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We study the structure of relativistic stars in Rþ αR2 theory using the method of matched asymptotic
expansion to handle the higher order derivatives in field equations arising from the higher order curvature
term. We find solutions, parametrized by α, for uniform density stars. We obtain the mass-radius relations and
study the dependence of maximummass on α. We find thatMmax is almost linearly proportional to α. For each
α the maximum mass configuration has the biggest compactness parameter (η ¼ GM=Rc2), and we argue
that the general relativistic stellar configuration corresponding to α ¼ 0 is the least compact among these.
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I. INTRODUCTION

Modifying Einstein’s general relativity (GR) is an old
attempt dating back to Kaluza-Klein’s original idea of
combining gravity with electromagnetism by introducing a
fifth dimension. Later the work of Brans-Dicke led to a
theory in which a scalar field is coupled to the curvature,
and the theory was for many years the unique alternative to
GR (see [1] for a review). Then superstring theory came
onto the stage, capturing the idea of Kaluza-Klein and
Brans-Dicke in a natural way, appearing to be the most
promising theory for unification of gravity and other
interactions, and/or quantizing gravity. In the effective
action of such superstring theories, there are ghost-free
series of higher curvature corrections to the leading
Einstein-Hilbert term representing GR.
The current interest in modifying GR has revived with

one of the most important discoveries in physics, namely
the current accelerated expansion of the Universe. A family
of modification of GR includes higher curvature theories of
the formRþRn, whereR is the Einstein-Hilbert term and
Rn corresponds to the nth power of curvature scalar, Ricci
tensor, Riemann tensor, and Weyl tensors [2–8] motivated
by candidate fundamental theories. Another approach
for modifying GR is the so-called fðRÞ theories of gravity
[9–12] where one replaces the usual Einstein-Hilbert
term in the action with a function of scalar curvature R.
There are many models with different functions of curva-
ture terms, but a viable model, while providing accelerated
expansion of the Universe [13–16] (see [17] for a review),
should also be consistent with the solar system and
cosmological observations in large scale [18].
A model which can be considered in the intersection

of aforementioned modifications of GR is the Rþ αR2

gravity which is physical and does not contain ghostlike

modes, unlike the situation encountered when other quad-
ratic curvature terms or some complicated functions of
curvature scalar are included in the action. This Rþ αR2

theory, known as the Starobinsky model [19], propagates
an additional massive spin-0 state in addition to the usual
massless graviton, and it was one of the first consistent
inflationary models. It is also of interest to study the
implications of this model in the strong gravity regime
by examining the effect of the higher curvature term on, for
example, the existence and structure of relativistic stars.
Since the field equations of the model are fourth order,

unlike the second order field equations of GR, the first
attempts to probe the existence of relativistic stars in the
Starobinsky model of gravity followed the approach of
mapping the model to a scalar-tensor model [20]. This
approach seems to simplify the analysis by reducing the
order of the equations, but may lead to dubious conclusions
[21]. Indeed, the first conclusions, reached by applying this
method, about the nonexistence of relativistic stars in fðRÞ
theories are corrected by more careful analysis [22,23].
It is, thus, favorable to consider the theory in the

originally suggested form without mapping to any equiv-
alent theory; but, to eliminate the difficulties arising from
the higher order field equations, a perturbative approach
may need to be invoked. Such a technique for reducing the
order of field equations, known as perturbative constraints
or order reduction [24,25], is applied in the strong gravity
regime in Ref. [26] to show the existence of relativistic stars
in the Starobinsky model. The same method is employed in
Ref. [27] for a representative sample of realistic equation
of state (EoSs) to constrain the value of α by using neutron
star mass-radius measurements [28]. A similar work with
different results is done in Ref. [29] by mapping to scalar
tensor theories with a nonperturbative approach and self-
consistent method. Moreover, the rotating neutron stars
are studied with the same method as in Refs. [30,31].
Furthermore, the mass-radius relations are obtained for
various fðRÞ models with realistic EoSs in [32,33], but see
[34]. Besides various fðRÞ models and containing the
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Gauss-Bonnet invariant, fðGÞ, models are examined by
considering hyperons and magnetic field effects in the
context of neutron stars in [35–37].
Singular perturbation problems where the perturbative

