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We study neutron stars (NSs) in an ungravity (UG) inspired model. We examine the UG effects on the
static properties of the selected NSs, in different mass and radius regimes, i.e., ultralow, moderate, and
ultrahigh mass NSs, using a polytropic equation of state approach. Based on the observational data, we
obtain bounds on the characteristic length and scaling dimension of the UG model. Furthermore, we obtain
dynamic properties, such as inertial moment (I), Love number (Love), and quadrupole moment (Q) of a
slowly rotating NS in the presence of the exterior gravity and ungravity fields. The UG model is also
examined with respect to the I-Love-Q universal relation.
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I. INTRODUCTION

Recently, there has been a renewed interest in the study
of neutron stars (NSs). Being the densest observable
objects in the Universe, NSs are good cosmic laboratories
for astrophysicists, for instance, to predict conditions for
the formation of black holes [1], to investigate gravitational
waves, especially through the study of NS mergers [2], and
to test gravity models [3,4]. Although the equation of state
(EoS) and the composition from core to crust of NSs play
an important role in the study of their properties [5–8],
recent work on the calculation of the dynamic features,
such as the inertial moment (I), the tidal Love number
(Love), and the quadrupole moment (Q), shows that they
are independent of the EoS and of the composition (see
Refs. [9,10] and the references therein). By combining the
universal I-Love-Q relations with the information from
gravitational wave measurements of binary pulsars
(advanced LIGO [11], Virgo [12], and KAGRA [13]),
one can get a unique, model-independent and internal-
structure independent test of general relativity [9,14] and
obtain information on the EoS [15,16]. Regarding the
universality of the I-Love-Q relations, it is also interesting
to examine gravity models for which the dynamic features
of NSs are altered. One interesting example is ungravity
(UG) [17]. UG arises from the assumption of coupling
between spin-2 unparticles (UPs) and the stress-energy
tensor [18]. The UP idea has been prepared in order to
introduce scale invariance at the low-energy sector of the
Standard Model [18,19]. Since the scale dimensions of
the UP operators can take nonintegral values, this leads to
peculiar features in the energy distributions of some

processes involving Standard Model particles. Further
investigations of UP effects have immediately been carried
out in collider physics and elsewhere [20–23]. The effect of
UP states in astrophysics and cosmology have been
extensively studied [24–34]. Recently, the effect of an
UG-inspired model on the properties of the Sun has been
considered and astrophysical bounds on the UG parame-
ters, i.e., the scaling dimension and length scale, have been
obtained [35]. More recently, using the UG-inspired model
and the polytropic and degenerate gas approaches, there
have been obtained bounds on the UG parameters, i.e., the
scaling dimension and length scale, based on the observa-
tional data of white dwarfs, and have been found white
dwarfs with masses above the Chandrasekhar limit [36,37].
In this work, using the polytropic EoS approach, we

study the properties of NSs in the framework of an
UG-inspired model [35,36]. The motivation for this work
is the application of the universal I-Love-Q relations to
examine the UG model at the Newtonian limit. We also aim
to investigate the astronomical constrains on the UG
parameters, i.e., the scaling dimension and the character-
istic length, with respect to observational data of NSs.
Based on the observational data of the selected pulsars, i.e.,
4U1746-37 [38], M13 [39], and J0348þ 0432 [40], at the
ultralow, moderate, and ultrahigh mass regimes, respec-
tively, we can get bounds on the UG parameters. We shall
analytically show how the UG I-Love-Q relations deviate
from the universal I-Love-Q relations for slowly rotating
NSs with uniform density. Additionally, we also show that
there is a deviation between the UG I-Love-Q and I-Love-Q
relations when the polytropic index is unity and the UG
scaling dimension is very close to unity. Hence, astrophysi-
cal bounds on UG parameters can be obtained according to
universal I-Love-Q relations at the Newtonian limit. This
paper is organized as follows: in Sec. II, the UG model is
concisely explained and the UG version of the Newtonian
hydrostatic equilibrium equations are presented; in Sec. III,
the UG I-Love-Q relations are presented by considering a
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slowly rotating NS in the presence of a gravitational field of
a partner. Finally, our results are presented and discussed
in Sec. IV.

