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Hairy black-hole solutions in generalized Proca theories
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We present a family of exact black-hole solutions on a static spherically symmetric background in
second-order generalized Proca theories with derivative vector-field interactions coupled to gravity. We
also derive nonexact solutions in power-law coupling models including vector Galileons and numerically
show the existence of regular black holes with a primary hair associated with the longitudinal propagation.
The intrinsic vector-field derivative interactions generally give rise to a secondary hair induced by
nontrivial field profiles. The deviation from General Relativity is most significant around the horizon
and hence there is a golden opportunity for probing the Proca hair by the measurements of gravitational

waves (GWs) in the regime of strong gravity.
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I. INTRODUCTION

The no-hair conjecture of black holes (BHs) [1] was
originally suggested by the existence of uniqueness theo-
rems for Schwarzschild, Reissner-Nordstrom (RN), and
Kerr solutions in General Relativity (GR) [2-4]. However,
there are several assumptions for proving the absence of
hairs besides mass, charge, and angular momentum in the
form of no-hair theorems. One of such assumptions for a
scalar field ¢ is that the standard canonical term V,¢)V¥¢ /2
is the only field derivative in the action [5]. Hence, the no-
hair theorem of Ref. [5] loses its validity for theories
containing noncanonical kinetic terms.

There are theories with noncanonical scalars with non-
linear derivative interactions-like Galileons [6,7] and its
extension to Horndeski theories [8,9]. In shift-symmetric
Horndeski theories, a no-hair theorem for static and spheri-
cally symmetric BHs was proposed [10] by utilizing the
regularity of a Noether current on the horizon. A counter-
example of a hairy BH evading one of the conditions
discussed in Ref. [10] was advocated for the scalar field
linearly coupled to a Gauss-Bonnet term [11]. For a time-
dependent scalar with nonminimal derivative coupling to
the Einstein tensor, there is also a stealth Schwarzschild
solution with a nontrivial field profile [12].

For a massless vector field in GR, the static and
spherically symmetric BH solution is described by the
RN metric with mass M and charge Q. The introduction of
a vector-field mass breaks the U(1) gauge symmetry, which
allows the propagation of the longitudinal mode. For this
massive Proca field, Bekenstein showed [13] that a static
BH does not have a vector hair. The vector field A# vanishes
throughout the BH exterior from the requirement that a
physical scalar constructed from A* is bounded on a
nonsingular horizon. In this case, the static and spherically
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symmetric BH solution is described by the Schwarzschild
metric with mass M.

The Bekenstein’s no hair theorem [13] cannot be applied
to the massive vector field with nonlinear derivative
interactions. In Refs. [14—17] the action of generalized
Proca theories was constructed by demanding the condition
that the equations of motion are up to second order to avoid
the Ostrogradsky instability. An exact static and spherically
symmetric BH solution with the Abelian vector hair’
was found in Ref. [20] for the Lagrangian £ = (M;1 /2)R —
FF* /4 + B,G"A,A,  with the specific coupling
P4 = 1/4, where M, is the reduced Planck mass, R and
G, are the Ricci scalar and Einstein tensor respectively,
and F,, = A,,, —A,, (a semicolon represents a covariant
derivative) is the field strength. This is a stealth
Schwarzschild solution containing mass M alone with a
temporal vector component Ay = P + Q/r and a nonvan-
ishing longitudinal component A, where r is the distance
from the center of spherical symmetry. Unlike the RN
solution present for the massless vector in GR, the Proca
hair P is physical but P as well as the electric charge Q does
not appear in metrics.

The exact BH solutions studied in Ref. [20] have been
extended to nonasymptotically flat solutions [21,22], rotat-
ing solutions [21], and solutions for f4 # 1/4 [22,23]. All
these studies considered only the ,G**A,A, coupling. It is
crucial to investigate whether the self-derivative inter-
actions of generalized Proca theories give rise to compel-
ling new hairy BH solutions. In this letter we provide a

Tn this letter we focus on the Abelian vector field, but there
are hairy BH solutions for non-Abelian Yang-Mills fields [18].
A complex Abelian vector field can also give rise to hairy Kerr
solutions [19].
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systematic prescription for constructing new BH solutions
in generalized Proca theories on the static and spherically
symmetric background given by the line element

ds* = —f(r)dt* + k= (r)dr* + r*(d6* + sin*0d¢?), (1)

with the vector field A, = (Ay(r),A;(r),0,0), where f(r),
h(r), Ay(r), and A,(r) are arbitrary functions of r. We will
derive exact solutions under the condition of a constant
norm of the vector field A,A* = constant. We also numeri-
cally obtain hairy BH solutions for power-law coupling
models including vector Galileons. Unlike scalar-tensor
theories in which hairy BH solutions exist only for
restrictive cases, we will show that the presence of a
temporal vector component besides a longitudinal scalar
mode gives rise to a bunch of hairy BH solutions in broad
classes of models.