term has the highest order of derivative are well known in
the study of fluids. A well known example is the viscous
term of the Navier-Stokes equation of hydrodynamics
which is of second order and increases the spatial order
of the Euler equation. The cases where viscosity is small
cannot be handled with ordinary perturbative methods in
which one would simply ignore the viscous term at the
zeroth order as such an equation with reduced order cannot
be made to satisfy all boundary conditions. Even if the
viscous term could be negligibly small in the bulk of the
flow, it would still be the dominant term near the boundary
where the flow matches to the given boundary condition in
a narrow domain called the boundary layer. The method of
matched asymptotic expansion (MAE) [38,39] is suitable
for handling such singular perturbation problems where the
perturbative term has the highest order of derivative. This
method in the cosmological setting is employed for a
specific class of fðRÞ theories in Ref. [40] to handle the
higher order derivative terms arising from the terms in the
Lagrangian that are not linear in R. Other than fðRÞ
theories, the method is also used in [41–43] for cosmo-
logical context.
In thisworkwe employ theMAEmethod for analyzing the

structure of neutron stars in the Starobinskymodel of gravity.
The method was previously applied for relativistic stars in
Ref. [44] where the authors considered only the trace
equation with the MAE method and they solved the hydro-
static equilibrium equations by numerical methods for
various equations of states. But this necessitates a fine-tuning
to match with the Schwarzschild solution at the surface. We
thus apply the method not only to the trace equation but also
to the hydrostatic equilibrium equations simultaneously.
The plan of the paper is as follows: In Sec. II, the field

equations and the hydrostatic equilibrium equations are
obtained. In Sec. III, the MAE method is applied to
hydrostatic equilibrium equations, and in Sec. IV, we
obtain the solutions for uniform density stars. In Sec. V
we obtain the mass-radius relations (depending on α) in this
gravity model and examine the maximum mass depending
on α. Finally, in Sec. VI we present our conclusions.

II. FIELD EQUATIONS AND SETUP

The action of the Starobinsky model is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ αR2Þ þ Smatter; ð1Þ

where g is the determinant of the metric gμν, R is the
Ricci scalar, and Smatter is the matter action. In the metric
formalism, the variation of the action with respect to the
metric gives the field equations,

ð1þ2αRÞGμνþ
1

2
αgμνR2−2αð∇μ∇ν−gμν□ÞR¼ 8πTμν

ð2Þ

[9,10]. Contracting with the inverse metric, the trace
equation is

6α□R −R ¼ 8πT: ð3Þ

We assume a spherically symmetric metric,

ds2¼−e2Φdt2þe2λdr2þ r2ðdθ2þ sin2θdϕ2Þ; ð4Þ

where λ ¼ λðrÞ andΦ ¼ ΦðrÞ are the metric functions. The
trace equation, for this form of the spherically symmetric
metric, becomes

6α expð−2λÞR00 ¼ 8πT þ ð1 − 2αRÞRþ 2αR2

þ 6αR0 expð−2λÞ
�
λ0 −

2

r
−Φ0

�
; ð5Þ

where primes denote derivatives with respect to the radial
coordinate r. The “tt” and “rr” components of the field
equations are

−8πρ ¼ −r−2 þ expð−2λÞð1 − 2rλ0Þr−2
þ 2αRð−r−2 þ expð−2λÞð1 − 2rλ0Þr−2Þ

þ 1

2
αR2 þ 2α expð−2λÞðR0r−1ð2 − rλ0Þ þR00Þ

ð6Þ

and

8πP ¼ −r−2 þ expð−2λÞð1þ 2rΦ0Þr−2
þ 2αRð−r−2 þ expð−2λÞð1þ 2rΦ0Þr−2Þ

þ 1

2
αR2 þ 2α expð−2λÞR0r−1ð2þ rΦ0Þ; ð7Þ

respectively.
To cast the equations into a more familiar form of the

so-called Tolman-Oppenheimer-Volkov (TOV) equations,
we define

expð−2λÞ ¼ 1 −
2mðrÞ

r
: ð8Þ

We cannot call m as the mass within the radial coordinate r
without determining whether the outside solution is
Schwarzschild. By plugging this to the tt component of
the field equations, the first TOV equation is obtained as
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2ð1þ 2αRþ αR0rÞ dm
dr

