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Using a thin shell, the first law of thermodynamics, and a unified approach, we study the thermodymanics
and find the entropy of a (2þ 1)-dimensional extremal rotating Bañados-Teitelbom-Zanelli (BTZ) black hole.
The shell in (2þ 1) dimensions, i.e., a ring, is taken to be circularly symmetric and rotating, with the inner
region being a ground state of the anti-de Sitter spacetime and the outer region being the rotating BTZ
spacetime. The extremal BTZ rotating black hole can be obtained in three differentways depending on theway
the shell approaches its own gravitational or horizon radius. These ways are explicitly worked out. The

resulting three cases give that theBTZblackhole entropy is either theBekenstein-Hawking entropy,S ¼ Aþ
4G, or

an arbitrary function ofAþ, S ¼ SðAþÞ, whereAþ ¼ 2πrþ is the area, i.e., the perimeter, of the event horizon

in (2þ 1) dimensions. We speculate that the entropy of an extremal black hole should obey 0 ≤ SðAþÞ ≤ Aþ
4G.

We also show that the contributions from the various thermodynamic quantities, namely, themass, the circular
velocity, and the temperature, for the entropy in all three cases are distinct. This study complements
the previous studies in thin shell thermodynamics and entropy for BTZ black holes. It also corroborates
the results found for a (3þ 1)-dimensional extremal electrically charged Reissner-Nordström black hole.

DOI: 10.1103/PhysRevD.96.084068

I. INTRODUCTION

One can argue that thin matter shells in general relativity
provide the simplest class of spacetimes after vacuum
spacetimes. Indeed, thin shells, besides giving instances
of static and dynamic spacetimes, allow themselves to be
scrutinized in relation to their entropic and thermodynamic
matter and gravitational properties, and even from those
properties to pick up the corresponding black hole proper-
ties. For static and rotating circularly symmetric thin shells,
i.e., thin rings, in (2þ 1)-dimensional Bañados-Teitelbom-
Zanelli (BTZ) spacetimes, their entropic and thermody-
namic properties have been worked out in general and in
the limit where the ring is taken to its own gravitational, or
horizon, radius, i.e., in the black hole limit [1–4]. For static
electric charged spherically symmetric thin shells in
(3þ 1)-dimensional Reissner-Nordström spacetimes, these
properties have also been worked out in detail in general
and in the black hole limit [5–7]; see also Ref. [8] for
neutral thin shells in Schwarzschild spacetimes. Related

studies, where the entropy of black holes can be studied
through systems with matter, involve quasiblack holes for
which matter is spread over a 3-dimensional spatial region
rather than on a 2-dimensional thin shell [9,10], and of
quasistatic collapse of matter [11]. These works [1–11]
stem from the fact that the concept of entropy is originally
based on quantum properties of matter, and so it is very
important to study whether and how black hole thermo-
dynamics could emerge from thermodynamics of collaps-
ing matter, when matter is compressed within its own
gravitational radius. Conversely, it is through black hole
entropy that we can grasp the microscopic aspects of a
spacetime and hence of quantum gravity, and the fact that
thermodynamics of a thin shell reflects thermodynamic
properties of a black hole formed after quasistatic collapse
of the shell indicates some connection between matter and
gravitational degrees of freedom.
In this thin shell approach to black hole entropy, a clear

cut distinction exists between nonextremal black holes and
extremal black holes.
For nonextremal black holes, one finds that the entropy is

S ¼ Aþ
4G

; ð1Þ
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where Aþ is the area of the event horizon and G is the
gravitational constant. Throughout the paper, we use units
such that the velocity of the light, the Planck constant, and
the Boltzmann constant are set to 1. This result has been
found for static BTZ shells [1] and for rotating BTZ shells
[2,3], as well as for Reissner-Nordström shells [5], all in the
black hole limit. The result recovers the Bekenstein-
Hawking entropy formula in (2þ 1) dimensions [12,13]
and in the original works in (3þ 1) dimensions [14–16]. In
(2þ 1) dimensions, Aþ is a perimeter Aþ ¼ 2πrþ, and in
(3þ 1) dimensions, Aþ ¼ 4πr2þ is the usual area, with rþ
being the gravitational or horizon radius.
For extremal black holes, the ones which wewill study in

