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There are circular planar null geodesics at r ¼ 3M around a Schwarzschild black hole of massM. These
geodesics form a photon sphere. Null geodesics of the Schwarzschild space-time which do not form the
photon sphere are either escape to null infinity or get captured by the black hole. Thus, from the dynamical
point of view, the photon sphere represents a smooth basin boundary that separates the basins of escape
and capture of the dynamical system governing the null geodesics. Here we consider a Schwarzschild
black hole distorted by an external, static, and axisymmetric quadrupolar gravitational field defined by a
quadrupole moment q. We study null geodesics around such a black hole and show that the photon sphere
does not survive the distortion. For q≲ −0.017001 it transforms into a fractal basin boundary that indicates
chaotic behavior of the null geodesics. We calculate the box-counting fractal dimension of the basin
boundary and the related uncertainty exponent, which depend on the value of the quadrupole moment.

DOI: 10.1103/PhysRevD.96.084056

I. INTRODUCTION

The Schwarzschild black hole space-time has circular
photon trajectories at r ¼ 3M, where r is the areal radial
coordinate and M > 0 is the black hole mass.1 These
trajectories result from the projection of null geodesics
confined to the hypersurface r ¼ 3M onto a spatial mani-
fold t ¼ const, where t is the Schwarzschild time coor-
dinate. The hypersurface r ¼ 3M is unstable in the sense
that null geodesics generated by null vectors that are not
tangent to the hypersurface diverge from it: they either sink
behind the black hole horizon at r ¼ 2M or escape to null
infinity. This hypersurface is directly related to the gravi-
tational lensing and the black hole shadow [2–9]. The
Einstein bending angle becomes arbitrarily large for null
rays approaching r ¼ 3M, and the rim of the shadow is
formed by marginally trapped photons that go around the
black hole many times before they reach the remote
observer. This hypersurface, and also its spatial part, was
named a photon sphere.
Precise definitions of a photon sphere and more gen-

erally, in nonspherically symmetric as well as dynamic
cases, of a photon surface, given in the literature, differ
from each other according to the emphasized aspect. For
example, in [10] a photon sphere in static and spherically
symmetric space-times is defined as a timelike hypersur-
face r ¼ r0, such that the Einstein bending angle of a
light ray approaching r ¼ r0 becomes infinitely large. In
[11] is given a geometric definition of a photon surface
in a general space-time. A photon surface is defined as an
immersed, nowhere spacelike hypersurface, such that for its

every point and every null vector tangent to the hypersur-
face at that point, there exists the corresponding null
geodesic lying in the hypersurface. It was also shown that
in any static and spherically symmetric space-time, subject
to suitable energy conditions, a black hole, a naked
singularity, or more than a certain amount of matter must
be surrounded by a photon sphere. In [12] a timelike photon
2-surface is defined in a similar way, as a submanifold, not
necessarily as a hypersurface. For example, a timelike
photon 2-surface in the Schwarzschild black hole space-
time is defined by r ¼ 3M and θ ¼ π=2, where θ is the
polar angle. In [13], a photon sphere for an asymptotically
flat, static space-time was defined as a timelike embedded
hypersurface for which the lapse function is constant. Using
this definition, uniqueness theorems for different types of
space-times were proven in [13–21]. In [22], a photon
surface is defined as a totally geodesic submanifold of the
optical manifold in a static space-time. Photon orbits of such
a submanifold are unstable. However, in some space-times,
such photon orbits are stable and they lie in the so-called
antiphoton spheres [22]. In this paper we shall use this
definition. Note that in the case of a Kerr black hole there are
different types of “photon surfaces” that depend on the value
of azimuthal angular momentum [23], and thus, according to
the definitions above, they are not photon surfaces. Finally,
we would like to mention that a more general concept of a
transversely trapping surface was introduced in [24,25].
According to the definition, the transversely trapping surface
is a timelike, static, or stationary hypersurface, such that
photons emitted tangentially to it either propagate along the
surface or fall into its interior, which is defined by a two-
dimensional and orientable spacelike cross section of the
transversely trapping surface.
Photon surfaces are widely studied. In [26] was wound a

generic upper bound on black hole photon spheres in static,
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spherically symmetric, asymptotically flat space-times;
r ≤ 3M, where r is the areal radius of a null circular
geodesic andM is the total Arnowitt-Deser-Misner mass of
the space-time. In [27] it was proven that in the case of
hairy black holes, in static, spherically symmetric, and
asymptotically flat space-times, that the hair extends
beyond the space-time photon sphere, and it was conjec-
tured that the region above the photon sphere contains
≳50% of the total hair mass. The upper bound on the black
hole photon spheres was extended to higher-dimensional
Einstein and Einstein-Gauss-Bonnet space-times in [28]. In
the eikonal approximation, the quasinormal modes of a
black hole in a static, spherically symmetric, and asymp-
totically flat space-time can be expressed through the
frequency and the instability time scale of an unstable
photon circular orbit, which is an intersection of the space-
time photon sphere and the black hole equatorial plane
[29,30]. Note however, that as it was demonstrated in [31],
the expected relation between the frequency and the
instability time scale of an unstable photon circular orbit
around a black hole and quasinormal modes is violated in
the Lovelock theory of gravity. It was also stated that such a
relation can exist for any stationary, spherically symmetric,
and asymptotically flat black hole if its perturbations are
limited to test fields that are minimally coupled to gravity.
The nature of a relation between quasinormal modes and
null particle orbits was analyzed and criticized in [32].
Unstable null circular orbits are also closely related to the

ringdown waves from a vibrating compact object [33–36]
and from the binary black hole coalescences observed in
the gravitational waves emissions detected by the advanced
Laser Interferometer Gravitational Wave Observatory
(aLIGO) so far [37–41]. A precise observation of the
late-time ringdown signal from a compact binary coales-
cence should be done to rule out “exotic” compact objects
as alternatives to black holes [42]. In [43], for static and
spherically-symmetric black hole space-times, a precise
connection was established between a photon sphere and
the properties of surface waves associated with Regge poles
of the scattering matrix that are propagating close to it.
Photon spheres that coincide with an extremal horizon of
static, spherically-symmetric black hole space-times were
studied in [44]. Photon and antiphoton spheres in static,
spherically-symmetric solutions of supergravity theories, a
Horndeski theory, and a theory of quintessence were
studied in [45]. Gravitational lensing by naked singularities
and the formation of photon spheres around them was
studied in [46–48].
In this paper, we consider a Schwarzschild black hole

distorted by the external, static, and axisymmetric gravi-
tational field. The black hole space-time is a member of the
Weyl class of solutions (see, e.g., [49,50]). The distortion
field can be induced by massive objects that are not
explicitly included in the Weyl solution. Thus, this solution
is vacuum and describes the space-time in the vicinity of

the distorted black hole horizon. Accordingly, this solution
represents a local black hole [51]. Here we consider a
quadrupole distortion. This type of distortion allows for
equatorial null geodesics that were studied in [52].
Moreover, many celestial objects, such as stars, star
clusters, and galaxies, are nearly symmetric with respect
to their equatorial plane. For such a space-time, the escape
dynamics of massive and massless test particles and its
chaotic nature were analyzed in a different context in [53].
Here we consider null geodesics propagating outside the
equatorial plane. Our goal is to analyze whether null
geodesics form a photon surface around the distorted
Schwarzschild black hole.
The issue of the existence of a photon surface in the

presence of static, first-order metric perturbations of the
Schwarzschild space-time, retaining asymptotic flatness,
was studied in [54]. It was conjectured that if an asymp-
totically flat, vacuum space-time possesses a static photon
surface, then the space-time is the Schwarzschild one.
It was also argued that in the presence of a fine-tuned
matter perturbation, a photon surface may exist. Here we
explore this issue further and consider an exact, vacuum,
nonasymptotically flat solution representing a distorted
Schwarzschild black hole.
This paper is organized as follows. In the next section,

following the works [11,22], we give the definition of a
photon surface. In Sec. III, we present the metric of a
distorted Schwarzschild black hole, briefly discuss its main
properties, and consider a quadrupole distortion. In Sec. IV,
we derive the dynamical system governing null ray
trajectories of the distorted Schwarzschild black hole
space-time and consider the corresponding effective poten-
tial. In Sec. V, we study small oscillations of null ray
trajectories around an equatorial null circular orbit. In
Sec. VI, we integrate the dynamical system numerically,
present its basins of attraction, and study the basin
boundary. The conclusion contains a summary and dis-
cussion of the derived results.

