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We investigate toroidal marginally outer trapped surfaces (MOTS) and marginally outer trapped tubes
(MOTT) in closed Friedmann-Lemaître-Robertson-Walker (FLRW) geometries. They are constructed by
embedding constant mean curvature (CMC) Clifford tori in a FLRW spacetime. This construction is used to
assess the quality of certain isoperimetric inequalities, recently proved in axial symmetry. Similarly to
spherically symmetric MOTS existing in FLRW spacetimes, the toroidal ones are also unstable.
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I. INTRODUCTION

In the existing literature marginally outer trapped sur-
faces (MOTS) appear usually in connection with the
apparent horizon—a key concept in an attempt to construct
a quasilocal definition of a black hole. Let the spacetimeM
be foliated by a family of spacelike Cauchy hypersurfaces
fΣtg. An apparent horizon is defined as a collection of
boundaries of regions which contain trapped surfaces in
fΣtg. If an apparent horizon is regular, it is foliated
by MOTS.
So far the majority of known analytic examples of MOTS

was found in spherical symmetry, but there are a few
interesting examples of nonspherical ones [1–3]. In this
paper we focus on toroidal MOTS. The existence of black
holes which, during early stages of their evolution, could
have toroidal topologywas suggested already in early 1990’s
[4–8]. Toroidal MOTS enclosed within an apparent horizon
of spherical topology were constructed numerically in [9].
In 1970 Lawson showed that the three-sphere S3 con-

tains minimally embedded compact surfaces of any genus
[10]. Consequently, MOTS with arbitrary genus exist in the
static Einstein universe (Einstein cylinder). This fact was
noticed by Newman already in 1987 [11].
In [3] Flores et al. constructed a family of toroidal MOTS

by embedding constant mean curvature (CMC) Clifford tori
in closed Friedmann–Lemaître–Robertson–Walker (FLRW)
geometries. Such surfaces can be found analytically during
the entire evolution, forming the so-called marginally outer
trapped tubes (MOTT). Of course, their existence is not
connected with black holes, but they provide an excellent
test bed for various theorems concerning MOTS.

In [12] we explicitly constructed examples of toroidal
MOTS in the class of time-symmetric initial data—the so-
called “stars of constant density” [13]. They were all
contained within a spherical black hole. A “star of constant
density” consists of a spherical region, isometric to a
fragment of a 3-sphere, and an external part representing
a slice in an appropriately chosen Schwarzschild spacetime.
Toroidal MOTS discussed in [12] fall naturally into two
classes: those embedded entirely in the 3-spherical region
occupied by the “star”, and those laying partially in the
“star” and partially in the Schwarzschild region. Marginally
outer trapped surfaces belonging to the first family are
precisely Clifford tori that were discussed in [3] in the
context of FLRW spacetimes.
In this paper we investigate Clifford CMC tori,

embedded in FLRW spacetimes, as discussed by [3].
The construction introduced in [3] uses the Hopf map;
here we follow a more direct approach, basing on the
stereographic projection and toroidal coordinates, as intro-
duced in [12]. We then focus on two issues. Firstly we show
that the constructed toroidal MOTS are unstable. This fact
was suggested in [3]. It can be thought of as a natural
consequence of the SO(4) symmetry of the standard
hypersurfaces of constant time, but a precise statement
concerning stability of MOTS requires caution. In this work
we adopt definitions of the stability of MOTS introduced in
[14,15]. Secondly we test certain isoperimetric inequalities
recently introduced in [16] and proved in axial symmetry.
The quality of some of them, valid for minimal surfaces,
was already assessed in [12], where we dealt with time-
symmetric initial data. Toroidal MOTS and MOTT in
closed FLRW cosmological models provide a possibility
for a test in the dynamical setting.
We use the gravitational system of units with c ¼ G ¼ 1.

The signature of the metric tensor is assumed to be
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ð−;þ;þ;þÞ. Throughout this paper Greek indices are used
to label spacetime dimensions. Latin indices are reserved
for objects on sections: we denote three-dimensional
objects with lowercase Latin indices, and two-dimensional
objects with capital ones.

