ξμ∂μ

ffiffiffi
h

p
þ ∂μξ

μ: ð4:37Þ

Thus, the regulated trace takes the following form:
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lim
M→∞

TrJe
R
M2 ¼ lim

M→∞

Z
dω
2π

Z
d2k
ð2πÞ2 e

−iωteikx

×

��
ξμ∂μ þ

ξμ∂μ

ffiffiffi
h

p

2
ffiffiffi
h

p þ ∂μξ
μ

�
e

R
M2

�
eiωte−ikx:

ð4:38Þ

Evaluating this expression would formally result in consid-
ering an expansion up to M−6. In taking the plane wave
ðeiωte−ikxÞ to the left, it gets acted upon by both the Jacobian
and the regulator. The action of the Jacobian on eiωt now
produces the term iξ0ω. By rescaling ω → M2ω, we end up
with a factor of M6 outside the above integral, requiring a
BCH expansion up to M−6 for determining the anomaly.
However, having chosen a symmetric regulator, we can

avoid this cumbersome calculation by noting the following
identity which holds for any symmetric regulator ~R [42]:

Tr
�
ξμ∂μ þ

1

2
∂μξ

μ

�
e ~R ¼ 0: ð4:39Þ

Using the expressions for Γi
μi ¼ 1ffiffi

h
p ∂μ

ffiffiffi
h

p
and Γ0

μν ¼ 0 (in

adapted coordinates) and Eq. (4.39), we can simplify
Eq. (4.38) to

lim
M→∞

TrJe
R
M2 ¼ lim

M→∞

Z
dω
2π

Z
d2k
ð2πÞ2 e

−iωteikx

×

�
1

2
ð∇μξ

μÞe R
M2

�
eiωte−ikx: ð4:40Þ

Hence, we do not have to deal with any free derivatives due
to the Jacobian. Moving the plane wave past the regulator
and rescaling k → Mk and ω → M2ω results in

lim
M→∞

TrJe
R
M2 ¼ lim

M→∞
M4

Z
dω
2π

Z
d2k
ð2πÞ2

1

2
ð∇μξ

μÞeRðMk;M2ωÞ
M2 :

ð4:41Þ

We now need to factor out e−k
2

and e−2mω from e
RðMk;M2ωÞ

M2

using the BCH expansion, as in the previous section, up to
M−4 terms. Since the regulator of this section differs from
that of the previous one only by ∂ðh−1

4Þ terms, the following
factored expression is easily determined from Eq. (4.22):

e
RðMk;M2ωÞ

M2 ¼ e−2mωe−k
2

�
1þ B1

M
þ B2

M2
þ B3

M3
þ B4

M4

�
:

ð4:42Þ

Only the B4 term contributes to the anomaly, and we have
the following expression for the candidate anomaly:

lim
M→∞

TrJe
R
M2 ¼ 1

2
ð∇μξ

μÞ
Z

dω
2π

e−2mω

Z
d2k
ð2πÞ2 e

−k2B4

¼
ffiffiffi
h

p ð∇μξ
μÞ

ð4πÞ2m
�

1

360
ððRijhijÞ2 þ□ðRijhijÞÞ

þ 2m4ϕ2 þm2

3
ðϕRijhij − R00v0v0Þ

�
;

ð4:43Þ

where we have simplified the curvature squared expression
by making use of Eq. (4.30). The terms from Eq. (4.43)
which contribute to the anomaly must satisfy the same
criteria as in the case for the trace anomaly. Adopting the
covariant notation as in the case of the trace anomaly, the
result for the diffeomorphism anomaly in this case is

Anξ ¼ −
ffiffiffi
h

p

mð4πÞ2 ξ
μ∇μ

�
1

720
ðRαβhαβÞ2 þm4ψ2

þm2

6
ðψRαβhαβ − RαβvαvβÞ

�
: ð4:44Þ

Equations (4.44) and (4.36) now provide the following
expression for the diffeomorphism anomaly:

h∇νTν
μ þ Jν∇½μAν� −

1

2
Rν∇μτ

νi

¼ ∇μ

�
1

720ð4πÞ2m ðRαβhαβÞ2 þ
m3

16π2
ψ2

þ m
96π2

ðψRαβhαβ − RαβvαvβÞ
�
: ð4:45Þ

We emphasize that all currents occurring on the left-hand
side of Eq. (4.45) correspond to the gravitational fields of
the NC background. We note that most of the previous
results for the trace anomaly (based on DLCQ) indicate a
one-to-one correspondence of the 2þ 1 dimensional result
of the NC background with 3þ 1 dimensional result of
relativistic backgrounds. Were this to actually be true for all
gravitational anomalies, one would in fact naively expect
there to be no diffeomorphism anomaly for the Schrödinger
field in 2þ 1 dimensions. In deriving this result, we have
demonstrated that this is not the case. The presence of a
diffeomorphism anomaly allows for several consequences
in condensed matter systems with boundaries. In particular,
we note that this could be relevant in providing the
entanglement entropy of quantum Hall systems on curved
backgrounds with boundaries [26,27], where the
Schrödinger field is present in the low energy effective
action.
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V. A C-THEOREM CONDITION

The coefficients of the trace anomaly are closely
related to the renormalization group (RG) flow of a
given theory. By applying the Wess-Zumino (WZ)
consistency condition on the quantum effective action,
one can relate the anomaly coefficients with the beta
functions of the theory. Our treatment in this section
will follow [45] where the consistency conditions for 2D
and 4D relativistic CFTs were addressed. An investiga-
tion of the local RG flow due to the curvature squared
terms of Eq. (4.34) was considered in [47]. Here, we
confine our attention to the Uð1Þ invariant term Rμντ

μτν

contained in Eq. (4.31). Our goal in this section will be
to demonstrate that this term satisfies a c-theorem
condition analogous to that of 2D CFTs. To begin with,
let us consider the following renormalized partition
function in the presence of sources,

Z½J � ¼ eiW½J � ¼
Z

D ~ΦD ~Φ�eiS½ ~Φ; ~Φ�;J �; ð5:1Þ

where W is the quantum effective action, which generates
connected correlators associated with renormalized
composite operators, and J denotes all the sources.
Here, we will assume that J involves the independent
background fields of the NC background (hμν; τμ; τμ, and
Aμ) and dimensionless coefficients gI associated with
certain marginal operator insertionsOI [71]. To investigate
RG flows, we first introduce the RG parameter μ. We can
now define the RG time function t ¼ lnð μμ0Þ, where μ0 is

some arbitrary reference scale and the beta functions βI ¼
∂gI
∂t correspond to the dimensionless parameters gI . The flow
is generated by D ¼ μ ∂

∂μ þ βI∂I, where we have further

defined ∂I ¼ ∂
∂gI. In flat spacetime W satisfies the flow

equation

DW ¼ 0; ð5:2Þ

which is nothing but the Callan-Symanzik equation. The
local RG concerns itself with the renormalizability of
composite operators on curved backgrounds, and hence,
the couplings are now functions of spacetime
(gI ¼ gIðx; tÞ). The local Callan-Symanzik equation under
Weyl transformations is given by

ðΔW
Λ − Δβ

ΛÞW ¼
Z
V

dvBΛ; ð5:3Þ

where Λ is the local parameter involved in Weyl trans-
formations,

R
Vdv is the integral involving the NC covariant

volume element in (2þ 1) dimensions, and BΛ is a local
anomaly density involving derivatives of the NC fields and
gI . The variations ΔW

Λ and Δβ
Λ are defined as

ΔW
Λ ¼

Z
V

dv

�
2Λhμν

δ

δhμν
þ 2Λτμ

δ

δτμ

�

Δβ
Λ ¼

Z
V

dvΛβI
δ

δgI
: ð5:4Þ

Equation (5.3) reveals that at the critical point, where
βI ¼ 0, BΛ is simply the trace anomaly. Away from the
critical point, we have additional dimension 4 terms
involving the derivatives gI . We can thus write Eq. (5.3)
in the following way:

ðΔW
Λ − Δβ

ΛÞW ¼
Z
V

dvτμτν
�
Λ
�
1

2
βΦRμν −

1

2
χIJ∂μgI∂νgJ

�

− ð∂μΛÞωI∂νgI þ � � �
�
; ð5:5Þ

where βΦ; χIJ, and ωI all depend on the coupling parameter
gI . The dots in Eq. (5.5) indicate all anomaly terms of
Eq. (4.31) other than Rμντ

μτν, as well as additional terms of
dimension 4. These terms have been ignored since they will
not be required in the following discussion. As before, we
assume that the NC background satisfies the Frobenius
condition. Since Weyl transformations are Abelian, they
satisfy the WZ consistency condition