¼ 8πρr2 þ 1

2
αr2R2 þ αR0r

�
−6

m
r
þ 4

�

þ 2α

�
1 − 2

m
r

�
r2R00: ð9Þ

By using the r component of the conservation equation of
the energy-momentum tensor, ∇μTμ

1 ¼ 0, we obtain

∇μTμ
1 ¼ ∂μTμ

1 þ Γμ
μλTλ

1 − Γλ
μ1Tμ

λ

¼ P0 þ Pðλ0 þ 2

r
þΦ0Þ − ðλ0Pþ 2

r
P −Φ0ρÞ. ð10Þ

Then the second TOV equation is obtained as

dP
dr

¼ −ðρþ PÞΦ0; ð11Þ

where the Φ0 is found from the rr component of the field
equation

2Φ0ð1þ 2αRþ αrR0Þ

¼ 8πP

�
r2

r − 2m

�
þ ð1þ 2αRÞ 2m

r − 2m
r−1

−
1

2
αR2

r2

r − 2m
− 4αR0: ð12Þ

III. SINGULAR PERTURBATION PROBLEM

We, first, define the dimensionless parameters

x ¼ r
R�

; ϵ ¼ α

R2�
; R̄ ¼ R2�R;

P̄ ¼ R2�P; ρ̄ ¼ R2�ρ; m̄ ¼ m
R�

; ð13Þ

where R� is the radial distance from center to the surface of
the star and so 0 < x < 1. The first TOV equation, Eq. (9),
in terms of these dimensionless variables becomes

ð1þ2ϵR̄þϵR̄0xÞdm̄
dx

¼ x2

12
ð48πP̄þð2þ3ϵR̄ÞR̄þ32πρ̄Þ

þ 1

ð1þ2ϵR̄Þ
ϵR̄0

6
½−6m̄ð1þ2ϵR̄Þþx3ðR̄þ3ϵR̄2þ16πρ̄Þ�

þϵ2xðx−2m̄Þ 2

ð1þ2ϵR̄ÞR̄
02: ð14Þ

Similarly, the second TOV equation, Eq. (11), then
becomes

dP̄
dx

¼ −
ρ̄þ P̄

4xðx − 2m̄Þð1þ 2ϵR̄þ ϵxR̄0Þ
× ½16πx3P̄þ 4m̄þ 8ϵm̄ R̄−ϵx3R̄2

− 8ϵxR̄0ðx − 2m̄Þ�: ð15Þ

Finally, the trace equation, Eq. (5), becomes

ϵð1þ 2ϵR̄ÞR̄00

¼ ð−8πρ̄þ 24πP̄þ R̄Þ 1
6

�
x

x − 2m̄

�
ð1þ 2ϵR̄Þ

þ 1

6

ϵ

x − 2m̄
½ð1þ 2ϵR̄Þ12m̄x−1 − 12ð1þ 2ϵR̄Þ�R̄0

þ 1

6

ϵ

x − 2m̄
½3ϵx2R̄2 þ x2R̄þ 16πx2ρ̄�R̄0 þ 2ϵ2R̄02:

ð16Þ

For satisfying continuity at the center of the star we apply
two boundary conditions, m̄ð0Þ ¼ 0 and R̄0ð0Þ ¼ 0. Since
at the surface of the star pressure vanishes, we have
P̄ð1Þ ¼ 0. In general relativity, the Schwarzschild solution
is the unique vacuum solution around a spherically sym-
metric and static mass distribution according to the
Birkhoff theorem [45,46]. Yet, there is not a unique vacuum
solution in fðRÞ theories [47]. In this paper, we examine the
case that the Ricci scalar at the surface of the star is just as
in General Relativity. So, our last boundary condition is
R̄ð1Þ ¼ 8πρ̄ð1Þ. This value is generally zero for realistic
equation of states, yet it is nonzero for uniform density
distribution. At this point, we assume that the spacetime
outside the star is described by Schwarzschild’s metric.
This assumption allows us to compare our results easily
with those of the General Relativity, and also for simplicity.
Then, with this choice, m denotes the mass within radial
coordinate r.
Because ϵ is multiplying R00 in the trace equation,