II. CLOSED FLRW UNIVERSE

The metric of a closed FLRWmodel can be written in the
form

g ¼ −dt2 þ S2ðtÞðdχ2 þ sin2χdΩ2Þ; ð1Þ

where dΩ2 ¼ dθ2 þ sin2θdφ2 denotes the round metric on
a 2-sphere, and the so-called scale factor S ¼ SðtÞ satisfies
Friedmann equations. The surfaces of constant time Σt are
round 3-spheres with 0 ≤ χ ≤ π. They are characterized by
a three-dimensional scalar curvature ð3ÞR ¼ 6=S2, constant
within each time slice. The extrinsic curvature of Σt reads

Kij ¼ − _S
S γij, where the dot denotes the derivative with

respect to time t, and γ is the induced metric on Σt,

γ ¼ S2ðtÞðdχ2 þ sin2χdΩ2Þ:

The trace of the extrinsic curvature is trK ¼ γijKij ¼
−3_S=S. The Hamiltonian constraint equation

ð3ÞR − ½KijKij − ðtrKÞ2� ¼ 16πρ

yields the expression for the energy density on a given time
slice as

ρ ¼ 3ð1þ _S2Þ
8πS2

:

Assuming that the matter consists of dust, one gets the
solution for the scale factor in the form

S ¼ Sm
2
ð1þ cos ηÞ; t ¼ Sm

2
ðηþ sin ηÞ;

where Sm is a constant. Note that dη ¼ dt=S. The so-called
conformal time η changes from −π to π, and η ¼ 0
corresponds to a maximum in the scale factor (S ¼ Sm).
Another textbook solution can be obtained for the
radiation-dominated fluid with the pressure p ¼ ρ=3. In
terms of the conformal time η, it reads

S ¼ Sm cos η; t ¼ Sm sin η:

Here −π=2 ≤ η ≤ π=2.
In the following, it will be convenient to introduce new

coordinates on slices Σt so that the metric induced on each
Σt can be written in a manifestly conformally flat form.
This choice is motivated by our previous analysis presented

in [12]. The (useful) freedom in choosing new coordinates
ðT; RÞ is reduced to

t ¼ T; χ ¼ χðT; RÞ:

We retain the same coordinates ðθ;φÞ in dΩ2. The require-
ment that each time slice should be explicitly conformally
flat yields a solution for χ in the form

χðT; RÞ ¼ 2 arctanðC1ðTÞRÞ;

where C1 is an arbitrary function of T. The metric g can be
now written as

g ¼ −
�
1 −

4R2S2 _C2
1

ð1þ R2C2
1Þ2

�
dT2 þ 8RS2C1

_C1

ð1þ R2C2
1Þ2

dTdR

þ 4C2
1S

2

ð1þ R2C2
1Þ2

ðdR2 þ R2dΩ2Þ; ð2Þ

where the dot denotes the derivative with respect to T.
Notice that the transformation χ ¼ 2 arctanðC1ðTÞRÞ

defines a stereographic projection from the 3-sphere to
R3. The freedom in choosing the value of C1 is simply
equivalent to the rescaling of the stereographic projection.
In our setting, the 3-sphere of unit radius is projected from
the pole corresponding to χ ¼ π to the equatorial hyper-
plane, if we choose C1 ¼ 1. For simplicity, we will further
assume C1 ¼ const. This gives the metric in the form

g ¼ −dT2 þΦ4ðRÞðdR2 þ R2dΩ2Þ; ð3Þ
where the spatial conformal factor reads

ΦðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2C1S

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2C2

1

p : ð4Þ

III. TOROIDAL MOTS IN THE CLOSED
FLRW UNIVERSE

Wewill now construct toroidal MOTS in a closed FLRW
universe. They belong to the family of the so-called
generalized (or CMC) Clifford tori.
Let us choose a hypersurface of constant time Σt.

A future pointing unit vector normal to Σt will be denoted
by nμ. Let S be a closed 2-surface in Σt, and let mμ denote
an outward-pointing unit vector normal to S and tangent to
Σt. We define two null vectors: lμ� ¼ nμ �mμ. The two
expansion scalars associated with lμ� are defined as

θ� ¼ �H − Kijmimj þ trK;

where H denotes the mean curvature of S,

H ¼ ∇imi ¼ 1ffiffiffiffiffiffiffiffiffi
det γ

p ∂ið
ffiffiffiffiffiffiffiffiffi
det γ

p
miÞ:
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Here ∇i is the covariant derivative associated with the
induced metric on Σt, i.e., γ ¼ Φ4ðRÞðdR2 þ R2dΩ2Þ. Note
that Kijmimj ¼ − _S

S γijm
imj ¼ − _S

S. Accordingly

θ� ¼ �H −
2_S
S
:

A surface S is called outer trapped if θþ < 0 everywhere
on S. If θþ ¼ 0, the surface S is called a MOTS. Here the
term “outer” refers to a particular choice of the direction lμþ.
A surface S for which H ¼ 0 is called a minimal one. Note
that for time-symmetric data with Kij ¼ 0, minimal surfa-
ces coincide with MOTS.
We now work in toroidal coordinates ðσ; τ;ϕÞ within Σt.

