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The supersymmetry arises in certain theories of fermions coupled to gauge fields and gravity in a
spacetime of 11 dimensions. The dynamical brane background has mainly been studied for the class of
purely bosonic solutions only, but recent developments involving a time-dependent brane solution have
made it clear that one can get more information by asking what happens on supersymmetric systems. In this
paper, we construct an exact supersymmetric solution of a dynamical M-brane background in the
11-dimensional supergravity and investigate supersymmetry breaking, the geometric features near the
singularity and the black hole horizon.
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I. INTRODUCTION

The dynamical p-brane solutions in a higher-dimensional
gravity theory were studied by [1–31] and have been widely
discussed ever since. However, some aspects of the physical
properties, such as supersymmetry and its breaking in the
context of string theory, have remained slightly unclear. The
motivation for this work is to improve this situation. For this
purpose, it is first necessary to construct supersymmetric
brane solutions depending on the time as well as space
coordinates.
In the static background, an M-brane solution in the

11-dimensional supergravity has been constructed, and the
properties have been discussed [32]. In the dynamical
background, it is well known that there are p-brane
solutions with dynamical several p-brane objects in the
expanding Universe. The first example was found for a
D3-brane in the ten-dimensional type IIB string theory [1],
which was generalized for complicated field configurations
[6,9]. There has been, however, little success at construct-
ing the dynamical p-brane solution preserving supersym-
metry, nor has there been much insight about what kind of
geometrical structure might be expected.
The dynamical M2-brane background preserving

supersymmetry is a kind of natural extension of the static
M2-brane system, which can be described by an analogous
Reissner-Nordström solution in the four-dimensional
Einstein-Maxwell theory. The existence of supersymmetry
in a dynamical background should not come as a surprise,
since several analytic solutions in string theories are
already known [3,33,34]. In this paper, we will find the
supersymmetric dynamical M-brane as an exact solution
of the supergravity field equations. What we will con-
struct is a time-dependent M2-brane solution preserving
supersymmetry in the 11-dimensional supergravity theory.

Depending on which ansatz we take, we thus obtain a
black hole in the expanding Universe. Although it is not
necessarily easy, the supersymmetric black hole models
governing the dynamics of the Universe can be constructed
analytically because these are given by the classical
solution of field equations.
Different forms of the dynamical brane solution we will

be discussing have been obtained by [3] as a supersym-
metric solution in a ten-dimensional type IIB string theory
and by [6,9] as a cosmological solution without supersym-
metry for an 11-dimensional supergravity model. A class of
classical black hole solutions in the expanding Universe
was found by [13,18]. Time dependent black hole solutions
in lower dimensional effective field theories derived from
string theory have been analyzed in [9,20].
Although we will consider in this paper the

11-dimensional supergravities, there is also a ten-
dimensional version of the supersymmetric dynamical
D-brane solutions. It can be obtained by compactifying
an internal space. In terms of the dimensional reduction of a
dynamical M-brane background to the string in ten dimen-
sions, the solution leads to the dynamical D-brane systems.
One starts with an 11-dimensional model, but the resulting
ten-dimensional model turns out to have a dynamical
D-brane, as in the construction of [16].
This paper is organized as follows. We present an exact

solution having a quarter of a full supersymmetry for a
dynamical M-brane in an 11-dimensional supergravity and
discuss how to break supersymmetries in Sec. II. In the
remainder of the paper, we describe some applications of
the result, which are the behavior of the geodesic, the
analysis of the geometrical structure, and the evolution of
a time-dependent black hole in dynamical M2-brane
background. In Sec. III, we start our discussion of super-
symmetric M2-brane solution by examining the basic
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features of the background geometry. By solving the radial
null geodesic equations, we show that the naked strong
curvature singularity appears. Then we investigate exten-
sions of the solutions inside the horizon and discuss the
smoothness at the horizon. In Sec. IV, we present that the
M2-brane background gives a black hole solution in a time-
dependent universe and discuss their implications to lower-
dimensional effective theories. Section V contains some
discussions and concluding remarks.

II. DYNAMICAL M-BRANE BACKGROUNDS

In this section, we will construct the exact solution to
the field equations of an 11-dimensional supergravity
corresponding to a dynamical M2-brane configuration.
The 11-dimensional gravitino (Killing spinor field) equa-
tion gives the time-dependent solution with the particular
ansatz of fields. We find that the supersymmetric solution
depends on the null coordinate along the M2-brane world
volume, as well as the coordinates of the transverse space to
the M2-brane.

A. Supersymmetry in a dynamical M2-brane

We will start by making an ansatz for an 11-dimensional
metric gMN and three-form gauge potential Að3Þ. The
11-dimensional metric and gauge potential are assumed to be

ds2 ¼ A2ðx; yÞημνðXÞdxμdxν þ B2ðx; yÞδijðYÞdyidyj;
ð1aÞ

Að3Þ ¼ χCðx; yÞΩðXÞ; ð1bÞ

where μ, ν ¼ 0, 1, 2, and i; j ¼ 3; 4;…; 10, χ ¼ �1, and
ΩðXÞ denotes the volume form of the three-dimensional
Minkowski space (X space). All components of the gravitino
ψM are zero. The arbitrary functions A, B, and C depend on
the M2-brane world volume coordinates xμ as well as the
radial coordinate of the eight-dimensional Euclidean space
(Y space)

r2 ¼ δijyiyj: ð2Þ
Then, the metric of Y space becomes

δijðYÞdyidyj ¼ dr2 þ r2uabðZÞdzadzb; ð3Þ
where uabðZÞ denotes the metric of the seven-sphere. As we
will find that three functions A, B, and C are reduced to one
by the requirement that the metric and gauge field preserve
supersymmetry. Then, we find a 11-dimensional Killing
spinor ε satisfying

