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We examine the effect of a wiggly cosmic string for both massless and massive particle propagation
along the string axis. We show that the wave equation that governs the propagation of a scalar field in the
neighborhood of a wiggly string is formally equivalent to the quantum wave equation describing the
hydrogen atom in two dimensions. We further show that the wiggly string spacetime behaves as a
gravitational waveguide in which the quantized wave modes propagate with frequencies that depend on the
mass, string energy density, and string tension. We propose an analogy with an optical fiber, defining an
effective refractive index likely to mimic the cosmic string effect in the laboratory.
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I. INTRODUCTION

The thermal history of the Universe started 14 billion
years ago with an extremely hot and dense quark-gluon
plasma that cooled down in the inflation era. As a conse-
quence, it has undergone a succession of phase transitions
involving spontaneous symmetry-breaking (SSB) mecha-
nisms. Below an energy scaleMGUT ∼ 1016 GeV, the strong
forces are represented by the three-fold color symmetry,
associated with the gauge group SUð3Þcolor, whereas the
weak and electromagnetic forces are mixed into the electro-
weak interaction, represented by weak isospin symmetry
(gauge group SUð2ÞL) and hypercharge symmetry (gauge
group Uð1ÞY) [1]. This is the realm of the particle physics
standard model, which has been tested to a very high
precision. AboveMGUT, strong and electroweak interactions
unify within a larger gauge symmetry group G where grand
unified theories involving supersymmetry (SUSY GUT)
have been considered as suitable description for such energy
scales [2–4].
As is well known in condensed matter physics (CMP),

spontaneously symmetry breaking (SSB) lead to phase
transitions which often give rise to the appearance of

topological defects. Interestingly, a mechanism originally
proposedbyKibble [5] todescribe the birth anddynamicsof a
network of defects in a cosmological context revealed to be
relevant in the condensed matter realm, for example in liquid
crystals. [6]. To determine what kind of topological defect
emerges for agivenSSBtransitionG → H, onemaystudy the
content of homotopy groups πkðG=HÞ of the vacuum mani-
fold M¼G=H [7]. If πkðG=HÞ≠0, defects of dimension
2 − k are formed: for k ¼ 0, defects are 2D (grain boundaries
in CMP, domain walls in cosmology), for k ¼ 1, defects are
linelike (disclinations or dislocations in CMP, cosmic strings
in cosmology) and for k¼2, defects are pointlike (e.g.,
hedgehogs in CMP, monopoles in cosmology…).
Even though the SUSY extension to the standard model

still has to pass experimental verification (the first run of the
LHC found no evidence for supersymmetry), it provides a
route to the formation of cosmic strings. In a seminal paper,
Jeannerot et al. [8] examined all possible SSB patterns
from the large possible SUSY GUT gauge groups down to
the standard model SUð3Þcolor × SUð2ÞL ×Uð1ÞY and con-
cluded that cosmic string formation was unavoidable.
Another possibility for cosmic string generation is brane
inflation [9]. Cosmic strings, seen as lower-dimensional
D-branes which are one-dimensional in the noncompact
directions, may have been abundantly produced by brane
collision toward the end of the brane inflationary period [10].
Despite all theoretical justifications for the existence of

cosmic strings, the observational evidence is still feeble and
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mostly indirect. Nevertheless, the search for cosmic strings is
very active and it happens in such diverse fronts as the cosmic
microwave background [11] and gravitational wave bursts
[12]. As warned by Copeland andKibble [13], “Both cosmic
strings and superstrings are still purely hypothetical objects.
There is no direct empirical evidence for their existence,
though there have been some intriguing observations that
were initially thought to provide such evidence, but are now
generally believed to have been false alarms. Nevertheless,
there are good theoretical reasons for believing that these
exotic objects do exist, and reasonable prospects of detecting
their existence within the next few years.”
In this paper, we study the dynamics of particles in the

vicinity of a wiggly cosmic string. Regular straight strings
are linear defects for which the geometry is globally that of
a cone and therefore, spacetime is locally flat, except on
string axis. Indeed, for such objects, the line tension T0