II. PHOTON SURFACE

As we already mentioned in the Introduction, a geo-
metric definition of a photon surface in a general space-
time was given in [11]. Here we give this definition for a 4D
space-time.
Definition 1.—A 3D photon surface is an immersed,

nowhere-spacelike hypersurface ΣPh of a 4D space-time
manifold M such that, for every point p ∈ ΣPh and every
null vector k ∈ TpΣPh, there exists a null geodesic γ such
that, k is tangent to γ at p and γ ⊂ ΣPh.
In other words, we can pick up any point on a 3D photon

surface and a null vector tangent to the surface at that point.
Then this vector generates a null geodesic that lies in the
photon surface. For example, any null hypersurface is
a 3D photon surface, a single-sheeted hyperboloid in 4D
Minkowski space-time is a 3D photon surface, the r ¼ 3M
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hypersurface of the Schwarzschild black-hole space-time is
a photon surface.
In the case of a static space-time, that we consider here, if

a 3D photon surface does not depend on a time coordinate,
its projection onto a spatial manifold is time-independent
and there is an associated 2D photon surface in the spatial
manifold S∶t ¼ const of the space-time metric

ds2 ¼ −N2dt2 þ gijdxidxj; ð1Þ

where the lapse function N and spatial metric gij are
independent of t. Such a 2D photon surface SPh is the result
of a spatial projection of the 3D photon surface ΣPh onto the
spatial manifold S. The null ray trajectories are spatial
geodesics of the optical metric

ds2opt ¼ N−2gijdxidxj: ð2Þ

They can be constructed by using Fermat’s principle [22].
Accordingly, one can define a 2D photon surface as
follows:
Definition 1.— A 2D photon surface SPh is a totally

geodesic hypersurface of the spatial manifold S, which is a
spatial projection of the associated 3D photon surface ΣPh,
such that projection of a null vector k ∈ TΣPh onto SPh is
the spacelike vector v ∈ TSPh, which generates the null ray
trajectory Γ ⊂ SPh, which is the projection of the null
geodesic γ ⊂ ΣPh generated by k.
Such a 2D photon surface is schematically illustrated in

Fig. 1. A null ray trajectory runs in every direction through
every point in a 2D photon surface.

III. DISTORTED SCHWARZSCHILD
BLACK HOLE

A. The metric

Consider a Schwarzschild black hole in the presence of
static and axisymmetric external gravitational field. Focus
on the space-time in the exterior vicinity of the black hole

horizon. This region of space-time represents a local black
hole. Such a local black hole solution is vacuum, static, and
axisymmetric, and it is given by a Weyl solution that admits
an asymptotically flat extension that includes the external
matter generating the field. Details of this construction and
basic characteristics of a local black hole can be found in
the paper [51]. Here we shall call such a local black hole a
distorted Schwarzschild black hole. The metric of a
distorted Schwarzschild black hole in prolate spheroidal
coordinates ðt; x; y;ϕÞ has the following form:

ds2 ¼ −
�
x − 1

xþ 1

�
e2Udt2 þm2ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þM2ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð3Þ

U ¼
X
n≥0

anRnPn; ð4Þ

V ¼
X
n;k≥1

nkanak
ðnþ kÞR

nþkðPnPk − Pn−1Pk−1Þ

þ
X
n≥1

an
Xn−1
l¼0

½ð−1Þn−lþ1ðxþ yÞ − xþ y�RlPl;

Pn ≡ Pnðxy=RÞ; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 − 1

q
: ð5Þ

The metric (3) was studied in many works (see, e.g.,
[50,55–60]) and the explicit form of the metric function V
was given in [61]. Here, Pn are the Legendre polynomials
of the first kind. The metric functions U and V represent
a static and axisymmetric gravitational distortion field
defined by the interior Weyl multipole moments an. In
what follows, we shall simply call them multipole
moments. The distortion fields U and V defined by the
multipole moments are regular and smooth at the black hole
horizon, which is located at x ¼ 1.2 Regular coordinate
neighborhoods are defined by the following coordinate
ranges: t ∈ ð−∞;∞Þ, x ∈ ð1;∞Þ, y ∈ ð−1; 1Þ, and
ϕ ∈ ð0; 2πÞ. By the construction, this metric diverges at
the spatial infinity, x → ∞.
To have the horizon free of conical singularities at the

symmetry axis y ¼ �1, the multipole moments have to
satisfy the following condition:

X
n≥0

a2nþ1 ¼ 0: ð6Þ

FIG. 1. 2D Photon Surface SPh. Through every point P ∈ SPh
and in every direction runs a null ray trajectory Γ ⊂ SPh.

2The exterior Weyl multipole moments describe distortions
of the source [61,62]. They are given in terms of the Legendre
polynomials of the second kind (see, e.g., [55–59,62]). According
to the Schwarzschild black hole uniqueness theorem [63], the
Schwarzschild black hole is the only static, asymptotically flat,
vacuum black hole with a regular horizon. Thus, such distortions
make the black hole horizon singular (see, e.g., [56,59]).
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This condition is sometimes called the black hole equilib-
rium condition [50].
Assuming that the distortion field is generated by some

material sources that satisfy the strong energy condition,
then we necessarily have (see, e.g., [51,64]),

U ≤ 0; ð7Þ

which implies

u0 ¼
X
n≥0

a2n ≤ 0: ð8Þ

Using the coordinate transformations

x ¼ r
M

− 1; y ¼ cos θ; ð9Þ

and removing the distortion by making all the multipole
moments an vanish we derive the Schwarzschild metric,

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ

�
1 −

2M
r

�
−1
dr2 þ r2dω2;

dω2 ¼ dθ2 þ sin2 θdϕ2: ð10Þ

In what follows, it is convenient to present the metric (3)
in a dimensionless form

dS2 ¼ −
�
x − 1

xþ 1

�
e2Udτ2 þ ðxþ 1Þ2ð1 − y2Þe−2Udϕ2

þ ðxþ 1Þ2e2ðV−UÞ
�

dx2

x2 − 1
þ dy2

1 − y2

�
; ð11Þ

where

dS2 ¼ Ω−2ds2; Ω2 ¼ M2e−2u0 ;

τ ¼ t
M

e2u0 ; U ¼ U − u0: ð12Þ

B. Quadrupole distortion

The first term in the expansion (4) of the distortion field
U is the monopole, and in our case, it represents a uniform
background distortion defined by a monopole moment a0.
The next term is the dipole defined by a dipole moment a1,
which according to the black hole equilibrium condition (6)
is related to the higher-order multipole moments, e.g.
a1 þ a3 ¼ 0. The next term is the quadrupole, which is
defined by a quadrupole moment a2. It defines the most
dominant, nontrivial distortion field that allows for equa-
torial null geodesics [52], and it also captures the structure
of many celestial objects that are nearly symmetric with
respect to their equatorial plane. Here we shall consider
only the quadrupole distortion and neglect the higher-order

multipole moments. According to the expressions (4)
and (5), the quadrupole distortion fields U and V read

U ¼ q
2
½3x2y2 − x2 − y2 − 1�; ð13Þ

V ¼ q
4
ð1 − y2Þ½qðx2 − 1Þðx2 − 9x2y2 þ y2 − 1Þ − 8x�;

ð14Þ

where q ¼ a2 is the quadrupole moment.
To justify the quadrupole approximation, the distortion

field should only slightly modify the space-time geometry
in the vicinity of the black hole’s horizon. This allows us to
estimate the magnitude of q. To do it, we consider the
Kretschmann scalar curvature invariant K≡ RαβγδRαβγδ

calculated on a static black hole horizon,

KjHorizon ¼ 12K2; ð15Þ

where K is the Gaussian curvature of the horizon
two-dimensional spacelike surface (for details see, e.g.,
[60,65]). For the metric (11) with the quadrupole distortion
fields (13)–(14), this expression reads

