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We present a family of exact black-hole solutions on a static spherically symmetric background in
second-order generalized Proca theories with derivative vector-field interactions coupled to gravity. We
also derive nonexact solutions in power-law coupling models including vector Galileons and numerically
show the existence of regular black holes with a primary hair associated with the longitudinal propagation.
The intrinsic vector-field derivative interactions generally give rise to a secondary hair induced by
nontrivial field profiles. The deviation from General Relativity is most significant around the horizon
and hence there is a golden opportunity for probing the Proca hair by the measurements of gravitational
waves (GWs) in the regime of strong gravity.
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I. INTRODUCTION

The no-hair conjecture of black holes (BHs) [1] was
originally suggested by the existence of uniqueness theo-
rems for Schwarzschild, Reissner-Nordström (RN), and
Kerr solutions in General Relativity (GR) [2–4]. However,
there are several assumptions for proving the absence of
hairs besides mass, charge, and angular momentum in the
form of no-hair theorems. One of such assumptions for a
scalar field ϕ is that the standard canonical term∇μϕ∇μϕ=2
is the only field derivative in the action [5]. Hence, the no-
hair theorem of Ref. [5] loses its validity for theories
containing noncanonical kinetic terms.
There are theories with noncanonical scalars with non-

linear derivative interactions-like Galileons [6,7] and its
extension to Horndeski theories [8,9]. In shift-symmetric
Horndeski theories, a no-hair theorem for static and spheri-
cally symmetric BHs was proposed [10] by utilizing the
regularity of a Noether current on the horizon. A counter-
example of a hairy BH evading one of the conditions
discussed in Ref. [10] was advocated for the scalar field
linearly coupled to a Gauss-Bonnet term [11]. For a time-
dependent scalar with nonminimal derivative coupling to
the Einstein tensor, there is also a stealth Schwarzschild
solution with a nontrivial field profile [12].
For a massless vector field in GR, the static and

spherically symmetric BH solution is described by the
RN metric with massM and charge Q. The introduction of
a vector-field mass breaks theUð1Þ gauge symmetry, which
allows the propagation of the longitudinal mode. For this
massive Proca field, Bekenstein showed [13] that a static
BH does not have a vector hair. The vector field Aμ vanishes
throughout the BH exterior from the requirement that a
physical scalar constructed from Aμ is bounded on a
nonsingular horizon. In this case, the static and spherically

symmetric BH solution is described by the Schwarzschild
metric with mass M.
The Bekenstein’s no hair theorem [13] cannot be applied

to the massive vector field with nonlinear derivative
interactions. In Refs. [14–17] the action of generalized
Proca theories was constructed by demanding the condition
that the equations of motion are up to second order to avoid
the Ostrogradsky instability. An exact static and spherically
symmetric BH solution with the Abelian vector hair1

was found in Ref. [20] for the Lagrangian L ¼ ðM2
pl=2ÞR −

FμνFμν=4þ β4GμνAμAν with the specific coupling
β4 ¼ 1=4, where Mpl is the reduced Planck mass, R and
Gμν are the Ricci scalar and Einstein tensor respectively,
and Fμν ¼ Aν;μ − Aμ;ν (a semicolon represents a covariant
derivative) is the field strength. This is a stealth
Schwarzschild solution containing mass M alone with a
temporal vector component A0 ¼ PþQ=r and a nonvan-
ishing longitudinal component A1, where r is the distance
from the center of spherical symmetry. Unlike the RN
solution present for the massless vector in GR, the Proca
hair P is physical but P as well as the electric chargeQ does
not appear in metrics.
The exact BH solutions studied in Ref. [20] have been

extended to nonasymptotically flat solutions [21,22], rotat-
ing solutions [21], and solutions for β4 ≠ 1=4 [22,23]. All
these studies considered only the β4GμνAμAν coupling. It is
crucial to investigate whether the self-derivative inter-
actions of generalized Proca theories give rise to compel-
ling new hairy BH solutions. In this letter we provide a