this paper, the situation is more subtle in the shell approach.
Extremal black holes are those for which the angular
momentum or electric charge is equal to the mass in some
appropriate units. It has been found that the entropy of the
extremal black hole can depend on the way the shell
approaches its own gravitational radius. This results in
three cases. On one hand, clearly, there is a case for an
originally nonextremal shell, which we call case 1, in
which after taking the black hole limit the shell turns into an
extremal shell, where one finds S ¼ Aþ

4G as in Eq. (1); see
also Refs. [3,4] for BTZ and [5–7] for Reissner-Nordström.
On the other hand, it was further found in the Reissner-
Nordström situation that there is a new case [7], which we
call case 2, in which the shell is turned extremal concomi-
tantly with the spacetime being turned into a black hole. In
this case, one finds also S ¼ Aþ

4G as in Eq. (1). Finally, for an
ab initio extremal shell that turns into an extremal black
hole, one finds that the entropy is a generic function of
Aþ, i.e.,

S ¼ SðAþÞ: ð2Þ

This result, which we call case 3, is found both in extremal
rotating BTZ [4] and in extremal electric charged Reissner-
Nordström [6].
Given the result (2) together with (1), one is led to

speculate that the entropy of an extremal black hole should
obey

0 ≤ SðAþÞ ≤
Aþ
4G

: ð3Þ

The lower limit

S ¼ 0 ð4Þ

is indeed found through a Euclidean path integral approach to
extremal black hole entropy, both inBTZblack holes [17] and
in Reissner-Nordström black holes [18], whereas in contra-
diction, the Bekenstein-Hawking upper limit of Eq. (3),
S ¼ Aþ

4G, see also Eq. (1), is found through string theory
techniques in extremal cases, namely, in (2þ 1)-dimensional

extremal rotating BTZ black holes [19] and in (3þ 1)-
dimensional extremal Reissner-Nordström black holes
[20], following the breakthrough worked out in (4þ 1)
dimensions [21,22]; see also Refs. [23–32] for further studies
on thermodynamics and entropy of extremal black holes. In a
sense, Eq. (3) fills the gap between Euclidean path integral
approaches and string theory techniques for the entropy of
extremal black holes.
The aim of this paper is to complete the study on

extremal rotating BTZ thin shell thermodynamics [1–4], in
order to have a full understanding of the entropy of an
extremal rotating BTZ black hole. We follow also the
studies for electrically charged Reissner-Nordström shells
[5,6], and in particular, we adopt the unified approach
devised for an electrically charged Reissner-Nordström thin
shell [7] and study the three different limits of a rotating
thin shell in a (2þ 1)-dimensional rotating BTZ spacetime
when it approaches both extremality and its own gravita-
tional radius, i.e., in the extremal BTZ black hole limit.
These three different limits yield the three cases, cases 1–3,
already mentioned. Our analysis will point out the simi-
larities between the rotating and the electric charged case
and will show the contributions from the various thermo-
dynamic quantities appearing in the first law to the entropy
in all three cases. The approach developed in the present
work can be of interest for the generic investigation of black
hole entropy in the thin shell formalism, in particular, for
the Kerr black hole, at least in the slow rotation approxi-
mation, or to other more complicated (3þ 1)- and (nþ 1)-
dimensional black holes, with n > 3.
The paper is organized as follows. In Sec. II, we review

the mechanics and thermodynamics of a rotating thin shell
in (2þ 1) dimensions with a negative cosmological con-
stant, where the exterior spacetime is BTZ. In Sec. III, we
introduce the three different limits, thus establishing three
different cases, when the rotating thin shell is taken into its
own gravitational radius and forms an extremal BTZ black
hole. We define the good variables to study these limits and
work out the geometry, the mass, and the angular momen-
tum of the shell in the three different cases. In Sec. IV, we
discuss the three different cases for the pressure, the
circular velocity, and the local temperature of the shell.
In Sec. V, we calculate the entropy of a rotating extremal
BTZ black hole in the three different cases. In Sec. VI, we
show, in the three different cases, which terms in the first
law give the dominant contributions to the entropy. In
Sec. VII, we conclude.

