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We study all translationally and rotationally invariant local theories involving massless spin 2 and spin 1
particles that mediate long range forces, allowing for general energy relations and violation of boost
invariance. Although gauge invariance is not a priori required to describe non-Lorentz invariant theories,
we first establish that locality requires soft gauge invariance. Then by taking the soft graviton limit in
scattering amplitudes, we prove that in addition to the usual requirement of universal graviton couplings,
the special relativistic energy-momentum relation is also required and must be exact. We contrast this to the
case of theories with only spin ≤ 1 particles, where, although we can still derive charge conservation from
locality, special relativity can be easily violated. We provide indications that the entire structure of relativity
can be built up from spin 2 in this fashion.
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I. INTRODUCTION

Special relativity is in spectacular agreement with all
current observations. It provides a beautiful unification of
space and time. Combined with quantum mechanics, it
explains much of what we observe in the world. When
applied to massless spin 1 particles, it describes the
structure of the electroweak and strong forces, and when
applied to massless spin 2 particles, it describes the
structure of gravitation.
However, one may enquire what the origin is of special

relativity, or more specifically, the Lorentz symmetry; is it a
structure that can be deformed easily at low energies? Is it
an accidental symmetry that must be exact at low energies
but might be violated at high energies? In the standard
model of particle physics, Colladay and Kostelecky [1] and
Coleman and Glashow [2] found that one can easily deform
the Lorentz symmetry. In fact 46 new CPT even couplings
at the dimension 4 level are allowed, without affecting the
unitarity of the theory, the degree of freedom counting, or
leading to any known pathology. Of course such deforma-
tions are highly constrained by experiment [3], but it is
interesting that it can be done so easily in theories with only
spin s ≤ 1 particles.
In this article we point out the tremendous theoretical

difficulty of violating the Lorentz symmetry when massless
spin 2 is included. In particular, we allow our matter species
and massless spin 2 particle to carry any dispersion relation,
arbitrary violations of boost invariance, and we prove using
Weinberg’s method [4] of demanding consistent soft
graviton scattering that the special relativistic dispersion
relation is required. We provide indications that the full
structure of relativity can be built up too. Our only

assumptions are that we have translational and rotational
invariance in some frame and that interactions avoid
instantaneous action at a distance.

II. SPIN

Compatibility with quantum mechanics and rotation
invariance demands that particles transform under a unitary
representation of the rotation group SOð3Þ. These repre-
sentations are organized by spin in the usual fashion
s ¼ 0; 1=2; 1; 3=2; 2;…. Furthermore, there are two dis-
tinct classes of particles with spin s ≥ 1: (i) One class,
usually called “massive,” fills out the full set of spins along,
say, the z-axis as sz¼−s;−sþ1;…;s−1;s, i.e., all 2sþ 1
components of angular momentum. (ii) Another class,
usually called “massless”, only fills out the spins parallel
to the direction of motion with h ¼ �s; in the Lorentz
invariant case, this is known as “helicity”. We note that the
presence of these classes does not rely upon the presence of
the Lorentz symmetry, but only the rotation symmetry.
Without boost invariance, the massive particle states do
transform in a complicated fashion, while the massless
particle states transform in a relatively simple fashion. Note
that neither is a priori gapped or gapless.
The quantum state of a massless spin 2 particle is

specified by its momenta q and helicity h as jq; hi. In
order to describe how it transforms under rotations, one
needs to introduce a 3 × 3 symmetric polarization matrix
ϵijðqÞ. In order to project down to only 2 “helicities,” one
can demand that the polarization matrix is transverse
traceless,

ϵii ¼ qiϵij ¼ 0: ð1Þ

Note that these constraints are manifestly rotationally
invariant, so we have cut down to the correct number of
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degrees of freedom, while maintaining our assumed space-
time symmetry. The situation is analogous for massless
spin 1, which can be described in a manifestly rotationally
invariant way by a polarization vector ϵi that is transverse
qiϵi ¼ 0. Hence, unlike the Lorentz invariant case, there is
no a priori reason to introduce gauge invariance into these
descriptions.