KjHorizon ¼ 12ð1þ 2qÞ2 expð4qÞ: ð16Þ

For a Schwarzschild black hole, this expression reduces to
12. Thus, for a small quadrupole distortion one should have

jð1þ 2qÞ2 expð4qÞ − 1j ≪ 1; ð17Þ

which implies that jqj ≪ 1.
In accordance with the study of the equatorial null

geodesics around a distorted Schwarzschild black hole
[52], where it was shown that null circular orbits in the
black hole equatorial plane exist only if q ≥ qmin, where

qmin ¼
1 − 2 cosðπ=9Þ

24 cos2ðπ=9Þ þ 20 cosðπ=9Þ þ 2
≃ −0.020944533;

ð18Þ

in what follows, we shall take qmin ≤ q ≪ 1.
To get more insight into an external quadrupole dis-

tortion, let us consider Newtonian gravity.3 The Newtonian
interior quadrupole moment qN of two equal pointlike
masses μ located on the z-axis at the distance d from the
coordinate origin, and an infinitesimally thin homogeneous
ring of the mass m and radius r located in the plane z ¼ 0
and centred at the origin, is

3Note that the potential U defines a relativistic gravitational
field. Its Newtonian limit is given by limc2→∞c

2Uðx; y; c2Þ, where
c is the speed of light, which has to be explicitly included into the
potential (see, e.g., [58,66]).
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qN ¼ m
2r3

−
2μ

d3
: ð19Þ

Hence, if the quadrupole moment due to the masses is not
less than that of the ring, qN ≤ 0, otherwise, qN > 0. Thus,
in analogy with Newtonian gravity, we shall take positive
and negative values of q.

IV. DYNAMICAL SYSTEM FOR NULL
RAY TRAJECTORIES

Due to the quadrupole distortion, null geodesics in the
vicinity of a distorted Schwarzschild black hole differ from
the null geodesics around an isolated Schwarzschild black
hole. To analyze the effect of the distortion on the null
geodesics, we construct the dynamical system for null ray
trajectories.
Null geodesic equations read

_kα þ Γα
βγk

βkγ ¼ 0; ð20Þ

where the 4-velocity vector kα ¼ ð_τ; _x; _y; _ϕÞ is null,

kαkα ¼ 0; ð21Þ

and the overdot stands for the derivative with respect to an
affine parameter λ. For the space-time (11) the Christoffel
symbols Γα

βγ are presented in the Appendix. The null
condition (21) takes the following form:

−
�
x − 1

xþ 1

�
e2U _τ2 þ ðxþ 1Þ2ð1 − y2Þe−2U _ϕ2

þ ðxþ 1Þ2e2ðV−UÞ
�

_x2

x2 − 1
þ _y2

1 − y2

�
¼ 0: ð22Þ

The space-time (11) has Killing vectors ξαðτÞ ¼ δατ and

ξαðϕÞ ¼ δαϕ. Accordingly, the following quantities conserved

along a null geodesic:

E ≡ −ξαðτÞkα ¼
�
x − 1

xþ 1

�
e2U _τ; ð23Þ

L≡ ξαðϕÞkα ¼ ðxþ 1Þ2ð1 − y2Þe−2U _ϕ: ð24Þ

In what follows, we shall consider nonradial null geo-
desics, i.e., _ϕ ≠ 0. According to the expression (24), ϕðλÞ is
a monotonic function. As a result, we can use it as an
evolution parameter along null ray trajectories. Therefore,
we shall consider ϕ taking its values in the covering space
(see, e.g., [67]), i.e., we shall take ϕ ∈ ½0;∞Þ. Thus, we can
divide the expression (22) by _ϕ2 and using (23) and (24)
present it in the following form:

b−2 ¼ ðx − 1Þe2ðVþ2UÞ

ðxþ 1Þ3ð1 − y2Þ2
� ðdxdϕÞ2
x2 − 1

þ
ðdydϕÞ2
1 − y2

�
þ Ueff ; ð25Þ

where b≡ L=E is the impact parameter and

Ueff ¼
ðx − 1Þe4U

ðxþ 1Þ3ð1 − y2Þ ð26Þ

is the effective potential. The effective potential for a
Schwarzschild black hole is presented in Fig. 2, and the
effective potential for a distorted Schwarzschild black hole
is presented in Figs. 3 and 4.
Taking ϕ as an evolution parameter and using the

expressions (23)–(24), we construct from the null
geodesic equations (20) the dynamical system for null
ray trajectories,

d2x
dϕ2

¼ −b−2e−8U
ðxþ 1Þ6ð1 − y2Þ2

ðx − 1Þ2 Γx
ττ − ~Γx

xx

�
dx
dϕ

�
2

− 2 ~Γx
xy
dx
dϕ

dy
dϕ

− Γx
yy

�
dy
dϕ

�
2

− Γx
ϕϕ; ð27Þ

d2y
dϕ2

¼ −b−2e−8U
ðxþ 1Þ6ð1 − y2Þ2

ðx − 1Þ2 Γy
ττ − Γy

xx

�
dx
dϕ

�
2

− 2 ~Γy
xy
dx
dϕ

dy
dϕ

− ~Γy
yy

�
dy
dϕ

�
2

− Γy
ϕϕ: ð28Þ

The expression (25) is a constraint along these trajectories.
In the case of a Schwarzschild black hole, there is a

trajectory at x ¼ 2 that corresponds to the local extrema

FIG. 2. The effective potential for a Schwarzschild black hole.
Black curves define the local saddle point ðx ¼ 2; y ¼ 0; Ueff ¼
1=27Þ level of the effective potential. The red curve represents
local extremaUeff;x ¼ 0 of the effective potential and defines null
ray trajectories at x ¼ 2 of the 2D photon sphere, which are its
large circles.
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Ueff;x ¼ 0 of the effective potential (see the red curve in
Fig. 2). This trajectory defines the 2D photon sphere. A
natural question to ask is whether such local extrema of the
effective potential of a distorted Schwarzschild black hole
(see the red curves in Figs. 3 and 4) also define trajectories
of the dynamical system (27)–(28). A positive answer to
this question would imply the existence of a photon surface
around a distorted Schwarzschild black hole. The curve
corresponding to the local extrema is given by

2 − x − 2qxðx2 − 1Þð1 − 3y2Þ ¼ 0: ð29Þ

To find out whether it represents a trajectory of the
dynamical system, we shall use the following approach.
Let we have a 2D dynamical system in an ðx; yÞ-plane

d2x
dt2

¼ Fxðx; y; vx; vyÞ;
d2y
dt2

¼ Fyðx; y; vx; vyÞ: ð30Þ

Here t is an evolution parameter (time), Fx and Fy are force
components, and

dx
dt

¼ vx;
dy
dt

¼ vy; ð31Þ

are velocity components. Let a curve C,

C∶ fðx; yÞ ¼ 0; ð32Þ

defines a trial trajectory of the dynamical system (30).
Then, the velocity vector, which is tangent to this curve,
satisfies the relation

f;xvx þ f;yvy ¼ 0: ð33Þ

Here and in what follows, ð…Þ;x stands for a partial
derivative of ð…Þ with respect to x. Accordingly, the
velocity components can be presented as follows:

vx ¼ af;y; vy ¼ −af;x; ð34Þ

where a ¼ aðx; yÞ is a function to be defined. From the
expressions (30), (31), and (34) it follows:

d2x
dt2

¼ aðaf;xyf;y − af;yyf;x þ a;xf2;y − a;yf;xf;yÞ ¼C Fx;

ð35Þ

d2y
dt2

¼ aðaf;xyf;x − af;xxf;y þ a;yf2;x − a;xf;xf;yÞ ¼C Fy:

ð36Þ

Here ¼C means that the equality holds on the curve C. To
isolate the unknown function a, we can multiply (35) and
(36) by f;x and f;y, respectively, and add them to derive

a2ðf;xxf2;y − 2f;xyf;xf;y þ f;yyf2;xÞ þ f;xFx þ f;yFy¼C 0:

ð37Þ

This expression can also be derived from the expression of
a centripetal force acting on a unit mass,

Fc ¼
v⃗2

rc
; ð38Þ

FIG. 4. The effective potential for a distorted Schwarzschild
black hole: q ¼ 0.0001. Black curves define the local saddle
point ðx≃ 1.999; y ¼ 0; Ueff ≃ 0.037Þ level of the effective
potential. The red curve represents local extrema Ueff;x ¼ 0 of
the effective potential.