The generalized Proca theories are given by the action

6
S = / d*x, /_—g(F +)° L,-), (2)
i=2
where F = —FWF’”’/4, and [14,17]

L, = G,(X), Ly = G5(X)Ax,,
Ly = G4(X)R + Gyx[(A*,)* — A, A**] = 2g4(X)F,

Gsx
6

Ls = G5(X)G, A" — [(A”;M)3 —3AK A, AP

=+ 2Aa;/)Ap;VAI/;O-] =95 (X)Faﬂi:/[jAﬂ;m

Ls = Go(X)LPA,,Apy + % FPFP"A Ay (3)
The functions G, 3456 and g, 5 depend on X = —A,A¥ /2,
with the notation G; y = 0G;/0X. The vector field A* has
nonminimal couplings with the Ricci scalar R, the Einstein
tensor G,,, and the double dual Riemann tensor LHvap —
EmreEWR , 5/4, where 77 is the Levi-Civita tensor
and R ;s is the Riemann tensor. The dual strength tensor
F* is defined by F" = gwalF ap/2. The Lagrangians
containing gy, g5, Gg correspond to intrinsic vector modes
that vanish in the scalar limit A# — z#. Throughout the
analysis we take into account the Einstein-Hilbert term
M§1/2 in G4(X).

II. EXACT SOLUTIONS
The exact solution of Ref. [20] was found for the model
G4(X) = M3,/2 44X with f3, = 1/4. For this solution
there are two relations

f=nh

where X, is a constant. On using these conditions for the
vector field Aﬂ, it follows that

X=X (4)
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Ay = +\/A3 27X,/ (5)

Introducing the tortoise coordinate dr, = dr/f(r), the
scalar product A, dx* reduces to Agdu. around the horizon,
where u,. = t &+ r,. The advanced and retarded null coor-
dinates u, and u_ are regular at the future and past event
horizons, respectively. Hence the regularity of solutions at
the corresponding (future or past) horizon is ensured for
each branch of (5), which is analogous to the case of shift-
symmetric scalar-tensor theories [12]. We will search for
exact solutions by imposing the two conditions (4).
Provided the condition G4 xx(X,) = 0 is satisfied for the
quartic-order coupling G4(X), the equation of motion for
A; reduces to Gux(rf' + f—1)A; =0, where a prime
represents the derivative with respect to r. As long as
G,x #0, there are two branches characterized by
rf'+f—1=0 or Ay =0. The first gives rise to the
stealth Schwarzschild solution f = h = 1-2M/r found
in Ref. [20]. In this case the temporal vector component
obeys Ajj + 2A(/r = 0, whose integrated solution is given
by Ag = P + Q/r. Since the constant P is independent of
M and Q, it is regarded as a primary hair [24]. The other
two independent equations are satisfied for G, x(X,) =
1/4 and X, = P?/2, so the longitudinal mode (5)
reads A; =++/2P(MP+ Q)r+ Q?/(r—2M). A concrete
model satisfying the above mentioned conditions is

Gu(X) = Gu(X0) + 3 (X = X) + Y bu(X =X (6)
n=3

where b,’s are constants. The model G4(X) :Mf)l /2+X/4

corresponds to the special case of Eq. (6).

Besides the nonvanishing A; solution there exists
another branch A; = 0 for the couplings G;(X) with even
i-index, in which case the relation A3(r) = 2f(r)X, holds
from Eq. (5). For the quartic coupling G4(X) the equation
for A, can be satisfied under the conditions G4 x(X,.) =0
and 2rf f" —rf"> +4ff =0. The latter leads to the solution
f = (C—M/r)?* with two integrated constants C and M.
For the consistency with the other two equations of motion,
we require that C=1 and G4(X,) =X./2. Hence we obtain
the extremal RN BH solution

M\? PM
f—h—(1—7> N AOZP—T, Al:(), (7)

where P = +£4/2X.. An explicit model realizing this
solution is

GuX) =5+ > b (X - X.)" (8)