II. THE UG HYDROSTATIC EQUILIBRIUM
EQUATION

In the UG model framework [17], a modification of the
Newtonian gravitational potential is introduced through the
coupling of spin-2 unparticles OU

μν [18,19] to the stress-
energy tensor of Standard Model states, Tμν. The resulting
stress-energy tensor has the following form [17]:

T μν ¼ Tμν þ
�

κ�
ΛdU−1
U

�
gμνTσρOU

σρ; ð1Þ

where dU and ΛU (≥ 1 TeV) are the scaling dimension and
the energy scale of OU, respectively. It is worth pointing
out that the lower bound of ΛU refers the lack of detection
of these interactions within the available energy range. In
Eq. (1), κ� ¼ Λ−1

U ðΛU
MU

ÞdUV , whereMU is the large mass scale
and dUV is the dimension of the hidden sector operators of
the ultraviolet theory which possess an infrared fixed point
[17]. It is also worth mentioning that constraints on the UG
parameters are obtained through astrophysical and cosmo-
logical arguments. Based on the precision submillimeter
tests of the gravitational inverse square law [41], the UG
model has been constrained at a short distance and the
allowed regions are obtained for R� as a function of dU and
MU − ΛU parameter space for various values of dU [17].
Ungravity in the Newtonian limit was shown to have no
impact on the claimed fly-by anomaly [42]. Deviations in
planetary orbits and perihelion precession were considered
in Refs. [29,43], Constraints from big bang nucleosynthesis
were discussed in Ref. [33], and implications for dark
energy and entropic gravity in Refs. [44,45], respectively.
In order to compute the effects of the UPs to the lowest

order correction to the Newtonian gravitational potential,
the metric gμν is replaced by the Minkowski metric ημν in
Eq. (1). The resulting Newtonian gravitational potential in
the UG model framework is given by [17]

ϕ�ðrÞ ¼ ϕðrÞϕαðrÞ; ϕαðrÞ ¼ Gα

�
1þ

�
R�
r

�
α−1

�
; ð2Þ

where ϕðrÞ ¼ − GM
r is the Newtonian gravitational poten-

tial, R� is the length scale which characterizes the UG
interactions, and α is associated with dU through
α ¼ 2dU − 1. In Eq. (2), Gα, the gravitational constant
coefficient of UG, is given by

Gα ¼
1

1þ ðR�
R0
Þα−1 ; ð3Þ

where R0 is the distance in which the UG potential, ϕ�,
matches onto the Newtonian one. It is obvious, from

Eqs. (2) and (3), that by choosing α ¼ 1, we obtain
ϕα ¼ 1 and then we can recover the ordinary Newtonian
gravitational potential. As a good approximation, by
considering the value of α near unity, we can write
Gα ≃ 1=2. Without loss of generality we set this approxi-
mation, which allows for obtaining the bounds on the
relevant parameters of the UG model. Even though UG
models were originally conceived to understand the effects
of UPs at very short distances, we shall consider UG
models phenomenologically in order to introduce correc-
tions to Newtonian gravity at astrophysically interesting
scales. In order to study the effect of UG on NSs, we
consider the hydrostatic equilibrium equation for a perfect
fluid at the Newtonian limit (NHE). In this case, the most
general Tolman-Oppenheimer-Volkoff equation [46],

dPðrÞ
dr

¼ −
GMðrÞρðrÞ

r2

�
1þ PðrÞ

ρðrÞc2
��

1þ 4πr3PðrÞ
MðrÞc2

�

×

�
1 −

2GMðrÞ
c2r

�
−1
; ð4Þ

gets reduced to the NHE equation as PðrÞ ≪ ρðrÞc2,
r3PðrÞ ≪ MðrÞc2, and GMðrÞ ≪ c2r:

dPðrÞ
dr

¼ −ρðrÞ dϕðrÞ
dr

; ð5Þ

where GMðrÞ
r2 has been replaced by dϕðrÞ

dr .
In order to obtain UGHE, we consider a mass element,

δM�ðrÞ ¼ ρ�ðrÞdrδS, of the Newtonian static fluid ball
within the concentric sphere of radius r and thickness dr in
the presence of the UG potential, ϕ�ðrÞ. The mass element
is submitted to the ungravity force, −½dϕ�ðrÞ=dr�δM�ðrÞ,
which is in equilibrium with the pressure force, −½dP�ðrÞ=
dr�drδS, resulting from the gas pressure difference between
r and rþ dr. Straightforward mathematics leads to UGHE
as follows:

dP�ðrÞ
dr

¼ −ρ�ðrÞ
dϕ�ðrÞ
dr

; ð6Þ

where the subscript � indicates that the quantities are
calculated in the presence of UG. It is clear that setting
α ¼ 1 in the UGHE equation leads to the NHE equation,
Eq. (5).
Equation (6) and writing dM�ðrÞ ¼ 4πρ�ðrÞr2dr