½ΔW
Λ − Δβ

Λ;ΔW
Λ0 − Δβ

Λ0 �W ¼ 0: ð5:6Þ

Using Eq. (5.5), Eq. (5.6) gives the following expression:

½ΔW
Λ −Δβ

Λ;ΔW
Λ0−Δβ

Λ0 �W¼
Z
V

dvτνðΛ∂νΛ0−Λ0∂νΛÞτμVμ¼0;

ð5:7Þ

where

Vμ ¼ ∂μβ
Φ − ðχIJβI − βI∂IωJ − ωI∂Jβ

IÞ∂μgJ: ð5:8Þ

Equation (5.7) is satisfied when Vμ vanishes. This implies

∂Jβ
Φ ¼ χIJβ

I − βI∂IωJ − ωI∂Jβ
I: ð5:9Þ

We now define the new function ~βΦ ¼ βΦ þ ωIβ
I , with

which Eq. (5.9) becomes

∂J
~βΦ ¼ χIJβ

I þ βIð∂JωI − ∂IωJÞ: ð5:10Þ

Contracting this equationwith βJ now leads to the following
result:

∂ ~βΦ
∂t ¼ χIJβ

IβJ: ð5:11Þ
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This is a c-theorem condition satisfied by the coefficient of
Rμντ

μτν on NC backgrounds with the Frobenius condition,
which is analogous to the relation satisfied in2DCFTs.At this
point, the proof of the c theorem follows by establishing that
the “metric” χIJ is positive definite. In 2D CFTs, it can be
shown that χIJ is essentially equivalent to “Zamolodchikov’s
metric” GIJ ¼ ðx2Þ2h½OIðxÞ�½OJð0Þ�i, which further identi-
fies ~βΦ with Zamolodchikov’s c function C [45]. Here, the
situation is not so straightforward since themarginal operators
and the correlation functions they define differ from those of
2D CFTs. Our analysis would also be incomplete without all
the terms of Eq. (4.31) and their consistency conditions. As
these considerations lies outside the scope of the present
work, we will address them in the future.

VI. DISCUSSION

We derived the trace and diffeomorphism anomalies of
the Schrödinger field minimally coupled to the NC
background in 2þ 1 dimensions following Fujikawa’s
approach. In doing so, we were able to derive the
anomalies due to variations of all the background fields
contained in the NC structure. Our result for the trace
anomaly contains both curvature squared contributions, as
well as additional terms which depend on the gauge field
(Aμ) of the NC background. In setting the gauge field to
vanish in Eq. (4.31), our result involves only the curvature
squared terms and is in agreement with previous results of
the anomaly [29,31], including the coefficients [32]. The
extra terms in our result were not detected in [32] as they
had set Aμ ¼ 0 in their derivation. Further, we note from
the structure of the additional gauge dependent terms that
they cannot be inferred from the anomaly result of a
3þ 1 dimensional relativistic background. We believe
that the result of Eq. (4.31) should follow from a heat
kernel approach which fully accounts for Aμ and its
variations.
The gauge dependent contribution in our anomaly

expression involves the term Rμντ
μτν, whose structure

is similar to the relativistic trace anomaly of 1þ 1
dimensions. In the language of [72], this is a type A
anomaly, which distinguishes the result from those of
Lifshitz backgrounds with the Frobenius condition [73].
Collectively, the anomaly we found may be considered as
a general expression built out of curvature invariants of
mass dimension 4 which contain “spatial” and “temporal”
contributions. We conjecture that in dþ 1 spacetime
dimensions, where d ¼ 2n; n ¼ 1; 2; � � �, the result will
contain an expression of the dþ 2 dimensional relativistic
anomaly, contracted with the spatial metric, along with a
term of the form of the d dimensional relativistic
anomaly, contracted in general with both spatial and
temporal metrics, such that all terms are individually of
mass dimension dþ 2. Our final expression for the trace
and diffeomorphism anomalies also contained specific

Uð1Þ violating terms. These terms need to be understood
in the context of the Uð1Þ anomaly, which was not
derived here. Because of the presence of the Aμ field in
the connection, its derivation will involve a regulator
quite different from those considered in the relativis-
tic case.
The coefficients of the trace anomaly will have inter-

esting implication for field theories on the NC back-
ground. This is evident from the m dependence in
Eq. (4.31), which indicates that the curvature and curva-
ture squared terms dominate in different regimes.
Specifically, for 0 < m < 1, the curvature squared con-
tribution dominates, while for m > 1, we have the
dominant contribution from the Rμντ