∇̄Mε ¼ 0: ð4Þ

Here, ∇̄M is the supercovariant derivative appearing in the
supersymmetry transformation rule of the gravitino

∇̄M ¼ ∂M þ 1

4
ωM

PQΓPQ þ 1

12
ðΓMF − 3FMÞ; ð5Þ

in terms of the 11-dimensional γ-matrices ΓM satisfying

ΓMΓN þ ΓNΓM ¼ 2gMN: ð6Þ

F and FM are defined by

F ¼ 1

4!
FMNPQΓMNPQ; ð7aÞ

FM ¼ 1

3!
FMNPQΓNPQ; ð7bÞ

and Fð4Þ is the field strength defined by the three-form gauge
potential Að3Þ,

Fð4Þ ¼ dAð3Þ: ð8Þ

The notation that has been used here is

ΓMN…P ¼ Γ½MΓN � � �ΓP�: ð9Þ

For the background (1a) and (3), it is convenient to
introduce γμðμ ¼ 0; 1; 2Þ, γr, and γaða ¼ 4;…; 10Þ by

Γμ ¼ A−1γμ; Γr ¼ B−1γr; Γa ¼ 1

rB
γa: ð10Þ

Then, γμ gives the SO(2, 1) γ-matrices, γa provides the γ
matrices of Z, and ðγrÞ2 ¼ 1. We also define γð3Þ as

γð3Þ ≔ γ0γ1γ2: ð11Þ

We take an ansatz for the 11-dimensional metric (1a)

A ¼ C1=3; B ¼ C−1=6; C≡ h−1ðx; rÞ: ð12Þ

Then, in terms of these γ matrices, the supercovariant
derivative in the background with the metric (1a), (3), and
field (1b) is expressed as

∇̄μ ¼ ∂μ þ
1

6
∂ν ln hγνμ −

1

6
h−3=2∂rhγμγrð1 − χγð3ÞÞ;

ð13aÞ

∇̄r ¼ ∂r −
1

12
h−1=2∂νhγνγr þ

1

6
χh−1∂rhγð3Þ; ð13bÞ

∇̄a ¼ Z∇a −
r
12

h−1=2∂νhγνγa −
r
12

h−1∂rhγrγað1 − χγð3ÞÞ;
ð13cÞ

where Z∇a is the covariant derivative with respect to the
metric uabðZÞ. The number of unbroken supersymmetries
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is given by the number of Killing spinor ε. The Killing
spinor equation (4) is automatically satisfied provided that
the following three conditions are satisfied:

ε ¼ h−1=6ε0; ∂μhγμε ¼ 0; ð1 − χγð3ÞÞε ¼ 0; ð14Þ

where the sign χ comes from the ansatz of the three-form
gauge potential (1b), and ε0 denotes a constant Killing
spinor.

B. Einstein equations

Now we determine a form of the function hðx; rÞ in an
11-dimensional supergravity theory which is composed
of the metric gMN and the four-form field strength Fð4Þ.
The action in 11 dimensions is given by

S ¼ 1

2κ2

Z �
R � 1 − 1

2 · 4!
� Fð4Þ ∧ Fð4Þ

�

−
1

12κ2

Z
Að3Þ ∧ Fð4Þ ∧ Fð4Þ; ð15Þ

where R denotes the Ricci scalar with respect to the
11-dimensional metric gMN , κ2 is the 11-dimensional
gravitational constant, * denotes the Hodge operator in
the 11-dimensional spacetime, and Fð4Þ is the four-form
field strength defined by (8), respectively.
Let us first consider the gauge field equation

dð�Fð4ÞÞ þ
1

2
Fð4Þ ∧ Fð4Þ ¼ 0: ð16Þ

Using the ansatz of fields (1a), (12), the above equation is
reduced to

∂μ∂rh ¼ 0;

�
∂2
r þ

7

r
∂r

�
h ¼ 0: ð17Þ

From Eq. (17), the function h and the field equation can be
expressed as

hðx; rÞ ¼ h0ðxÞ þ h1ðrÞ;
�
∂2
r þ

7

r
∂r

�
h1 ¼ 0: ð18Þ

Then, imposing the boundary condition that the
11-dimensional metric is asymptotically vacuum space-
time, we find

h1ðrÞ ¼ ~cþM
r6

; ð19Þ

where ~c is constant.
Next we show that Eq. (19) is consistent with

the Einstein equations and derive the equation for the
function h0.

The Einstein equations are given by

RMN ¼ 1

2 · 4!