II. THIN SHELL THERMODYNAMICS
IN A (2 + 1)-DIMENSIONAL BTZ SPACETIME

We consider general relativity in (2þ 1) dimensions
with a cosmological constant Λ, where we assume that
Λ < 0, so that the spacetime is asymptotically anti-de Sitter

(AdS), with curvature scale l ¼
ffiffiffiffiffiffiffi
− 1

Λ

q
. In an otherwise
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vacuum spacetime, we introduce a timelike rotating thin
shell, i.e., a timelike thin ring in the (2þ 1)-dimensional
spacetime, with radius R, that divides the spacetime into the
inner and outer regions. We leave G explicitly in the
formulas; the other physical constants are set to 1.
The spacetime inside the shell, 0 < r < R, where r is a

radial coordinate, is given by the zero mass m ¼ 0 BTZ-
AdS solution in (2þ 1) dimensions.
The spacetime outside the shell, r > R, is generically

described by the rotating BTZ solution with Arnowitt-
Deser-Misner (ADM) mass m and angular momentum J .
Two important quantities of the outer spacetime, which are
related to m and J , are the gravitational radius rþ and the
Cauchy radius r−. The relations between the quantities
are [12]

8Gl2m ¼ r2þ þ r2−; ð5Þ

4GlJ ¼ rþr−: ð6Þ

From Eqs. (5) and (6), one clearly sees that one can tradem
and J for rþ and r− and vice versa. For a spacetime that is
not over rotating, as will be the case considered here, one
has thatm ≥ J

l , which, in terms of rþ and r−, translates into
rþ ≥ r−. This inequality is saturated in the extremal case,
rþ ¼ r−, i.e., m ¼ J

l . The gravitational area Aþ defined as

Aþ ¼ 2πrþ ð7Þ

is actually a perimeter, since there are just 2 space
dimensions.
The shell itself has radius R, and it is quasistatic in the

sense that dR
dτ ¼ d2R

dτ2 ¼ 0, where τ is the proper time on the
shell. The area A of the shell defined as

A ¼ 2πR ð8Þ

is also a perimeter, since there are 2 space dimensions. We
assume that the shell is always located outside or at the
gravitational radius,

R ≥ rþ: ð9Þ

Note that the gravitational radius is not a horizon radius in
this case, it is simply a feature of the spacetime. It would be
a horizon radius only if R ≤ rþ. Since from Eq. (9) one has
R ≥ rþ there is a horizon in the limit R ¼ rþ. In this
limiting situation the shell is on the verge of becoming a
black hole. Besides having a radius R, the shell has massM
and angular momentum J.
To find the properties of the shell and the connection to

the inner and outer spacetime, one has to work out the
junction conditions. The junction conditions determine the
energy density of the shell σ and the angular momentum
density of the shell j, or if one prefers, the rest mass of the

shell M ≡ 2πRσ and the angular momentum of the shell
J ≡ 2πR. One finds that M and J are some specific
functions of the ADM spacetime mass m, angular momen-
tum J , and the shell’s radius R; see Ref. [3] for details (see
also Ref. [2]). These relations can be inverted to give the
ADM spacetime mass m as a function of M, J, and R,
namely,

mðM; J; RÞ ¼ RM
l

− 2GM2 þ 2G
R2

J2; ð10Þ

and the ADM spacetime angular momentum J also as a
function of M, J, and R, namely,