μτν term. We also
note that the coefficient of the Rμντ

μτν term, apart from a
factor of m

π , is precisely one half of that of the relativistic
trace anomaly in 1þ 1 dimensions. One way in which we
can appreciate the physical implications of these obser-
vations is through the local RG flow. In the previous
section, we demonstrated that the coefficient of the
Rμντ

μτν term satisfies an expression analogous to the c
theorem of 2D CFTs. We however did not identify the
metric of parameter space (χIJ) occurring in this expres-
sion with a manifestly positive definite quantity related to
the correlation functions of the fields. These correlators
can be derived from those of the Klein Gordon field in the
limit of m

E ≫ 1. One therefore expects that massive
deformations about the fixed point of the Schrödinger
theory might also be relevant to the RG flow. While the
coefficient of ðRμνhμνÞ2 will have to vanish at the fixed
point in order to satisfy the WZ consistency conditions, its
behavior away from the fixed point might be influenced
by such deformations. We look forward to provide a
detailed analysis of this point as well as the RG flow on
NC backgrounds in future work.
NC gravitational anomalies will also be relevant for

certain systems with boundaries. As the AdS=CFT corre-
spondence is expected to hold in the NR limit [74–79], the
bulk anomalies in 2þ 1 dimensions will impose certain
constraints on the nature of the dual field theory at the
boundary. It will be interesting to consider possible
differences with Lifshitz holography [80] as the anomalies
found in this work differ from those of Lifshitz back-
grounds. We also know that the low energy effective action
for quantum Hall systems involves the Schrödinger field
coupled to, in general, a background gravitational field in
dþ 1 dimensions, where d ¼ 2n. Anomalies play a crucial
role in Hall phenomenology [18–24,26–28], with the
guiding principle in the presence of boundaries being that
the bulk and boundary contributions collectively should be
nonanomalous [19]. In taking the NR limit for these
systems, we have a bulk gravitational anomaly and no
boundary anomaly. One can thus expect that the cancella-
tion of anomalies in this case might manifest in certain
surface effects.
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APPENDIX A: ADAPTED COORDINATES
OF THE NC BACKGROUND

Relativistic gravitational anomalies using Fujikawa’s
approach can be calculated in a covariant notation in a local
plane wave basis. In the NR case, we do need to distinguish
between time and space in the plane waves as well as the
regulator. We thus need to make use of a specific set of
coordinates in our calculation. The adapted coordinates [38]
provides a representation of the NC structure. Let Greek
indices μ; ν;… denote spacetime coordinates, Latin indices
i; j;… denote spatial coordinates, and 0 represent the
coordinate for time. Then the NC system of equations for
the metric can be realized through the following choice:

τ0 ¼ 1 ¼ τ0; τi ¼ 0; h0μ ¼ 0: ðA1Þ
Equation (A1) represents our choice of time. The normali-
zation of τμ Eq. (2.3) allows us to make the choice given in
Eq. (A1). Since Aμ is a gauge field, it is naturally left
unspecified. Using Eq. (2.6) and Eq. (A1), we have the
following nonvanishing components for the connection:

Γi
jk ¼

n i

jk

o
;

Γi
0j ¼

hik

2
ð∂jhk0 þ ∂0hkj − ∂kh0j − ∂kAj þ ∂jAkÞ;

Γi
0i ¼

hik

2
∂0hik;

Γi
00 ¼

hik

2
ð2∂0hk0 − ∂kh00Þ − hikð∂kϕ − ∂0AkÞ; ðA2Þ

where f i
jkg represents the “Christoffel” component of the

connection for the spatial metric [the second term of
Eq. (2.6)]. Notably, h0μ need not vanish in adapted coor-
dinates, and therefore, τi can exist. Using Eq. (2.4) and
Eq. (A1), we find that hμν and τμ satisfy the following
relations:

hijτj ¼ −hi0; τi ¼ −hijhj0;

h00 ¼ −h0jτj ¼ τihijτj: ðA3Þ

It can now be seen that the mass dimension of the connection
components in Eq. (A2) are not the same. The first line of
Eq. (A2) has mass dimension 1, the second line has mass
dimension 2, while the last line has mass dimension 3. This
reflects the z ¼ 2 invariance of the background. However,
Ricci and Riemann tensor components have a uniform mass
dimension as a consequence. For instance,

R00 ¼ Γi
00;i − Γi

0i;0 þ Γi
ijΓ

j
00 − Γi

0jΓ
j
0i ðA4Þ

has mass dimension 4, while Rij has mass dimension 2.