For the metric (7), P depends on M by reflecting the fact
that the charge Q = —PM has a special relation with the
mass M. Hence the Proca hair is of the secondary type.
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For the cubic coupling G3(X) the equation for A; reads

Gyx[f(rf’ +4f)AT + rAo(2f Ay — f'Ag)] = 0, (9)

so there are two branches satisfying (i) G3x(X,.) =0 or
(il) G3.x(X,.) # 0. For the branch (i) the consistency with
the other equations requires that 2(rf' + f — l)Mgl +

r?AZ = 0and Aj +2A)/r =
are of the RN forms

, so the integrated solutions

2
MO A0:P+% (10)

with the nonvanishing longitudinal mode (5). This exact
solution can be realized by the model

G3(X) :G3(XC)+an(X—XC)". (11)

Unlike the RN solution in GR with G3(X) =0, P in
Eq. (10) has the meaning of the primary hair with the
nonvanishing longitudinal mode (5). The branch (ii) corre-
sponds to the case in which the terms in the square bracket
of Eq. (9) vanishes. On using Eq. (5) and imposing the
asymptotically flat boundary condition f — 1 for » — oo,
we obtain the extremal RN BH solution (7) with
P =+V2M,.

For the quintic coupling Gs(X) the temporal component
obeys Aj + 2A;/r =0 under the conditions (4), so the
resulting solutionis Ay = P + Q/r. Imposing the condition
Gsx(X,.) =0 further, the equation for A; reduces to
(AgAl — X.f")A3Gsxxy =0 and hence there are two
branches satisfying (i) ApAy = X.f’ or (ii) A; = 0. For
the branch (i), the resulting solutions are given by the RN
solutions (10) with the particular relations P = —2MM§1 /0

and X, = M;l. The longitudinal mode (5) reduces to

oM, \/2(2M2Mgl —0%)P

Mooy Y

whose existence requires the condition 2M>M? > Q7.

Since P depends on M and Q, the Proca hair P is secondary.
This exact solution can be realized by the model

Gs(X) = Gs(X,) + ) _bu(X=My)".  (13)

Another branch A; = 0 is the special case of Eq. (12), i.e.,
Q* = 2M*M;, under which the solution is given by the
extremal RN BH solution (7) with P = £v/2M,,.

The sixth-order coupling G¢(X) has the two branches
(i) A; = 0 or (ii) Aj = 0. For the branch (i) there exists an
exact solution if the two conditions Gg(X,.) =0 and
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) = 0 hold. This is the extremal RN BH solution
M2 and P = £v2M,

G6,X (X c
(7)with X, =
for the model

pl» Which can be realized

Zb (X - M2)". (14)

The branch (ii) corresponds to A, = constant, in which
case we obtain the stealth Schwarzschild solution
f=h=1-2M/r. This exists for general couplings Gg(X)
with arbitrary values of A;. Since we are now imposing the
second condition of Eq. (4), the longitudinal mode is fixed to

be A; = ++/r[(A3 = 2X)r + 4MX ]/ (r — 2M).

III. POWER-LAW COUPLINGS

So far we have imposed the conditions (4) to derive exact
solutions, but we will also study BH solutions for the
power-law models

Gi(X) = /}iX", gj(X) =7,X", (15)
where n 1s a positive integer, and /il and y; are coupling
constants” with i = 3, 4, 5, 6 and j=4,5.

Let us begin with the cubic vector-Galileon interaction

G3(X) = p3X. Then, the longitudinal mode obeys
rAo(f'Ag — 2fAp)
A==+ . 16
' \/ Fh(rf' +4f) (16)

Around the horizon characterized by the radius r,, we
expand f, h, Ay in the forms

[Se] (5]

f= filr=r),

i=1 i=1
AO =y + Z

where f;, h;, ay, a; are constants. To recover the RN
solutions of the form f = h = (r — r},)(r — pr,)/r* in the
limit 3 — 0, where the constant u is in the range 0 <u < 1
so that r = ry, corresponds to the outer horizon, we choose

r—ry) (17)

fi=h=0-u/r,. (18)

Taking the positive branch of A; with ay > 0 and picking
up linear-order terms in f3, the effect of the coupling f;
starts to appear at second order of (r — r;,)%, such that

*For the dimensionless coupling constants, we use the nota-
tions ; and y; in the following.
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M 1\/2,“ M]\/zﬂ
=L s ar = 2 2 —|—(Zzﬁ3,
ry r,
2u — 1 2u—1
fa= ) + Fops, hy = 2 +Hops,  (19)

where oy, F,, H, depend on the three parameters
(hy, ry, ag). The coupling S5 induces the difference between
the metrics f and h. The leading-order longitudinal mode
around r = r;, is given by A; = ao/[fi(r—ry)], so the
scalar product A,dx* becomes A,dx" = apdu, which is
regular at the future horizon r = ry,.