J ðM; J; RÞ ¼ J: ð11Þ

In Eqs. (10) and (11), we have written m asmðM; J; RÞ and
J as J ðM; J; RÞ in order to make manifest the explicit
dependence of the ADM spacetime mass m and the ADM
spacetime angular momentum J on the shell quantities,
i.e., its rest massM, its angular momentum J, and its radius
R. This explicit dependence is also useful when we deal
with the thermodynamics of the shell. The gravitational
radius rþ and the Cauchy radius r− can be found inverting
Eqs. (5) and (6) [12]. The gravitational radius is

rþðM; J; RÞ ¼ 2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGmÞ2 − ðGJ Þ2

l2

svuut
; ð12Þ

and the Cauchy radius is

r−ðM; J; RÞ ¼ 2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGmÞ2 − ðGJ Þ2

l2

svuut
; ð13Þ

with m and J seen as functions of M, J, and R through
Eqs. (10) and (11).
As a thermodynamic system, the shell has a locally

measured temperature T and an entropy S. We consider that
the shell is adiabatic;, i.e., it does not radiate to the exterior.
The entropy S of a system can be expressed as a function of
the state independent variables which for the rotating shell
can be chosen as the shell’s locally measured proper mass
M, the shell’s angular momentum J, and the shell’s area A.
Thus, S ¼ SðM; J; AÞ, and in these variables, the first law
of thermodynamics reads

TdS ¼ dM þ pdA −ΩdJ; ð14Þ

where p is the tangential pressure at the shell, Ω is the
thermodynamic angular velocity of the shell, and T is
the temperature of the shell. These quantities, p, Ω, and T
are equations of state functions of ðM; J; AÞ, i.e.,
p ¼ pðM; J; AÞ, Ω ¼ ΩðM; J; AÞ, and T ¼ TðM; J; AÞ.
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In (2þ 1) dimensions, the shell’s area is a perimeter,
namely, A ¼ 2πR, and we can thus express S, p, Ω, and
T, as functions of the shell radius R, instead of its area A.
This simplifies the presentation. Thus, S ¼ SðM; J; RÞ,
T ¼ TðM; J; RÞ, p ¼ pðM; J; RÞ, and Ω ¼ ΩðM; J; RÞ.
In order to have a well-defined entropy S, there
are integrability conditions for T ¼ TðM; J; RÞ, p ¼
pðM; J; RÞ, and Ω ¼ ΩðM; J; RÞ; see Ref. [3].
The first law for the shell, Eq. (14), is clearly displayed

and has a clear physical meaning in the variablesM, J, and
R. As it turns out and as we will see, it is much simpler
mathematically to work instead in the variables rþ, r−, and
R. Indeed, from Eqs. (12) and (13) together with Eqs. (10)
and (11), one can swap the variables M, R, and J, into rþ,
r−, and R. So, from now on, we express our quantities in
terms of ðrþ; r−; RÞ.
Inverting Eq. (10) and using Eqs. (12) and (13) together

with Eq. (11), one finds

Mðrþ; r−; RÞ ¼
R

4Gl

�
1 −

1

R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

q �
:

ð15Þ

Inverting Eq. (11) and using Eqs. (12) and (13) [or more
simply Eq. (5)], one finds

Jðrþ; r−; RÞ ¼
rþr−
4Gl

: ð16Þ

The tangential pressure p at the shell found through the
junction conditions [3] (see also Ref. [2]) is

pðrþ; r−; RÞ ¼
1

8πGl

�
R4 − r2þr2−

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

p − 1

�
:

ð17Þ

The angular velocity Ω and the corresponding linear or
circular velocity v ¼ RΩ can be found either by the junc-
tion conditions or from one integrability condition of the
first law of thermodynamics Eq. (14) [3,4]. The integra-
bility condition gives that the angular velocity defined
thermodynamically can be expressed by Ωðrþ; r−; RÞ ¼

rþr−

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−r2þ

R2
Þð1−r2−

R2
Þ

q ðcðrþ; r−Þ − 1
R2Þ, where cðrþ; r−Þ is an inte-

grating arbitrary function of rþ and r− (see Eq. (59) in
Ref. [3] and Sec. VI in Ref. [4]). We choose cðrþ; r−Þ ¼ 1

r2þ
,

in order to have the well-defined black hole limit [3,4]. In
this case, one sees that Ω vanishes when the shell
approaches the gravitational radius, R → rþ. Since the
circular velocity of the shell is v ¼ RΩ, one has, with the
choice cðrþ; r−Þ ¼ 1

r2þ
and after simplifications, that

vðrþ; r−; RÞ ¼ RΩðrþ; r−; RÞ ¼
r−
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − r2þ
R2 − r2−

s
: ð18Þ

The temperature T being a pure thermodynamic quantity
is found from another integrability condition of the first law
of thermodynamics Eq. (14) [3,4]. As found in Ref. [3], the
temperature can be expressed as Tðrþ; r−; RÞ ¼