They are related to the Cartesian coordinates ðx; y; zÞ by

x ¼ c sinh τ cosϕ
cosh τ − cos σ

;

y ¼ c sinh τ sinϕ
cosh τ − cos σ

;

z ¼ c sin σ
cosh τ − cos σ

:

The relation between the toroidal coordinates ðσ; τ;ϕÞ and
the spherical coordinates ðR; θ;φÞ used in this paper is

R ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2τ þ sin2σ

p

cosh τ − cos σ
;

cot θ ¼ sin σ
sinh τ

;

φ ¼ ϕ:

Here −π ≤ σ ≤ π, τ ≥ 0, 0 ≤ ϕ < 2π, and c > 0 is a radius
of the circle in the z ¼ 0 plane corresponding to τ ¼ ∞. In
terms of coordinates ðσ; τ;ϕÞ, the flat Euclidean metric can
be expressed as

dx2þdy2þdz2¼dR2þR2dΩ2

¼ c2

ðcoshτ−cosσÞ2 ðdσ
2þdτ2þsinh2τdϕ2Þ:

Let us choose c ¼ 1=C1. Such a choice yields a particularly
simple form of the metric g in coordinates ðT; σ; τ;ϕÞ,

g ¼ −dT2 þ S2sech2τðdσ2 þ dτ2 þ sinh2τdϕ2Þ: ð5Þ

Note that the spatial part of the metric is still manifestly
conformally flat.
Consider a torus S in Σt defined by setting τ ¼ const.

An outward pointing unit vector, normal to S has the
components

mi ¼ ðmσ; mτ; mϕÞ ¼ ð0;− cosh τ=S; 0Þ:

The mean curvature of S reads

H ¼ ðcoshð2τÞ − 3ÞcschðτÞ
2S

:

This expression does not depend on σ. Accordingly, each
torus of constant τ happens to be a constant mean curvature
(CMC) surface. One gets H ¼ 0 (a minimal surface) for
τ ¼ τ0 ¼ arcoshð3Þ=2 ¼ logð1þ ffiffiffi

2
p Þ, independently of

the value of S. Consequently, the minimal torus remains
fixed (with respect to the 3-sphere Σt) during the entire
evolution.
The scalar expansion θþ of a torus of constant τ is now

simply

θþ ¼ ðcoshð2τÞ − 3ÞcschðτÞ
2S

−
2_S
S
:

A torus with τ corresponding to a solution of the condition
θþ ¼ 0, i.e.,

ðcoshð2τÞ − 3ÞcschðτÞ − 4_S ¼ 0 ð6Þ

is therefore a MOTS. The only solution of Eq. (6) satisfying
τ > 0 is

τ ¼ arsinhð _Sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _S2

p
Þ: ð7Þ

This provides a general description of toroidal MOTS in
closed FLRW geometries. Note that for the particular case
of the FLRW universe filled with dust

_S ¼ −
sin η

1þ cos η
: ð8Þ

Substituting Eq. (8) into Eq. (7) one obtains, for the dust
solution,

τ ¼ arsinh

�
2 cosðη=2Þ − sin η

1þ cos η

�
:

The corresponding expression in the case of the radiation-
dominated FLRW universe is even simpler. One gets
_S ¼ − tan η and

τ ¼ arsinh

�
1 − sin η
cos η

�
:

Figure 1 shows the graph of τ as a function of the
conformal time η for the dust and radiation-dominated
FLRW models. In the dust case the parameter τ drops from
infinity to τ ¼ τ0 ¼ logð1þ ffiffiffi