FIG. 3. The effective potential for a distorted Schwarzschild
black hole: q ¼ −0.02. Black curves define the local saddle point
ðx≃ 2.596; y ¼ 0; Ueff ≃ 0.047Þ level of the effective potential.
The red curve represents local extrema Ueff;x ¼ 0 of the effective
potential.
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where Fc is the force, which is orthogonal to the velocity v⃗,
and rc is the curvature radius of the mass trajectory. In our
case, this expression takes the following form:

ðF⃗; n⃗Þ ¼ κa2j∇fj2; ð39Þ

where on the left hand side we have the projection of the
force F⃗ on a unit vector

n⃗ ¼ ∇f
j∇fj ¼

ðf;x; f;yÞ
ðf2;x þ f2;yÞ1=2

; ð40Þ

orthogonal to the curve C, and on the right-hand side we
have a product of the curvature of the curve

κ ¼ −
f;xxf2;y − 2f;xyf;xf;y þ f;yyf2;x

ðf2;x þ f2;yÞ3=2
; ð41Þ

and the squared velocity v2 ¼ v2x þ v2y is expressed by
using (34).
Given a curve (32), one can solve Eq. (37) for a and

check whether the expressions (35) and (36) hold on C. If
they do, then the curve represents a true trajectory of the
dynamical system (30).
Applying this method to the dynamical system (27)–(28)

and the curve (29), one can see that for q ¼ 0 the
corresponding curve x ¼ 2 is indeed a true trajectory,
while for q ≠ 0 the curve (29) is not a true trajectory.
Note that even for very small values of y, such that jyj ≪ 1,
(35) is violated in the second order in jyj, while (36) is
violated in the first order in jyj.
Are there other candidates for a photon surface around a

distorted Schwarzschild black hole?

V. SMALL OSCILLATIONS

In [52] it was found that there are equatorial null orbits
around a Schwarzschild black hole distorted by an external
quadrupolar gravitational field. Let us now consider small
oscillations about an equatorial null circular orbit defined
by x ¼ xo and y ¼ 0, where xo ∈ ð1; xmax� is the smallest
positive root of equation (29) with y ¼ 0,

2 − xo − 2qxoðx2o − 1Þ ¼ 0; ð42Þ

and

xmax ¼ 1þ 2 cosðπ=9Þ ≈ 2.87938524; ð43Þ

is the smallest positive root corresponding to qmin.
Let xαoðλÞ ¼ ðτoðλÞ; xo; 0;ϕoðλÞÞ be the corresponding null
geodesic, kαo ¼ ð_τo; 0; 0; _ϕoÞ its 4-velocity null vector, and

xα ¼ xαo þ δxα; kα ¼ kαo þ δ_xα; ð44Þ

be the neighboring null geodesic and its 4-velocity null
vector. Here δxα is a deviation from xαo and δ_xα is the
corresponding 4-velocity deviation. In what follows, we
shall consider very small deviations, jδxαj ≪ 1, jδ_xαj ≪ 1
and use a linear approximation. Substituting (44) into the
geodesic equation (20) and the null condition (21), and
expanding in powers of δxα and δ_xα, we derive in the first-
order approximation

δẍα þ 2Γα
βγk

β
oδ_xγ þ Γα

βγ;δδx
δkβok

γ
o ≈ 0; ð45Þ

2gαβkαoδ_xβ þ gαβ;γδxγkαok
β
o ≈ 0; ð46Þ

where the Christoffel symbols and their derivatives are
evaluated on the null circular orbit. Using the expressions
(23) and (24), the 4-velocity null vector can be presented as
follows:

kαo ¼ ð−Eog−1ττ ; 0; 0;Log−1ϕϕÞ; ð47Þ

where the metric tensor components are evaluated on
the circular orbit. At this stage, as we already did before,
we consider the ϕo coordinate as an evolution parameter.
Using (47), we have

δ_xα ¼ Log−1ϕϕ
dδxα

dϕo
; δẍα ¼ L2

og−2ϕϕ
d2δxα

dϕ2
o
: ð48Þ

Substituting (47) and (48) into (45) and (46), we derive
equations for the deviation δxα,

d2δτ
dϕ2

o
þ 2boΓτ

τa
dδxa

dϕo
¼ 0; ð49Þ

d2δxa

dϕ2
o

þ 2boΓa
ττ
dδτ
dϕo

þ 2Γa
ϕϕ

dδϕ
dϕo

þ γabδx
b ¼ 0; ð50Þ

d2δϕ
dϕ2

o
þ 2Γϕ

aϕ
dδxa

dϕo
¼ 0; ð51Þ

2bogττ
dδτ
dϕo

þ 2gϕϕ
dδϕ
dϕo

þ ðb2ogττ;a þ gϕϕ;aÞδxa ¼ 0; ð52Þ

where

γab ≡ b2oΓa
ττ;b þ Γa

ϕϕ;b: ð53Þ

Here, bo ≡ Lo=Eo is the impact parameter corresponding to
the circular orbit, and the lowercase Latin indices a and b
stand for the coordinates x and y. Equations (49) and (51)
can readily be integrated,

dδτ
dϕo

¼ boV
ϕ
0 − 2boΓτ

τaðδxa − δxa0Þ; ð54Þ
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dδϕ
dϕo

¼ Vϕ
0 − 2Γϕ

aϕðδxa − δxa0Þ; ð55Þ

where δxa0 ¼ ðδx0; δy0Þ are the initial deviations and Vϕ
0 is

the initial value of dδϕ=dϕo. Note that the constants of
integration ensure that the expression (52) holds.
Substituting the expressions (54) and (55) into Eq. (50),
using the expressions for Christoffel symbols given in the
Appendix, and simplifying with the use of Eq. (42) we
derive

d2δx
dϕ2

o
þ ω2

xδx ¼ 0; ð56Þ

d2δy
dϕ2

o
þ ω2

yδy ¼ 0: ð57Þ

Here, ωx and ωy are frequencies of the radial and axial
oscillations,

ω2
x ¼

2ðx3o − 3x2o þ 1Þ
xoðx2o − 1Þ e

−ðxo−2Þðx3oþ14x2o−xoþ2Þ
8x2oðx2o−1Þ ; ð58Þ

ω2
y ¼ −ω2

x: ð59Þ

These expressions allow us to analyze stability of the
oscillations. As we can see from Fig. 5, ω2

x < 0 everywhere
except for the marginally stable orbit xo ¼ xmax, corre-
sponding to q ¼ qmin [see (18)]. Accordingly, ω2

y > 0

everywhere, except for the marginally stable orbit. This
implies that for 1 < xo < xmax or q > qmin small oscilla-
tions in the x-direction are unstable, while small oscilla-
tions in the y-direction are stable. According to the
expressions (54) and (55), for a sufficiently small interval
in ϕo, both of the oscillations are accompanied by small

deviations in τ and ϕ. There are no oscillations in the case
of the marginally stable orbit.

VI. NUMERICAL ANALYSIS

A. Numerical setup

To find out whether there is a photon surface, as it is
defined in Sec. II, we shall numerically integrate the
dynamical system (27)–(28). To do so, we rewrite it in
the first-order form,

dx
dϕ

¼ X; ð60Þ

dX
dϕ

¼ −b−2e−8U
ðxþ 1Þ6ð1 − y2Þ2

ðx − 1Þ2 Γx
ττ − ~Γx

xxX2

− 2 ~Γx
xyXY − Γx

yyY2 − Γx
ϕϕ; ð61Þ

dy
dϕ

¼ Y; ð62Þ

dY
dϕ

¼ −b−2e−8U
ðxþ 1Þ6ð1 − y2Þ2

ðx − 1Þ2 Γy
ττ − Γy

xxX2

− 2 ~Γy
xyXY − ~Γy

yyY2 − Γy
ϕϕ: ð63Þ

The constraint (25) reads,

ðx − 1Þe2ðVþ2UÞ

ðxþ 1Þ3ð1 − y2Þ2
�

X2

x2 − 1
þ Y2

1 − y2

�
þ Ueff − b−2 ¼ 0:

ð64Þ

We also have to specify initial data,

x0 ¼ xðϕ0Þ; X0 ¼ Xðϕ0Þ;
y0 ¼ yðϕ0Þ; Y0 ¼ Yðϕ0Þ; ð65Þ

where ϕ0 is the initial value of the azimuthal angle. Because
the system is axisymmetric, we can always take ϕ0 ¼ 0.
According to the definition of a 2D photon surface, we

can take any tangent vector v0 at the arbitrary point of the
surface, then the null ray trajectory generated by v0 will lie
in it. It means that the trajectory will neither be captured by
the black hole, nor will it escape out. However, when we
search for a photon surface, we do not know either the point
that belongs to it, or the surface orientation that allows us
to define a tangent to it vector v0. But, because of arbitrary
direction of the tangent vector v0 at any point of the
surface, we can always take it directed in the ϕ-direction.
Accordingly, we consider the following initial data:

x0 ¼ xðϕ0Þ; X0 ¼ 0; y0 ¼ yðϕ0Þ; Y0 ¼ 0;

ð66ÞFIG. 5. The squared frequency ω2
x as a function of q ≥ qmin.
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that correspond to a turning point of a null ray trajectory in
an ðx; yÞ-domain. If the generated null ray trajectory gets
captured by the black hole or escapes out, then the initial
point ðx0; y0Þ does not belong to the sought photon sphere.
In other words, according to the definition of a photon
sphere, it is enough to rule out one particular null ray
trajectory generated at the given point by some tangent
vector to claim that the point does not belong to the surface.
Using the initial data (66) we can calculate from the

constraint (64) the value of b. This constraint also allows us
to find the absolute accuracy of the numerical integration.
To integrate the dynamical system, we implement the fifth-
order quality-controlled Cash-Karp-Runge-Kutta method
with the relative accuracy ϵ≲ 10−11 (see [68]). We define
the absolute error δ of the numerical integration as the
maximal absolute deviation in the constraint (64) among all
the points of all generated null trajectories.

B. Basins of attraction

To search for a photon surface, we shall scan an entire
area in the ðx; yÞ-domain in the vicinity of the black hole
horizon located at x ¼ 1. In particular, according to the
shape of the effective potential (see Figs. 3 and 4), we
consider x ∈ ð1; 3Þ. In this region the effective potential is
mostly due to the black hole, while for larger values of x the
distortion field grows and its effect becomes dominant.
Moreover, because we consider small values of the quadru-
pole moment, a photon surface, if it exists, should not
deviate much from the location of a photon sphere at x ¼ 2
around a Schwarzschild black hole.
The scan is done in the following way. We choose a point

ðx0; y0Þ from the domain

D ¼ f1 < x0 < 3;−1 < y0 < 1g; ð67Þ

and using the initial data (66), we integrate the dynamical
system up to sufficiently large values of ϕ∶50 ≤ ϕ ≤ 250.
If the result of the integration shows that

x < 1.0001; X < 0; ð68Þ

then we interpret it that the null ray trajectory got captured
by the black hole. Accordingly, we print in D a red square
of the edge length Δ ≪ 1, centered at that point and
indicating that the trajectory got captured by the black
hole. If the result of the integration shows that

x ≥ 5; X > 0; y < 0; ð69Þ

FIG. 6. Basins of attraction for a Schwarzschild black hole.
The relative accuracy is ϵ ¼ 10−12 and the maximal absolute error
is δ ≈ 2.03 × 10−9. The horizontal coordinate is x0, the vertical
coordinate is y0, and their increment is Δ ¼ 10−2. The photon
sphere is indicated by yellow vertical line at x0 ¼ 2.0.

FIG. 7. Basins of attraction for a distorted Schwarzschild black
hole. The relative accuracy is ϵ and the maximal absolute error is
δ. The horizontal coordinate is x0, the vertical coordinate is y0,
and their increment is Δ ¼ 10−2. (a): q ¼ −0.01, ϵ ¼ 10−15,
δ ≈ 5.50 × 10−12. (b): q ¼ 0.0001, ϵ ¼ 10−14, δ ≈ 1.22 × 10−12.
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then we interpret it that the null ray trajectory escaped the
black hole in the downward direction and print inD a green
square of the edge length Δ ≪ 1 centered at that point. If
the result of the integration shows that

x ≥ 5; X > 0; y > 0; ð70Þ

then we interpret it that the null ray trajectory escaped the
black hole in the upward direction and print in D a blue

FIG. 8. Basins of attraction for q ¼ −0.02. The relative accuracy is ϵ and the maximal absolute error is δ. The horizontal coordinate is
x0, the vertical coordinate is y0, and their increment is Δ. (a): ϵ ¼ 10−15, δ ≈ 1.20 × 10−12, Δ ¼ 10−2. (b): ϵ ¼ 10−13, δ ≈ 1.62 × 10−14,
Δ ¼ 10−4. (c): ϵ ¼ 10−13, δ ≈ 1.63 × 10−14, Δ ¼ 10−6. (d): ϵ ¼ 10−13, δ ≈ 1.64 × 10−14, Δ ¼ 10−8. (e): ϵ ¼ 10−13, δ ≈ 1.67 × 10−14,
Δ ¼ 10−10. (f): ϵ ¼ 10−13, δ ≈ 1.69 × 10−14, Δ ¼ 10−12.
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square of the edge length Δ ≪ 1 centred at that point.
Finally, if the result of the integration shows that none of
the above outcomes happened, then we interpret it that the
null ray trajectory belongs to a 2D photon surface and print
in D a yellow square of the edge length Δ ≪ 1 centered
at that point. Then, we move to the next point, by making
the increment Δ in the x and y-directions, and repeat the
procedure until we cover all of the domain.
The conditions (68)–(70) define attractors of the dynami-

cal system (60)–(64).4 The set of initial conditions for
trajectories of the dynamical system that asymptotically
approach its attractor is called the basin of attraction of that
attractor. The method described above allows us to con-
struct basins of attraction. To test the method, we integrate
the dynamical system in the absence of distortion (q ¼ 0)
that corresponds to a Schwarzschild black hole. As a result,
we construct the basins of attraction shown in Fig. 6. The
boundary separating the basin of capture and the basins
of escape is a smooth line x0 ¼ 2.0. This line represents
the photon sphere around the Schwarzschild black hole.
If we sufficiently magnify the vicinity of the boundary by
decreasing the increment Δ, we can see many stripes
representing the regions of upward and downward escapes.
These regions alternate and get smaller and smaller in size
when one approaches the boundary from the outer side.
There is only one region of capture in the inner side of the
basin boundary.
Integrating the dynamical system for nonzero values of

q, we have not observed any indication of a photon surface.
There are, however, unstable null circular orbits lying in the
equatorial plane of a distorted black hole for q > qmin and
equatorial null finite stable orbits for q ∈ ðqmin; 0Þ. This
result is in accordance with the analysis of equatorial null
geodesics presented in [52]. For q≳ −0.017001 the basin
boundary has a similar structure as in the q ¼ 0 case.
Approaching the basin boundary between the capture and
the escape regions, we found many stripes representing the
regions of upward and downward escapes located in the
outer side of the boundary. These stripes alternate and get
smaller and smaller in size when one approaches the
boundary from the outer side. Just like in the absence of
distortion, there is only one region of capture in its inner
side. Basins of attraction for q ¼ −0.01 and q ¼ 0.0001 are
shown in Fig. 7.
Finally, for q≲ −0.017001 the basins of attraction

pattern changes. In such cases the basin boundary has a
fractal structure: when one approaches the basin boundary
from the outer side, there are infinitely many regions
corresponding to the capture and both types of escapes.
This behavior is illustrated in Fig. 8 for q ¼ −0.02.
Such a basin boundary is called a fractal basin boundary.

The fractal nature is a result of the chaotic motion of

null ray trajectories originating from such a boundary
[69–72]. Thus, as a result of the distortion, the smooth
basin boundary (the photon sphere) undergoes metamor-
phoses that lead to its conversion into the basin boundaries
that are fractal [70–72]. In the next subsection, we calculate
the box-counting fractal dimension and the uncertainty
exponent that are qualitative characteristics of fractal basin
boundaries.