T0ðrþ;r−Þ
R
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−r2þ

R2
Þð1−r2−

R2
Þ

q , where T0ðrþ; r−Þ is an arbitrary function

of rþ and r− (see also Eqs. (C2) and (C3) from Ref. [4]).
Now, T0ðrþ; r−Þ is chosen to be the Hawking temperature

of the BTZ black hole, i.e., T0ðrþ; r−Þ ¼ THðrþ; r−Þ ¼
1

2πl2
r2þ−r

2
−

rþ
[12]. Thus, we have

Tðrþ; r−; RÞ ¼
r2þ − r2−
2πlRrþ

R2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − r2þÞðR2 − r2−Þ

p : ð19Þ

For the outer spacetime, it is usually useful to define the
redshift function k that appears naturally in several

instances, namely, kðrþ; r−; RÞ ¼ R
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − r2þ

R2Þð1 − r2−
R2Þ

q
.

With this quantity, the temperature T assumes the familiar

form Tðrþ; r−; RÞ ¼ THðrþ;r−Þ
kðrþ;r−;RÞ, and so the function

THðrþ; r−Þ can be interpreted as the temperature of the
shell located at the radius where k ¼ 1, the Hawking
temperature. Seen in this fashion, the formula for T
expresses then the gravitational redshift of the temperature
of the shell; namely, it is an instance of the Tolman
temperature formula.
Note that the choices, cðrþ; r−Þ ¼ 1

r2þ
for the velocity v

and T0ðrþ; r−Þ ¼ THðrþ; r−Þ ¼ 1
2πl2

r2þ−r
2
−

rþ
for the temper-

ature T that lead to Eqs. (18) and (19), respectively, are
essential if we want to take the black hole limit, i.e., when
the shell is taken to its gravitational radius, R → rþ [3,4].
So, we stick to these choices.

III. THE THREE DIFFERENT APPROACHES
AND THE THREE LIMITS TO THE
BTZ EXTREMAL BLACK HOLE

A. The variables useful to define the three different
approaches and limits to an extremal horizon

To study the entropy of the BTZ extremal black hole, we
take a unified approach; see Ref. [7] for an extremal electric
charged shell in 3þ 1 dimensions. For that, we introduce
the dimensionless parameters ε and δ through

ε2 ¼ 1 −
r2þ
R2

; ð20Þ

δ2 ¼ 1 −
r2−
R2

: ð21Þ
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From Eqs. (20) and (21), we see that we can change the
independent thermodynamics variables ðrþ; r−; RÞ into the
new variables ðε; δ; RÞ. In this set of variables, for example,
the redshift function k defined above takes the simple
form kðε; δ; RÞ ¼ R

l εδ.

B. Geometry and the three horizon limits

The three relevant limits to an extremal black hole are:
(i) Case 1.—rþ ≠ r− and R → rþ, i.e.,

δ ¼ Oð1Þ; ε → 0: ð22Þ
In evaluating the entropy S, we then take rþ → r−,
i.e., the δ → 0 limit, to make the shell extremal at its
own gravitational radius R ¼ rþ.

(ii) Case 2.—rþ → r− and R → rþ, i.e.,

δ ¼ ε

λ
; ε → 0; ð23Þ

where the constant λ is finite, not infinitesimal, and
must satisfy λ < 1 due to rþ > r−. The limit ε → 0
means here that simultaneously R → rþ and rþ →
r− in such a way that δ ∼ ε. In other words,
extremality and black holeness are approached
concomitantly.

(iii) Case 3.—rþ ¼ r− and R → rþ, i.e.,

δ ¼ ε; ε → 0: ð24Þ
This is the case in which there is an extremal shell
from the very beginning and then one pushes it to its
own gravitational radius.