�
4FMABCFN

ABC −
1

3
gMNF2

ð4Þ

�
: ð20Þ

Using the assumptions (1) and (12), Einstein equations
become

−h−1∂μ∂νhþ 1

3
h−1ημν

�
△Xhþ h−1

�
∂2
r þ

7

r
∂r

�
h

�
¼ 0;

ð21aÞ

△Xhþ h−1
�
∂2
r þ

7

r
∂r

�
h ¼ 0; ð21bÞ

RabðZÞ − 6uabðZÞ −
1

6
r2uabðZÞ

×

�
△Xhþ h−1

�
∂2
r þ

7

r
∂r

�
h

�
¼ 0; ð21cÞ

∂μ∂rh ¼ 0; ð21dÞ

where ΔX is the Laplace operator on the space of X, and
RabðZÞ is the Ricci tensor of the metric uabðZÞ. From
Eq. (21d), the function h must be in the form

hðx; rÞ ¼ h0ðxÞ þ h1ðrÞ: ð22Þ

With this form of h, the Einstein equations reduce to

RabðZÞ ¼ 6uabðZÞ; ð23aÞ

∂μ∂νh0 ¼ 0: ð23bÞ

In this case, the first equation is automatically satisfied, and
the solution for h can be written explicitly as

hðx; rÞ ¼ cμxμ þ c̄þM
r6

; ð24Þ

where cμ, c̄, and M are constant parameters. As seen from
supersymmetric equations (14), the parameters cμ have to
obey the relation (14), which is given by cμγμε0 ¼ 0. So,
without loss of generality, we shall impose that c̄ ¼ 0 and
cμxμ ¼ cðt − xÞ= ffiffiffi

2
p

, where c is a constant.

C. Number of supersymmetry and
supersymmetry breaking

In this section, we count the number of preserving
supersymmetry in the dynamical M2-brane background.
An unbroken supersymmetry with respect to each Killing
spinor ε has to obey the integrability condition

½∇̄M; ∇̄N �ε ¼ 0: ð25Þ
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From the relation

∇M ¼ ∂M þ 1

4
ωM

PQΓPQ; ½∇M;∇N � ¼
1

4
RMNPQΓPQ;

ð26Þ

the commutator of the covariant derivatives in the integra-
bility condition (25) becomes

½∇̄M; ∇̄N � ¼
1

4
RMNPQΓPQ þ 1

6
ð∇½MΓN�F − 3∇½MFN�Þ

þ 1

144
½ðΓMF − 3FMÞ; ðΓNF − 3FNÞ�: ð27Þ

In terms of the condition, we count how many super-
symmetries exist. We first briefly review the results for the
well-known case of the 11-dimensional static background
[32,35–37]. For the case in which h ¼ const or h ¼ M=r6

in the 11-dimensional metric (12), the number of super-
symmetries reduce to the number of solutions to the spinor
equation, ∇̄aε ¼ 0. In particular, for the 11-dimensional
Minkowski spacetime [35,36] and for AdS4×S7, AdS7 × S4

[37], the background has the full supersymmetry.
Next, we consider the static M2-brane background with

hðrÞ ¼ ~cþM=r6 (~cM ≠ 0) [32], where ~c is constant.
Then, the μr component of the integrability condition gives

0 ¼ ½∇̄μ; ∇̄r�ε ¼ −h−1=3
d2

dr2
ðh−1=6Þγμγrð1 − χγð3ÞÞε: ð28Þ

Hence, ε have to obey

ð1 − χγð3ÞÞε ¼ 0: ð29Þ

Since we can show that this condition and (28) are the only
nontrivial integrability conditions, one half of the super-
symmetries in the case ~cM ≠ 0 is broken in M2-brane
background [32].
Now, we consider the background with ∂μh ≠ 0. The

½μ; ν� components of the integrability condition give

0 ¼ ξμζν½∇̄μ; ∇̄ν�ε ¼ −
ημν∂μh0∂νh0

18h2
ξργ

ρζσγ
σε; ð30Þ

where ξμ and ζν are linearly independent vectors satisfying
the conditions, ξμ∂μh ¼ ζμ∂μh ¼ 0, and we assume that
the function hðx; rÞ obeys

hðx; rÞ ¼ h0ðxÞ þ h1ðrÞ; ∂μ∂νh0 ¼ 0: ð31Þ

Hence, it follows that if cμ ¼ ∂μh0 is not null, there exists
only a trivial solution to the Killing spinor equation, and the
supersymmetry is completely broken. On the other hand,
when cμ is a null vector, the Killing spinor equation leads to
(14). For the case

hðx; rÞ ¼ cμxμ þ ~cþM
r6

; ð32Þ

one quarter of the possible rigid supersymmetries in the
maximal case survives.
Here, we check the degree of supersymmetry for the

case of M ¼ 0. An important simplification occurs if we
consider the following special case of vanishing M2-brane
charge:

ds2 ¼ h−2=3ðuÞ½−2dudvþ ðdyÞ2� þ h1=3ðuÞδmndzmdzn;

ð33aÞ

hðuÞ ¼ cu; u ¼ 1ffiffiffi
2

p ðt − xÞ; v ¼ 1ffiffiffi
2

p ðtþ xÞ; ð33bÞ

from the dynamical M2-brane to the plane wave back-
ground. Here, c is constant, and δmn, zm denote the
metric, coordinates of eight-dimensional Euclidean space,
respectively. The required change of coordinates is
ðu; v; zmÞ → ðū; v̄; z̄mÞ, where

u ¼ 1

c

�
ū
ū0

�
3

; v ¼ v̄þ fðūÞδmnz̄mz̄n;