together with boundary conditions, M�ð0Þ ¼ 0 and
P�ðRsÞ ¼ 0, where Rs is the radius of the NS, allow for
obtaining the radius and mass,Ms, for different values of α
and R� for a given value of core density, ρc, as input.
It should be mentioned that we admit values of the UG
parameters for which the calculatedMs and Rs are within the
allowed observational intervals. In Sec. IV, we shall present
the numerical results for 4U1746-37 [38], M13 [39],
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and J0348þ 0432 [40], for NSs in the ultralow, moderate,
and ultrahigh mass regimes, respectively.

III. THE UG I-LOVE-Q RELATIONS

We consider a slowly rotating NS which is slightly
deformed due to rotation and/or tidal fields. We assume that
the time scale for changes of the relevant quantities is
sufficiently long so that the NS can be assumed to be in
hydrostatic equilibrium. By applying an external gravita-
tional field, ε�ij, to a NS, the resulting multipole moment of
its mass distribution, Q�ij, is given by [47]

Q�;ij ¼ −λ�ε�;ij; ð7Þ

where λ� is the Love number and ε�;ij ¼ ∂2ϕ�∂xi∂xj. Deformation
due to rotation and tidal forces of the NS is the same in
the Newtonian limit [14,48]. We keep this feature in the
presence of UG, that is, λ�;rot ¼ λ�;tid, and consider the
rotational deformations in this work rather than solving
differential equations as has been done in Ref. [14]. In the
Newtonian limit, for a spheroid shaped NS rotating around
the z axis, the quadrupole moment tensor reads [49]

Q�;ij ¼ diag

�
−
1

3
Q�;−

1

3
Q�;

2

3
Q�

�
; ð8Þ

where

Q� ¼
Z

ρ�ðr0ÞP2ðcos θ0Þr02d3r0: ð9Þ

The inertial moment is given by [50]

I� ¼
2

3

Z
ρ�ðr0Þr02d3r0: ð10Þ

Since in the Newtonian limit, the quadrupolar contribution
of the centrifugal potential reduces to Ω2�, the squared
angular velocity of the object around the z axis [48], the
rotational Love number is given by λ� ¼ − Q�

Ω2�
. Recalling

the dimensionless Ī, λ̄, and Q̄ introduced in Ref. [14], for
the UG case we can define

I� ¼
I�

G2M3
s;�=c4

; λ� ¼
λ�

G4M5
s;�=c10

;

Q� ¼ −
Q�

G2M3
s;�χ2�=c4

; ð11Þ

for the dimensionless UG inertial moment, Love number
(λ�;rot ¼ λ�;tid), and quadrupole moment, respectively.
In Eq. (11), χ�, a dimensionless measure of a NS’s angular
momentum, is defined by χ� ¼ I�Ω�

GM2
s;�=c

[50]. Now, we

introduce the UG I-Love-Q relations:

C̄�;Iλ ¼
I�

ðλ�Þ2=5
; C̄�;IQ ¼ I�

ðQ�Þ2
; C̄�;Qλ ¼

Q�
ðλ�Þ1=5

;

ð12Þ
In the next subsections we analytically present the

UG I-Love-Q relations, i.e., C̄�’s, in the Newtonian limit
for n ¼ 0 and n ¼ 1 polytropes and compare them to the
ordinary ones, i.e., C̄’s [14].

A. UG I-Love-Q for n= 0 polytrope

For a slowly rotating NS with an uniform density,
vanishing polytropic index, that is, ρ ¼ cte, we consider
a Maclaurin spheroid [47] with uniform angular velocity

Ω� and with eccentricity e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

a2

q
, where a and c are

the semimajor and the semiminor axis, respectively. In the
framework of the UG model [see Eq. (2)], we assume the
gravitational potential at any point inside the Maclaurin
spheroid NS as follows:

ϕ�;inðx;y;zÞ¼−πρ�GG0αf2ðx;y;zÞ
�
1þ

�
f2ðx;y;zÞ

R2�

�
α−1�

;

ð13Þ

where ρ� ¼ cte and fðx;y;zÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A−A1x2−A2y2−A3z2

p
.