2
p Þ, as η goes from −π to 0,

and then drops further from τ ¼ τ0 to τ ¼ 0, as η goes from
0 to π. This corresponds to an infinitely thin torus for
η ¼ −π which grows during the entire cycle of evolution
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until η ¼ π. For η ¼ 0 (Kij ¼ 0), the marginally outer
trapped torus coincides with the minimal one, as expected.
The behavior in the radiation-dominated case is analogous,
except for the conformal time changing from −π=2 to π=2.
Constant mean curvature tori constructed above are

sometimes called the generalized Clifford tori (we will
use the term CMC Clifford tori in this paper). The simplest
way to define them is to consider the Euclidean space R4

with coordinates ðx1; x2; x3; x4Þ, and a surface given by two
conditions

x21 þ x22 ¼ r2;

x23 þ x24 ¼ 1 − r2; ð9Þ

where 0 < r < 1 is a constant. Clearly, such a torus is
embedded in the unit 3-sphere S3. In hyperspherical
coordinates ðχ; θ;ϕÞ defined as

x1 ¼ sin χ sin θ cosϕ;

x2 ¼ sin χ sin θ sinϕ;

x3 ¼ sin χ cos θ;

x4 ¼ cos χ;

Eqs. (9) read

sin2χsin2θ ¼ r2;

sin2χcos2θ þ cos2χ ¼ 1 − r2:

Assuming c ¼ C1 ¼ 1, and performing the stereographic
projection given by χ ¼ 2 arctanR, we see that our CMC
tori satisfy the above equations with r ¼ tanh τ.
The minimal torus with τ ¼ τ0 ¼ logð1þ ffiffiffi

2
p Þ or r ¼

1=
ffiffiffi
2

p
is known as the Clifford torus.

The theory of closed minimal surfaces embedded in the
3-sphere is a classic, but still active field in differential
geometry. In 1970 Lawson proved that for any genus
g ¼ 1; 2;…, there is a compact minimal surface embedded
in S3 [10]. Examples of such surfaces were found in
[17,18]. Lawson also conjectured that any compact toroidal
minimal surface embedded in S3 is the Clifford torus [19].
This conjecture was proved in 2013 by Brendle [20].
In 2006 Butscher and Packard produced new examples

of embedded, higher-genus CMC surfaces of S3 with small
but nonzero mean curvature [21]. A complete classification
of CMC tori embedded in S3 was recently given by
Andrews and Li [22].

IV. STABILITY

The notion of stability of MOTS is related directly to the
notion of being “outermost”. In this paper we adhere to
definitions introduced in [14,15].
A marginally outer trapped surface S is called “locally

outermost” in a given time slice Σ, if there exists a
neighborhood U of S such that the exterior part of U does
not contain any weakly outer trapped surface (a surface
with nonpositive expansion θþ).
Andersson, Mars and Simon call a MOTS S “stably

outermost”, provided that there exists a function ψ ≥ 0,
ψ ≠ 0, on S such that δψmθþ ≥ 0. Here δψmθþ denotes the
variation of θþ with respect to the vector ψmμ, and mμ

denotes a unit, outward-oriented vector normal to S.
These definitions are directly related to the stability

operator LΣψ ¼ δψmθþ of the form

LΣψ ¼ −ΔSψ þ 2sADAψ þ
�
1

2
RS − sAsA þDAsA

−
1

2
ð∇μlνþÞð∇νl

μ
þÞ − Gμνl

μ
þnν

�
ψ :

Following [14], we use the symbols DA and ΔS for the
covariant derivative and Laplacian with respect to the
induced metric on S, respectively. The coordinates on
the surface S are denoted with capital Latin letters A;B;…
The vector sA is defined as

sA ¼ −
1

2
gαβlβ−∇Alαþ;

and Gμν is the Einstein tensor with respect to the
4-dimensional metric g.
It can be shown that the real parts of eigenvalues of

the operator LΣ are bounded from below and that the
principal eigenvalue (the eigenvalue with the smallest real
part) of the operator LΣ is real. It can also be shown that the
corresponding principal eigenfunction is either everywhere
positive, or everywhere negative.

FIG. 1. The plot of solution (7) for the dust (solid blue line) and
radiation-dominated (dashed line) FLRW models. The horizontal
line marks the value of τ ¼ τ0 ¼ logð1þ ffiffiffi

2
p Þ corresponding to a

minimal surface.
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It was proved in [14] that S is stably outermost, if and
only if the principal eigenvalue of LΣ is non-negative.
The fact that the toroidal MOTS described in this paper

should be unstable is intuitive, and it is suggested by the
SO(4) symmetry of the spatial part of the FLRW metric.
Clearly, these MOTS are not “locally outermost”. This
follows directly from their construction. Consider the CMC
Clifford tori, as described in the previous section. They
form a one parameter family of CMC surfaces, para-
metrized by τ. The value of θþ is also constant at each
of the tori, but it decreases in the outward direction, i.e., it is
an increasing function of τ. That means that a MOTS which
belongs to this family is enclosed within other outer trapped
surfaces.
Showing that these MOTS are unstable in the sense of