Eq. (16), the system of equations poses a singular pertur-
bation problem. An appropriate method for handling such
singular problems, well known in the fluid dynamics
research, is the MAE which we employ in the following.
According to the method, there should be a boundary layer
which according to the authors of Ref. [44] forms near
the surface of the star. The solution which is valid in the
boundary layer is called the inner solution, and for
stretching this region a new parameter will be defined in
an appropriate way. Outside the boundary layer—the rest
of the star—the outer solution is valid. In a transition
region the two solutions match with each other. The outer
solutions of Eqs. (14), (15), and (16) satisfy the boundary
conditions at x ¼ 0, and the inner solutions satisfy the
boundary conditions at x ¼ 1.
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IV. UNIFORM DENSITY STARS

The bulks of neutron stars have a remarkably constant
density though the density near to the surface drops by 15
orders of magnitude. This crustal contribution does not
change the mass and the radius significantly. In this work,
we employ the uniform density approach for simplicity.

A. Outer solutions for uniform density

The outer solutions are valid where 0 < x < 1, they are
introduced as perturbative expansions

R̄outðxÞ ¼ R̄out
0 ðxÞ þ ϵR̄out

1 ðxÞ þOðϵ2Þ; ð17aÞ

m̄outðxÞ ¼ m̄out
0 ðxÞ þ ϵm̄out

1 ðxÞ þOðϵ2Þ; ð17bÞ

P̄outðxÞ ¼ P̄out
0 ðxÞ þ ϵP̄out

1 ðxÞ þOðϵ2Þ; ð17cÞ

and they should satisfy boundary conditions at x ¼ 0. After
plugging these expressions into Eqs. (14), (15), and (16),
the Oð1Þ terms in these equations are

dm̄out
0

dx
¼ x2

6
ð24πP̄out

0 þ R̄out
0 þ16πρ̄Þ; ð18aÞ

4xðx − 2m̄out
0 Þ dP̄

out
0

dx
¼ −ðρ̄þ P̄out

0 Þð16πx3P̄out
0 þ 4m̄out

0 Þ;
ð18bÞ

0 ¼ xð−8πρ̄þ 24πP̄out
0 þ R̄out

0 Þ: ð18cÞ

Equation (18c) can be written as

R̄out
0 ðxÞ ¼ 8πρ̄ − 24πP̄out

0 ðxÞ: ð19Þ

If we plug it into Eq. (18a), we obtain

dm̄out
0

dx
¼ 4πx2ρ̄: ð20Þ

The solution of this equation with the boundary condition,
m̄ð0Þ ¼ 0, is

m̄out
0 ðxÞ ¼ 4

3
πx3ρ̄; ð21Þ

and the solution of Eq. (18b) (see Sec. IVA) is

P̄out
0 ¼ ρ̄

"
2ðPc þ ρ̄Þ

3ðPc þ ρ̄Þ − ð3Pc þ ρ̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

3
πρ̄x2

q − 1

#
: ð22Þ

According to Eq. (19),

R̄out
0 ðxÞ¼ 16πρ̄

2
641− ð3Pcþ ρ̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8

3
πρ̄x2

q
3ðPcþ ρ̄Þ− ð3Pcþ ρ̄Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 8

3
πρ̄x2

q
3
75:
ð23Þ

After plugging the outer solutions into Eqs. (14), (15),
and (16), the OðϵÞ terms in the equations are