zm ¼ h−1=6ðūÞz̄m; ð34Þ

which leads to the plane wave metric [38],

ds2 ¼ −2dūdv̄þ
�
ū
ū0

�
−2
�
−
c2

36
δmnz̄mz̄nðdūÞ2 þ ðdyÞ2

�

þ δmndz̄mdz̄n: ð35Þ

Here, we used

ū0 ¼
3

c
; fðūÞ ¼ −

c
12

�
ū
ū0

�
−1
: ð36Þ

Setting M ¼ 0 in the solution (24), the integrability
condition reduces to cμγμε ¼ 0. Then, the dynamical
M2-brane solution with cμ ≠ 0, preserves a half of the
maximal supersymmetries. Since the number of unbroken
spacetime supersymmetries in the present background must
be a half of the full supersymmetries, as in a generic plane
wave, our solution is consistent with past results [38].
Next we comment on the degree of the supersymmetry

breaking for the dynamical M2-brane background. The
measure of the supersymmetry breaking for the dynamical
background is obtained from the consistency condition.
The mass scale corresponds to h−2ημν∂μh∂νh, which could
be identified with a kind of induced effective mass scale
for the spinor field. The divergence at h ¼ 0 means that
the degree of the supersymmetry breaking increases as the
background approaches the curvature singularity. On the
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other hand, the supersymmetry breaking becomes negli-
gible near the M2-brane region r → 0, as h diverges there.
Let us consider the relation between the dynamics of the

background and supersymmetry breaking in more detail.
Introducing a new time coordinate τ, which is defined by
τ=τ0 ¼ ðc0tÞ2=3, with constant τ0 ¼ ð3=2c0Þ, we find the
11-dimensional metric (1a) as

ds2 ¼ −
�
1þ

�
τ

τ0

�
−3=2

�
cixi þ

M
r6

��
−2=3

×

�
−dτ2 þ

�
τ

τ0

�
−1
δijdxidxj

�

þ
�
1þ

�
τ

τ0

�
−3=2

�
cixi þ

M
r6

��
1=3

�
τ

τ0

�
1=2

× ½dr2 þ r2dΩ2
ð7Þ�; ð37Þ

where xiði ¼ 1; 2Þ denotes the space coordinates of the
world volume spacetime, and the metric δij is the spatial
part of the three-dimensional Minkowski metric ημν. When
we set c1 ¼ c2 ¼ 0, the spacetime is an isotropic and
homogeneous universe with respect to the world volume
coordinates, whose supersymmetry is completely broken.
On the other hand, the 11-dimensional spacetime becomes
inhomogeneous and preserves supersymmetry if parame-
ters cμ satisfy cμcμ ¼ 0, and cμγμε ¼ 0. Thus, in the limit
when the terms cixi are negligible, which is realized in the
limit ðτ=τ0Þ → ∞, for small r, we find an 11-dimensional
universe without supersymmetry. For concreteness, we
discuss the dynamics in the region where the term cixi

in the function hðτ; x; rÞ is smaller compared to the
contribution of the M2-brane charge M=r6. In the case
of ðτ=τ0Þ > 0, we have found that the domains near the
M2-brane has the supersymmetry. As the time increases,
the background satisfies ðτ=τ0Þ3=2 ≫ cixi, Then, we find

1þ
�
τ

τ0

�
−3=2

�
cixi þ

M
r6

�
→ 1þ

�
τ

τ0

�
−3=2 M

r6
: ð38Þ

The contribution of the term cixi in the function hðτ; x; rÞ
eventually becomes negligible in the 11-dimensional metric
such that supersymmetries are completely broken, which is
guaranteed by the region cixi ≪ M=r6. Then, the dynami-
cal M2-brane solution also behaves as a nonsupersymmet-
ric cosmological solution in the asymptotic future.
Finally, we also comment about a relation between the

M2-brane or black hole and plane wave background. Now,
we set

hðt; x; rÞ ¼ cffiffiffi
2

p ðt − xÞ þM
r6

: ð39Þ

In the limit when the term M=r6 is negligible, correspond-
ing to the far region from the M2-brane, the background

changes from the above description to a time-dependent
plane wave background (33). Hence, the supersymmetry
will enhance from one quarter to a half of the possible rigid
supersymmetries in the maximal case when one moves in
the transverse space in such a way that ðτ=τ0Þ−3=2cixi
remains approximately constant. Although the solution
itself is by no means realistic, its interesting behavior
suggests an enhancement of the supersymmetry, or a
possibility that the Universe with a quarter of the preserved
original supersymmetry began to evolve toward a universe
without supersymmetry.

III. GEOMETRY OF THE SUPERSYMMETRIC
DYNAMICAL M2-BRANE SOLUTION

As one may expect from the dynamical M2-brane
solution, the spacetime with (24) has curvature singularity.
For a fixed x, the spacetime asymptotically approaches the
anisotropic solution at a large r, while the metric becomes
approximately AdS4 × S7 near the M2-brane region (at
r → 0), as we will show it in the Sec. III C. Now we
investigate the geometric feature near the curvature singu-
larity and discuss the smoothness at the horizon.