We also search for asymptotic flat solutions at spatial
infinity (r — oo0) by expanding f, h, A; in the forms

Ag=P+> —. (20)

For the cubic Galileon, the asymptotic solution for A,
reduces to A} = > %, b;/r', where the first-order coeffi-

cient b, vanishes from the background equations of motion.
The iterative solutions are given by f=1-2M/r—P>M?/
(6M7r3)+O(1/1%), h=1-2M [ r—P>*M? | 2M},1*)—P*M?

M3 P)+0(1/r*), and Ag=P—PM/r—PM?/(2r%) +

O(1/r3), where we have set f; = h; = —2M. The coef-
ficient b, and the coupling /3 begin to appear at the orders
of 1/r* and 1/7°, respectively, in f, h, A,.

In Fig. 1 we plot one example of numerically integrated
solutions outside the horizon derived by using the boundary
conditions (17)—(19) around r = r;. The solutions in the
two asymptotic regimes smoothly join each other without
any discontinuity. As estimated above, the longitudinal
mode behaves as A; « (r —r,)™! for r =r, and A|  r~?
for r > r,. Since the time ¢ can be reparametrized such that
f shifts to 1 at spatial infinity, we have performed this
rescaling of f after solving the equations of motion up to
r=2x10"r,. In Fig. 1 the difference between h and f
manifests itself in the regime of strong gravity with the
radius r < 1007;,.

Since the two asymptotic solutions discussed above are
continuous, the three parameters (b,, M, P) appearing in
the expansion (20) with A; = 3%, b;/r are related to
the three parameters (hy, r;, ay) arising in the expansion
(17), as [;2 :Ez(hl,rh,ao), M:M<h1,rh,ao), and P=
P(hy,ry.a,). Since b, is not fixed by the two parameters M
and P alone, this is regarded as a primary hair.

For the cubic interaction G3(X) = My (X/M7)" with
n > 2, there is the nonvanishing A; branch satisfying the
relation (16). In this case, the property of two asymptotic
solutions (17) and (20) is similar to that discussed for
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FIG. 1. Numerical solutions of f, h, Ay, A, h— f outside
the horizon for the cubic vector-Galileon model G3(X) = ;X
with 3 = 1072 /(r,My;). The boundary conditions around the

horizon are chosen to satisfy Eqs. (17)—(19) with 4 = 0.1 and
ap = 0.6Mp1 at r = lOOlrh

n = 1. The solutions are also regular throughout the BH
exterior with the difference between f and % induced by f.
There is also another branch obeying

Ay = \/AG/(fh), (21)

for which the resulting solutions correspond to the RN
solutions (10). Indeed, this exact solution is the special case
of the model (11) with X, =0 and G;3(X.) = 0.

Let us proceed to the quartic coupling G4(X) =
PaMy(X/M7)" with n>2. In general, we have two

branches characterized by (i) A; # 0 or (ii)) A; = 0. For
n > 3 there exists the nonvanishing A; branch (21) with
the RN solutions (10). Another nonvanishing A; branch
gives rise to hairy BH solutions with f # h. Indeed, the
solutions around the horizon are given by the expansion
(17) with the coupling 3, appearing at second order (i = 2)
in f, h and at first order (i =1) in A,. They are
characterized by the three parameters (A, 7, ay) under
the condition (18). The solutions expanded at spatial
infinity are the RN solutions (10) with corrections induced
by p,. If n =2, for example, such corrections to f, h, A
arise at second order in 1/7%, e.g., 8f = 3P>Q*(5P*—
8M§l)ﬁ4/(4Mglr2), Sh = 3P2Q*(11P* - 16M§l)ﬂ4/
(4M§yr?), and 5A¢ = PQ? (3P — 4M?))B,4/ (M), respe-
ctively. The longitudinal mode behaves as A o (r —r;,)~!

for r=r, and A; « r~'/% for r> r,. Numerically we
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confirmed that the solution around r = r; smoothly con-
nects to that in the asymptotic regime r > r,, so the
parameters (P, Q, M) are related to (hy, ry,, ag). Therefore,
the Proca hair P is of the primary type.