dm̄out
1

dx
¼ −

�
x
dR̄out

0

dx
þ 4R̄out

0

�
dm̄out

0

dx
þ x2

12
ð48πP̄out

1 þ 3ðR̄out
0 Þ2 þ 2R̄out

1 Þ þ x2

6
ð48πP̄out

0 þ 32πρ̄þ 2R̄out
0 ÞR̄out

0

þ 1

6
ð16πρ̄x3 þ x3R̄out

0 − 6m̄out
0 ÞR̄out0

0 ; ð24aÞ

4xðx − 2m̄out
0 Þ dP̄

out
1

dx
¼ −½4xðx − 2m̄out

0 Þð2R̄out
0 − xR̄out0

0 Þ − 8xm̄out
1 � dP̄

out
0

dx
− ðP̄out

0 þ ρ̄Þ½16πx3P̄out
1 − x3ðR̄out

0 Þ2

− 8xðx − 2m̄out
0 ÞR̄out0

0 þ 8m̄out
0 R̄out

0 þ 4m̄out
1 � − P̄out

1 ð16πx3P̄out
0 þ 4m̄out

0 Þ; ð24bÞ

xðx − 2m̄out
0 ÞR̄out00

0 ¼ x2

6
ð24πP̄out

1 þ R̄out
1 Þ þ x2

3
ð24πP̄out

0 − 8πρ̄þ R̄out
0 ÞR̄out

0 þ 2ðm̄out
0 − xÞR̄out0

0 þ x3

6
ð16πρþ R̄out

0 ÞR̄out0
0 :

ð24cÞ

In Eq. (24a), the R̄out
1 and P̄out

1 terms can be eliminated by using Eq. (24c). After that, the integration of the equation gives
the OðϵÞ outer solution of the mass in terms of P̄out

0 as

m̄out
1 ðxÞ ¼ 96π2x3ðρ̄þ P̄out

0 Þ
�
ρ̄

3
þ P̄out

0

�
− 16π2ρ̄x3ð4P̄out

0 þ ρ̄Þ þ
Z

ð144π2x2P̄out2
0 þ 288π2ρ̄x2P̄out

0 Þdx: ð25Þ

Unfortunately, Eq. (24b) cannot be solved analytically. Still, the OðϵÞ outer solution of the Ricci scalar by using Eq. (24c)
can be written in terms of the other outer solutions as
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R̄out
1 ðxÞ ¼ −144π

�
1 −

8

3
πρ̄x2

�
d2P̄out

0

dx2

−
48π

x
½4πx2ð3P̄out

0 − 5ρ̄Þ þ 6� dP̄
out
0

dx
− 24πP̄out

1 :

ð26Þ

B. Inner solutions for uniform density

Since the trace equation will be a second order differ-
ential equation in the inner region despite it being an
algebraic equation in the outer region, it is a fair assumption
that the boundary layer occurs near the surface of the star
where the Ricci scalar changes its behavior to satisfy the
boundary condition. Therefore, we define the inner variable
(coordinate stretching parameter) as ξ≡ ð1 − xÞ=ϵν where
ν is to be determined by careful balancing of the terms.
Accordingly, writing Eq. (16) in terms of the inner variable,
the R00 term and one of the terms on the right-hand side
of the equation become Oð1Þ while the rest of the terms

are higher order. To obtain that we are forced to
choose ν ¼ 1=2.
Hence, the inner solutions, valid for 0 ≪ x < 1, are

introduced as

R̄inðξÞ¼ R̄in
0 ðξÞþ ϵ1=2R̄in

1 ðξÞþ ϵR̄in
2 ðξÞþOðϵ3=2Þ; ð27aÞ

m̄inðξÞ¼ m̄in
0 ðξÞþ ϵ1=2m̄in

1 ðξÞþ ϵm̄in
2 ðξÞþOðϵ3=2Þ; ð27bÞ

P̄inðξÞ¼ P̄in
0 ðξÞþ ϵ1=2P̄in

1 ðξÞþ ϵP̄in
2 ðξÞþOðϵ3=2Þ: ð27cÞ

They should satisfy the boundary conditions at x ¼ 1,

P̄in
0 ðξ ¼ 0Þ ¼ P̄in

1 ðξ ¼ 0Þ ¼ R̄in
1 ðξ ¼ 0Þ ¼ 0;

R̄in
0 ðξ ¼ 0Þ ¼ 8πρ̄: ð28Þ

Using the coordinate stretching parameter we rewrite the
dimensionless TOV Eq. (14) as