III. LONG RANGE INTERACTIONS

We would like to build a theory that contains long range
interactions. However, if we attempt to do so using the
above spin 1 or spin 2 particles we encounter a problem. To
see this, consider the propagator for these particles
(we assume parity here for simplicity, but our results do
not rely upon this),

GijðqÞ ¼ i
δij −

qiqj
jqj2

E2 − K1ðqÞ
; ð2Þ

GijklðqÞ ¼ −
i
2

ðδij − qiqj
jqj2 Þðδkl − qkql

jqj2 Þ − ðj ↔ k; lÞ
E2 − K2ðqÞ

; ð3Þ

where the index structure enforces these to be transverse
(and traceless for spin 2) and K1;2 are dispersion relations
for the spin 1 and spin 2 particles, respectively.
Now consider 2 → 2 scattering between some matter

particles via the exchange of a single spin 1 or spin 2
particle. Since the propagator carries indices, we are
required to contract with some vector current Ji or matrix
τij for spin 1 and spin 2, respectively. This gives the
following contribution to the action for the matter degrees
of freedom from tree-level exchange, which we show now
for the spin 1 case, and extend to spin 2 in the Appendix,

ΔS ¼
Z

d4q
ð2πÞ4

�
~JiðqÞ

δij −
qiqj
jqj2

ω2 − K1ðqÞ
~Jj�ðqÞ þ ~ρðqÞ~ρ�ðqÞ

L1ðqÞ
�
;

ð4Þ

where we have also allowed for the exchange of a non-
dynamical scalar ϕ that mediates some type of Coulomb
interaction between charge density ρ. This second term is
included for two reasons: (i) it is compatible with rotation
invariance and does not introduce any additional degrees of
freedom, and (ii) the first term evidently cannot by itself
mediate a Coulomb-like interaction since it involves the
currents Ji associated with moving particles, and hence the
first term does not give rise to a force between static
charges, while the second term can.
For any current Ji that does not trivially vanish in the soft

limit, the first term here is invariably nonlocal due to the
∼qiqj=jqj2 structure, whose Fourier transform is long
ranged. The Coulomb interaction being associated with a

nondynamical field is evidently also nonlocal. Both lead to
instantaneous action at a distance.

IV. LOCAL INTERACTIONS

In this work, we impose the most basic version of
locality: we demand that our theories do not have instanta-
neous action at a distance. In order for this to be possible,
we require that the nonlocality in the above action
cancels out.
To do so, there must be a constitutive relationship shared

between Ji and ρ; this relationship must be linear since both
terms are of the same order. One can check that the most
general form allowed is

qi ~J
i ¼ M1ðqÞω~ρ; ð5Þ

where M1 is some function that mixes the two fields
together. This equation reduces to the familiar charge
conservation equation ifM1 ¼ 1, but is different otherwise.
If we take the classical particle limit for the charge

density ρðx; tÞ ¼ P
nenδ

3ðx − xnðtÞÞ, and vary the action
with respect to xnðtÞ, we obtain the force applied to a test
charge en at position xnðtÞ. Let us assume that for all times
t < 0 the charge and current densities vanish, but are
suddenly nonzero at time t ¼ 0. In order to avoid instanta-
neous action at a distance, every derivative of dp

dtp xnðt ¼ 0Þ
(p ≥ 2) must vanish when the test charge is separated from
the rest of the charges. In order for this to occur, every
coefficient of 1=ωp in (4) must be a local function if we
expand ΔS in inverse powers of ω.
By using the constitutive relationship to relate the

∼~JiðqÞðqiqj=jqj2Þ~Jj�ðqÞ and ∼~ρðqÞ~ρ�ðqÞ terms, and the
fact that only polynomials of q2 have local Fourier trans-
forms (derivatives of delta functions), we find the following
conditions must be satisfied by the functions K1, L1, M1:

K1ðqÞ ¼ m2
1δP1;0 þ jqj2Paðjqj2Þ; ð6Þ

L1ðqÞ−1 ¼
P1

jqj2 þ Pbðjqj2Þ; ð7Þ

M1ðqÞ2 ¼ P1 þ jqj2Pcðjqj2Þ; ð8Þ

where Pa, Pb, Pc are polynomials in jqj2, P1 is a constant,
and m1 is a mass that must vanish unless P1 ¼ 0. If we
compute the Coulomb interaction between a pair of charges
by Fourier transforming L1ðqÞ−1 we obtain

VðxÞ ¼ e1e2

�
P1

4πjxj þ Pbð−ΔÞδ3ðxÞ
�
: ð9Þ

Hence in order to have a long range interaction we require
P1 ≠ 0. We assume this going forward and can set P1 ¼ 1.
We then find the following properties: (i) there is an exact
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∼1=r Coulomb potential at large distances (plus negligible
contact interactions), (ii) the photon is necessarily gapless,
and (iii) we can integrate up the constitutive relationship (5)
over all space and find global (though usually not local)
charge conservation.