1In this letter we focus on the Abelian vector field, but there
are hairy BH solutions for non-Abelian Yang-Mills fields [18].
A complex Abelian vector field can also give rise to hairy Kerr
solutions [19].
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systematic prescription for constructing new BH solutions
in generalized Proca theories on the static and spherically
symmetric background given by the line element

ds2 ¼ −fðrÞdt2 þ h−1ðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

with the vector field Aμ ¼ ðA0ðrÞ; A1ðrÞ; 0; 0Þ, where fðrÞ,
hðrÞ, A0ðrÞ, and A1ðrÞ are arbitrary functions of r. We will
derive exact solutions under the condition of a constant
norm of the vector field AμAμ ¼ constant. We also numeri-
cally obtain hairy BH solutions for power-law coupling
models including vector Galileons. Unlike scalar-tensor
theories in which hairy BH solutions exist only for
restrictive cases, we will show that the presence of a
temporal vector component besides a longitudinal scalar
mode gives rise to a bunch of hairy BH solutions in broad
classes of models.
The generalized Proca theories are given by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
F þ

X6
i¼2

Li

�
; ð2Þ

where F ¼ −FμνFμν=4, and [14,17]

L2 ¼ G2ðXÞ; L3 ¼ G3ðXÞAμ
;μ;

L4 ¼ G4ðXÞRþG4;X½ðAμ
;μÞ2 − Aν;μAμ;ν� − 2g4ðXÞF;

L5 ¼ G5ðXÞGμνAν;μ −
G5;X

6
½ðAμ

;μÞ3 − 3Aμ
;μAσ ;ρAρ;σ

þ 2Aσ ;ρAρ;νAν
;σ� − g5ðXÞ ~Fαμ ~Fβ

μAβ;α;

L6 ¼ G6ðXÞLμναβAν;μAβ;α þ
G6;X

2
~Fαβ ~FμνAμ;αAν;β: ð3Þ

The functions G2;3;4;5;6 and g4;5 depend on X ¼ −AμAμ=2,
with the notation Gi;X ¼ ∂Gi=∂X. The vector field Aμ has
nonminimal couplings with the Ricci scalar R, the Einstein
tensor Gμν, and the double dual Riemann tensor Lμναβ ¼
EμνρσEαβγδRρσγδ=4, where Eμνρσ is the Levi-Civita tensor
and Rρσγδ is the Riemann tensor. The dual strength tensor
~Fμν is defined by ~Fμν ¼ EμναβFαβ=2. The Lagrangians
containing g4, g5, G6 correspond to intrinsic vector modes
that vanish in the scalar limit Aμ → π;μ. Throughout the
analysis we take into account the Einstein-Hilbert term
M2

pl=2 in G4ðXÞ.

II. EXACT SOLUTIONS

The exact solution of Ref. [20] was found for the model
G4ðXÞ ¼ M2

pl=2þ β4X with β4 ¼ 1=4. For this solution
there are two relations

f ¼ h; X ¼ Xc; ð4Þ
where Xc is a constant. On using these conditions for the
vector field Aμ, it follows that

A1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0 − 2fXc

q
=f: ð5Þ

Introducing the tortoise coordinate dr� ¼ dr=fðrÞ, the
scalar product Aμdxμ reduces to A0du� around the horizon,
where u� ¼ t� r�. The advanced and retarded null coor-
dinates uþ and u− are regular at the future and past event
horizons, respectively. Hence the regularity of solutions at
the corresponding (future or past) horizon is ensured for
each branch of (5), which is analogous to the case of shift-
symmetric scalar-tensor theories [12]. We will search for
exact solutions by imposing the two conditions (4).
Provided the condition G4;XXðXcÞ ¼ 0 is satisfied for the

quartic-order coupling G4ðXÞ, the equation of motion for
A1 reduces to G4;Xðrf0 þ f − 1ÞA1 ¼ 0, where a prime
represents the derivative with respect to r. As long as
G4;X ≠ 0, there are two branches characterized by
rf0 þ f − 1 ¼ 0 or A1 ¼ 0. The first gives rise to the
stealth Schwarzschild solution f ¼ h ¼ 1–2M=r found
in Ref. [20]. In this case the temporal vector component
obeys A00

0 þ 2A0
0=r ¼ 0, whose integrated solution is given

by A0 ¼ PþQ=r. Since the constant P is independent of
M and Q, it is regarded as a primary hair [24]. The other
two independent equations are satisfied for G4;XðXcÞ ¼
1=4 and Xc ¼ P2=2, so the longitudinal mode (5)
reads A1¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2PðMPþQÞrþQ2

p
=ðr−2MÞ. A concrete

model satisfying the above mentioned conditions is

G4ðXÞ ¼ G4ðXcÞ þ
1

4
ðX − XcÞ þ

X
n¼3

bnðX − XcÞn; ð6Þ

where bn’s are constants. The model G4ðXÞ¼M2
pl=2þX=4

corresponds to the special case of Eq. (6).
Besides the nonvanishing A1 solution there exists

another branch A1 ¼ 0 for the couplings GiðXÞ with even
i-index, in which case the relation A2