2

ϵ1=2
½1þ 2ϵR̄in − ϵ1=2ð1− ϵ1=2ξÞR̄in 0�dm̄

in

dξ
¼ −

ð1− ϵ1=2ξÞ2
6

ð48πP̄inþð2þ 3ϵR̄inÞR̄inþ 32πρ̄Þ

þ ϵ1=2
R̄in 0

3ð1þ 2ϵR̄inÞ ½ð1− ϵ1=2ξÞ3ðR̄in þ 3ϵðR̄inÞ2 þ 16πρ̄Þ− 6m̄inð1þ 2ϵR̄inÞ�

− ϵð1− ϵ1=2ξÞð1− ϵ1=2ξ− 2m̄inÞ 4

ð1þ 2ϵR̄inÞ ðR̄
in 0Þ2; ð29Þ

TOV Eq. (15) as

½4ð1− ϵ1=2ξÞð1− ϵ1=2ξ− 2m̄inÞð1þ 2ϵR̄in − ðϵ1=2 − ϵξÞR̄in 0Þ�dP̄
in

dξ

¼ ϵ1=2ðρ̄þ P̄inÞ½16πð1− ϵ1=2ξÞ3P̄in þ 4m̄in þ 8ϵm̄inR̄in − ϵð1− ϵ1=2ξÞ3ðR̄inÞ2 þ 8ϵ1=2ð1− ϵ1=2ξÞR̄in 0ð1− ϵ1=2ξ− 2m̄inÞ�;
ð30Þ

and finally the trace Eq. (16) as

ð1 − ϵ1=2ξÞð1 − ϵ1=2ξ − 2m̄inÞð1þ 2ϵR̄inÞR̄in00

¼ 1

6
ð1 − ϵ1=2ξÞ2ð1þ 2ϵR̄inÞð−8πρ̄þ 24πP̄in þ R̄inÞ

−
ϵ1=2

6
½ð1þ 2ϵR̄inÞ12m̄in − 12ð1þ 2ϵR̄inÞð1 − ϵ1=2ξÞ þ ϵð1 − ϵ1=2ξÞ3ðR̄inÞ2�R̄in 0

−
ϵ1=2

6
½ð1 − ϵ1=2ξÞ3R̄in þ 16πð1 − ϵ1=2ξÞ3ρ̄�R̄in 0 þ 2ϵð1 − ϵ1=2ξÞð1 − ϵ1=2ξ − 2m̄inÞðR̄in 0Þ2: ð31Þ

Oð1Þ terms in these equations are

dm̄in
0

dξ
¼ 0; ð32aÞ

ð1 − 2m̄in
0 Þ

dP̄in
0

dξ
¼ 0; ð32bÞ

6ð1 − 2m̄in
0 Þ

d2R̄in
0

dξ2
¼ −8πρ̄þ 24πP̄in

0 þ R̄in
0 : ð32cÞ
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The nontrivial solutions of these equations are

m̄in
0 ðξÞ ¼ A0; P̄in

0 ðξÞ ¼ 0;

R̄in
0 ðξÞ ¼ C0 exp

�
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð1 − 2A0Þ
p �

þD0 exp

�
−

ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − 2A0Þ

p �
þ 8πρ̄; ð33Þ

where C0 þD0 ¼ 0, with the boundary conditions given
in Eq. (28). C0 should be zero to prevent infinities at the
matching procedure. So, D0 is also zero.
Then, Oðϵ1=2Þ terms in the equations of the inner

solution [Eqs. (29), (30), and (31)] are

dm̄in
1

dξ
¼ −

1

6
ðR̄in

0 þ 16πρ̄Þ; ð34aÞ

ð1 − 2A0Þ
dP̄in

1

dξ
¼ ρ̄A0; ð34bÞ

ð1 − 2A0Þ
d2R̄in

1

dξ2
¼ 1

6
ð24πP̄in

1 þ R̄in
1 Þ; ð34cÞ

and the solution of these equations with the boundary
conditions given in Eq. (28) are

m̄in
1 ðξÞ ¼ −4πρ̄ξþ A1; ð35aÞ

P̄in
1 ðξÞ ¼

A0ρ̄

ð1 − 2A0Þ
ξ; ð35bÞ

R̄in
1 ðξÞ ¼ C1 exp

�
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6 − 12A0

p
�

þD1 exp

�
−

ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 − 12A0

p
�
−
24πρ̄A0

1 − 2A0

ξ; ð35cÞ

where C1 þD1 ¼ 0. Again, to prevent infinities in a
matching procedure C1 should be zero. So, D1 is also
zero.
After applying these solutions, OðϵÞ terms in the