V. SOFT GAUGE INVARIANCE

The above 2 → 2 exchange can be obtained from a
complete theory that allows for external photons. By
introducing creation and annihilation operators to describe
multiparticle states and Fourier transforming to position
space ðϵiðqÞâq þ ϵ�i ðqÞâ†−qÞ=

ffiffiffiffiffiffiffiffi
2Eq

p
→ AiðxÞ, we can con-

struct the following Lagrangian density for spin 1 fields,

L ¼ 1

2
j _Aj2 − 1

2
∇ ×A ·K1ð−ΔÞ∇ ×AþA · J − ϕρ

þ 1

2
ϕL1ð−ΔÞϕþ _A ·M1ð−ΔÞ∇ϕþ λð∇ ·AÞ2;

ð10Þ

where K1ð−ΔÞ≡ K1ð−ΔÞ=ð−ΔÞ and M1ð−ΔÞ≡
L1ð−ΔÞM1ð−ΔÞ=ð−ΔÞ. One can check that this gives
precisely the exchange action in (4). Note that we have
included a Lagrange multiplier λ to project out the
longitudinal mode of A.
Now locality restricts the form of K1, L1, M1 to that

given above in Eqs. (6)–(8). If we focus on only the
terms with the lowest number of spatial derivatives, we
see that the kinetic term for the spin 1 field organizes into
L2 ¼ 1

2
j _Aþ∇ϕj2 − c2

2
j∇ ×Aj2 and the theory becomes

endowed with a gauge invariance

Aμ ≡ Aμ þ ∂μα ðslowly varying αÞ ð11Þ

(combined with familiar gauge transformations for the
matter sector) with Aμ ≡ ð−ϕ;AÞ for slowly varying α,
which we refer to as soft gauge invariance.
A similar result holds for spin 2 particles, where we can

again Fourier transform ðϵijðqÞâq þ ϵ�ijðqÞâ†−qÞ=
ffiffiffiffiffiffiffiffi
2Eq

p
→

hijðxÞ. In this case we need to first introduce a non-
dynamical scalar h00 to mediate a long ranged Newtonian
force, and secondly we need a nondynamical vector h0i.
Together they allow the theory to avoid instantaneous
action at a distance when introduced appropriately, with
similar properties to the above: (i) an exact ∼1=r
Newtonian potential at large distances and (ii) a gapless
graviton with K2ðqÞ ¼ c2gjqj2 þ � � �. Moreover, all are
organized into a 4 × 4 symmetric matrix hμν, again
endowed with a soft gauge invariance (see the Appendix)

hμν ≡ hμν þ ∂μαν þ ∂ναμ ðslowly varying αμÞ: ð12Þ

Intuitively, the presence of the soft gauge invariance is
required to ensure that the nondynamical fields are mixed

with the propagating degrees of freedom such that long
range forces inherit the finite speed of propagation of the
spin 2 or spin 1 particles.

VI. SPIN 1 INTERACTING THEORIES

For spin 1, we can construct various Lorentz violating,
but local Lagrangians. If we truncate to just two derivatives,
then in fact we obtain exact gauge invariance. As an
example, consider the following Lagrangian for massless
spin 1 coupled to multiple species of fermions,

L ¼ −
1

4
ημαηνβFμνFαβ þ

X
n

ψ̄nðiγμnDμ −mnÞψn; ð13Þ

where Dμψn ¼ ∂μψn − ienAμψn is the usual covariant
derivative and the matrices fγμn; γνng ¼ 2ημνn encode arbi-
trary limiting speeds of propagation cn as follows:

ημνn ¼ diagð1;−c2n;−c2n;−c2nÞ; ð14Þ

which violate Lorentz (but not gauge) invariance.
We note that this Lorentz violating construction carries

over immediately to Yang-Mills fields by simply dressing
up the spin 1 gauge fields with color indices and intro-
ducing a Lie algebra structure to encode self-interactions in
the usual way. Furthermore, this can be used to introduce
various forms of Lorentz violation in the standard model at
the dimension 4 level [1,2].