[14] is more demanding; however, computing the corre-
sponding operator LΣ and looking at its properties is also an
elegant and simple exercise, which demonstrates the power
of the method introduced in [14] in a nontrivial setting.
Let us work in coordinates ðT; σ; τ;ϕÞ, as described in

the previous section. The metric on the spacetime M is
given by Eq. (5). Consequently, the induced metric on a
τ ¼ const torus is simply

h ¼ S2ðsech2τdσ2 þ tanh2τdϕ2Þ;

and it is obviously flat. The corresponding scalar curvature
RS and connection coefficients vanish. In coordinates
ðT; σ; τ;ϕÞ the vectors nμ and mμ are

nμ ¼ ð1; 0; 0; 0Þ; mμ ¼ ð0; 0;− cosh τ=S; 0Þ:

A direct computation shows that sA ¼ 0. The remaining
terms yield

LΣψ ¼ −
1

S2
½ðcosh2τÞ∂σσψ þ ðcoth2τÞ∂ϕϕψ � − Bψ ;

where the constant B is given by

B ¼
_S2 þ ð _S − cschτÞ2 þ ð _Sþ sinh τÞ2

2S2
þ 3ð1þ _S2Þ

S2
:

A standard separation of variables yields the spectrum of
LΣ in the form

λ ¼ −Bþ 1

S2
ðl2cosh2τ þm2coth2τÞ; l; m ¼ 0; 1; 2…

Since B is manifestly strictly positive, we conclude that the
MOTS belonging to the family of CMC Clifford tori are
unstable, as expected.

V. ISOPERIMETRIC INEQUALITIES

In [16] Khuri and one of us introduced some isoperi-
metric inequalities valid for toroidal surfaces. One of them,
proved for toroidal minimal surfaces in the time-symmetric
data, was already tested in our previous work [12]. The
family of CMC Clifford tori described in previous sections
provides an opportunity to test such inequalities in a
dynamical setting with Kij ≠ 0.
The first inequality which we assess here applies to the

time-symmetric case, corresponding to _S ¼ 0 in our model.
LetΩ denote the region inside a torus, and let ∂Ω denote its
boundary. We define the rest-mass of the torus by
M ¼ R

Ω dVρ, where the integration is taken with respect
to the proper volume element. Define L ¼ maxΩðΦ2rÞ,
where Φ is the spatial conformal factor and r denotes the
cylindrical radius: r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − z2

p
. This corresponds to the

circumferential radius of the largest circle in the torus.
Basing on [16, Eq. (5.3)] one expects for the “untrapped”
tori with H ≥ 0,

2M
πL

þ 1

4π2L

Z
∂Ω

Hds ≤ 1: ð10Þ

Let us choose Ω to be a region inside one of the CMC
Clifford tori with a given parameter τ. The volume of the
torus and the corresponding rest-mass read

R
Ω dV ¼

2π2S3sech2ðτÞ and M ¼ 3
4
πSsech2ðτÞ, respectively. The

area of the surface of the torus is
R
∂Ω ds ¼

4π2S2sechðτÞ tanhðτÞ, and the corresponding termR
∂ΩHds ¼ 2π2S½coshð2τÞ − 3�sech2ðτÞ. Finally L ¼ S.
For the left-hand side of inequality (10) one obtains

2M
πL

þ 1

4π2L

Z
∂Ω

Hds ¼ 1

2
½1þ tanh2ðτÞ�;

which is clearly smaller than one. It is quite surprising that
inequality (10) turns out to be also valid for CMC tori
withH < 0. For the minimal Clifford torus withH ¼ 0 and
τ ¼ τ0 one has

2M
πL

¼ 3

4
:

This result was already obtained in [12].
Let us now focus on the more general case with Kij ≠ 0.