equations of inner solution [Eqs. (29), (30), and (31)]
are obtained as

dm̄in
2

dξ
¼ 8πρ̄ξ; ð36aÞ

dP̄in
2

dξ
¼ −

ρ̄

ð1 − 2A0Þ2
½4πρ̄ð1 − A0Þξ − A0ð2 − A0Þξ − A1�

ð36bÞ

ð1 − 2A0Þ
d2R̄in

2

dξ2
¼ 1

6
ð24πP̄in

2 þ R̄in
2 Þ þ

48πρ̄

1 − 2A0

ð2πρ̄þ A0 − 1Þ: ð36cÞ

Accordingly, OðϵÞ inner solutions are

m̄in
2 ðξÞ ¼ 4πρ̄ξ2 þ A2; ð37aÞ

P̄in
2 ðξÞ ¼ −

ρ̄

ð1 − 2A0Þ2
�
2πξ2ρ̄ð1 − A0Þ −

1

2
A0ξ

2ð2 − A0Þ − A1ξ

�
; ð37bÞ

R̄in
2 ðξÞ ¼ C2 exp

�
ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð1 − 2A0Þ
p �

þD2 exp

�
−

ξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − 2A0Þ

p �
þ 12πρ̄

ð1 − 2A0Þ2
ξ2½A2

0 − A0ð4πρ̄þ 2Þ þ 4πρ̄� − 24A1πρ̄

ð1 − 2A0Þ2
ξ

þ 288πρ̄

ð1 − 2A0Þ2
�
A3
0 þ

�
8πρ̄ −

1

2

�
A2
0 − 8πρ̄A0 þ 2πρ̄

�
: ð37cÞ

Again, C2 should be zero to prevent infinities in the matching procedure. Then, the boundary condition, Rin
2 ðξ ¼ 0Þ ¼ 0,

implies that

D2 ¼ −
288πρ̄

ð1 − 2A0Þ2
�
A3
0 þ

�
8πρ̄ −

1

2

�
A2
0 − 8πρ̄A0 þ 2πρ̄

�
: ð38Þ
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C. Composite solutions for uniform density

For matching the solutions we employed Van Dyke’s
method. As shown in Appendix B, the solutions can match
and we obtain

Pc ¼ ρ̄
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2A0

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2A0

p
− 1

; A0 ¼
4

3
πρ̄;

P̄out
2 ðx ¼ 1Þ ¼ A1 ¼ 0; A2 ¼ m̄out

1 ðx ¼ 1Þ: ð39Þ

After matching the solutions we can construct the
composite solutions by subtracting the overlapping parts
from the sum of the solutions. Accordingly, the dimension-
less composite solutions are

m̄compðxÞ ¼ m̄out
0 þ ϵm̄out

2 ; ð40aÞ

P̄compðxÞ ¼ P̄out
0 þ ϵP̄out

2 ; ð40bÞ

R̄compðxÞ ¼ R̄out
0 þ ϵR̄out

2 þ ϵ
108A2

0

1 − 2A0

ð3 − 7A0Þ

×

�
1 − exp

�
−

1 − xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð1 − 2A0Þ

p ��
: ð40cÞ

The dimensionless Ricci scalar has a contribution from
the inner solution. Yet, the dimensionless mass and the
pressure are the same as the regular perturbation approach.
So, they do not change their behaviors near the surface
of the star as shown in Fig. 1 for the dimensionless mass.
This result might be caused by our assumption of uniform
density or the boundary condition on the Ricci scalar at the
surface of the star.

V. MASS-RADIUS RELATION

All solutions and parameters can be written in dimen-
sional form by referring to Eq. (13). Then, the radius of the
star can be found in terms of the relativity parameter,
μ ¼ ð9π=4Þ1=3ðρ=ρLÞ1=3, as

RðμÞ ¼ RL

�
2

5μ

�
1=2

�
9π

4
gðμÞ

�
1=3

; ð41Þ

where

gðμÞ ¼ ð1þ 2μ2=5Þ3=2
ð1þ 3μ2=5Þ3 ð42Þ

and the Landau parameters are

ML ≡ 1

m2
N

�
ℏc
G

�
3=2

; RL ≡GML

c2
≈ 2.71 km;

ρL ≡ 3ML

4πR3
L
≈ 4.29 × 1016 g cm−3 ð43Þ

[48]. By using these, the mass-radius (M-R) relation can be
obtained as shown in Fig. 2. We see that the mass of the star
increases with α for a star with a fixed radius. The solutions
with dM=dρ < 0 are unstable, a well known result
from GR, which we assume to prevail in fðRÞ gravity.