exactly matches the energy density per unit length μ0, such
that straight strings do not gravitate. Recent data on the
cosmic microwave background collected from PLANCK
satellite have not confirmed the existence of these objects
yet, but they have set upper boundaries on their mass-
energy density [14] Gμ0 < 10−7 (c ¼ 1). Refined models
for cosmic strings may involve small-scale perturbations
such as kinks and wiggles [15]. The presence of wiggles
generates a far gravitational field contribution which may
be responsible for an elliptical distortion of the shape of
background galaxies [16,17] or for the accretion of dark
energy around the defect [18]. Averaging the effect of these
perturbations along a string increases the linear mass
density ~μ and decreases the string tension ~T, respecting
the equation of state [19,20] ~μ ~T ¼ μ20, leading the wiggly
string to exert a gravitational pulling on neighboring
objects. In the weak-field approximation, the linearized
line element representing the spacetime of a wiggly string
oriented along the z-axis is given by [15,21]:

ds2 ¼ −ð1þ 8ε ln ðr=r0ÞÞdt2 þ dr2 þ α2r2dθ2

þ ð1 − 8ε ln ðr=r0ÞÞdz2: ð1Þ

Here, α2 ¼ 1–4Gð ~μþ ~TÞ, where 4Gð~μþ ~TÞ ≪ 1 meaning
that conical deficit angle 4Gπð ~μþ ~TÞ associated to the string
is very small. Theparameter ε is defined as the excess ofmass-
energy density, 2ε ¼ Gð ~μ − ~TÞ. It must be emphasized that
Gð ~μþ ~TÞ and ε are two independent parameters: the former
accounts for the discrepancy between flat and conical
geometries, whereas the latter accounts for the discrepancy
between straight and wiggly strings. The constant r0 denotes
the effective string radius [22]. In the remainder of this work,
propagation of particles will be considered only within the
region r0 < r ≪ r0e1=8ε, in order to avoid the logarithmic
divergence at small and large distances from the defect.
Hence, h00 ¼ 8ε ln ðr=r0Þ ¼ OðεÞ ≪ 1.

In the next sections of this work, the wave equation for
propagation along the string axis is numerically solved in
the background spacetime given by metric (1). The proper-
ties of the radially bound states and the dispersion relations
are examined in detail for both massless and massive
particles. Then an analogy with light propagation in an
optical fiber is performed to design a system likely to
mimic the effect of a cosmic wiggly string in laboratory.

II. MASSLESS PARTICLE PROPAGATION

In a plane perpendicular to the wiggly string, light
propagates in the same way as in the vicinity of a regular
straight string [15], that is without experiencing any
gravitational force. On the contrary, when the direction
of propagation is not perpendicular to the string, the
wiggly string exerts gravitational pulling on light passing
by, as the background spacetime is not locally Euclidean.
Consequently, the wave equation governing propagation of
a scalar field in this background geometry needs to account
for its curvature. This is done by using the 4-dimensional
Laplace-Beltrami operator in the wave equation

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞΦ ¼ 0; ð2Þ

where Φ ¼ Φðr; θ; z; tÞ is the scalar wave amplitude and
g ¼ detðgμνÞ with the metric tensor gμν coming from metric
(1). In terms of the metric (1), this gives

− ð1 − h00Þ∂2
tΦþ 1

r
∂rðr∂rÞΦþ 1

α2r2
∂2
θΦ

þ ð1þ h00Þ∂2
zΦ ¼ 0. ð3Þ

As the field is single-valued, Φ has to be periodic in θ:

ΦðθÞ ¼ Φðθ þ 2πÞ: ð4Þ
To solve equation (3) we make the ansatz

Φðr; θ; z; tÞ ¼ eilθeiðωt−kzÞRðrÞ; ð5Þ
where the wave vector k ∈ R, l ¼ 0;�1;�2… specifies
the angular momentum and ω is an angular frequency.
Substituting the general solution (5) into Eq. (3), we get

−
1

r
d
dr

�
r
dR
dr

�
þ l2

α2r2
Rþ h00ðω2 þ k2ÞR

¼ ðω2 − k2ÞR: ð6Þ
Defining the dimensionless variables ρ ¼ r=γ, ρ0 ¼ r0=γ,
where γ ¼ ½8εðω2 þ k2Þ�−1=2, then multiplying (6) by
γ2 ∼Oðε−1Þ and rearranging terms gives the eigenvalue
equation:

−
1

ρ

d
dρ

�
ρ
dR
dρ

�
þ
�

l2

α2ρ2
þ ln

ρ

ρ0

�
R ¼ ζ̄R ð7Þ
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with

ζ̄ ¼ 1

8ε

ω2 − k2

ω2 þ k2
: ð8Þ

We note that the potential behaving logarithmically, the
energy scale cannot be fixed at infinity and we work in the
following with ω-dependent length units such that ρ0 ¼ 1.
Equation (7) is formally equivalent to the Schrödinger
equation that describes the hydrogen atom in the 2D
Coulomb potential. Hence, the potential term in Eq. (7),
Veff ¼ l2

α2ρ2
þ ln ρ

ρ0
(see Fig. 1) only accommodates for

bound states [23–25]. As a consequence, in the geometrical
optics limit, trajectories are radially bounded helices around
the string, as appears in Fig. 2, explicitly showing the
gravitational pulling by the string. This is in agreement with
Ref. [26], where geodesics near a Brans-Dicke wiggly
cosmic string were also found to be bounded. The mini-
mum and maximum radii are solutions of the transcenden-
tal equation ζ̄ ¼ Veff whereas the pitch is given by the ratio

between the angular and effective linear momenta l
k. In the

case of l ¼ 0 the trajectory is rectilinear and parallel to the
string.
In order to solve Eq. (7), we used a finite difference

method [27–29] and computed numerically the radial part
of the waves traveling along the wiggly string with their
corresponding eigenvalues. The different states are labeled
by quantum numbers n (radial quantum number) and l. In
Fig. 3, we plot the lowest three eigenvalues ¯ζnl of the wave

FIG. 1. Effective potential, Veff (in units where ρ0¼1), for l¼2.
The horizontal solid line represents the ground state ζ̄ at that
value of l.

FIG. 2. Possible ray paths corresponding to the geometric
optics limit of a scalar wave propagating along the wiggly string:
(a) when the “total energy” ζ̄ is at the minimum of the effective
potential and (b) at some point above it.

FIG. 3. Wave modes for the first lowest eigenvalues n ¼ 1, 2, 3
of Eq. (7) for each l ¼ 0, 1, 2.
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equation (7) and the corresponding radial wave amplitudes
RnlðρÞ for l ¼ 0;�1;�2.
From Eq. (8) we see that the wave modes that propagate

along the wiggly string axis are quantized by n and l. It has
been suggested that cosmic structures with a nonvanishing
Newtonian potential could generally behave as gravita-
tional waveguide for light and massive particles [30,31]
and we examine this proposition in the following. The
dispersion relation is given by:

ω2
nl ¼

1

n21
k2 ð9Þ

where

n1 ¼
�
1 − 8ε ¯ζnl
1þ 8ε ¯ζnl

�
1=2

ð10Þ

is an effective refractive index. From Eq. (9) we see that
modes are propagative along the string provided that the
following requirement is fulfilled:

0 < ζ̄nl <
1

4Gð ~μ − ~TÞ : ð11Þ

This constraint establishes that the number of wave modes
propagating along the wiggly string is large but finite as in
an ordinary electromagnetic waveguide. As we would
expect, we find that the allowed modes, besides being
quantized by n and l, their frequency also depend on both
the energy density and the tension of the string.

III. PROPAGATION OF MASSIVE PARTICLES

Since light propagating along a wiggly string is radially
confined, as seen in the previous section, it is interesting to
investigate what happens to massive particles under the
same circumstances. In order to study this possibility we
write the Klein-Gordon equation (ℏ ¼ 1) in the wiggly
string background geometry:�

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞ −m2

�
Φðr; θ; z; tÞ ¼ 0; ð12Þ

where now Φ is a complex scalar field describing spinless
relativistic particles. Using the ansatz given in Eq. (5) in
Eq. (12), and following the same procedures used above in
the case of massless particles propagation, we arrive to an
identical eigenvalue equation as (7), but with eigenvalues
given by

Ēnl ¼
1

8ε

ω2 − k2 −m2

ω2 þ k2
; ð13Þ

thus the wave functions RnlðρÞ and the eigenvalues Ēnl
are numerically identical to the solution of the Eq. (7) (see
Fig. 3). In addition, the discussion on the geometric optics
limit of the propagating massless field is still valid for

massive particles. However, inclusion of the mass term in
the dispersion relation now introduces a cutoff:

ω2
nl ¼

1

n22
k2 þ ω2

c ð14Þ

where n2 is an effective refractive index defined by

n2 ¼
�
1 − 8εĒnl

1þ 8εĒnl

�
1=2

; ð15Þ

which has an identical generic form than n1, and

ω2
c ¼

m2

1 − 8εĒnl
ð16Þ

is a cutoff frequency. The dispersion relation (14) presents a
forbidden band as it occurs for electromagnetic waves
propagating in an unmagnetized plasma [32]. The wave
will propagate along the string when its frequency is larger
than the cutoff frequency, ωc, otherwise solutions appear
as evanescent waves. At high frequencies, ω ≫ ωc, we
recover the massless dispersion relation (9) as seen in
Fig. 4. Moreover, the constraint

0 < ¯Enl <
1

4Gð~μ − ~TÞ ; ð17Þ

like in the massless case, sets a limit to a finite number of
propagating modes. Besides the dependence on the density
of energy and tension of the wiggly string, the allowed
propagating modes also depend on the mass of the particle.
There is obviously a strong similarity between the

propagation of both massless and massive scalar fields
along a wiggly cosmic string and the propagation of
electromagnetic waves in optical waveguides. In the next
section, we further explore this analogy by proposing a way
of designing an optical fiber that mimics the wiggly string
in the context described above.

FIG. 4. The angular frequency ωnl in terms of the wavelength k
for different values of n1 and n2. While the dashed lines
corresponding to massless particles are obviously linear and the
solid lines which correspond to the massive case have a quadratic
start, both cases are fixed by mode-dependent parameters.
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IV. ANALOGUE OPTICAL WAVEGUIDE

The analogy between 3D gravity and optics is an old
topic that started with the pioneering works of Gordon on
Fresnel dragging effect in moving dielectrics [33].
Recently, artificial optical materials (metamaterials) have
been proposed as a way to mimic aspects of curved
spacetime in the laboratory. For instance, by manipulating
the effective refractive index of the medium, Sheng et al.
[34] were able to reproduce gravitational lensing and
trapping of light (see also [35]). Incidentally, electronic
metamaterials may also be used to simulate peculiar
spacetime conditions, like a discontinuous Lorentzian to
Kleinian metric signature change [36] which has also been
modeled by optical metamaterials [37]. Liquid crystals, as
well, have been used to simulate straight cosmic strings
[38] and the Schwarzschild spacetime [39]. On the other
hand, it has been proposed that, by spatially varying the
doping concentration, the refractive index profile of optical
fibers can be used to control optical transmission in a
designer-specified way [40]. Following this standpoint, we
investigate the proposition of a graded-index optical fiber
that reproduces some of the properties of the scalar field
propagation along a wiggly string.
In general, the wave equations for electromagnetic waves

propagating along a circular fiber are coupled [32]. This
implies that there is no separation into purely TE or TM
modes but, in the specific case of a fiber with an
azimuthally symmetric refractive index, if the fields have
no dependence on the azimuthal angle, the equations
uncouple into separate scalar wave equations of the form

�
1

r
∂
∂r

�
r
∂
∂r

�
þ ∂2

∂z2 þ n2ðrÞω2

�
Φ ¼ 0; ð18Þ

where ω is the angular frequency, nðrÞ is the optical fiber
refractive index and ReðΦÞ represents any real component
of the field. For waves propagating along the optical
fiber (z-direction), the ansatz Φðr; zÞ ¼ e−ikzRðrÞ, (where
k ∈ R) substituted into Eq. (18) gives

−
1

r
d
dr

�
r
dR
dr

�
− n2ðrÞω2Rþ k2R ¼ 0: ð19Þ

Here, we choose the refractive index to be given by

nðrÞ ¼
�
1 −Ω ln

r
r0

�
1=2

; ð20Þ

with the dimensionless parameter Ω ≪ 1 in order to be
consistent with the wiggly string parameter ε. The quantity
r0 is considered to be much smaller than the radius rf of the
fiber and defines an opaque core radius. This way, by
considering propagation in the region r0 < r < rf, the
logarithmic singularity at r ¼ 0 is avoided. Like in the

previous sections, we change r to dimensionless units by
doing the change of variables ρ ¼ r=ν, ρ0 ¼ r0=ν and
setting ν ¼ Ω−1=2ω−1. Then, the dimensionless equation
for the optical fiber can be written as:

−
1

ρ

d
dρ

�
ρ
dR
dρ

�
þ
�
ln

ρ

ρ0

�
R ¼ β̄nR; ð21Þ

where

β̄n ¼
1

Ω

�
1 −

k2

ω2

�
: ð22Þ

The radial amplitudes of the wave and their correspond-
ing eigenvalues in the optical fiber with the refractive index
given by Eq. (20) obey equations identical to the ones of
massless and massive particles propagating with l ¼ 0 in
the spacetime of a wiggly string. For a given z, the intensity
profiles for the propagating waves described by Eq. (7) are
given by 2πρR2

nlðρÞ. In Fig. 5, we plot the intensity
distribution for different wave modes, solutions of
Eq. (7). The optical fiber modes described by Eq. (21)
correspond to the cases where l ¼ 0.
Before ending this section, we remark that the coupled

equations for the electromagnetic field in the circular
optical fiber, in the more general case where the field
depends on the azimuthal angle but the refractive index
remains azimuthally symmetric, give rise to hybrid HE
modes (no longer TE or TM) [32]. The case of a step-index

FIG. 5. Intensity profiles for the first few solutions R2
nl of

Eq. (7), with n ¼ 1, 2, 3 and l ¼ 0, 1, 2. The profiles are disposed
as in a matrix where n and l give the line and column number,
respectively. The first column corresponds to the optical fiber
modes described by Eq. (21).
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fiber was studied in Ref. [41] which found the field to be of
the form RlðρÞeilθ, where Rl is a Bessel function. Even
though Eq. (7) is not a Bessel equation, its symmetries and
the shape of the numerical solutions shown in Fig. 3,
suggest that a solution in terms of an expansion on Bessel
functions might be rapidly convergent. The θ-dependence
of the scalar fields solutions, for l ≠ 0, is therefore
reminiscent of what happens in the circular optical fiber.
Also, it would be interesting to compare the coupled
electromagnetic vector field equations for a wave propa-
gating along a circular optical fiber with refractive index
given by Eq. (20) with the electromagnetic field equations
in the wiggly string background.

V. CONCLUSION

In this paper, we examined the effect of wiggly cosmic
strings on propagation of massless and massive fields. We
found that waves propagating along the string axis
experience the small-scale perturbations which make the
propagation qualitatively different from that of waves
propagating in the background spacetime with a unper-
turbed cosmic string. The nonvanishing Newtonian poten-
tial acts as an inhomogeneous dielectric medium so that the
massless particles are radially confined in a vicinity of the
defect axis. Therefore, the wiggly string spacetime behaves
as a gravitational waveguide in which wave modes are
quantized. These latter depend on the string energy density
and string tension. The number of allowed modes is finite
as in a ordinary optical waveguides. On the other hand, the
presence of wiggles cause gravitational pullings on massive
objects, making the waveguide effect to be also valid for
massive fields propagation. In this case, the frequencies of
the waves also depend on the mass of the particle.
Finally, we proposed the design of an optical fiber with a

nonhomogeneous refractive index profile likely to mimic
the effect of a perturbed cosmic string. The radial solutions
with the corresponding eigenvalues were found by using a
numerical method. Although we have considered here the

propagation of massive and massless scalar fields along a
wiggly string, the extension to vector fields like vector
bosons or the electromagnetic field can be of interest. In
particular, as a perspective for future work we mention the
study of propagating electromagnetic waves along the
wiggly string and a possible correspondence with an optical
fiber. This is more complex than the problem presented
here since the vector field equations are coupled and cannot
be reduced to scalar wave equations.
Another aspect of the optical fiber/wiggly string analogy

is whether a propagating electromagnetic wave along the
wiggly string could act as a tractor field on particles in the
string vicinity. This has been proposed recently in the realm
of negative index optical waveguides [42]: instead of being
pushed by radiative pressure, a polarizable particle in such
environment is attracted by the source of radiation. Even
though the requirement of a negative refractive index rules
out the wiggly string as such waveguide, a related linear
defect, the hyperbolic disclination [43], seems to be a
plausible mediator of this effect. The Kleinian signature of
its metric simulates a negative refractive index.
Networks of cosmic topological defects have been

proposed as models for solid dark matter [44]. This
suggests that one might explore the optical implications
of a network of wiggly strings. For instance, for a periodic
array of strings one might expect some of the properties of a
photonic crystal, like the appearance of band gaps in the
dispersion relation, which limit the propagation to the
allowed regions of the spectrum. This is presently under
investigation and will be the subject of a future publication.