0ðrÞ ¼ 2fðrÞXc holds
from Eq. (5). For the quartic coupling G4ðXÞ the equation
for A0 can be satisfied under the conditions G4;XðXcÞ ¼ 0

and 2rff00−rf02þ4ff0 ¼0. The latter leads to the solution
f ¼ ðC −M=rÞ2 with two integrated constants C and M.
For the consistency with the other two equations of motion,
we require that C¼1 and G4ðXcÞ¼Xc=2. Hence we obtain
the extremal RN BH solution

f¼ h¼
�
1−

M
r

�
2

; A0¼P−
PM
r

; A1¼ 0; ð7Þ

where P ¼ � ffiffiffiffiffiffiffiffi
2Xc

p
. An explicit model realizing this

solution is

G4ðXÞ ¼
Xc

2
þ
X
n¼2

bnðX − XcÞn: ð8Þ

For the metric (7), P depends on M by reflecting the fact
that the charge Q ¼ −PM has a special relation with the
mass M. Hence the Proca hair is of the secondary type.
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For the cubic coupling G3ðXÞ the equation for A1 reads

G3;X½f2ðrf0 þ 4fÞA2
1 þ rA0ð2fA0

0 − f0A0Þ� ¼ 0; ð9Þ

so there are two branches satisfying (i) G3;XðXcÞ ¼ 0 or
(ii) G3;XðXcÞ ≠ 0. For the branch (i) the consistency with
the other equations requires that 2ðrf0 þ f − 1ÞM2

pl þ
r2A02

0 ¼ 0 and A00
0 þ 2A0

0=r ¼ 0, so the integrated solutions
are of the RN forms:

f ¼ h ¼ 1 −
2M
r

þ Q2

2M2
plr

2
; A0 ¼ PþQ

r
; ð10Þ

with the nonvanishing longitudinal mode (5). This exact
solution can be realized by the model

G3ðXÞ ¼ G3ðXcÞ þ
X
n¼2

bnðX − XcÞn: ð11Þ

Unlike the RN solution in GR with G3ðXÞ ¼ 0, P in
Eq. (10) has the meaning of the primary hair with the
nonvanishing longitudinal mode (5). The branch (ii) corre-
sponds to the case in which the terms in the square bracket
of Eq. (9) vanishes. On using Eq. (5) and imposing the
asymptotically flat boundary condition f → 1 for r → ∞,
we obtain the extremal RN BH solution (7) with
P ¼ � ffiffiffi

2
p

Mpl.
For the quintic coupling G5ðXÞ the temporal component

obeys A00
0 þ 2A0

0=r ¼ 0 under the conditions (4), so the
resulting solution is A0 ¼ PþQ=r. Imposing the condition
G5;XðXcÞ ¼ 0 further, the equation for A1 reduces to
ðA0A0

0 − Xcf0ÞA2
1G5;XX ¼ 0 and hence there are two

branches satisfying (i) A0A0
0 ¼ Xcf0 or (ii) A1 ¼ 0. For

the branch (i), the resulting solutions are given by the RN
solutions (10) with the particular relationsP ¼ −2MM2

pl=Q
and Xc ¼ M2

pl. The longitudinal mode (5) reduces to

A1 ¼ �
2M3

pl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2M2M2

pl −Q2Þ
q

r2

Q½2M2
plrð2M − rÞ −Q2� ; ð12Þ

whose existence requires the condition 2M2M2
pl > Q2.

SinceP depends onM andQ, the Proca hair P is secondary.
This exact solution can be realized by the model

G5ðXÞ ¼ G5ðXcÞ þ
X
n¼2

bnðX −M2
plÞn: ð13Þ

Another branch A1 ¼ 0 is the special case of Eq. (12), i.e.,
Q2 ¼ 2M2M2

pl, under which the solution is given by the

extremal RN BH solution (7) with P ¼ � ffiffiffi
2

p
Mpl.