The constant coefficients A; A1; A2, and A3 are given
by [47]

A ¼ 2a2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

e
sin−1e; A1 ¼ A2 ¼

A
2ðaeÞ2 −

1 − e2

e2
;

A3 ¼
2

e2
−

A
ðaeÞ2 : ð14Þ

In Eq. (13), we introduce G0α as

G0α ¼
1

1þ
�

f2
0

R2�

�
α−1 ; ð15Þ

where the constant factor f0 is set such that the UG
I-Love-Q relations match onto the ordinary ones.
Now, by assuming that the slowly rotating fluid satisfies

UGHE, then dv�
!
dt ¼ − ∇P�

ρ�
−∇ϕ�, where the velocity of the

fluid is given by v�
! ¼ Ω�

�!
× r⃗ and the pressure is intro-

duced by P� ¼ P�;c½1 − ðx2þy2Þ
a2 − z2

c2�. Setting Ω� along the z

axis and considering the x and z components of dv�
!
dt , we

obtain [47]

P�;c ¼ πGG0αρ�c2A3; Ω2� ¼ 2πGG0αρ�

�
A1 − A3

c2

a2

�
:

ð16Þ
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By expanding Ω�, Eq. (16) to Oðe3Þ, we obtain

Ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGG0αρ�

15

r
e: ð17Þ

In Eq. (9), by considering 0 ≤ r0 ≤ Rsðθ0Þ, where Rsðθ0Þ ¼
½sin2θ0a2 þ cos2θ0

c2 �−1=2, and substituting e from Eq. (17), we
obtain for an incompressible NS in the UG framework

Q� ¼ −
R5
sΩ2�

2GG0α
; λ� ¼ −

R5
s

2GG0α
; ð18Þ

for the rotational quadrupole moment and the Love number
(λ�;rot ¼ λ�;tid), respectively. Since our incompressible NS
has a constant density, I� has a same form as the usual case:

I� ¼
2

5
MsR2

s : ð19Þ

Recalling the compactness parameter as C ¼ GM�s
R�sc2

[14] and

using Eqs. (11), (17), and (18), we obtain

I� ¼
2

5

1

C2
; λ� ¼

1

G0α

�
1

2

1

C5

�
; Q� ¼

1

G0α

�
25

8

1

C

�
:

ð20Þ

We can see the tidal and rotational effects on a slowing
rotating NS in the presence of UG differ from the usual
case by the factor G−1

0α . Thus, from Eqs. (12) and (20) the
UG I-Love-Q relations are given by

C̄�;Iλ¼
27=5

5
G2=5

0α ; C̄�;IQ¼ 128

3125
G2

0α; C̄�;Qλ¼
25

214=5
1

G4=5
0α

:

ð21Þ

Comparing the UG I-Love-Q relations with those of the
Newtonian case [Eqs. (74), (75), and (76) of Ref. [14]],
for α ¼ 1, we get the same results provided that G0α ¼ 1,
that is, we set f0 ¼ 0. It means, for an incompressible
Maclaurin type NS in the UG model the gravitational
constant should be like the Newtonian gravitational con-
stant. In Sec. IV we shall further discuss this issue.

B. UG I-Love Q for n= 1 polytrope

In the case of n ¼ 1 polytrope of a slowly rotating fluid,
we consider the Roche model in which the distribution of
the bulk of the mass is unchanged by the rotation and,
therefore, the gravitational potential remains ϕ ¼ − GM

r
(ϕ� ¼ −GM

r ϕα in the UG framework) at the outer layer
[47]. Thus, considering the centrifugal potential as ϕ�c ¼
− 1

2
Ω2�ðx2 þ y2Þ and keeping the UGHE situation, we have

1

ρ�
∇P�ðrÞ þ∇Ψ�ðrÞ ¼ 0; Ψ�ðrÞ ¼ ϕ�ðrÞ þ ϕ�cðrÞ;

ð22Þ

where ρ� is the solution of Eq. (6) in which P� ¼ Kρ2�,
where K is a constant. After integrating over both sides of
Eq. (22), setting the same integral constant as the non-
rotating case [47], i.e., Ψ�ðRsÞ ¼ ϕ�ðRsÞ, then after some
manipulation (see the Appendix), the maximum value of
Ω� at the equator of NS can be shown to be

Ω2� ¼ Gα

�
1þ α

�
2

2þ α

�α−1
α

�
R�
Rs

�
α−1

��
2

2þ α

�3
α

�
GMs

R3
s

�
:

ð23Þ

For α ¼ 1, we obtain Ω2� ¼ ð2
3
Þ3 GMs

R3
s
as expected [47]. Now,

we need an analytic expression for ρ� in order to obtain the
UG I-Love-Q relations. Since there is no straightforward
form for the quantity from the nonlinear UGHE equation,
Eq. (6), we solve this equation at the limit of α → 1. It is
useful to get the UG Lane-Emden equation in terms of two
dimensionless variables, θ and ξ, to express the density and
radial distance with respect to the center of the star values:
ρ ¼ ρcθ

n and r ¼ βξ, where ρc is the density at the center

of the NS and β ¼ ððnþ1ÞK
4πG Þ1=2 [35]. By including P ¼ Pcθ

n

with Pc ¼ Kρ
nþ1
n
c in Eq. (6), we obtain for n ¼ 1 [36]

θ00 þ ½2ξ−1 þ ðα − 1ÞAαξ
−α�θ0 þ ½Gα þ Aαξ

−αþ1�θ ¼ 0;

ð24Þ

where Aα ¼ αGαξ
α−1� , with ξ� ¼ R�

β . Looking for a solution

as θ ∼ φξ−1e
Aα
2
ξ1−α , our nonlinear second-order differential

equation gets reduced to

φ00 þ ω2
αφ ¼ 0; ð25Þ

where

ω2
α ¼GαþAαξ

−αþ1þαðα−1Þ
2

Aαξ
−α−1−

�ðα−1Þ
2

Aαξ
−α
�
2

:

ð26Þ

Since we aim to establish how the UG I-Love-Q relations
differ from the ordinary ones, we solve Eq. (25) in the
ϵ → 0 limit, where ϵ ¼ α − 1. So, ignoring all terms in
Eq. (26) with coefficients ϵ, ϵ2, etc., hence

ω2
α ≃Gα þ

1

α
Aαξ

1−α: ð27Þ

In this limit, we can see that ω0
α ¼ 0. Thus, the solution of

Eq. (25) is given by φ ¼ A sinðωαξÞ þ B cosðωαξÞ. In order

HODJAT MARIJI and ORFEU BERTOLAMI PHYSICAL REVIEW D 96, 084042 (2017)

084042-4



to satisfy the boundary conditions, i.e., θð0Þ ¼ 1, the
solution of Eq. (24) reads

θ ¼ sinðωαξÞ
ξ

e−
Aα
2
ð1−ξ1−αÞ: ð28Þ

Hence, the density of a slowing rotating n ¼ 1 polytrope
fluid reads

ρ� ¼ ρc
sinðωαξÞ

ξ
e−

Aα
2
ð1−ξ1−αÞ: ð29Þ

In order to have a more convenient expression for the

density, we consider that α ≈ 1 and, in turn, e−
Aα
2
ð1−ξ1−αÞ ≈ 1.

Thus, we have

ρ�ðrÞ ¼
ffiffiffiffiffiffiffiffi
2Gα

p
4

ρc

�
3þ

�
R�
r

�
α−1

�
: ð30Þ

In the above equation, we get ρ�ðrÞ ¼ ρc by setting α ¼ 1.
It means that in the α ≈ 1 limit, a slowly rotating n ¼ 1
polytrope fluid is close to the n ¼ 0 one.
Now, using Eqs. (9), (10), and (30), we obtain

I� ¼
2

5
MsR2

s

2
641þ 5=3

6−α

�
R�
Rs

	
α−1

1þ 1
4−α

�
R�
Rs

	
α−1

3
75; ð31Þ

for the inertial moment and

Q� ¼ −
4π

5

ffiffiffiffiffiffiffiffi
2Gα

p
4

ρcR5
s

�
1þ 5=3

6 − α

�
R�
Rs

�
α−1

�
e2 ð32Þ

for the quadrupole moment, ignoring Oðe3Þ terms. Since
we have estimated the dynamic properties of NS for α ≈ 1,
we consider Eq. (17) to calculate Ω� rather than Eq. (23).
Thus, by eliminating ρce2 using Eqs. (17) and (32), Q� is
given by

Q� ¼ −
3

8G

ffiffiffiffiffiffi
2

Gα

s �
1þ 5=3

6 − α

�
R�
Rs

�
α−1

�
R5
sΩ2�; ð33Þ

and, in turn, the Love number (λ�;rot ¼ λ�;tid) reads

λ� ¼
3

8G

ffiffiffiffiffiffi
2

Gα

s �
1þ 5=3

6 − α

�
R�
Rs

�
α−1

�
R5
s : ð34Þ

Similar to the n ¼ 0 polytrope, the dimensionless dynamic
properties of NS for the n ¼ 1 polytropic EoS are as
follows:

I� ¼
2

5

1

C2

2
641þ 5=3

6−α

�
R�
Rs

	
α−1

1þ 1
4−α

�
R�
Rs

	
α−1

3
75; ð35Þ

for the inertial moment,

λ� ¼
3

8

ffiffiffiffiffiffi
2

Gα

s
1

C5

�
1þ 5=3

6 − α

�
R�
Rs

�
α−1

�
; ð36Þ

for the Love number, and

Q� ¼
75

32

ffiffiffiffiffiffi
2

Gα

s �
1

C

��
1þ 1

4−α

�
R�
Rs

	
α−1

�
2

�
1þ 5=3

6−α

�
R�
Rs

	
α−1

� ; ð37Þ

for the quadrupole moment. Therefore, the UG I-Love-Q
relations for a slowing rotation NS with n ¼ 1 polytropic
EoS are the following:

C̄�;Iλ ¼ 4

�
Gα

9

�
0.2

�
1þ 5=3

6−α

�
R�
Rs

	
α−1

�
0.6

�
1þ 1

4−α

�
R�
Rs

	
α−1

� ; ð38Þ

for the inertial moment and Love number,

C̄�;IQ ¼ 1024Gα

28125

�
1þ 5=3

6−α

�
R�
Rs

	
α−1

�
3

�
1þ 1

4−α

�
R�
Rs

	
α−1

�
5
; ð39Þ

for the inertial and quadrupole moments, and

C̄�;Qλ ¼
75

16

�
1

3G2
α

�
0.2

�
1þ 1

4−α

�
R�
Rs

	
α−1

�
2

�
1þ 5=3

6−α

�
R�
Rs

	
α−1

�
0.3 ; ð40Þ

for the quadrupole moment and the Love number. As can
be seen, the UG I-Love-Q relations for n ¼ 1 polytrope are
different from the usual ones [14]. By setting α ¼ 1, we can
see that C̄�;Iλ and C̄�;Qλ are increased about 330% and 70%,
while C̄�;IQ decreased about 50%. The discrepancies in the

TABLE I. Relevant values for the selected NSs, i.e., 4U1746-37
[38], M13 [39], and J0348þ 0432 [40].

NS ðMs �△MsÞ=Msun ðRs �△RsÞ=Rsun × 10−5

4U1746-37 0.41� 0.14 1.25� 0.22
M13 1.36� 0.04 1.42� 0.01
J0438-0432 2.01� 0.04 1.87� 0.29
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α ¼ 1 case is due to simplifications in the density, Eq. (30),
which approach the n ¼ 0 polytrope fluid rather than the
n ¼ 1 one. It should be pointed out, in the n ¼ 1 case, that
the way to calculate the dynamical properties of NS differs
from the ones of Ref. [14]. We shall discuss these issues
in Sec. IV.

IV. RESULTS AND DISCUSSION

In this work we apply the UG model for NSs for the
ultralow, moderate, and ultrahigh mass regimes, i.e., for
the following NSs: 4U1746-37 [38], M13 [39], and
J0348þ 0432 [40], respectively. Table I shows the values
of mass (Ms) and radius (Rs) in terms of the solar values

(Msun≃1.99×1030 kg and Rsun ≃ 6.96 × 105 km) together
with the relevant observational ranges.
Based on the uncertainties of the relevant quantities, we

obtain bounds on the characteristic length, R�, and scaling
dimension, α, of the UG-inspired model. Firstly, we solve
the NHE equation, Eq. (5), by the fourth-order Runge-
Kutta method for the selected NS’s mass and radius. Then,
by keeping the relevant polytropic index and core density
values, varying α and R� within the UGHE equation,
Eq. (6), and calculating the same observable parameters,
we admit only those values that are compatible with the
uncertainties (Table I). We set the polytropic index of n ¼
0.68 and the core density ρc ¼ 6.61 × 1014; 15.06 × 1014,

FIG. 1. The allowed region for the UG parameters α and R� for (a) 4U1746-37 [38], (b) M13 [39], and (c) J0348þ 0432 [40] with the
polytropic index n ¼ 0.68.