C. The uncertainty exponent and box-counting
fractal dimension

The fractal nature of a fractal basin boundary leads to the
increased sensitivity of final states to an initial conditions
error. Namely, a small uncertainty ε ≪ 1 in the initial
conditions can dramatically affect the predictability of the
final state. The probability ρðεÞ of making a mistake in the
final state determination is calculated as the fraction of
the area of the phase space located within ε distance of the
basin boundary [69,70]. This fraction scales as

ρðεÞ ∼ εα; α ¼ D −DB; ð71Þ
where α is the uncertainty exponent, D is the dimension
of the phase space (the initial conditions space), and
DB ≥ D − 1 is the box-counting dimension of the basin
boundary,

DB ¼ lim
ε→0

lnNðεÞ
lnð1=εÞ ; ð72Þ

where NðεÞ is the number of cubes (squares) of the edge
length ε needed to cover the boundary and it is assumed
that the limit exists. If a basin boundary is nonfractal, then
DB ¼ D − 1 and α ¼ 1. For a fractal basin boundary
DB > D − 1 and α < 1. In such a case, we have the final
state sensitivity.
Let us now calculate the box-counting dimension and

the uncertainty exponent for the quadrupole distortions
of q ¼ −0.02. We pick up a small region in the domain
D ¼ fx0 ∈ ½2.23335; 2.23385�; y0 ∈ ½0.42525; 0.42575�g
containing the basin boundary. For the given uncertainty
ε ¼ Δ, where Δ is the initial conditions increment, we
calculate the number of squares of the edge length Δ that
cover the boundary. These squares are adjacent squares that
belong to the basin of capture and the basins of escape. For
example, if we pick up a square that belongs to the basin of
capture and the next square, at the distance ε from it, that
belongs to the basin of upward escape, we say that these
points cover the boundary. We compute the number NðεÞ
of such cases and decrease ε to repeat the procedure.
According to the expression (71), for a sufficiently small ε,
a relation between lnNðεÞ and lnð1=εÞ should be linear.
Using the linear least squares method, we construct the line
representing the relation and calculate its slope that gives us
the sought value of DB corresponding to D ¼ 2. Results of
such a computation are presented in Fig. 9. We have

4More rigorously, an attractor is a stable asymptotic final state
of a dynamical system.
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DB ≃ 1.1343; α≃ 0.8657: ð73Þ

The maximal absolute error is δ ≈ 1.73 × 10−14. We have
α < 1. Thus, the basin boundary is fractal. In our compu-
tation, we calculated the values of NðεÞ for the edge
lengths ε ¼ f10−5; 2.5 × 10−6; 10−6; 2.5 × 10−7; 10−7g.
In general, the box-counting dimension and the uncer-

tainty exponent depend on the chosen region of a basin
boundary, however, for a certain class of dynamical
systems satisfying required properties, they are proven to
be unique [73]. Note that in practice, a dynamical system
may not satisfy the required properties to have a unique
basin-boundary dimension. In such a case, we may need to
calculate DB at different regions of the basin boundary.

VII. CONCLUSION

In this paper, we studied null geodesics around a
Schwarzschild black hole in the external, static, and
axisymmetric quadrupolar gravitational field defined by
a quadrupole moment q. In particular, we were interested in
how such an external field affects the photon sphere around
a Schwarzschild black hole. From the dynamical point of
view, the photon sphere represents a smooth basin boun-
dary, separating the basin of capture and the basins of
escape for the null geodesics of the Schwarzschild space-
time. We found that within the numerically accuracy there
is no photon surface around such a distorted Schwarzschild
black hole. This result implies that the photon sphere
around a Schwarzschild black hole is extremely fragile with
respect to the external distortion. Despite the fragile nature
of the photon sphere, its equatorial cross section, formed by
null circular orbits, survives the distortion. Moreover, for
q ∈ ½qmin; 0Þ, there are finite equatorial stable null orbits
outside the black hole. Such orbits were already studied in

[52]. We also analyzed small oscillations about equatorial
null circular orbits, and we found that oscillations in the
direction orthogonal to the equatorial plane are stable,
while oscillations along the plane in the direction
perpendicular to the orbits are unstable.
Our study showed that the quadrupolar distortion of the

quadrupole moment q≲ −0.017001 transforms the basin
boundary into a fractal basin boundary. The fractal nature
of the basin boundary is illustrated quantitatively by
calculating the box-counting dimension of the boundary
and the related uncertainty exponent. It indicates a chaotic
behavior of null geodesics around the distorted black hole.
These quantities and the boundary location depend on the
quadrupole moment. As one can see from Fig. 8, the fractal
structure of the boundary is made of points that belong to
the capture, downward, and upward escape basins. Such a
transformation of a basin boundary is known as basin
boundary metamorphoses [70–72].
The uniqueness theorem for the photon sphere, defined by

the constant lapse function, around a Schwarzschild black
hole was proven in [13], and in a similar way, the uniqueness
of a Schwarzschild black hole solution was proven in [63]. In
order to have a photon sphere and a regular black hole
horizon, both the proofs require the space-time to be static,
vacuum, and asymptotically flat. However, as it is well
known, the horizon can be regular if one considers non-
vacuum or nonasymptotically flat space-times. In this work,
we showed that the situationwith a photon sphere is different.
Namely, a photon surface ceases to exist, in the sense of the
definition given in Sec. II, around a Schwarzschild black hole
distorted by the external, quadrupolar gravitational field.5

One may try to explore an arbitrary external, static, and
axisymmetric, multipolar gravitational distortion. Our pre-
liminary computations, based on the “umbilical” definition
of a photon surface (see [11,54]), for a hexadecapole field
showed that a photon surface does not exist either. A general
proof for an arbitrary, external multipolar gravitational
distortion remains to be done.
Finally, we would like to note that the chaotic behavior of

test particles is not a rare phenomenon that takes place
in strong gravitational fields around black holes. For
example, the chaotic motion of massive test particles, in
both Newtonian and relativistic core-shell models, repre-
sented by a distorted Schwarzschild black hole space-time
and its Newtonian limit, was explored in [74]. The chaotic
behavior of timelike, null, and spacelike geodesics was
discovered in nonhomogeneous vacuum pp-gravitational
wave space-time [75]. A quantitative and invariant chaos
description in some relativistic mechanical systems was
given in [76,77]. A comparison of symplectic integrator with
other nonsymplectic integration schemes for nonintegrable
relativistic dynamical systems was presented in [78]. The

FIG. 9. The box-counting fractal dimension for q ¼ −0.02.

5Note that the corresponding space-time metric (3)–(5) is
vacuum but not asymptotically flat.
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chaotic motion of timelike particles and light in the
Majumdar-Papapetrou multi-black-hole space-times was
studied in [79–83]. And in particular, chaotic scattering of
null geodesics and the related analysis of back hole shadows
in a binary Majumdar-Papapetrou space-time was studied in
[84], and a transition to chaos for stable photon orbits around
Reissner-Nordström diholes was studied with the aid of
Poincaré sections in [85]. It was demonstrated that gravi-
tational lensing of light by boson stars and Kerr black holes
with scalar hair leads to a fractal structure of images of the
celestial sphere [86,87]. Lensing dynamics of light and

shadow of a hairy black hole was studied in [88,89]. The
story does not end here, and there is much more to be
explored in the field of relativistic nonlinear dynamics.
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APPENDIX: CHRISTOFFEL SYMBOLS

Here we list Christoffel symbols for the metric (11).

Γx
ττ ¼

ðx − 1Þ
ðxþ 1Þ3 ½1þ ðx2 − 1ÞU ;x�e4U−2V; Γx

xx ¼ −
1

x2 − 1
þ V;x − U ;x;

~Γx
xx ¼ Γx

xx þ 2U ;x −
2

xþ 1
¼ U ;x þ V;x −

2x − 1

x2 − 1
; Γx

xy ¼ V;y − U ;y;

~Γx
xy ¼ Γx

xy þ U ;y þ
y

1 − y2
¼ V;y þ

y
1 − y2

; Γx
yy ¼ −

ðx − 1Þ
ð1 − y2Þ ½1þ ðxþ 1ÞðV;x − U ;xÞ�;

Γx
ϕϕ ¼ −ðx − 1Þð1 − y2Þ½1 − ðxþ 1ÞU ;x�e−2V; Γy

ττ ¼ ðx − 1Þ
ðxþ 1Þ3 ð1 − y2ÞU ;ye4U−2V;

Γy
xx ¼ ð1 − y2Þ

ðx2 − 1Þ ðU ;y − V;yÞ; Γy
xy ¼ 1

xþ 1
þ V;x − U ;x;

~Γy
xy ¼ Γy

xy þ U ;x −
1

xþ 1
¼ V;x; Γy

yy ¼ y
1 − y2

þ V;y − U ;y;

~Γy
yy ¼ Γy

yy þ 2U ;y þ
2y

1 − y2
¼ U ;y þ V;y þ

3y
1 − y2

; Γy
ϕϕ ¼ ð1 − y2Þ½yþ ð1 − y2ÞU ;y�e−2V;

Γτ
τx ¼

1

x2 − 1
þ U ;x; Γτ

τy ¼ U ;y; Γϕ
xϕ ¼ 1

xþ 1
− U ;x; Γϕ

yϕ ¼ −
y

1 − y2
− U ;y:

[1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation
(W. H. Freeman and Co., San Francisco, 1973).