APPENDIX B: FUJIKAWA’S APPROACH
AND REGULATORS

Here, we review the background material needed for the
calculation of anomalies provided in Sec. IV. Our argu-
ments will be catered to address the gravitational anomalies
considered in this paper.

1. Fujikawa’s approach

Anomalies can be understood as the failure of the
measure of the path integral to be invariant under a given
symmetry transformation. Let us consider the action
S½Ψ;G�, which is a functional of the fields Ψ and back-
ground (gravitational) fields G, such that it is invariant
under the following linear transformation:

δS ¼ δS
δΨ

δΨþ δS
δG

δG ¼ 0; ðB1Þ

where δS
δG is the densitized energy-momentum tensor. Here,

G represents the fields of the gravitational background, i.e.,
G ¼ hμν; τμ; Aμ, and τμ for the NC background. On the shell
of the equations of motion for Ψ, the first term on the right-
hand side of Eq. (B1) vanishes, and the second term
provides the classical conservation equation for the
energy-momentum tensor

δS
δG

δG ¼ 0: ðB2Þ

Equation (B2) represents Eqs. (3.5) and (3.13). The
quantum theory is described by the path integral

Z ¼
Z

DΨeiS½Ψ;G�; ðB3Þ

whose measure involves only the quantum fields Ψ. The
path integral is invariant under a given symmetry trans-
formation of Ψ providedZ

DΨ0eiS½Ψ0;G� ¼
Z

DΨeiS½Ψ;G�: ðB4Þ

The effect of infinitesimal changes to the Jacobian and the
action will provide the anomalous Ward identity.
Considering Eq. (B1), we have the following change in
the action:

S½Ψ0;G� ¼ S½Ψ;G� þ δS
δΨ

δΨ

¼ S½Ψ;G� − δS
δG

δG: ðB5Þ

We also have the unitary transformation of the field Ψ,
which can be written as

KARAN FERNANDES and ARPITA MITRA PHYSICAL REVIEW D 96, 085003 (2017)

085003-12



Ψ0 ¼ UΨ ¼ eiJΨ; ðB6Þ

where J is the Jacobian of the transformation. With this, the
change in the functional Jacobian I (for a single bosonic
field Ψ) is given by

DetU ¼ eTr lnU ≈ 1þ iTrJ: ðB7Þ

Using Eqs. (B5) and (B7) in Eq. (B4) now leads to the
anomalous Ward identity�

δS
δG

δG
�

Ψ
¼ hTrJiΨ; ðB8Þ

where h� � �iΨ denotes the path integral average with respect
to the variable Ψ. Thus, the classical conservation equation
is violated and results in an anomaly which is given by the
functional trace of the Jacobian. The trace is taken at the
same point in spacetime, resulting in the presence of δð0Þ.
Hence, the trace of the Jacobian in Eq. (B8) is ill defined
and requires regularization. As first demonstrated by
Fujikawa [39], one can regulate using a positive definite
operator R in the following way:

An ¼ lim
M→∞

TrJe−
R
M2

¼ lim
M→∞

Z
dnx

Z
dnyJðx; yÞe−RðxÞ

M2 δnðx − yÞ; ðB9Þ

where the mode expansion for the functional trace in the
last equality has been made for a scalar field. In Eq. (B9),
An denotes the candidate anomaly, not all of whose terms
comprise the true anomaly. Only those terms for which a
counterterm in the action cannot be provided will comprise
the true anomaly.
While this prescription is known to work, specific

properties of the resultant gravitational anomalies depends
on the choice of regulator. In the next section, we will
consider how the regulators used in this paper agree with
the Pauli-Villars scheme.