C. Mass and angular momentum
in the three horizon limits

In the variables ε and δ of Eqs. (20) and (21), the shell’s
rest mass M in Eq. (15) can be written as

Mðε; δ; RÞ ¼ R
4Gl

ð1 − εδÞ: ð25Þ
In addition, from Eq. (16), the shell’s angular momentum J
is now

Jðε; δ; RÞ ¼ R2

4Gl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ε2Þð1 − δ2Þ

q
: ð26Þ

In all cases 1–3, the limits defined in Eqs. (22)–(24) yield

Mðε; δ; rþÞ ¼
rþ
4Gl

ð27Þ
and

Jðε; δ; rþÞ ¼
r2þ
4Gl

ð28Þ
for the shell’s mass and angular momentum, respectively.
Thus, the three limits, not surprisingly, yield the same
extremal condition,

J ¼ rþM: ð29Þ

IV. PRESSURE, CIRCULAR VELOCITY, AND
LOCAL TEMPERATURE: THE THREE
EXTREMAL BTZ BLACK HOLE LIMITS

A. Pressure in the three horizon limits

In the variables ε and δ of Eqs. (20) and (21), the shell’s
pressure p in Eq. (17) can be written as

pðε; δ; RÞ ¼ 1

8πGl

�
δ

ε
þ ε

δ
− 1 − εδ

�
: ð30Þ

For cases 1–3, the limits defined in Eqs. (22)–(24) yield
from Eq. (30) the expressions for the pressure as below:

(i) Case 1.—For δ ¼ Oð1Þ and ε → 0,

pðε; δ; rþÞ ¼
δ

8πGlε
; ð31Þ

up to leading order. Equation (31) means that the
pressure is divergent as 1=ε.

(ii) Case 2.—For δ ¼ ε
λ and ε → 0,

pðε; δ; rþÞ ¼
1

8πGl

�
1

λ
þ λ − 1

�
; ð32Þ

up to leading order. Equation (32) means that the
pressure remains finite but nonzero, since λ is finite
and fixed with λ < 1.

(iii) Case 3.—For δ ¼ ε and ε → 0,

pðε; δ; rþÞ ¼
1

8πGl
; ð33Þ

up to leading order. Equation (33) means that
the pressure remains finite and nonzero. Note the
difference from the (3þ 1)-dimensional electric
extreme shell in an asymptotically flat spacetime
studied in Refs. [6,7], where in this same limit one
found instead p ¼ 0. This difference arises from the
different asymptotic behaviors of the spacetime,
namely, asymptotically flat spacetime in Refs. [6,7]
and an asymptotically AdS spacetime here; see
also Ref. [4].

B. Circular velocity in the three horizon limits

With the variables ε and δ defined in Eqs. (20) and (21),
the shell’s circular velocity v in Eq. (18) can be written as

vðR; ε; δÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − δ2

1 − ε2

s
ε

δ
: ð34Þ

For cases 1–3, the limits defined in Eqs. (22)–(24) yield
from Eq. (34) the expressions for the circular velocity
as below:
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(i) Case 1.—For δ ¼ Oð1Þ and ε → 0,

vðε; δ; rþÞ ¼ 0 ð35Þ

up to leading order.
(ii) Case 2.—For δ ¼ ε

λ and ε → 0,

vðε; δ; rþÞ ¼ λ; ð36Þ

up to leading order. Equation (36) means that the
circular velocity is nonzero since λ is finite and fixed
with λ < 1.

(iii) Case 3.—For δ ¼ ε and ε → 0,

vðε; δ; rþÞ ≤ 1: ð37Þ

This result is not found directly from Eq. (34).
Indeed, from Eq. (34), it follows that vðrþ; ε; δÞ ¼ 1.
However, in this case, the condition cðrþr−Þ ¼
1=r2þ imposed to obtain Eq. (18) is no longer valid.
An independent calculation is requested for an
ab initio extremal shell as shown in Ref. [4]. In
this case, there is also an interesting relationship
between the impossibility for a material body to
reach the velocity of light v ¼ 1 and the unattain-
ability of the absolute zero of temperature [4].