VII. SPIN 2 INTERACTING THEORIES

For spin 2, it is significantly more complicated to
construct consistent theories. One possibility is to simply
couple the linearized Riemann tensor Rμναβ directly to
matter [5,6]. These models typically have problems with
causality [6,7], but in any case do not mediate long range
forces, and are not further explored here. Instead we
explore leading order interactions. We know that one
can introduce a consistent theory if one assumes the
Lorentz symmetry, as this leads to general relativity.
But, if we do not assume the Lorentz symmetry, then there
are many challenges and open questions: (i) Does the
propagation speed of the matter sector need to agree with
the propagation speed of the graviton? (ii) What restrictions
are placed on a general dispersion relation E2

n ¼ ~KnðpnÞ for
the matter particles? (iii) What changes occur if we include
various types of matter species, fermions and gauge/vector
bosons? (iv) What constraints apply to the graviton’s
dispersion relation? (v) What possible structures could
we utilize to build a consistent theory, including conserved
currents? (vi) Is the equivalence principle still required for
consistency?
In order to address these questions in a systematic

fashion, we utilize Weinberg’s technique of studying a
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generic scattering process involving the emission of a soft
graviton [4].

VIII. SOFT GRAVITON EMISSION

Consider general scattering processes involving N þ 1
external particles including a graviton. The amplitude
MNþ1 is known to simplify in the soft graviton limit;
namely it factorizes into the amplitude MN for N particles
times a piece describing the emission of the graviton from
an external leg, as depicted in Fig. 1, as follows:

MNþ1 ¼ MN ×

�X
i

ϵμνðqÞT μν
i ðpiÞ

ðEi − EqÞ2 − ~Kiðpi − qÞ

þ
X
f

ϵμνðqÞT μν
f ðpfÞ

ðEf þ EqÞ2 − ~Kfðpf þ qÞ

�
; ð15Þ

where ϵμνðqÞ is the polarization matrix of the outgoing soft
graviton, T μν

n ðpnÞ is some matrix associated with the nth
matter particle that the graviton is coupled to, the i subscript
refers to initial particles, and the f subscript refers to final
particles. Note that we have taken each interaction vertex to
involve the same virtual and external particles. If this were
not the case and the two particles had different dispersion
relations, then the virtual particle would be highly off shell
and would not contribute appreciably to the above sum in
the soft limit. It is important to note that the above
factorization has nothing to do with Lorentz invariance:
In the soft limit, the denominators in Eq. (15) are
approaching 0 as the emitting particle is going on shell
and the contribution diverges. On the other hand, for any

process that does not factorize, namely from emission from
particles in the shaded circle of Fig. 1, the contribution does
not diverge as such particles do not go on shell even in the
soft limit.

IX. CONSTRAINT FROM LOCALITY
AND UNITARITY

According to the soft gauge transformation rule, in order
for the scattering amplitude to be associated with a local
and unitary theory, it must be left unchanged under the
transformation

ϵμνðqÞ → ϵμνðqÞ þ qμ ~αν þ qν ~αμ ðsoft ~αμÞ ð16Þ

where qμ ¼ ðEq;−qÞ is the graviton’s 4-momenta and ~αμ
has soft support. This ensures that the longitudinal modes
are consistently removed and not being sourced by T μν

n . We
note that even though we have only established the gauge
invariance for the leading number of derivatives, this is all
we need in the soft graviton limit, as such higher derivative
terms are irrelevant in this limit. (The reader is directed to
Refs. [8,9] for more discussion on tracking relevant
operators in non-Lorentz invariant theories).
Furthermore, in the soft limit the respective denomina-

tors of (15) can be simplified by Taylor expanding to
OðEq;qÞ in the graviton’s momentum. The need for soft
gauge invariance leads to the constraint

X
i

qμT
μν
i ðpiÞ

qαζαi ðpiÞ
¼

X
f

qμT
μν
f ðpfÞ

qαζαfðpfÞ
; ð17Þ

where ζαnðpnÞ is a type of “momentum” with an upstairs
index; more precisely it is

ζαnðpnÞ≡
�
En;

1

2

∂ ~Kn

∂p
����
pn

�
: ð18Þ

Now Eq. (17) must be valid for any graviton momentum,
regardless of its direction and for any set of momenta for
the particles. The only way this is possible is for the
graviton momenta qα to cancel out of numerator and
denominator. It is easy to see that this is only possible if
the matrix T μν

n ðpnÞ that the graviton momenta is contracted
with must be proportional to the ζαn vector in each of its
indices. The most general form of T μν

n ðpnÞ is therefore
T μν

n ðpnÞ ¼ gnðEnÞζμnðpnÞζνnðpnÞ; ð19Þ
where we have allowed for a prefactor gn that can depend
on any property of the nth particle that is a scalar under
rotations, including energy. Inserting this into (17) gives the
conservation laws