2. Regulators

We will now present the arguments provided in [42]
which uses Pauli-Villars (PV) regularization to infer the
corresponding Jacobian transformation and regulator for
Fujikawa’s approach. Let us consider the following action
involving a collection of quantum fields Ψ∶

LΨ ¼ 1

2
ΨTTQΨ; ðB10Þ

where for the purposes of this paper, it will be suffice to
assume that Q is any symmetric operator of mass dimen-
sion 2. The superscript T denotes transposition, while the
symmetric matrix T in general depends on the background

fields. Equation (B10) is invariant under a certain symmetry
transformation, which we denote as

δKΨ ¼ KΨ: ðB11Þ
We now introduce the PV fields χ, which are massive fields
with the same statistics as Ψ, but with a different path
integral definition to introduce a minus sign in one-loop
graphs. Thus, the Lagrangian is

LPV ¼ Lχ þ LM ¼ 1

2
χTTQχ þ 1

2
M2χTTχ; ðB12Þ

where we have M2 in the mass term due to Q in Eq. (B10)
being a mass dimension 2 operator. The path integral is
defined as Z

Dχeiχ
TAχ ¼ ðdetAÞ12: ðB13Þ

While we are considering only one copy of the PV fields, in
general, several copies are needed to cancel all possible
one-loop divergences. The invariance of Eq. (B10) is now
extended to the massless part of the PV action [81]

δKχ ¼ Kχ; ðB14Þ
such that the violation of symmetries, if any, can only arise
due to the mass term. Under the transformation Eq. (B14),
the mass term of the PV Lagrangian becomes

δKLM ¼ δKLPV ¼ 1

2
M2χTðTK þ KTTþ δTÞχ: ðB15Þ

Equation (B15) can now be used to compute the anomaly
due to the PV regulated path integral

AnK ¼ − lim
M→∞

Tr

�
1

2
M2ðTK þ KTTþ δTÞðTM2 þ TQÞ−1

�

¼ − lim
M→∞

Tr
��

K þ 1

2
T−1δT

��
1þ Q

M2

�
−1
�
; ðB16Þ

where we could replace KTT with TK since T and TQ are
symmetric. From Eqs. (B9) and Eq. (B16), we can identify
the Jacobian and the regulator to be used in Fujikawa’s
approach as

J ¼ K þ 1

2
T−1δT; R ¼ Q: ðB17Þ

3. Fujikawa regulators for nonrelativistic field theories

While the comparison of PV regularization with that of
the regulated trace in Fujikawa’s approach has led to
Eq. (B17), certain aspects of the calculation in the
PV scheme are not present in Eq. (B9). Here, we
address the domain of integration of ω needed in the
regulator to represent a nonrelativistic one-loop calculation.
Specifically, we will now argue that the correct regulated
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trace to be used in the Fujikawa approach to gravitational
anomalies for nonrelativistic theories should be

lim
M→∞

TrJ¼ lim
M→∞

Z∞
0

dω
2π

Z∞
−∞

d2k
ð2πÞ2 e

−iωteikx½JðxÞe R
M2 �eiωte−ikx:

ðB18Þ

We recall that while one-loop effects in relativistic field
theories involve pair creation and annhilation processes,
vacuum polarization effects, charge renormalization, and
mass renormalization, such processes are absent at one-
loop for nonrelativistic field theories [37,82]. The reason
for this is that we can either have the forward time or the
retarded time propagator. To understand what happens in
the nonrelativistic case, let us first consider the Schrödinger
field in 2þ 1 dimensions. We perform the following mode
expansion in terms of nonrelativistic plane waves:

ΦðxÞ ∼ eiωt−ikx

Φ�ðxÞ ∼ e−iωtþikx: ðB19Þ

Given the action of R on Φ in the regulated trace and
the mode expansion Eq. (B19), we now want to determine
what the range of the ω integral should be in order to
represent the one-loop calculation. While we do not
have access to the full Schrödinger propagator on curved
backgrounds, it will suffice to consider the flat space
operator to determine the nature of the ω integral.
Taking R ¼ i∂t þ ∇2

2
, the propagator Gðx; tÞ satisfies

�
i∂t þ

∇2
x

2

�
Gðx; x0; t; t0Þ ¼ δðt − t0Þδ2ðx − x0Þ: ðB20Þ

With the Fourier transform, we have the following integral:

Gðx; tÞ ¼ −
Z∞
−∞

dω
2π

Z∞
−∞

d2k
ð2πÞ2

eiωt−ikx

ωþ k2
2

: ðB21Þ

This integral can be evaluated by choosing a pole either in
the upper half plane or the lower half plane. This freedom
allows us to choose either the forward or retarded propa-
gator. Given Eq. (B21) and the usual choice of the forward
propagator for Φ, this requires choosing the pole in the
upper half plane