The sixth-order coupling G6ðXÞ has the two branches
(i) A1 ¼ 0 or (ii) A0

0 ¼ 0. For the branch (i) there exists an
exact solution if the two conditions G6ðXcÞ ¼ 0 and

G6;XðXcÞ ¼ 0 hold. This is the extremal RN BH solution
(7) withXc ¼ M2

pl andP ¼ � ffiffiffi
2

p
Mpl, which can be realized

for the model

G6ðXÞ ¼
X
n¼2

bnðX −M2
plÞn: ð14Þ

The branch (ii) corresponds to A0 ¼ constant, in which
case we obtain the stealth Schwarzschild solution
f¼ h¼ 1–2M=r. This exists for general couplings G6ðXÞ
with arbitrary values of A1. Since we are now imposing the
second condition of Eq. (4), the longitudinalmode is fixed to
be A1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r½ðA2

0 − 2XcÞrþ 4MXc�
p

=ðr − 2MÞ.

III. POWER-LAW COUPLINGS

So far we have imposed the conditions (4) to derive exact
solutions, but we will also study BH solutions for the
power-law models

GiðXÞ ¼ ~βiXn; gjðXÞ ¼ ~γjXn; ð15Þ

where n is a positive integer, and ~βi and ~γj are coupling
constants2 with i ¼ 3, 4, 5, 6 and j ¼ 4, 5.
Let us begin with the cubic vector-Galileon interaction

G3ðXÞ ¼ β3X. Then, the longitudinal mode obeys

A1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA0ðf0A0 − 2fA0

0Þ
fhðrf0 þ 4fÞ

s
: ð16Þ

Around the horizon characterized by the radius rh, we
expand f, h, A0 in the forms

f ¼
X∞
i¼1

fiðr − rhÞi; h ¼
X∞
i¼1

hiðr − rhÞi;

A0 ¼ a0 þ
X∞
i¼1

aiðr − rhÞi; ð17Þ

where fi, hi, a0, ai are constants. To recover the RN
solutions of the form f ¼ h ¼ ðr − rhÞðr − μrhÞ=r2 in the
limit β3 → 0, where the constant μ is in the range 0< μ< 1
so that r ¼ rh corresponds to the outer horizon, we choose

f1 ¼ h1 ¼ ð1 − μÞ=rh: ð18Þ

Taking the positive branch of A1 with a0 > 0 and picking
up linear-order terms in β3, the effect of the coupling β3
starts to appear at second order of ðr − rhÞi, such that

2For the dimensionless coupling constants, we use the nota-
tions βi and γj in the following.
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a1 ¼
Mpl

ffiffiffiffiffi
2μ

p
rh

; a2 ¼ −
Mpl

ffiffiffiffiffi
2μ

p

r2h
þ α2β3;

f2 ¼
2μ − 1

r2h
þ F 2β3; h2 ¼

2μ − 1

r2h
þH2β3; ð19Þ

where α2, F 2, H2 depend on the three parameters
ðh1; rh; a0Þ. The coupling β3 induces the difference between
the metrics f and h. The leading-order longitudinal mode
around r ¼ rh is given by A1 ¼ a0=½f1ðr − rhÞ�, so the
scalar product Aμdxμ becomes Aμdxμ ≃ a0duþ, which is
regular at the future horizon r ¼ rh.
We also search for asymptotic flat solutions at spatial

infinity (r → ∞) by expanding f, h, A0 in the forms

f ¼ 1þ
X∞
i¼1

~fi
ri
; h ¼ 1þ

X∞
i¼1

~hi
ri
;

A0 ¼ Pþ
X∞
i¼1

~ai
ri
: ð20Þ

For the cubic Galileon, the asymptotic solution for A1

reduces to A1 ¼
P∞

i¼2
~bi=ri, where the first-order coeffi-

cient ~b1 vanishes from the background equations of motion.
The iterative solutions are given by f¼1–2M=r−P2M3=
ð6M2

plr
3ÞþOð1=r4Þ, h¼1–2M=r−P2M2=ð2M2

plr
2Þ−P2M3=

ð2M2
plr

3ÞþOð1=r4Þ, and A0¼P−PM=r−PM2=ð2r2Þ þ
Oð1=r3Þ, where we have set ~f1 ¼ ~h1 ¼ −2M. The coef-
ficient ~b2 and the coupling β3 begin to appear at the orders
of 1=r4 and 1=r5, respectively, in f, h, A0.
In Fig. 1 we plot one example of numerically integrated

solutions outside the horizon derived by using the boundary
conditions (17)–(19) around r ¼ rh. The solutions in the
two asymptotic regimes smoothly join each other without
any discontinuity. As estimated above, the longitudinal
mode behaves as A1 ∝ ðr − rhÞ−1 for r≃ rh and A1 ∝ r−2

for r ≫ rh. Since the time t can be reparametrized such that
f shifts to 1 at spatial infinity, we have performed this
rescaling of f after solving the equations of motion up to
r ¼ 2 × 107rh. In Fig. 1 the difference between h and f
manifests itself in the regime of strong gravity with the
radius r≲ 100rh.
Since the two asymptotic solutions discussed above are

continuous, the three parameters ð ~b2;M; PÞ appearing in
the expansion (20) with A1 ¼