X
i

giðEiÞζνi ðpiÞ ¼
X
f

gfðEfÞζνfðpfÞ: ð20Þ

FIG. 1. General scattering process involving N external par-
ticles (solid lines) with general dispersion relations E2

n ¼ ~KnðpnÞ
and a soft graviton (wiggly line) with infrared dispersion relation
E2
q ¼ c2gjqj2 þ � � �.
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X. DISPERSION RELATION

The ν ¼ 0 conservation law is
P

igiðEiÞEi ¼P
fgfðEfÞEf. Since the only conserved scalars are

the energy itself and charges, the function gn must take
the form

gnðEnÞ ¼ κ þQn

En
; ð21Þ

where κ is a universal coupling and Qn is some charge
associated with the nth particle. The ν ¼ i conservation
law is

X
i

giðEiÞ
∂ ~Ki

∂p
����
pi

¼
X
f

gfðEfÞ
∂ ~Kf

∂p
����
pf

: ð22Þ

Now the only conserved 3-vectors are the 3-momentum and
angular momentum of the particles. But since ∂ ~K=∂p must
be parallel to the 3-momentum, this is the only viable
option. Hence we have

gnðEnÞ
∂ ~Kn

∂p
����
pn

¼ apn; ð23Þ

where a is some universal coefficient. Using (21) and
the fact that on-shell ~Kn ¼ E2

n, we can integrate up this
equation to give

κE2
n þ 2QnEn ¼

a
2
jpnj2 þ bn; ð24Þ

where bn is some constant of integration.

XI. GALILEAN SYMMETRY?

To explore this dispersion relation, let us begin by
considering the special case in which κ ¼ 0. By dividing
throughout by the charge Qn we obtain

En ¼
jpnj2
2Mn

þ ~bn; ð25Þ

where Mn ≡ 2Qn=a and ~bn ≡ b=ð2QnÞ. Hence we dis-
cover the dispersion relation of Newtonian mechanics, and
since the coupling gn ∝ Mn, we see a connection to
Newtonian gravity. Furthermore we see that the mass of
particles is required to be conserved as it is the rescaled
conserved charge Mn ∝ Qn. So in fact (25) is the most
general structure compatible with Galilean symmetry.

XII. LORENTZ SYMMETRY

The above κ ¼ 0 option that leads to Galilean symmetry
among the matter sector is only a viable option if one
restricts attention to processes in which all gravitons are

taken to zero momentum. However, we are also allowed to
consider hard gravitons as part of the N particles partici-
pating in the scattering process, in addition to the one soft
graviton. Since gravitons exchange momentum with the
rest of the particles, they are required to be part of the
momentum conservation law, and hence the dispersion
relation (24) must apply to gravitons too. Since the
gravitons have E2

q ¼ c2gjqj2 þ � � � at low momenta, then
self-consistency demands that

κ ≠ 0 and a ¼ 2κc2g ð26Þ

and Qg ¼ bg ¼ 0 for the graviton. We then discover that
not only does the graviton’s dispersion relation start linear
for small momenta, it is required to stay exactly linear for
all momenta.
Furthermore, for any particles that carry nonzero charge

Qn, we can always absorb the charge into the definition of
the energy by the replacement

En → En −
Qn

κ
; ð27Þ

since this maps a conserved energy into another conserved
energy. Then without loss of generality the dispersion
relation for all particles can be put into the form

E2
n ¼ jpnj2c2g þm2

nc4g: ð28Þ

So we find that the graviton’s speed cg sets a universal
speed limit, and we can replace cg → c. Hence we discover
the complete and most general energy-momentum relation
allowed is that of the familiar special relativistic form.
Then by noting that energy is the generator of time

translations and momentum is the generator of spatial
translations, we readily obtain that ds2 ≡ c2dt2 − jdxj2
is invariant. This provides the hyperbolic structure of
Minkowski space, boost invariance, and the Lorentz trans-
formations. This goes a long way toward constructing
special relativity from the ground up.