Gðx; tÞ ¼ −
Z∞
−∞

dω
2π

Z∞
−∞

d2k
ð2πÞ2

eiωt−ikx

ωþ k2
2
− iϵ

: ðB22Þ

We can now readily integrate to find

Gðx; tÞ ¼ −
ΘðtÞ
t

e−
ix2
2t : ðB23Þ

As the Fujikawa approach is meant to convey the one-loop
calculation with this propagator for Φ, we will perform our
calculation with the regulator provided in Eq. (B18).

APPENDIX C: BCH EXPANSION TERMS

It will be convenient to introduce the following
definitions:

~Γi ¼ Γi − 2imvi;

Gm ¼ 2h−
1
4∂mh

1
4;

Cij ¼ Δhij;

Dlij ¼ ∂lhij; Dl
ij ¼ ∂lhij;

Eij ¼ ΔCij þ 2imDlij∂lC þ ðΔþGm∂mÞGlDl
ij þGl∂lCij − 2Dlij∂lðh−1

4Δh1
4Þ;

Hlij ¼ ∂lCij þ ΔDlij þDmij∂m
~Γl þ ∂lðGmDm

ijÞ þ GmAm
lij −Dm

ij∂mGl;

Θijmn ¼ Dk
ijDkmn;

Aijmn ¼ ∂iDjmn; Aij
mn ¼ ∂iDj

mn;

Bijmn ¼ −2Θijmn þ 2ðAijmn þ AjimnÞ; ðC1Þ

where vi and C are as in Eq. (4.11) and Eq. (4.13), respectively. Then for A ¼ −kikjhij and B ¼ i
M kið ~Γi − 2∂i −GiÞþ

1
M2 ðΔ − imC þ h

1
4Δh−1

4 þ Gl∂lÞ, the BCH terms which describe E in Eq. (4.19) can be expressed as
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½A;B� ¼ −
2i
M

kikjkmDmij þ 1

M2
kikjðCij þ 2Dlij∂l þGlDij

l Þ

½A; ½A;B�� ¼ 2

M2
kikjkmknΘijmn

½B; ½A;B�� ¼ −
4

M2
kikjknkmAmnij −

2i
M3

kikjkmðBijml∂l þHmijÞ

þ 1

M4
kikjðEij þ Bijmn∂m∂n þ 2Hlij∂lÞ

½A; ½A; ½A;B��� ¼ 0;

½A; ½A; ½A; ½A;B���� ¼ 0;

½B; ½A; ½A; ½A;B���� ¼ 0

½A; ½B; ½A;B��� ¼ −
2i
M3

kikjkmknklBijmp∂phnl þ
1

M4
kikjkmknð2HlijDl

mn þ BijlpðAlp
mn þ 2Dl

mn∂pÞÞ

½B; ½B; ½A;B��� ¼ 4

M4
kikjkmkn

�
ðBijmpDp

nl − 2∂lAmnij − ∂nBijmlÞ∂l − ∂nHmij−ΔAmnij −
1

2
Bijml∂l

~Γn
�

þ 8i
M3

kikjkmknkl∂nAmlij

½A; ½A; ½B; ½A;B���� ¼ 2

M4
kikjkmknklkkBijpqDp

mnDq
lk

½A; ½B; ½B; ½A;B���� ¼ 4

M4
kikjkmknkpkqðBijmrDr

nl − 2∂lAmnij − ∂nBijmlÞDl
pq

½B; ½B; ½B; ½A;B���� ¼ 16

M4
kikjkmknkpkq∂p∂qAmnij

½B; ½A; ½B; ½A;B���� ¼ −
4

M4
kikjkmknkpkq∂pðBijqrDr

mnÞ: ðC2Þ

The free derivatives contained in the BCH terms above, and thereby in E, are needed in computing E2, E3, and E4 in
Eq. (4.20). With all expansions taken into consideration, we can drop the free derivative terms to arrive at Eq. (4.21). Only

the terms B2 and B4 lead to nontrivial results following symmetric integration. By using ∂αhij ¼ −2Γði
αkh

jÞk;α ¼ ð0; iÞ, the
terms contained in B2 are, order by order, given by

k0∶ − imC

k2∶ −
1

2
kikjðCij þ ~Γi ~Γj − 2∂i ~ΓjÞ

k4∶
1

3
kikjkmknðΘijmn þ 2AijmnÞ − kikjkmkn ~ΓiDjmn

k6∶ −
1

2
kikjkmknklkkDlijDkmn: ðC3Þ

Using these terms in Eq. (4.24) results in the expression of Eq. (4.26). The terms involved in B4 are considerably more
involved and comprise the following:
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k0∶ −
1