A. Property of the solution

We consider the following time dependent M2-brane
solution with the 11-dimensional metric:

ds2 ¼ h−2=3ðu; rÞð−2dudvþ dy2Þ
þ h1=3ðu; rÞ½dr2 þ r2dΩ2

ð7Þ�; ð40aÞ

u ¼ 1ffiffiffi
2

p ðt − xÞ; v ¼ 1ffiffiffi
2

p ðtþ xÞ; ð40bÞ

hðu; rÞ ¼ h0ðuÞ þ h1ðrÞ; h0ðuÞ ¼ cu; h1ðrÞ ¼
M
r6

;

ð40cÞ

where c, M are constants. Since the function h1ðrÞ
dominates near r → 0, the background geometry describes
the extremal Reissner-Nordström solution with an infinite
throat. The geometry of the dynamical M2-brane is not
asymptotically flat while the extremal Reissner-Nordström
solution gives the asymptotically Minkowski spacetime.
Near the M2-brane, the metric becomes AdS4 × S7,

ds2 ≈
r4

M2=3 ð−2dudvþ dy2Þ þM1=3

r2
dr2 þM1=3dΩ2

ð7Þ;

¼ M1=3

4w2
ð−2dudvþ dy2 þ dw2Þ þM1=3dΩ2

ð7Þ;

w ≔
M

1
2

2r2
; ð41Þ

where dΩ2
ð7Þ is the line element of the seven-sphere.
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Since the square of the four-form field strength diverges
at the zeros of the function hðu; rÞ ¼ 0,

F2
ð4Þ ¼ −4!h−7=3ð∂rhÞ2; ð42Þ

the curvature of the metric (40) can be singular at
hðu; rÞ ¼ 0.
Now we discuss the cosmological evolution of the spatial

geometry in the region h > 0 and assume c < 0, in the
function hðu; rÞ. For u < 0, the function h is positive
everywhere and the spatial surfaces are nonsingular unless
we treat the negative charge of the M2-brane M < 0. They
are asymptotically anisotropic spacetime for a fixed x
coordinate. The spatial metric is still regular for u ¼ 0
besides the region r → ∞. As time increases slightly, a
singularity appears at r ¼ ∞ and moves in from spatial
infinity. As u evolves further, the singularity eventually
wraps the horizon completely.

B. Geodesic motion

We start by solving radial null geodesic equations for the
affine parameter s on the background (40a). As found in
[30], the geodesic equations are

du
ds

¼ fh2=3;
dv
ds

¼ h1=3

2f

�
dr
ds

�
2

;

d2r
ds2

¼ −
c
3
fh−1=3

dr
ds

−
M
r7

h−1
�
dr
ds

�
2

; ð43Þ

where f is a constant.

1. Geodesic motion near the M2-brane

Near the M2-brane, the null geodesic solution of Eq. (43)
is found analytically. Let us assume that juj ≪ r−6 in the
limit of r → 0. Then, the function h takes the simple form

h →
M
r6

: ð44Þ

In this approximation, the asymptotic solution is given by

u ∼ ðs0 − sÞ−1; r ∼
ffiffiffiffiffiffiffiffiffiffiffiffi
s0 − s

p
; ð45Þ

near r ¼ 0, where s0 is a positive constant. Note that the
assumption juj ≪ r−6 is satisfied in this asymptotic sol-
ution. Obviously, u becomes infinite as we approach the
location of the M2-brane r → 0 (s → s0).

2. Geodesic motion near the timelike singularity

We now discuss the radial null geodesic near the timelike
singularity. For the supersymmetric M2-brane background
(40), h ¼ 0 hypersurface corresponds to a timelike curva-
ture singularity [30] because gMNlMlN > 0 for lM ¼ ∇Mh
near the singularity. Let us then consider the past directed

null geodesics which can hit the curvature singularity
within a finite affine parameter length. Now we set that
as h → 0,

hðsÞ ¼ ðs0 − sÞα; rðsÞ≃ r0 þ r1ðs0 − sÞβ; ð46Þ

where s0 denotes the value of s at singularity, αð> 0Þ, β,
and r1 are constants determined later. Near the singularity,
the geodesic equations (43) become

du
ds

¼ fðs0 − sÞ2α=3; dv
ds

¼ 1

2f
ðs0 − sÞα=3

�
dr
ds

�
2

;

ð47aÞ

d2r
ds2

¼ −
c
3
fh−1=3

dr
ds

−
M
r70

h−1
�
dr
ds

�
2

≃ −
M
r70

ðs0 − sÞ−α
�
dr
ds

�
2

: ð47bÞ

Here, in the second line, we assumed that the second term
in the rhs is dominant. Substituting Eq. (46) into Eq. (47),
we find

β ¼ α; r1 ¼ −
r70ðα − 1Þ

αM
: ð48Þ

From the Eq. (47a), the form of u is given by

uðsÞ ¼ u0 −
3f

2αþ 3
ðs0 − sÞ1þ2α

3 : ð49Þ

For s → s0, it follows that u → u0, and r → r0, Then
expanding h in Eq. (40c) around s ¼ s0, we have

hðsÞ ¼ −
3cf

2αþ 3
ðs0 − sÞ1þ2α

3 −
6Mr1
r70

ðs0 − sÞα; ð50Þ

where we have used hðs0Þ ¼ 0. From the Eqs. (46), (48),
and (50), the constant α becomes α ¼ 6=5. Note that
this coefficient is consistent with the assumption that
jh−1=3dr=dsj ≪ jh−1ðdr=dsÞ2j.
We now turn our attention to calculate a geometrical

quantity in a parallelly propagated frame along the null
geodesic,

Γ≡ CMPNQE2
ME2

NkPkQ; ð51Þ

where CMNPQ is the Weyl tensor, kM denotes the tangent
vector of null geodesic, and E2