ACKNOWLEDGMENTS

F.M. is grateful to U. Lorraine, FACEPE, CNPq and
CAPES for financial support. F. A. thanks the Collège
Doctoral “L4 collaboration” (Leipzig, Lorraine, Lviv,
Coventry) and the Dionicos programme between U.
Lorraine and UNAM for financial support.

[1] S. Weinberg, The Quantum Theory of Fields (Cambridge
University Press, Cambridge, England, 1995).

[2] B. Bajc, A. Melfo, G. Senjanovic, and F. Vissani, Phys.
Rev. D 70, 035007 (2004).

[3] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, and N.
Okada, J. Math. Phys. (N.Y.) 46, 033505 (2005).

[4] S. Raby, Rep. Prog. Phys. 74, 036901 (2011).
[5] T. W. Kibble, J. Phys. A 9, 1387 (1976).
[6] M. Bowick, L. Chandar, E. Schiff, and A. Srivastava,

Science 263, 943 (1994).
[7] R. Kenna, Condens. Matter Phys. 9, 283 (2006).

[8] R. Jeannerot, J. Rocher, and M. Sakellariadou, Phys. Rev. D
68, 103514 (2003).

[9] G. Dvali and S.-H. H. Tye, Phys. Lett. B 450, 72 (1999).
[10] S. Sarangi and S.-H. H. Tye, Phys. Lett. B 536, 185 (2002).
[11] L. Hergt, A. Amara, R. Brandenberger, T. Kacprzak, and A.

Rfrgier, J. Cosmol. Astropart. Phys. 06 (2017) 004.
[12] M. J. Stott, T. Elghozi, and M. Sakellariadou, Phys. Rev. D

96, 023533 (2017).
[13] E. J. Copeland and T.W. B. Kibble, Proceedings of the

Royal Society of London A: Mathematical, DOI: 10.1098/
rspa.2009.0591 (2010).

FRANKBELSON DOS S. AZEVEDO et al. PHYSICAL REVIEW D 96, 084047 (2017)

084047-6

https://doi.org/10.1103/PhysRevD.70.035007
https://doi.org/10.1103/PhysRevD.70.035007
https://doi.org/10.1063/1.1847709
https://doi.org/10.1088/0034-4885/74/3/036901
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1126/science.263.5149.943
https://doi.org/10.5488/CMP.9.2.283
https://doi.org/10.1103/PhysRevD.68.103514
https://doi.org/10.1103/PhysRevD.68.103514
https://doi.org/10.1016/S0370-2693(99)00132-X
https://doi.org/10.1016/S0370-2693(02)01824-5
https://doi.org/10.1088/1475-7516/2017/06/004
https://doi.org/10.1103/PhysRevD.96.023533
https://doi.org/10.1103/PhysRevD.96.023533
https://doi.org/10.1098/rspa.2009.0591
https://doi.org/10.1098/rspa.2009.0591
https://doi.org/10.1098/rspa.2009.0591


[14] P. A. Ade et al., Astron. Astrophys. 571, A25 (2014).
[15] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other

TopologicalDefects (CambridgeUniversityPress,Cambridge,
England, 1994).

[16] S. Dyda and R. H. Brandenberger, arXiv:0710.1903.
[17] F.-B. Feng, Front. Phys. 7, 461 (2012).
[18] P. F. Gonzalez-Diaz and J. A. Jiménez Madrid, Int. J. Mod.

Phys. D 15, 603 (2006).
[19] B. Carter, Phys. Rev. D 41, 3869 (1990).
[20] A. Vilenkin, Phys. Rev. D 41, 3038 (1990).
[21] T. Vachaspati and A. Vilenkin, Phys. Rev. Lett. 67, 1057

(1991).
[22] P. Peter, Classical Quantum Gravity 11, 131 (1994).
[23] F. J. Asturias and S. R. Aragon, Am. J. Phys. 53, 893

(1985).
[24] K. Eveker, D. Grow, B. Jost, C. E. Monfort, K. W. Nelson,

C. Stroh, and R. C. Witt, Am. J. Phys. 58, 1183 (1990).
[25] T. S. Garon, N. Mann, and E. M. McManis, Am. J. Phys. 81,

92 (2013).
[26] A. Arazi and C. Simeone, Mod. Phys. Lett. A 15, 1369

(2000).
[27] J. F. Van der Maelen Uría, S. García-Granda, and A.