FIG. 2. The dimensionless UG inertial moment of NS for different allowed values of the charateristic length and scaling dimension.
The R� and α values have been limited by the relevant observational data of M13 [39] for polytropic indices (a) n ¼ 0.68 and
(b) n ¼ 1.00.
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and 9.79 × 1014 g=cm3 for 4U1746-37, M13, and
J0348þ 0432, respectively. Figure 1 depicts the allowed
regions of R� and α for the selected NSs. The horizontal
and vertical dashed lines are depicted to separate the
different regions. We find that ultralow mass NSs admit
a wider allowed region in comparison with medium and
ultramassive NSs. The ultralow and ultrahigh mass NSs
have allowed values of α bigger than the medium ones.
It should be emphasized that the obtained bounds on the
UG parameters are based on nonrelativistic calculations,
Eq. (6).
In order to examine the I-Love-Q relations in the UG

model, we consider the M13 data and calculate I�, λ�,
and Q�. The assumption that tidal and rotational deforma-
tions are exactly the same in the Newtonian limit [14,48] is

kept when considering UG (λ�;rot ¼ λ�;tid), we do not need
to construct the Clairaut-Radau equations to compute tidal
deformations. Instead, we obtain rotational deformations
by calculating the relevant integral, Eq. (9), for which the
UG density profile of NS is obtained by solving Eq. (6).
It is worth noting that I� and Q� are still calculated without
any more assumptions at the Newtonian limit. In order to
get the Love number, we need to calculate Ω�, Eqs. (17)
and (23) for the uniform and nonuniform density cases,
respectively. In the n ¼ 0 case, I� is independent of the UG
parameters. However, Q� and λ� depend on the α and R�
values through G0α since the second term in the bracket of
Maclaurin type ungravity potential, Eq. (13), is diminished
at the surface of the NS when calculating Ω�. In order to
match these quantities in the UG model to the universal

FIG. 3. The same as Fig. 2 for the UG quadrupole moment.

FIG. 4. The same as Fig. 2 for the UG Love number.
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ones [14], we set f0 ¼ 0 in Eq. (15). Unlike the uniform
case, we need to consider the eccentricity of the NS to
compute its Q� and λ� for nonuniform density. Setting e ¼
0.17 and e ¼ 0.22 for n ¼ 0.68 and n ¼ 1, respectively, we
obtain the universal values of C̄�;Iλ, C̄�;IQ, and C̄�;Qλ for the
α ¼ 1 case. We keep these values of eccentricities in the
rest of this work. Figures 2, 3, and 4 show I�, Q�, and λ� of
M13, respectively, for different values of the allowed values
for α and R� for the polytrope n ¼ 0.68 and n ¼ 1 EoS.
In fact according to Fig. 2, deviating α from unity by
∼þ = − 10% and decreasing R� to the allowed minimum
value implies a deviation of I� of 25% for n ¼ 0.68 and
n ¼ 1. We also see that these deviations are symmetric with
respect to α ¼ 1. Figure 3 shows that increasing R� for

various α values renders no significant variation in Q�.
However, we can see that, when deviating α from unity
(∼þ = − 10%), Q� varies significantly (90% to 110%) for
both polytrope indices. We can observe that the deviation of
λ� reaches more than 200% when the α increases ∼10%
from unity for both polytropic EoSs at the lowest allowed
values of R�. Although changes of Q� are approximately
independent of variations of the characteristic length of
the UG model for various scaling dimensions, only for a
specific value of R� we get the same value for I� and λ� for
different values of α.
Finally, we calculate C̄�;Iλ, C̄�;IQ, and C̄�;Qλ, by using

Eq. (12) for the different allowed values of α and R�.
Figures 5, 6 and 7 depict the UG I-Love-Q relations versus

FIG. 5. The UG I-Love relation for different allowed values of the characteristic length and scaling dimension. The R� and α values
have been limited by the relevant observational data of M13 [39] for polytropic indices (a) n ¼ 0.68 and (b) n ¼ 1.00.

FIG. 6. The same as Fig. 5 for the UG IQ relation.
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R� for different α and for polytropic indices n ¼ 0.68 and
n ¼ 1. Although there is no significant dispersion in the
UG I-Love-Q relations for various α’s and for different
allowed values of R�, there are deviations of about 30%,
300%, and 70% for C̄�;Iλ, C̄�;IQ, and C̄�;Qλ, respectively,
from the universal values [14]. We find the UG I-Love-Q
relations have fixed values independent of the scaling
dimension value at R� ∼ 4.2 km. All relevant figures of
the dynamic properties of M13 show that there are
significant gaps between dimensionless dynamic quantities
when UG is switched on except in what concerns the
dimensionless inertial moment. It seems that the discrep-
ancies are originated from Ω� which influences Q� through
χ�, a dimensionless measure of the NS’s angular momen-
tum [see Eq. (11)]. Our numerical calculations show that
when the value of α changes �0.5%, the absolute values of
Q� increase only 2%, while the angular velocity values
decrease about 30% and, in turn, the values of Q� and λ�
increase about 100% and 90%, respectively.
In conclusion, we have investigated the UG hydrostatic