P∞
i¼2

~bi=ri are related to
the three parameters ðh1; rh; a0Þ arising in the expansion
(17), as ~b2¼ ~b2ðh1;rh;a0Þ, M¼Mðh1;rh;a0Þ, and P¼
Pðh1;rh;a0Þ. Since ~b2 is not fixed by the two parametersM
and P alone, this is regarded as a primary hair.
For the cubic interaction G3ðXÞ ¼ β3M2

plðX=M2
plÞn with

n ≥ 2, there is the nonvanishing A1 branch satisfying the
relation (16). In this case, the property of two asymptotic
solutions (17) and (20) is similar to that discussed for

n ¼ 1. The solutions are also regular throughout the BH
exterior with the difference between f and h induced by β3.
There is also another branch obeying

A1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0=ðfhÞ

q
; ð21Þ

for which the resulting solutions correspond to the RN
solutions (10). Indeed, this exact solution is the special case
of the model (11) with Xc ¼ 0 and G3ðXcÞ ¼ 0.
Let us proceed to the quartic coupling G4ðXÞ ¼

β4M2
plðX=M2

plÞn with n ≥ 2. In general, we have two
branches characterized by (i) A1 ≠ 0 or (ii) A1 ¼ 0. For
n ≥ 3 there exists the nonvanishing A1 branch (21) with
the RN solutions (10). Another nonvanishing A1 branch
gives rise to hairy BH solutions with f ≠ h. Indeed, the
solutions around the horizon are given by the expansion
(17) with the coupling β4 appearing at second order (i ¼ 2)
in f, h and at first order (i ¼ 1) in A0. They are
characterized by the three parameters ðh1; rh; a0Þ under
the condition (18). The solutions expanded at spatial
infinity are the RN solutions (10) with corrections induced
by β4. If n ¼ 2, for example, such corrections to f, h, A0

arise at second order in 1=r2, e.g., δf ¼ 3P2Q2ð5P2−
8M2

plÞβ4=ð4M6
plr

2Þ, δh ¼ 3P2Q2ð11P2 − 16M2
plÞβ4=

ð4M6
plr

2Þ, and δA0 ¼ PQ2ð3P2 − 4M2
plÞβ4=ðM4

plr
2Þ, respe-

ctively. The longitudinal mode behaves as A1 ∝ ðr − rhÞ−1
for r≃ rh and A1 ∝ r−1=2 for r ≫ rh. Numerically we

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

 1  10  100

r / rh

f
h
A0
A1
h - f

FIG. 1. Numerical solutions of f, h, A0, A1, h − f outside
the horizon for the cubic vector-Galileon model G3ðXÞ ¼ β3X
with β3 ¼ 10−3=ðrhMplÞ. The boundary conditions around the
horizon are chosen to satisfy Eqs. (17)–(19) with μ ¼ 0.1 and
a0 ¼ 0.6Mpl at r ¼ 1.001rh.
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confirmed that the solution around r ¼ rh smoothly con-
nects to that in the asymptotic regime r ≫ rh, so the
parameters ðP;Q;MÞ are related to ðh1; rh; a0Þ. Therefore,
the Proca hair P is of the primary type.
For the second branch A1 ¼ 0, the solutions (17) around

r ¼ rh are subject to the constraint a0 ¼ 0. Hence they are
expressed in terms of the two parameters ðh1; rhÞ with the
coupling β4 appearing at the order of ðr − rhÞ3 in f, h, A0

for n ¼ 2. At spatial infinity, the effect of β4 works as
corrections to the RN solutions (10). For n ¼ 2 the leading-
order corrections to f, h, A0 are given, respectively, by
δf¼−4P3ðMPþQÞβ4=ðM4

plrÞ, δh ¼ 3P4Q2β4=ð4M6
plr

2Þ,
and δA0 ¼ −P3Qð2MPþQÞβ4=ð2M4

plr
2Þ. The matching

of two asymptotic solutions has been also confirmed
numerically, so ðP;M;QÞ depend on the two parameters
ðh1; rhÞ alone. Hence P corresponds to the secondary hair.
The sixth-order coupling G6ðXÞ ¼ ðβ6=M2

plÞðX=M2
plÞn

with the power n ≥ 0 has the branch satisfying A2
1=A

2
0 ¼

ð3h − 1Þ=½fhfð2nþ 1Þh − 1g� besides A0
0 ¼ 0, A1 ¼ 0,

and A1¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0=ðfhÞ

p
(the last one is present for n ≥ 3).