M is a parallelly pro-
pagated spacelike unit vector orthogonal to kM. These
are defined by

k ¼ du
ds

∂u þ
dv
ds

∂v þ
dr
ds

∂r; E2 ¼ h1=3∂y: ð52Þ
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In terms of the metric (40) and 11-dimensional null vectors
(47) with α ¼ 6=5, we find

Γ ∼ ðs0 − sÞ−2: ð53Þ

The shear σ and the expansion rate dθ=ds of the
congruence along the null vector kM diverge near the
singularity as

σ ∼
Z

s
Γds ∼ ðs0 − sÞ−1; dθ

ds
∼ −σ2 ∼ −ðs0 − sÞ−2:

ð54Þ

Then, we obtain
Z

s
θds ¼

Z
s
�
d
ds

lnA

�
ds ∼ ln ðs0 − sÞ; ð55Þ

where A is the volume element of the null geodesic
congruence. This implies that the timelike singularity is
a strong type of curvature singularity [39], as the volume
element of any congruence along the radial null geodesic
vanishes there.

C. Analytic extension across the event horizon

As shown in the previous section, there are null geo-
desics which terminate a coordinate singularity, r ¼ 0,
t ¼ ∞ in the metric (40a) within a finite affine parameter
distance. Here, we consider an analytic extension across the
ðr ¼ 0; t ¼ ∞Þ surface and show that this surface corre-
sponds to a regular null hypersurface (horizon) generated
by a null Killing vector field.
In the c ¼ 0 case, the metric is static and r ¼ 0; the t ¼ ∞

surface corresponds to a Poincare horizon in 4-dimensional
Anti-de Sitter spacetime times 7-dimensional sphere
(AdS4 × S7). Thus, the near horizon geometry is clearly
regular, and the regular metric in AdS4 part is given by

ds2AdS4 ≃ −cosh2ρdτ2 þ dρ2 þ sinh2ρdΩ2
ð2Þ; ð56Þ

by adapting a global coordinate system defined by

w ¼ 1

cosh ρ cos τ þ sinh ρ sin θ sinφ
;

t ¼ cosh ρ sin τ
cosh ρ cos τ þ sinh ρ sin θ sinφ

;

x ¼ sinh ρ cos θ
cosh ρ cos τ þ sinh ρ sin θ sinφ

;

y ¼ sinh ρ sin θ cosφ
cosh ρ cos τ þ sinh ρ sin θ sinφ

: ð57Þ

So, we expect that this coordinate system also works even in
the c ≠ 0. For simplicity, we consider the case that c
becomes small. Then, expanding the function h with respect

to the parameter c, and transforming the metric (40a) in
terms of the global coordinate (57), we obtain

ds2 ¼ M
1
3

4
ds2AdS4 þ chABdxAdxB þM

1
3

�
1þ cM

1
2u

24w3

�
dΩð7Þ

þOðc2Þ; ð58Þ

where ds2AdS4 is the AdS4 spacetime in global coordinate
(56), and hABðA;B ¼ 0;…; 3Þ denotes the four-dimensional
metric which describes the deviation from the AdS4
geometry in terms of global coordinates. The metric hAB
is a complicated function of the global coordinate
ðτ; ρ; θ;ϕÞ, but each component is regular everywhere.
So, the r ¼ 0ðw ¼ ∞Þ surface is regular, up to OðcÞ.
One can check that the r ¼ 0ðw ¼ ∞Þ surface is a null
hypersurface since

gABðdξÞAðdξÞBjξ¼0 ¼ 0;

ξ ≔ 1=w ¼ cosh ρ cos τ þ sinh ρ sin θ sinφ; ð59Þ

up to OðcÞ.
Next, we consider two vectors N ¼ ∂t, X ¼ ∂x near

the horizon. In terms of the global coordinate (57), we
obtain

N ¼ cosh ρþ sinh ρ cos τ sin θ sinϕ
cosh ρ

∂τ þ sin θ sin τ sinϕ∂ρ

þ cosh ρ sin τ cos θ sinϕ
sinh ρ

∂θ þ
cosh ρ sin τ cosϕ

sinh ρ sin θ
∂ϕ;

ð60aÞ

X ¼ − cos θ sin τ tanh ρ∂τ þ cos θ cos τ∂ρ

−
�
cosh ρ cos τ sin θ

sinh ρ
þ sinϕ

�
∂θ −

cos θ cosϕ
sin θ

∂ϕ:

ð60bÞ

Since the vector N is proportional to X and gðN;NÞ ¼
gðX;XÞ ¼ 0 on the null hypersurface ξ ¼ 0, these vectors
become null and degenerate on the horizon. So,

∂v ≔
1ffiffiffi
2

p ðN þ XÞ ð61Þ

is also null on the horizon (r ¼ 0). Thus, the null Killing
vector field ∂v is also the generator of the horizon, even
though the bulk metric is asymptotically anisotropic geom-
etry at constant x coordinate.

IV. SUPERSYMMETRIC BLACK HOLE IN AN
EXPANDING UNIVERSE

The static M2-brane system describes the microstate
of a black hole [40]. Then, it may be natural to apply the
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present solutions to a time-dependent spacetime with a
black hole. As we have presented in the previous section,
there is a null Killing vector at the horizon where the
M2-brane is located. In the limit r → 0, the background
geometry thus becomes AdS4 × S7. In this section, we
discuss the dynamics of a black hole, which is so called the
“black M2-brane” [40–43], in the expanding Universe on
the basis of the results we have obtained in the previous
section.