Suppose that the surface of the torus ∂Ω is “strongly
untrapped”, i.e., H − jKijmimj − trKj > 0, where mi is the
unit vector normal to ∂Ω. In addition to L, let us also define
l ¼ minΩðΦ2rÞ. According to [16, Eq. (2.16)] the follow-
ing inequality is expected to hold

M þ L
8πl

Z
∂Ω
ðH − jKijmimj − trKjÞds ≤ πL2

2l
: ð11Þ
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For _S ≠ 0 we have now M ¼ 3
4
πSð1þ _S2Þsech2ðτÞ. An

elementary computation yields l ¼ S tanhðτÞ. The second
term in (11) reads

L
8πl

Z
∂Ω
ðH − jKijmimj − trKjÞds

¼ 1

4
πScschðτÞsechðτÞ½−4j _Sj sinhðτÞ þ coshð2τÞ − 3�:

By collecting all terms together, one can now show that

πL2

2l
−M −

L
8πl

Z
∂Ω
ðH − jKijmimj − trKjÞds

¼ 1

4
πSsechðτÞ½4ðj _Sj þ cschðτÞÞ − 3ð _S2 þ 1ÞsechðτÞ�:

Clearly, in order to confirm inequality (11) it suffices to
inspect the sign of

4ðj _Sj þ cschðτÞÞ − 3ð _S2 þ 1ÞsechðτÞ; ð12Þ

which should be positive, provided that the surface of the
torus with the given τ is strongly untrapped, that is for

τ > arsinhðj _Sj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _S2

p
Þ: ð13Þ

The actual proof is elementary, but tedious. Figure 2 shows
that the region where the condition (13) is satisfied is
actually contained in the region where (12) is positive. That
means that inequality (11) is satisfied for a larger class

of surfaces than the family containing only “strongly
untrapped” ones.

VI. CONCLUDING REMARKS

Existence of spherical MOTS in FLRW geometries
is well-known, and there is a vast literature discussing
different types of cosmological horizons (see [23] for a
book review). Much less is known about nonspherically
symmetric MOTS.
Since the 3-sphere S3 contains minimal and CMC

surfaces of arbitrary genus, it is clear that one can have
minimal surfaces and MOTS of any topology in closed
FLRW spacetimes as well. This fact was already noticed in
[3]. Constant mean curvature Clifford tori present in FLRW
geometries have the advantage that they can be approached
by a straightforward construction, allowing for a direct test
of existing theorems concerning MOTS and toroidal
surfaces in general relativity.
Similarly to spherical MOTS in FLRW spacetimes, the

ones belonging to the class of CMC Clifford tori are also
unstable. It is quite remarkable that the proof of this fact,
which in general requires the knowledge of the sign of the
principal eigenvalue of the complicated stability operator,
can be accomplished by a simple, direct calculation. The
fact that spherical MOTS in FLRW spacetimes are unstable
in the sense of Andersson, Mars and Simon is shown in the
Appendix.
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APPENDIX: INSTABILITY OF SPHERICAL
MOTS IN FLRW SPACETIMES

In this appendix we show that spherical MOTS in closed
FLRW spacetimes are unstable in the sense of Andersson,
Mars and Simon [14,15]. The calculation is essentially the
same as the one presented in Sec. IV, with a few minor
changes. As before, it suffices to show that the principal
eigenvalue of the corresponding stability operator is
negative.
We work in spherical coordinates ðT; R; θ;φÞ. The

metric g and the spatial conformal factor Φ are given by
Eqs. (3) and (4), respectively. A 2-sphere S of constant
radius R, embedded in a given time slice Σt, has a scalar
curvature RS ¼ 2=ðΦ4R2Þ and a mean curvature

FIG. 2. The larger region where (12) is positive is marked in
blue. The smaller region where (13) is satisfied is marked
in light brown.
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H ¼ 1

Φ6R2
∂RðΦ4R2Þ ¼ 1 − C2

1R
2

SC1R
:

The two null vectors lμ� read

lμ� ¼ ð1;�Φ−2; 0; 0Þ:

A direct computation shows that sA ≡ 0. For the stability
operator LΣ one obtains the expression

LΣψ ¼ −
1

Φ4R2
ΔS2ψ − Bψ ;

where ΔS2 denotes the Laplacian on the unit 2-sphere, and

B ¼ −
1

Φ4R2
þ

_S2

2S2
þ
�
H
2
þ

_S
S

�2

þ 3ð1þ _S2Þ
S2

:

This gives the spectrum of LΣ in the form

λ ¼ −Bþ lðlþ 1Þ
Φ4R2

; l ¼ 0; 1;…

In order to establish the sign of B we take into account
that the sphere S is supposed to be a MOTS, i.e., θþ ¼
H − 2_S=S ¼ 0 on S. This yields

λ ¼ −
4þ 13_S2

2S2
þ 1þ _S2

S2
lðlþ 1Þ; l ¼ 0; 1;…

The principal eigenvalue λ ¼ −ð4þ 13_S2Þ=ð2S2Þ is obvi-
ously negative.
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