Menéndez-Velázquez, Am. J. Phys. 64, 327 (1996).
[28] J. Franklin and T. Garon, Phys. Lett. A 375, 1391 (2011).
[29] R. L. Burden and J. D. Faires, Numerical Analysis (Brooks/

Cole, Cencag Learning, Pacific Grove, CA., 2011).

[30] V. Dodonov and V. Man’ko, J. Sov. Laser Res. 10, 240
(1989).

[31] G. Bimonte, S. Capozziello, V. Manko, and G. Marmo,
Phys. Rev. D 58, 104009 (1998).

[32] J. D. Jackson, Classical electrodynamics (John Wiley &
Sons, Inc., New York, 1999).

[33] W. Gordon, Ann. Phys. (Berlin) 377, 421 (1923).
[34] C. Sheng, H. Liu, Y. Wang, S. Zhu, and D. Genov, Nat.

Photonics 7, 902 (2013).
[35] D. A. Genov, S. Zhang, and X. Zhang, Nat. Phys. 5, 687

(2009).
[36] D. Figueiredo, F. A. Gomes, S. Fumeron, B. Berche, and F.

Moraes, Phys. Rev. D 94, 044039 (2016).
[37] I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett.

105, 067402 (2010).
[38] C. Sátiro and F. Moraes, Eur. Phys. J. E 20, 173 (2006).
[39] E. R. Pereira and F. Moraes, Open Phys. 9, 1100 (2011).
[40] B. de Lima Bernardo and F. Moraes, Opt. Express 19, 11264

(2011).
[41] E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).
[42] A. Salandrino and D. N. Christodoulides, Opt. Lett. 36,

3103 (2011).
[43] S. Fumeron, B. Berche, F. Santos, E. Pereira, and F. Moraes,

Phys. Rev. A 92, 063806 (2015).
[44] M. Bucher and D. Spergel, Phys. Rev. D 60, 043505

(1999).

WIGGLY COSMIC STRING AS A WAVEGUIDE FOR … PHYSICAL REVIEW D 96, 084047 (2017)

084047-7

https://doi.org/10.1051/0004-6361/201321621
http://arXiv.org/abs/0710.1903
https://doi.org/10.1007/s11467-011-0188-x
https://doi.org/10.1142/S0218271806008322
https://doi.org/10.1142/S0218271806008322
https://doi.org/10.1103/PhysRevD.41.3869
https://doi.org/10.1103/PhysRevD.41.3038
https://doi.org/10.1103/PhysRevLett.67.1057
https://doi.org/10.1103/PhysRevLett.67.1057
https://doi.org/10.1088/0264-9381/11/1/015
https://doi.org/10.1119/1.14360
https://doi.org/10.1119/1.14360
https://doi.org/10.1119/1.16249
https://doi.org/10.1119/1.4769785
https://doi.org/10.1119/1.4769785
https://doi.org/10.1142/S0217732300001900
https://doi.org/10.1142/S0217732300001900
https://doi.org/10.1119/1.18242
https://doi.org/10.1016/j.physleta.2011.02.012
https://doi.org/10.1007/BF01120385
https://doi.org/10.1007/BF01120385
https://doi.org/10.1103/PhysRevD.58.104009
https://doi.org/10.1002/andp.19233772202
https://doi.org/10.1038/nphoton.2013.247
https://doi.org/10.1038/nphoton.2013.247
https://doi.org/10.1038/nphys1338
https://doi.org/10.1038/nphys1338
https://doi.org/10.1103/PhysRevD.94.044039
https://doi.org/10.1103/PhysRevLett.105.067402
https://doi.org/10.1103/PhysRevLett.105.067402
https://doi.org/10.1140/epje/i2005-10127-2
https://doi.org/10.2478/s11534-010-0109-6
https://doi.org/10.1364/OE.19.011264
https://doi.org/10.1364/OE.19.011264
https://doi.org/10.1364/JOSA.51.000491
https://doi.org/10.1364/OL.36.003103
https://doi.org/10.1364/OL.36.003103
https://doi.org/10.1103/PhysRevA.92.063806
https://doi.org/10.1103/PhysRevD.60.043505
https://doi.org/10.1103/PhysRevD.60.043505