A. Black hole in an 11-dimensional background

Here, we give an explicit example of a black hole in the
dynamical M2-brane system. The 11-dimensional metric of
the supersymmetric M2-brane depends on time,

ds2 ¼ h−2=3ðu; rÞ½−2dudvþ ðdyÞ2
þ hðu; rÞðdr2 þ r2dΩð7ÞÞ�; ð62Þ

where

hðu; rÞ ¼ cuþM
r6

; ð63Þ

with constants c andM. If we introduce a new coordinate ū,
this metric is rewritten as

ds2 ¼ H−2=3ðū; rÞ½−2dūdvþ a
−4
3

M2ðūÞðdyÞ2
þ a2M2ðūÞHðū; rÞðdr2 þ r2dΩð7ÞÞ�; ð64Þ

where M̄ðūÞ, aM2ðūÞ denote the effective M2-brane charge
depending on ū, and scale factor, respectively,

Hðū; rÞ ¼ 1þ M̄ðūÞ
r6

; aM2ðūÞ ¼
�
ū
ū0

�
3=2

; ð65Þ

with

M̄ðūÞ≡
�
ū
ū0

�
−3
M; ð66aÞ

cu ¼
�
ū
ū0

�
3

; ū0 ≡ 3

c
: ð66bÞ

The near M2-brane geometry is the same as the static one
because there is a null Killing vector at the horizon and then
the geometry approaches the static solution. Since it has a
horizon geometry, we can regard the present dynamical
solution as a black hole. The dynamical M2-brane gives the
black hole spacetime while the asymptotic structure in the
dynamical M2-brane is completely different from that of a
static one. Although the static M2-brane solution has an
asymptotically flat geometry, the dynamical M2-brane
solution is a time dependent anisotropic spacetime at a
constant x coordinate.

B. Black hole in the ten-dimensional effective theory

In this section, we study the dynamics of the M2-brane
black hole in the lower-dimensional background after
compactifying the internal space. Now we compactify a
one-dimensional M2-brane world volume just as the case of
a static black hole and consider the ten-dimensional
effective theory. In this case, we find the 11-dimensional
metric

ds2 ¼ ds210 þ ds21; ð67Þ

where

ds210 ¼ h−2=3ðu; rÞ½−2dudvþ hðu; rÞðdr2 þ r2dΩð7ÞÞ�;
ð68aÞ

ds21 ¼ h−2=3ðu; rÞðdyÞ2: ð68bÞ

The compactification of ds21 gives the effective ten-
dimensional spacetime, whose metric in the Einstein frame
ds̄210 is given by

ds̄210 ¼ h−3=4ðu; rÞ½−2dudvþ hðu; rÞðdr2 þ r2dΩð7ÞÞ�:
ð69Þ

If we use a new coordinate ~u

cu ¼
�

~u
~u0

�
4

; ~u0 ¼
4

c
; ð70Þ

the ten-dimensional metric (69) can be rewritten
explicitly as

ds̄210 ¼ ~H−3=4ð ~u; rÞ½−2d ~udv
þ a2effð ~uÞ ~Hð ~u; rÞðdr2 þ r2dΩð7ÞÞ�; ð71Þ

where the function ~Hð ~u; rÞ is given by

~Hð ~u; rÞ ¼ 1þ
~Mð ~uÞ
r6

; ð72Þ

with the effective M2-brane charge ~Mð ~uÞ, and the scale
factor aeffð ~uÞ,

~Mð ~uÞ≡
�

~u
~u0

�
−4
M; ð73aÞ

aeffð ~uÞ ¼
�

~u
~u0

�
2

: ð73bÞ

From Eqs. (69), (71) in the limit of r → ∞, we find
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ds̄210 ¼ ðcuÞ−3=4½−2dudvþ cuðdr2 þ r2dΩð7ÞÞ�
¼ −2d ~udvþ a2effð ~uÞðdr2 þ r2dΩð7ÞÞ: ð74Þ

Since our solution approaches an asymptotically time
dependent universe with the scale factor aeffð ~uÞ, we can
regard again the time-dependent M2-brane solution as a
black hole in the expanding Universe. If we compactify the
direction of the world volume coordinate, we find the
different power exponent of time in the scale factor, which
is also shown in the original 11-dimensional background.
As a result, we always find the different power of time ~u

in the scale factor aeffð ~uÞ for a d-dimensional black hole
ðd ≤ 10Þ if we smear the transverse space to the M2-brane.
If ds-dimensions of the transverse space to the M2-brane
are smeared, which gives the different power of transverse
space coordinates to the M2-brane

ds2 ¼ h−2=3ð ~u; zÞ½−2d ~udvþ ðdyÞ2 þ hð ~u; zÞδabdzadzb�;
ð75aÞ

hð ~u; zÞ ¼ c ~uþ
X
l

Ml

jza − zal j6−ds
; ðds ≤ 7Þ ð75bÞ

in terms of the multi-black-hole coordinates. Here,
zaða ¼ 1; 2;…; 8Þ denote the coordinates of the transverse
space to the M2-branes, Mlðl ¼ 1; 2;…; NÞ are M2-brane
charges, and zal ðl ¼ 1; 2;…; NÞ are positions of
M2-branes. Suppose ds dimensions of the transverse space
to M2-branes are smeared and compactified, where ds ≤ 7.
If one compactifies the ds-dimensional transverse space as
well as the dMð¼0 or 1Þ-dimensional M2-brane world
volume, the d½¼ð11 − dM − dsÞ�-dimensional metric in
the Einstein frame is given by