[2] V. Perlick, Gravitational lensing from a spacetime perspec-
tive, Living Rev. Relativity 7, 9 (2004).

[3] V. Perlick, Exact gravitational lens equation in spherically
symmetric and static spacetimes, Phys. Rev. D 69, 064017
(2004).

[4] R. Whisker, Strong gravitational lensing by braneworld
black holes, Phys. Rev. D 71, 064004 (2005).

[5] V. Perlick, Theoretical gravitational lensing. Beyond the
weak-field small-angle approximation, arXiv:0708.0178.

[6] K. S. Virbhadra, Relativistic images of Schwarzschild black
hole lensing, Phys. Rev. D 79, 083004 (2009).

[7] A. Y. Bin-Nun, Strong Gravitational Lensing by Sgr A*,
Classical Quantum Gravity 28, 114003 (2011).

[8] V. Perlick, O. Y. Tsupko, and G. S. Bisnovatyi-Kogan,
Influence of a plasma on the shadow of a spherically
symmetric black hole, Phys. Rev. D 92, 104031 (2015).

[9] V. P. Frolov and A. Zelnikov, Introduction to Black
Hole Physics, (Oxford University Press Inc., New York,
2011).

[10] K. S. Virbhadra and G. F. R. Ellis, Schwarzschild black hole
lensing, Phys. Rev. D 62, 084003 (2000).

[11] C. M. Claudel, K. S. Virbhadra, and G. F. R. Ellis, The
Geometry of photon surfaces, J. Math. Phys. (N.Y.) 42,
818 (2001).

METAMORPHOSES OF A PHOTON SPHERE PHYSICAL REVIEW D 96, 084056 (2017)

084056-13

https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1103/PhysRevD.69.064017
https://doi.org/10.1103/PhysRevD.71.064004
http://arXiv.org/abs/0708.0178
https://doi.org/10.1103/PhysRevD.79.083004
https://doi.org/10.1088/0264-9381/28/11/114003
https://doi.org/10.1103/PhysRevD.92.104031
https://doi.org/10.1103/PhysRevD.62.084003
https://doi.org/10.1063/1.1308507
https://doi.org/10.1063/1.1308507


[12] T. Foertsch, W. Hasse, and V. Perlick, Inertial forces and
photon surfaces in arbitrary space-times, Classical Quantum
Gravity 20, 4635 (2003).

[13] C. Cederbaum, Uniqueness of photon spheres in static
vacuum asymptotically flat spacetimes, arXiv:1406.5475.

[14] C. Cederbaum and G. J. Galloway, Uniqueness of photon
spheres via positive mass rigidity, arXiv:1504.05804.

[15] S. S. Yazadjiev, Uniqueness of the static spacetimes with a
photon sphere in Einstein-scalar field theory, Phys. Rev. D
91, 123013 (2015).

[16] C. Cederbaum and G. J. Galloway, Uniqueness of photon
spheres in electro-vacuum spacetimes, Classical Quantum
Gravity 33, 075006 (2016).

[17] S. Yazadjiev and B. Lazov, Classification of the static and
asymptotically flat Einstein-Maxwell-dilaton spacetimes
with a photon sphere, Phys. Rev. D 93, 083002 (2016).

[18] S. Yazadjiev and B. Lazov, Uniqueness of the static
Einstein-Maxwell spacetimes with a photon sphere,
Classical Quantum Gravity 32, 165021 (2015).

[19] M. Rogatko, Uniqueness of photon sphere for Einstein-
Maxwell-dilaton black holes with arbitrary coupling con-
stant, Phys. Rev. D 93, 064003 (2016).

[20] Y. Tomikawa, T. Shiromizu, and K. Izumi, On the unique-
ness of the static black hole with conformal scalar hair, Prog.
Theor. Phys. 2017, 033E03 (2017).

[21] Y. Tomikawa, T. Shiromizu, and K. Izumi, On uniqueness of
static spacetimes with non-trivial conformal scalar field,
Classical Quantum Gravity 34, 155004 (2017).

[22] G.W. Gibbons and C. M. Warnick, Aspherical Photon and
Anti-Photon Surfaces, Phys. Lett. B 763, 169 (2016).

[23] E. Teo, Spherical Photon Orbits around a Kerr Black Hole,
Gen. Relativ. Gravit. 35, 1909 (2003).

[24] T. Shiromizu, Y. Tomikawa, K. Izumi, and H. Yoshino, Area
bound for a surface in a strong gravity region, Prog. Theor.
Phys. 2017, 033E01 (2017).

[25] H. Yoshino, K. Izumi, T. Shiromizu, and Y. Tomikawa,
Extension of photon surfaces and their area: Static and
stationary spacetimes, Prog. Theor. Phys. 2017, 063E01
(2017).

[26] S. Hod, Upper bound on the radii of black-hole photon-
spheres, Phys. Lett. B 727, 345 (2013).

[27] S. Hod, Hairy Black Holes and Null Circular Geodesics,
Phys. Rev. D 84, 124030 (2011).

[28] E. Gallo and J. R. Villanueva, Photon spheres in Einstein
and Einstein-Gauss-Bonnet theories and circular null geo-
desics in axially-symmetric spacetimes, Phys. Rev. D 92,
064048 (2015).

[29] V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T.
Zanchin, Geodesic stability, Lyapunov exponents and
quasinormal modes, Phys. Rev. D 79, 064016 (2009).

[30] I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev,
Connection between Black-Hole Quasinormal Modes and
Lensing in the Strong Deflection Limit, Phys. Rev. Lett.
104, 251103 (2010).

[31] R. A. Konoplya and Z. Stuchlík, Are eikonal quasinormal
modes linked to the unstable circular null geodesics?, Phys.
Lett. B 771, 597 (2017).

[32] G. Khanna and R. H. Price, Black hole ringing, quasinormal
modes, and light rings, Phys. Rev. D 95, 081501(R)
(2017).

[33] W. H. Press, Long Wave Trains of Gravitational Waves from
a Vibrating Black Hole, Astrophys. J. 170, L105 (1971).

[34] C. J. Goebel, Comments on the “Vibrations” of a Black
Hole, Astrophys. J. 172, L95 (1972).

[35] V. Ferrari and B. Mashhoon, New approach to the quasi-
normal modes of a black hole, Phys. Rev. D 30, 295
(1984).

[36] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[37] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[38] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW151226: Observation of Gravitational Waves
from a 22-Solar-Mass Binary Black Hole Coalescence,
Phys. Rev. Lett. 116, 241103 (2016).

[39] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW150914: First results from the search for binary
black hole coalescence with Advanced LIGO, Phys. Rev. D
93, 122003 (2016).

[40] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Binary Black Hole Mergers in the first Advanced
LIGO Observing Run, Phys. Rev. X 6, 041015 (2016).

[41] B. P. Abbott et al. (LIGO Scientific and VIRGO Collabo-
rations)), GW170104: Observation of a 50-Solar-Mass
Binary Black Hole Coalescence at Redshift 0.2, Phys.
Rev. Lett. 118, 221101 (2017).

[42] V. Cardoso, E. Franzin, and P. Pani, Is The Gravitational-
Wave Ringdown a Probe of The Event Horizon?, Phys. Rev.
Lett. 116, 171101 (2016); Erratum, Phys. Rev. Lett. 117,
089902(E) (2016)].

[43] Y. Decanini, A. Folacci, and B. Raffaelli, Unstable circular
null geodesics of static spherically symmetric black holes,
Regge poles and quasinormal frequencies, Phys. Rev. D 81,
104039 (2010).

[44] F. S. Khoo and Y. C. Ong, Lux in obscuro: Photon Orbits of
Extremal Black Holes Revisited, Classical Quantum Gravity
33, 235002 (2016).