It is also worth remembering that the property of v < 1
was found for near-horizon particle orbits in the back-
ground of near-extremal black holes for the Kerr metric
[33] and in Ref. [34] for a much more general case. Thus,
we see an interesting analogy between limiting behaviors of
self-gravitating shells in (2þ 1)-dimensional spacetimes
and test particles in (3þ 1)-dimensional spacetimes.

C. Temperature in the three horizon limits

In the variables ε and δ of Eqs. (20) and (21), the shell’s
local temperature T in Eq. (19) can be written as

Tðε; δ; RÞ ¼ δ2 − ε2

2πlδε
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p : ð38Þ

For cases 1–3, the limits defined in Eqs. (22)–(24) yield
from Eq. (38) the expressions for the local temperature
as below:

(i) Case 1.—For δ ¼ Oð1Þ and ε → 0,

Tðε; δ; rþÞ ¼
δ

2πlε
; ð39Þ

up to leading order. Equation (39) means that the
temperature is divergent as 1=ε.

(ii) Case 2.—For δ ¼ ε
λ and ε → 0,

Tðε; δ; rþÞ ¼
1 − λ2

2πlλ
; ð40Þ

up to leading order. Equation (40) means that the
local temperature is nonzero since λ is finite and
fixed with λ < 1. It is worth noting a simple formula
that follows from (32) and (40) and relates the
pressure and temperature in this horizon limit,
namely, p

T ¼ 1
4G

1þλ2−λ
1−λ2 . Thus, if we believe that the

horizon of a black hole probes quantum gravity
physics, we find that in this case the quantum gravity
regime obeys an ideal gas law.

(iii) Case 3.—For δ ¼ ε and ε → 0,

Tðε; δ; rþÞ ¼ finite: ð41Þ

This was shown in Ref. [4]. Equation (41) does not
follow directly from Eq. (38). The condition for T
should be modified. It turns out that T0 may depend
not only on rþ and r− but also on R. As a result, it
may happen that T0 → 0 but the local temperature
on the shell T remains finite [4].

V. ENTROPY: THE THREE EXTREMAL BTZ
BLACK HOLE LIMITS

Having carefully studied the equations of state for p, v,
and T, we can now calculate the entropy by integrating the
first law, see Eq. (14), in all three cases:

(i) Case 1.—δ ¼ Oð1Þ and ε → 0. Here, we use first the
expressions in terms of ðε; δ; RÞ, i.e., Eqs. (25), (26),
(30), (34), and (38). Then, one finds that the first law
Eq. (14) can be expressed in terms of the differ-
entials of dϵ, dδ, and dR as dSðε; δ; RÞ ¼
π
2G ð− Rεffiffiffiffiffiffiffi

1−ε2
p dεþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
dRÞ. Then, taking ε → 0,

i.e., R → rþ, we get dSðε; δ; rþÞ ¼ π
2G drþ. Since it

does not depend on δ, the expression is also valid in
the δ → 0 case, i.e., in the extremal case rþ → r−.
Then, integrating with the condition S → 0 as
rþ → 0, we get in this extremal limit

S ¼ Aþ
4G

; ð42Þ

where Aþ ¼ 2πrþ is the area, i.e., the perimeter, of
the shell, i.e., the ring, see Eq. (7), when it is pushed
to its gravitational radius. The entropy in Eq. (42) is
nothing but the Bekenstein-Hawking entropy;
see Eq. (1).