For the second branch A; = 0, the solutions (17) around
r = ry, are subject to the constraint a, = 0. Hence they are
expressed in terms of the two parameters (A, r;,) with the
coupling f3, appearing at the order of (r — r;,) in f, h, A
for n = 2. At spatial infinity, the effect of f; works as
corrections to the RN solutions (10). For n = 2 the leading-
order corrections to f, h, A, are given, respectively, by
8f =—4P*(MP+ Q)B,/ (Myr), 6h = 3P*Q*fy/ (4M[ 1),
and 6Ag = —P*Q(2MP + Q)p4/(2Myr*). The matching
of two asymptotic solutions has been also confirmed
numerically, so (P, M, Q) depend on the two parameters
(hy,ry) alone. Hence P corresponds to the secondary hair.

The sixth-order coupling Gg(X) = (Bs/My)(X/M)"
with the power n > 0 has the branch satisfying A}/Aj =
(Bh—1)/[fh{(2n+ 1)h — 1}] besides Aj; =0, A; =0,
and A;==++/A3/(fh) (the last one is present for n > 3).
However, the first one does not exist in the region
1/(2n+1) <h < 1/3 outside the horizon. Since the
second and fourth branches correspond to the
Schwarzschild and RN solutions, respectively, the branch
A; = 0 alone leads to the solutions with f # h. The U(1)-
invariant interaction derived by Horndeski [25] corre-
sponds to n = 0, in which case the coupling 4 appears
in the expansion (17) around r = r;, at second order for f,
h and at first order for A, with aq unfixed. For n > 1 the
effect of pg arises at n + 1 order in Eq. (17), with ay = 0.
At spatial infinity, the leading-order corrections to the
RN solutions (10) read §f = —PZ"Q2ﬂ6/(21+"M3]+2”r4),
Sh = (2n — 1)MP™Q*fe/(2""M "), and 6A, =
—~MP?"Qpq/ (2”MI§1Jr 2174), which match with those derived

by Horndeski in the U(1)-invariant case (n = 0) [26]. For
n >0, the numerically integrated solutions are regular
throughout the horizon exterior with the difference
between f and 2. When n = 0, P has no physical meaning
due to the U(1) gauge symmetry, so there are two physical
hairs M and Q related to the parameters 4; and r; around
the horizon. For n > 1 the Proca hair P is secondary, which
reflects the fact that (P, M, Q) depend on (hy,r;) alone.

The quintic coupling Gs5(X) = f5(X/ MI%])” does not
lead to regular solutions with A; # 0 due to the divergence
ath = 1/(2n + 1). For the intrinsic vector-mode couplings
9(X) = }’4(X/M§1)" and g5(X) = (}’5/M51)(X/M1231)" with
n > 1, there are hairy regular BH solutions with f # h
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characterized by A; =0 and A} = £/A3/[(1 + 2n)fh],
respectively. The couplings y, and y5 give rise to correc-
tions to the RN solutions (10), where the near-horizon
expansion (17) can be expressed in terms of the two
parameters i; and r;, with @y = 0. In this case the Proca
hair P is dependent on M and Q at spatial infinity, so it is of
the secondary type.

IV. CONCLUSIONS

We have systematically constructed new exact BH
solutions under the conditions (4) and also obtained a
family of hairy numerical BH solutions with f # & for the
power-law models (15). For the cubic and quartic couplings
G;(X) = ;X" and G4(X) = B, X", there exist nonvanish-
ing A; branches with the primary Proca hair with the
difference between f and & manifesting around the horizon.

For the intrinsic vector-mode couplings Gg(X) = feX",
94(X) = 74X", g5(X) = 75X" with n > 1, there are regular
BH solutions (RN solutions with corrections induced by the
couplings) characterized by the secondary Proca hair P.

Since astronomical observations of BHs have increased
their accuracies, there will be exciting possibilities for
probing deviations from GR in the foreseeable future, e.g.,
in the measurements of innermost stable circular orbits.
GWs emitted from quasicircular BH binaries can generally
place tight bounds on modified gravitational theories with
large deviations from GR in the regime of strong gravity
[27]. The future GW measurements will be able to measure
the Proca charge P through the corrections to the
Schwarzschild or RN metrics and the precise determination
of polarizations. The existence of such a new vector hair
will shed new light on the construction of unified theories
connecting gravitational theories with particle theories. Our
analysis in the strong gravity regime is also complementary
to the cosmological analysis with the late-time acceleration
[28] and the solar-system constraints [29]. The combination
of them will allow us to probe vector-tensor theories in all
scales in astrophysics and cosmology.
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