[45] M. Cvetic, G. W. Gibbons, and C. N. Pope, Photon Spheres
and Sonic Horizons in Black Holes from Supergravity and
Other Theories, Phys. Rev. D 94, 106005 (2016).

[46] K. S. Virbhadra, D. Narasimha, and S. M. Chitre, Role of the
scalar field in gravitational lensing, Astron. Astrophys. 337,
1 (1998).

[47] K. S. Virbhadra and G. F. R. Ellis, Gravitational lensing by
naked singularities, Phys. Rev. D 65, 103004 (2002).

[48] K. S. Virbhadra and C. R. Keeton, Time delay and magni-
fication centroid due to gravitational lensing by black holes
and naked singularities, Phys. Rev. D 77, 124014 (2008).

[49] J. L. Synge, Relativity: The General Theory (North-Holland
Publishing Company, Amsterdam, 1960), p. 309.

[50] S. Chandrasekhar, The Mathematical Theory of Black Holes
(Clarendon Press, Oxford, 1983), p. 583.

[51] R. P. Geroch and J. B. Hartle, Distorted black holes, J. Math.
Phys. (N.Y.) 23, 680 (1982).

[52] A. A. Shoom, C. Walsh, and I. Booth, Geodesic motion
around a distorted static black hole, Phys. Rev. D 93,
064019 (2016).

ANDREY A. SHOOM PHYSICAL REVIEW D 96, 084056 (2017)

084056-14

https://doi.org/10.1088/0264-9381/20/21/006
https://doi.org/10.1088/0264-9381/20/21/006
http://arXiv.org/abs/1406.5475
http://arXiv.org/abs/1504.05804
https://doi.org/10.1103/PhysRevD.91.123013
https://doi.org/10.1103/PhysRevD.91.123013
https://doi.org/10.1088/0264-9381/33/7/075006
https://doi.org/10.1088/0264-9381/33/7/075006
https://doi.org/10.1103/PhysRevD.93.083002
https://doi.org/10.1088/0264-9381/32/16/165021
https://doi.org/10.1103/PhysRevD.93.064003
https://doi.org/10.1093/ptep/ptx033
https://doi.org/10.1093/ptep/ptx033
https://doi.org/10.1088/1361-6382/aa7906
https://doi.org/10.1016/j.physletb.2016.10.033
https://doi.org/10.1023/A:1026286607562
https://doi.org/10.1093/ptep/ptx022
https://doi.org/10.1093/ptep/ptx022
https://doi.org/10.1093/ptep/ptx072
https://doi.org/10.1093/ptep/ptx072
https://doi.org/10.1016/j.physletb.2013.10.047
https://doi.org/10.1103/PhysRevD.84.124030
https://doi.org/10.1103/PhysRevD.92.064048
https://doi.org/10.1103/PhysRevD.92.064048
https://doi.org/10.1103/PhysRevD.79.064016
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1103/PhysRevLett.104.251103
https://doi.org/10.1016/j.physletb.2017.06.015
https://doi.org/10.1016/j.physletb.2017.06.015
https://doi.org/10.1103/PhysRevD.95.081501
https://doi.org/10.1103/PhysRevD.95.081501
https://doi.org/10.1086/180849
https://doi.org/10.1086/180898
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1103/PhysRevD.30.295
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevD.93.122003
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1103/PhysRevD.81.104039
https://doi.org/10.1103/PhysRevD.81.104039
https://doi.org/10.1088/0264-9381/33/23/235002
https://doi.org/10.1088/0264-9381/33/23/235002
https://doi.org/10.1103/PhysRevD.94.106005
https://doi.org/10.1103/PhysRevD.65.103004
https://doi.org/10.1103/PhysRevD.77.124014
https://doi.org/10.1063/1.525384
https://doi.org/10.1063/1.525384
https://doi.org/10.1103/PhysRevD.93.064019
https://doi.org/10.1103/PhysRevD.93.064019


[53] A. P. S. de Moura and P. S. Letelier, Chaos and fractals in
geodesic motions around a nonrotating black hole with
halos, Phys. Rev. E 61, 6506 (2000).

[54] H. Yoshino, Uniqueness of static photon surfaces: Pertur-
bative approach, Phys. Rev. D 95, 044047 (2017).

[55] G. Erez and N. Rosen, The Gravitational Field of a Particle
Possessing a Multipole Moment, Bull. Res. Counc. Isr. F8,
47 (1959).

[56] A. G. Doroshkevich, Ya. B. Zeldovich, and I. D. Novikov,
Gravitational collapse of nonsymmetric and rotating
masses, Pis’ma Zh. Eksp. Teor. Fiz. 49, 170 (1965).

[57] C. Hoenselaers, W. Kinnersley, and B. C. Xanthopoulos,
Symmetries of the stationary Einstein-Maxwell equations.
VI. Transformations which generate asymptotically flat
spacetimes with arbitrary multipole moments, J. Math.
Phys. (N.Y.) 20, 2530 (1979).

[58] H. Quevedo, General static axisymmetric solution of
Einstein’s vacuum field equations in prolate spheroidal
coordinates, Phys. Rev. D 39, 2904 (1989).

[59] V. S. Manko, On the description of the external field of a
static deformed mass, Classical Quantum Gravity 7, L209
(1990).

[60] V. P. Frolov and A. A. Shoom, Interior of Distorted Black
Holes, Phys. Rev. D 76, 064037 (2007).

[61] N. Breton, T. E. Denisova, and V. S. Manko, A Kerr black
hole in the external gravitational field, Phys. Lett. A 230, 7
(1997).

[62] N. Breton, A. A. Garcia, V. S. Manko, and T. E. Denisova,
Arbitrarily deformed Kerr-Newman black hole in an ex-
ternal gravitational field, Phys. Rev. D 57, 3382 (1998).

[63] W. Israel, Event horizons in static vacuum space-times,
Phys. Rev. 164, 1776 (1967).

[64] S. Fairhurst and B. Krishnan, Distorted black holes with
charge, Int. J. Mod. Phys. D 10, 691 (2001).

[65] S. Abdolrahimi, V. P. Frolov, and A. A. Shoom, Interior of a
Charged Distorted Black Hole, Phys. Rev. D 80, 024011
(2009).

[66] J. Ehlers, Über den Newtonschen Grenzwert der Einstein-
schen Gravitationstheorie, in Grundlagenprobleme der
modernen Physik, edited by J. Nitsch, J. Pfarr, and E. W.
Stachow (Mannheim: Bibliographisches Institut, Leipzig,
1981), p. 65.

[67] S.W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-time, (Cambridge University Press, Cambridge,
1973). p. 204–205.

[68] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in Fortran 77: The Art of
Scientific Computing (Cambridge University Press,
Cambridge, 1997), 2nd ed., Vol. 1 of Fortran Numerical
Recipes.

[69] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke,
Fractal Basin Boundaries, Physica D (Amsterdam) 17,
125 (1985).

[70] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 2002), 2nd ed..

[71] C. Grebogi, E. Ott, and J. A. Yorke, Metamorphoses of
Basin Boundaries in Nonlinear Dynamical Systems, Phys.
Rev. Lett. 56, 1011 (1986).

[72] C. Grebogi, E. Ott, and J. A. Yorke, Basin Boundary
Metamorphoses: Changes in Accessible Boundary Orbits,
Physica D (Amsterdam) 24, 243 (1987).

[73] C. Grebogi, H. E. Nusse, E. Ott, and J. A. Yorke, Basic Sets:
Sets that Determine the Dimension of Basin Boundaries,
in Dynamical Systems, edited by J. C. Alexander, Lecture
Notes in Math. 1342 (Springer-Verlag, Berlin, 1988),
p. 220.

[74] W.M. Vieira and P. S. Letelier, Relativistic and Newtonian
core-shell models: Analytical and numerical results,
Astrophys. J. 513, 383 (1999).

[75] J. Podolsky and K. Vesely, Chaos in pp-wave spacetimes,
Phys. Rev. D 58, 081501 (1998).

[76] M. Szydlowski and A. Krawiec, Description of chaos
in simple relativistic systems, Phys. Rev. D 53, 6893
(1996).

[77] M. Szydlowski, On invariant qualitative chaos in
multi-black-hole spacetimes, Int. J. Mod. Phys. D 06,
741 (1997).

[78] O. Kopáček, V. Karas, J. Kovář, and Z. Stuchlík, Applica-
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