(ii) Case 2.—δ ¼ ε
λ and ε → 0. Here, we also have to use

the expressions in terms of ðε; δ; RÞ i.e., Eqs. (25),
(26), (30), (34), and (38), and then the first law
Eq. (14) can be expressed in terms of the differ-
entials of dϵ, dδ, and dR, as dSðε; δ; RÞ ¼
π
2G ð− Rεffiffiffiffiffiffiffi

1−ε2
p dεþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
dRÞ, which is the same

formula as in case 1. Then, taking ε → 0, i.e.,
R → rþ → r−, we get dSðε; δ; rþÞ ¼ π

2G drþ. This
means that the entropy is independent of the
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parameter λ. Then, integrating with the condition
S → 0 as rþ → 0, we get in this extremal limit

S ¼ Aþ
4G

; ð43Þ

where again Aþ ¼ 2πrþ; see Eq. (7). The entropy in
Eq. (43) is again the Bekenstein-Hawking entropy;
see Eq. (1). This result was not involved in former
studies [3,4].

(iii) Case 3.—δ ¼ ε and ε → 0. This case is special.
One takes the extremality condition δ ¼ ε from the
beginning, and thus another route to calculate the
entropy has to be followed. This was performed in
Ref. [4], and the result is

S ¼ SðAþÞ; ð44Þ

where SðAþÞ is a well-behaved, but otherwise
arbitrary, function of Aþ; see also Eq. (2). One
can argue, as was done in Ref. [4], that the lower and
upper bounds for the entropy in this case are given
by the zero entropy, Eq. (4), and the Bekenstein-
Hawking entropy, Eq. (1), i.e., 0 ≤ SðrþÞ ≤ Aþ

4G; see
Eq. (3). In addition, Eq. (44) suggests that the
entropy of an extremal black hole does not take a
unique value, but instead it may depend on the
preceding history that led to the formation of
precisely that extremal black hole; see also Ref. [11].

VI. CONTRIBUTIONS TO THE ENTROPY IN THE
THREE EXTREMAL HORIZON LIMITS

Finally, for all three different cases, we state which terms
in the first law (14) give the dominant contributions to the
entropy:

(i) Case 1.—δ ¼ Oð1Þ and ε → 0. We have that the
pressure term alone, see Eq. (31), contributes to the
entropy. Taking then into account Eq. (39), we
obtain the Bekenstein-Hawking entropy (42).

(ii) Case 2.—δ ¼ ε
λ and ε → 0. All three terms in the first

law (14) equally contribute to the entropy. Thus, the
mass, pressure, and circular velocity terms give con-
tributions to the Bekenstein-Hawking entropy (43).

(iii) Case 3.—δ ¼ ε and ε → 0. All three terms in the
first law (14) contribute to the entropy; see Ref. [4].
We note that in contrast to the electrically charged
case [6] the pressure does not vanish in the extremal
limit and contributes to the entropy in the first law as
all other terms do; see Eq. (44).

We summarize these results in Table I.

VII. CONCLUSIONS

We have presented a unified framework to explain how
the different entropies of an extremal BTZ black hole arise
from an extremal shell. Cases 1 and 2 agree in the entropy
but disagree in all other thermodynamic quantities. Cases 2
and 3 disagree in the entropy but agree in all other
thermodynamic quantities. Therefore, in this sense, case
2 is intermediate between cases 1 and 3. These results
complement the former studies in a (2þ 1)-dimensional
BTZ spacetime [1–4] and have much in common with those
in the (3þ 1)-dimensional electrically charged case [5,6],
in particular, with Ref. [7].
Consideration of astrophysically relevant rotating black

holes in (3þ 1) dimensions is too complex. In this regard,
using the (2þ 1)-dimensional rotating BTZ exact solution
enables one to trace quite subtle details that are expected in
the more realistic (3þ 1) case. Therefore, we hope that the
present work can shed light on the entropy issue for the
(3þ 1)-dimensional black holes as well.
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TABLE I. The contributions of the pressure p, angular velocity v, and temperature T to the entropy of the extremal black hole SðAþÞ,
according to the first law.

Case Pressure p Velocity v Local temperature T Entropy SðAþÞ Contribution

1 Infinite 1 Infinite Aþ
4G Eq. (42) Pressure

2 Finite nonzero <1 Finite nonzero Aþ
4G Eq. (43) Mass, pressure and angular velocity

3 Finite nonzero ≤1 Finite zero and nonzero 0 ≤ SðAþÞ ≤ Aþ
4G Eq. (44) Mass, pressure and angular velocity
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