XIII. SOFT PHOTON EMISSION

One may compare the above analysis to theories only
involving particles with spin s ≤ 1. It is well known that
with a massless spin 1 particle, which we refer to as a
“photon”, requiring consistent soft scattering is still highly
constraining [4].
If we consider a soft outgoing massless spin 1 particle

with matter obeying an arbitrary dispersion relation, then
the matrix element is still given by (15) with the replace-
ment ϵμνðqÞT μν

n ðpnÞ → ϵμðqÞJ μ
nðpnÞ. Here ϵμðqÞ is the

polarization vector of the outgoing soft photon and J nðpnÞ
is some vector associated with the nth matter particle. The
locality and unitarity constraint for the soft photon
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ϵμðqÞ → ϵμðqÞ þ qμ ~α ðsoft ~αÞ ð29Þ

then leads to a version of (17) with T μν
n ðpnÞ → J μ

nðpnÞ in
the numerator, namely

X
i

qμJ
μ
i ðpiÞ

qαζαi ðpiÞ
¼

X
f

qμJ
μ
fðpfÞ

qαζαfðpfÞ
: ð30Þ

In order for this to be satisfied for any photon and matter
momenta, we need qμ to cancel out, which requires

J μ
nðpnÞ ¼ fnðEnÞζμðpnÞ; ð31Þ

where again we have allowed for a prefactor fn that is some
scalar under rotations. Inserting this into (30) gives the
single conservation law

P
ifiðEiÞ ¼

P
fffðEfÞ. Again

using the fact that the only conserved scalars are charges
and energy, we have the general solution

fnðEnÞ ¼ en þ
En

M
; ð32Þ

where en is a charge and M is some universal mass scale.
In the language of Lagrangians, these terms are asso-

ciated with the interaction terms

ΔLint ¼ AμJμ þ
1

M
AμT

μ
0; ð33Þ

where the first term is the familiar coupling of the photon
to a current and the second (Lorentz violating) term
couples the photon to the time components of the
energy-momentum tensor. We do not know if the second
term possesses a nonlinear completion, but we do not focus
on this term here. What is most important is that the
dispersion relation has completely dropped out of this
analysis, and hence one can couple (at least using the AμJμ

term) a massless photon to any Lorentz violating ~Kn (an
example was seen earlier in Eqs. (13) and (14)). On the
other hand, this is impossible when spin 2 is included.

XIV. DISCUSSION

An interesting suggestion made in [10] is that the
Lorentz symmetry might emerge as an accidental symmetry
associated with massless spin 2 particles. In that work, only
the graviton with only a 2 derivative action was studied. In
this work, we have shown that even with an arbitrary
number of matter species and higher derivatives, the
relativistic dispersion relation must be exact in the IR
and UV, rather than merely accidental.
It remains to be proven if all higher order interaction

terms with matter must necessarily obey the Lorentz
symmetry and to construct the entire Einstein-Hilbert
action with matter species, but we believe it is impressive

that the leading order interactions and the free sector are
forced to carry the Lorentz symmetry exactly.
Moreover, there are plausible reasons why typical

interactions may be Lorentz invariant: (i) Suppose we
consider a bosonic field that acquires some condensate
configuration, plus small fluctuations ϕ ¼ ϕc þ δϕ. Then
consider configurations where the length and time scale
over which the condensate changes is slow compared to
the soft graviton. Then from our work, the fluctuations
should be found to be described by a Lorentz invariant
theory, as they look like free fields at the quadratic
order. This usually only arises from a fully Lorentz
invariant interaction term to begin with. (ii) Non-Lorentz
invariant interaction terms may renormalize lower dimen-
sion operators and be inconsistent with the relativistic
dispersion relation derived here. (iii) It is possible that
any Lorentz violating process is merely spontaneous
breakdown.
Finally, our result that any local and unitary effective

theory (in a universe like ours that includes gravity) must
obey the special relativistic dispersion relation exactly,
brings into serious question the viability of various proposed
modifications of special relativity. Some examples include
(i) the Lorentz violating construction of the standard model
[1,2], (ii) Lorentz violating constructions of quantum gravity,
such as Horava-Lifschitz [11] (we note that such construc-
tions have been shown to either involve strong coupling
problems, or vacuum instability [12,13], which is compatible
with our work as we implicitly assume weak coupling and
expand around a well-behaved vacuum, or the construction
is in indeed nonlocal; the theory may be better behaved in
2þ 1 dimensions [14], which is again compatible with our
work, as there are no bulk gravitons in low dimensions),
(iii) the construction of various deformed versions of
relativity [15,16], and (iv) some alternatives to inflation
that appeal to an arbitrarily widened light cone at high
energies [17].
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APPENDIX: SPIN 2 ANALYSIS