ds̄2d ¼ H
ds−6
d−2 ð ~u; zÞ

h
−2d ~udvþ ð1 − dMÞa

2ðds−6Þ
d−2

eff ðdyÞ2

þ a2effð ~uÞHð ~u; zÞδPQdzPdzQ
i
; ð76aÞ

Hð ~u; rÞ ¼ 1þ
~Mð ~uÞ
r6

; ð76bÞ

where δPQdzPdzQ is the metric of (8-ds)-dimensional
Euclidean space. The effective M2-brane charge ~Mð ~uÞ,
the scale factor aeffð ~uÞ, and a coordinate ~u are also given by

~Mð ~uÞ ¼
�

~u
~u0

�
− d−2
3−dMM; aeffð ~uÞ ¼

�
~u
~u0

� d−2
2ð3−dMÞ

; ð77aÞ

cu ¼
�

~u
~u0

� d−2
3−dM ; ~u0 ¼

d − 2

cð3 − dMÞ
: ð77bÞ

This power exponent is obtained for a universe filled by
the four-form field strength satisfying the field equation.

We may regard the present d-dimensional solution as a
time-dependent black hole.

V. DISCUSSIONS

In the present paper, we have constructed the dynamical
supersymmetric M2-brane solution for the warped com-
pactification of an 11-dimensional supergravity. The sol-
ution is given by an extension of a static supersymmetric
M2-branes solution. In the case of a dynamical M2-brane
background, a quarter of maximal supersymmetries exists.
If the M2-brane charge vanishes, our solution gives a plane
wave background which preserves a half of the full
supersymmetry. Therefore, in the far region from the
M2-brane, the background changes from the dynamical
M2-brane to a time-dependent plane wave background.
This means that one quarter of the maximal supersymmetry
is enhanced to a half of the possible rigid supersymmetries
in the maximal case when one moves in the transverse
space to the M2-brane. Although we have mainly discussed
the single M2-brane solution in this paper, it is possible to
generalize it to the solution which describes an arbitrary
number of extremal M2-branes in an expanding universe.
We have found that the degree of the supersymmetry
breaking is strongly related to the dynamics of the back-
ground. Then, the time evolution of the geometry is deeply
connected with the hierarchy and supersymmetry breaking
while the inhomogeneity of the M2-brane world volume
coordinates makes preserving the supersymmetry. In the
region where the effect of the inhomogeneity of the
M2-brane world volume coordinates is smaller compared
to the contribution of the M2-brane charge, our super-
symmetric solution describes the breaking of the super-
symmetry, which is the transition from the supersymmetric
universe to a nonsupersymmetric one as time evolves.
The dynamical M2-brane solutions can always take a

form in the function hðx; rÞ ¼ h0ðxÞ þ h1ðrÞ, where the
function hðx; rÞ depends on the linear function of the
M2-brane world volume coordinates xμ as well as coor-
dinates of the transverse space to the M2-brane. Since the
existence of the function h0ðxÞ implies the dynamical
instability in the moduli of internal space [3], it would
be useful to study the stability of a solution.
Motivated by the construction of a new supersymmetric

solution, we have studied the global structure of the
dynamical M2-brane background. We have found that
the time dependence changes the causal structure of a
static M2-brane solution. Since the volume element of any
congruence along the radial null geodesic vanishes at the
curvature singularity, it turns out that this is a strong version
of a timelike singularity. We have studied null geodesics
which terminate a coordinate singularity in terms of an
analytic extension across there and showed that there is a
regular null hypersurface (or horizon) generated by a null
Killing vector field. In particular, this null Killing vector
field describes the generator of the horizon even if the bulk
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metric is asymptotically anisotropic geometry at a constant
x coordinate. Hence, the near horizon geometry in this
solution gives the regular spacetime, and thus becomes
AdS4 × S7.
It is important to explore another analytic solution

describing a supersymmetric M-brane or D-brane in the
expanding Universe. One may present whether supersym-
metric dynamical brane solutions affect the formation of
the naked singularity. Upon setting an appropriate initial
condition, these solutions may allow us to violate the
cosmic censorship [30,44].
We can also discuss a dynamical black hole solution

whose spacetime gives a time dependent universe. The near
M2-brane region of this black hole in the expanding
Universe is the same as the static solutions while the
asymptotic structures are completely different, giving the
anisotropic spacetime at a fixed x coordinate with scale
factors for a dynamical universe. The effective M2-brane
charge for the supersymmetric background depends on the
world volume coordinates of the M2-brane.
The supersymmetric solutions can contain the function

depending on null coordinates of the M2-brane world
volume direction. The results we have obtained are not
unnatural because studies of the supersymmetric plane

wave background showed that it is possible to obtain
time-dependent supersymmetric solutions with a nontrivial
dependence on spacetime coordinates [33,34]. Although
this may be a limitation on the applications of our solution,
it is interesting to explore if similar more general dynamical
and supersymmetric solutions can be obtained by relaxing
or extending some of our assumptions for the 10-, 11-, or
lower-dimensional backgrounds. We will study this subject
in the near future.
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