2
ðm2C2 þ imΔCÞ

k2∶ kikj

�
im

�
2

3
ðDlij∂lC þ ∂i∂jCÞ þ 1

2
CðCij þ ~Γi ~ΓjÞ − ∂ið ~ΓjCÞ

�
−
1

6
ΔCij −

1

2
~ΓiΔ ~Γj þ 1

3
ðΔ∂i ~Γj þ ∂iΔ ~ΓjÞ

�

k4∶ kikjkmkn

�
im

�
C
�
~ΓiDjmn −

1

3
ðΘijmn þ 2AijmnÞ

�
−Djmn∂iC

�
þ 1

6
ð∂i∂jCmn þ ∂iΔDjmnÞ

−
1

3
~Γið∂jCmn þ ΔDjmnÞ − 1

2
∂iðDlmn∂l

~ΓjÞ þ 2

3
~ΓiDlmn∂l

~Γj þ 1

6
ΔðΘijmn þ AijmnÞ

þ Cij

�
1

8
Cmn þ 1

4
~Γm ~Γn −

1

2
∂m ~Γn

�
−

1

12
Dl

ijðΔDlmn þDpmn∂p
~Γl − 2∂lCmnÞ

þ 1

12
Bijml∂l

~Γn þ 1

24
ð ~Γi ~Γj ~Γm ~Γn − BijlpAlp

mnÞ − 1

2
DmijΔ ~Γn −

1

3
Dlij∂lð∂m ~ΓnÞ

þ 1

2
ð∂i ~ΓjÞð∂m ~ΓnÞ þ 2

3
~Γm∂i∂j ~Γn −

1

3
∂i∂j∂m ~Γn −

1

2
~Γi ~Γj∂m ~Γn

�

k6∶ kikjkmknklkk

�
1

2
imCDlijDkmn −

1

3
ð∂lCij þ ΔDlijÞDkmn −

1

6
CijðΘmnlk þ 2Alkmn − 3 ~ΓlDkmnÞ

−
1

9
∂l∂k

�
Θijmn þ 11

5
Aijmn

�
þ ðΘijmn þ 2AijmnÞ

�
1

3
∂l ~Γk −

1

6
~Γl ~Γk

�
− ~ΓlDmij∂n ~Γk

þDrij

�
1

2
~Γl∂rDkmn þ 2

3
Dkmn∂r

~Γl −
1

6
∂rðΘlkmn þ AlkmnÞ

�
þ 1

6
~Γl ~Γk ~ΓmDnij

þ 1

3
ð ~Γl∂kðΘijmn þ AijmnÞ − ∂lðDrij∂rDkmnÞ þ 2Dmij∂l∂k ~ΓnÞ

þ 1

60
Dr

mnðBijrsDs
lk − Bijlr ~Γk − 2∂rAlkijÞ

þ 1

15

�
Bijmr∂rDnlk þ 7

6
∂lðBijkrDr

mnÞ
��

k8∶ kikjkmknklkkkpkq

�
1

18
ðΘijmnΘlkpq þ 4AijmnAlkpq þ 4ΘijmnAlkpqÞ − 1

12
BijmrDr

nlDkpq

þ 1

2
ðCijDpmnDqlk þDpijDrmn∂rDqlkÞ þ 1

3
∂pðΘijmn þ AijmnÞDqlk

þ
�
1

4
~Γi ~Γj −

1

2
∂i ~Γj

�
DpmnDqlk −

1

3
ðΘijmn þ 2AijmnÞ ~ΓpDqlk

�

k10∶ kikjkmknklkkkpkqkrks

�
1

6
ð ~ΓrDsijDpmnDqlk − ðΘijmn þ 2AijmnÞDrpqDslkÞ

�

k12∶
1

24
kikjkmknklkkkpkqkrkskukvDrijDsmnDulkDvpq: ðC4Þ
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