Here we extend the locality analysis to the spin 2 case.
The most general interaction from tree-level graviton
exchange is

ΔS ¼
Z

d4q
ð2πÞ4

�
~τij

rikrjl − 1
2
rijrkl

ω2 − K2ðqÞ
~τ�kl þ

2~πi ~π
�
i

N2ðqÞ

−
~σ~τ�ii

R2ðqÞ
−
1

2

~σ ~σ�

L2ðqÞ
−
1

2

ω2 ~σ ~σ�

jqj2L0
2ðqÞ

�
; ðA1Þ
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where rij ≡ δij −
qiqj
jqj2 . For nonlocalities to cancel, we

need the constitutive relations: qi ~τij ¼ M2ðqÞω ~πi and
qi ~πi ¼ M0

2ðqÞω ~σ. Imposing locality we find that these
functions must be related to polynomials as

K2ðqÞ ¼ m2
2δP2P0

2
;0 þ c2gjqj2 þ jqj4Pdðjqj2Þ; ðA2Þ

N2ðqÞ−1 ¼
P2

jqj2 þ Peðjqj2Þ; ðA3Þ

R2ðqÞ−1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
P2P0

2

p
jqj2 þ Pfðjqj2Þ; ðA4Þ

L2ðqÞ−1 ¼
c2gP2P0

2

jqj2 þ Pgðjqj2Þ; ðA5Þ

L0
2ðqÞ−1 ¼

P2P0
2

jqj2 þ Phðjqj2Þ; ðA6Þ

M2ðqÞ2 ¼ P2 þ jqj2Piðjqj2Þ; ðA7Þ

M0
2ðqÞ2 ¼ P0

2 þ jqj2Pjðjqj2Þ: ðA8Þ

So a long range force requires c2gP2P0
2 ≠ 0. Hence the

graviton must be massless, and we can set P2 ¼ P0
2 ¼ 1,

and we need cg ≠ 0. By Fourier transforming to the local
field representation ðϵijðqÞâqþϵ�ijðqÞâ†−qÞ=

ffiffiffiffiffiffiffiffi
2Eq

p
→hijðxÞ,

we can construct the following Lagrangian:

L ¼ 1

2
j _hj2 − 1

2
∇ × h ·K2ð−ΔÞ∇ × hþ hijτij þ 2ψ iπi

þ ϕσ þ 1

2
∇ψ ·N 2ð−ΔÞ∇ψ þ∇ψ ·M2ð−ΔÞ _h

þ ϕR2ð−ΔÞ∇∇ · hþ λð∇ · hÞ2: ðA9Þ

For ease of notation, we have defined the dot product
between two matrices as A · B≡ AijBij − AiiBjj. The
functions here are related to the above as K2ð−ΔÞ≡
K2ð−ΔÞ=ð−ΔÞ, N 2ð−ΔÞ≡ N2ð−ΔÞ=ð−ΔÞ, M2ð−ΔÞ≡
M0

2ð−ΔÞR2ð−ΔÞ=ð−ΔÞ, and R2ð−ΔÞ≡ R2ð−ΔÞ=ð−ΔÞ.
Demanding that the spin 2 exchange arises from an action
places further consistency conditions on the functions L−1

2 ¼
K2=R2

2, L
0
2
−1 ¼ 4M0

2
2=N2−3jqj2=R2

2, andM2 ¼M0
2R2=N2.

Note that in our convention, the gravitational couplings are
included in the sources τij, πi, σ.
We then find that to leading order in a derivative

expansion, the first, second, sixth and seventh terms in

(A9) assemble into L2 ¼ 1
2
j _hþ∇ψ j2 − c2g

2
j∇ × hj2, which

is invariant under the gauge transformation hij → hij þ
∇ðiαjÞ, ψ i → ψ i − _αi. Likewise, the seventh and eighth
terms in (A9) are invariant under the gauge transformation
ψ i → ψ i −∇iα0, ϕ → ϕþ _α0 (up to a total derivative). A
4 × 4 matrix hμν can then be assembled as h0i ¼ −ψ i,
h00 ¼ ϕ, and we obtain soft gauge invariance, as reported
in Eq. (12).
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