equilibrium equations in the framework of a polytropic EoS
for the selected pulsars at the ultralow, moderate, and
ultrahigh mass regimes and gotten bounds on the UG
parameters, i.e., the scaling dimension and the character-
istic length, based on their observational ranges of masses
and radii. We have analytically and numerically examined
the universal I-Love-Q relations at the Newtonian limit for
the uniform and nonuniform NSs in the framework of the
UG model. In order to get the universal I-Love-Q relations
for the uniform NS, the gravity constant should be kept in
the presence of UG. In the nonuniform case, switching on
UG instantly leads to a significant change in the quadrupole
moment and Love number of NS rather than its inertial
moment. We have also found that the UG I-Love-Q
relations exhibit a clear deviation from the usual ones.
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APPENDIX: THE VALUE OF Ω� IN THE CASE
OF AN n= 1 POLYTROPE

In the case of an n ¼ 1 polytrope of a slowly rotating
fluid in the presence of the UG potential, ϕ�ðrÞ, let us
consider a spheroid which rotates around the z axis with a
constant angular velocity, Ω�. We introduce the centrifugal
potential, ϕ�c, in such a way that we have ∇ϕ�c ¼ dv⃗�

dt
(keeping the Roche model [48] in the case of UG). Since
v⃗� ¼ Ω⃗� × r⃗, we have dv⃗�

dt ¼ −Ω2�ðx⃗þ y⃗Þ. Then we obtain

ϕ�c ¼ −
1

2
Ω2�ðx2 þ y2Þ: ðA1Þ

At the UGHE situation, we have

dv⃗�
dt

¼ −
1

ρ�ðrÞ
∇P�ðrÞ −∇Ψ�ðrÞ ¼ 0;

Ψ�ðrÞ ¼ ϕ�ðrÞ þ ϕ�cðrÞ: ½Eq: ð22Þ� ðA2Þ

Recalling that P� ¼ Kρ1=nþ1
� with n ¼ 1 and doing the

integral over the above equation, we obtain

2
P�ðrÞ
ρ�ðrÞ

þ Ψ�ðrÞ ¼ C0�; ðA3Þ

where C0� is a constant whose value we set the same as that
in the nonrotating case (Ω� ¼ 0). Since P�ðRsÞ ¼ 0, we
have C0� ¼ ϕ�ðRsÞ or

FIG. 7. The same as Fig. 5 for the UG Q-Love relation.
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C0� ¼ −
GαM
Rs

�
1þ

�
R�
Rs

�
α−1

�
: ðA4Þ

Since our goal is finding the maximum value of Ω� at the
equator of the NS, we can write�

dΨ�
dr

�
R�c

¼ 0: ðA5Þ

Doing the derivative ϕ�ðrÞ and ϕ�c, we obtain

Ω2�c ¼
GαM
R3�c

�
1þ α

�
R�
R�c

�
α−1

�
; ðA6Þ

where we should still obtain R�c. According to Eq. (A3),
the value of Ψ�ðR�cÞ will be maximum when ½P�

ρ�
�
R�c

¼ 0.

Thus, similar to the gravity case [48], we reach the
equality Ψ�ðR�cÞ ¼ C0� and after a bit of manipulation we
obtain

�
R�c−

3

2
Rs

�
þ
��

R�
Rs

�
α−1

R�c−
�
R�
R�c

�
α−1

�
αþ2

2

�
Rs

�
¼0:

ðA7Þ

If the first bracket equals zero we obtain a trivial solution
like the usual gravity case, that is, R�c ¼ 3

2
Rs [48]. Setting

the second bracket to zero leads to

R�c ¼
�
αþ 2

2

�1
α

Rs; ðA8Þ

where if we set α ¼ 1, we again obtain the solution of the
usual gravity case. Now, including Eq. (A8) into Eq. (A6)
and using straightforward mathematics, we obtain

Ω2� ¼ Gα

�
1þ α

�
2

2þ α

�α−1
α

�
R�
Rs

�
α−1

��
2

2þ α

�3
α

�
GMs

R3
s

�
:

ðA9Þ
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