However, the first one does not exist in the region
1=ð2nþ 1Þ < h < 1=3 outside the horizon. Since the
second and fourth branches correspond to the
Schwarzschild and RN solutions, respectively, the branch
A1 ¼ 0 alone leads to the solutions with f ≠ h. The Uð1Þ-
invariant interaction derived by Horndeski [25] corre-
sponds to n ¼ 0, in which case the coupling β6 appears
in the expansion (17) around r ¼ rh at second order for f,
h and at first order for A0, with a0 unfixed. For n ≥ 1 the
effect of β6 arises at nþ 1 order in Eq. (17), with a0 ¼ 0.
At spatial infinity, the leading-order corrections to the
RN solutions (10) read δf ¼ −P2nQ2β6=ð21þnM4þ2n

pl r4Þ,
δh ¼ ð2n − 1ÞMP2nQ2β6=ð21þnM4þ2n

pl r5Þ, and δA0 ¼
−MP2nQβ6=ð2nM2þ2n

pl r4Þ, which match with those derived
by Horndeski in the Uð1Þ-invariant case (n ¼ 0) [26]. For
n ≥ 0, the numerically integrated solutions are regular
throughout the horizon exterior with the difference
between f and h. When n ¼ 0, P has no physical meaning
due to the Uð1Þ gauge symmetry, so there are two physical
hairs M and Q related to the parameters h1 and rh around
the horizon. For n ≥ 1 the Proca hair P is secondary, which
reflects the fact that ðP;M;QÞ depend on ðh1; rhÞ alone.
The quintic coupling G5ðXÞ ¼ β5ðX=M2

plÞn does not
lead to regular solutions with A1 ≠ 0 due to the divergence
at h ¼ 1=ð2nþ 1Þ. For the intrinsic vector-mode couplings
g4ðXÞ ¼ γ4ðX=M2

plÞn and g5ðXÞ ¼ ðγ5=M2
plÞðX=M2

plÞn with
n ≥ 1, there are hairy regular BH solutions with f ≠ h

characterized by A1 ¼ 0 and A1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
0=½ð1þ 2nÞfh�

p
,

respectively. The couplings γ4 and γ5 give rise to correc-
tions to the RN solutions (10), where the near-horizon
expansion (17) can be expressed in terms of the two
parameters h1 and rh with a0 ¼ 0. In this case the Proca
hair P is dependent onM andQ at spatial infinity, so it is of
the secondary type.

IV. CONCLUSIONS

We have systematically constructed new exact BH
solutions under the conditions (4) and also obtained a
family of hairy numerical BH solutions with f ≠ h for the
power-lawmodels (15). For the cubic and quartic couplings
G3ðXÞ ¼ ~β3Xn and G4ðXÞ ¼ ~β4Xn, there exist nonvanish-
ing A1 branches with the primary Proca hair with the
difference between f and hmanifesting around the horizon.
For the intrinsic vector-mode couplings G6ðXÞ ¼ ~β6Xn,
g4ðXÞ ¼ ~γ4Xn, g5ðXÞ ¼ ~γ5Xn with n ≥ 1, there are regular
BH solutions (RN solutions with corrections induced by the
couplings) characterized by the secondary Proca hair P.
Since astronomical observations of BHs have increased

their accuracies, there will be exciting possibilities for
probing deviations from GR in the foreseeable future, e.g.,
in the measurements of innermost stable circular orbits.
GWs emitted from quasicircular BH binaries can generally
place tight bounds on modified gravitational theories with
large deviations from GR in the regime of strong gravity
[27]. The future GW measurements will be able to measure
the Proca charge P through the corrections to the
Schwarzschild or RN metrics and the precise determination
of polarizations. The existence of such a new vector hair
will shed new light on the construction of unified theories
connecting gravitational theories with particle theories. Our
analysis in the strong gravity regime is also complementary
to the cosmological analysis with the late-time acceleration
[28] and the solar-system constraints [29]. The combination
of them will allow us to probe vector-tensor theories in all
scales in astrophysics and cosmology.
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