FIG. 1. Dimensionless mass distribution inside of the star with dimensionless density of 0.02 and 0.05 for various values of ϵ.

FIG. 2. The stellar mass and the radius of the star (M-R)
relations for different values of α. Here M, M⊙, and R� are the
stellar mass, the Sun mass, and radius of the star, respectively.
The grey region is where the radius of the star is smaller than the
Schwarzschild radius.
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The maximum mass is achieved when dM=dρ ¼ 0.
The model thus predicts greater maximum mass, Mmax,
depending on the value of α. As shown in the figure, for
the nonzero values of α we find solutions for which
dM=dρ > 0 beyond densities exceeding the one yielding
Mmax. Yet, these solutions cannot be stable as they occur
when the object is totally contained within the
Schwarzschild radius. When α is greater than 0.04 km2,
the unstable branch vanishes and we cannot determine the
maximum mass as in GR. Hence, unlike GR, the stable
solutions go to the Schwarzschild solution continuously.
For lower values of α than 0.04 km2, the maximum mass of
the stable star and the corresponding compactness are shown
in Fig. 3. Accordingly, the maximummass and the compact-
ness can be represented, when α < 0.04 km2, with

Mmax

M⊙
¼ 1.63α1.15 þMmax;GR;

2GMmax

Rminc2
¼ 2GM⊙

c2
1.63α1.15 þMmax;GR

−55.19α1.38 þ Rmin;GR
; ð44Þ

where M⊙ is the solar mass, Mmax;GR and Rmin;GR are the
mass and the radius of the highest mass star in GR, and their
values are, respectively, 0.5 M⊙ and 3.19 km.

VI. CONCLUSION

We studied the structure and mass-radius relation for
uniform density relativistic stars in the fðRÞ ¼ Rþ αR2

gravity model. We used the method of matched asymptotic
expansions to handle the singular perturbation problem
posed by the higher order derivatives in the field equations
arising from the higher order curvature term. This method
allows us to obtain solutions, parametrized by α, which
smoothly match with the solutions obtained in the general
relativity (α ¼ 0). This establishes, once again by a differ-
ent method than the previously considered perturbative
approach [26,27], the existence of relativistic stars in this
model of gravity. The solutions of the mass and the pressure
obtained in this paper are the same as the regular

perturbative approach since their composite solutions con-
tain only outer solutions. So, the MAE method does not
provide a different mass-radius relation in this case. Yet,
this outcome might change with a different choice of the
boundary condition for the Ricci scalar at the surface of
the star.
We find thatMmax increases almost linearly with α while

R decreases with α−1.38. This implies that general relativity,
as a special case of this model of gravity, holds the least
compact stellar configurations. References [27,29] find that
the maximum mass, Mmax, has a minimum value at a
certain value of α ∼ 1.5 × 1010 cm2 and α ∼ 1 × 1010 cm2,
respectively, for the polytropic equation of state with
polytropic index of 9=5. The difference between the result
in this paper and the previous findings likely stems from the
uniform density assumption employed in this paper which
leads to the vanishing of terms involving dρ=dr.
As a future work, the same calculations should be

repeated for realistic equation of states with the MAE
method by permitting the vacuum solutions other than
Schwarzschild’s solution, and the results should be com-
pared with the previous works.

APPENDIX A: SOLUTION OF P̄out
0

With Eq. (21), Eq. (18b) can be written as

dP̄out
0

ðρ̄þ P̄out
0 ÞðP̄out

0 þ ρ̄=3Þ ¼ −4π
xdx

1 − 8
3
πx2ρ̄

: ðA1Þ

By integrating both sides from P̄c to P̄out
0 and from 0 to x

ln

�ð3P̄out
0 þ ρ̄ÞðP̄cþ ρ̄Þ

ðP̄out
0 þ ρ̄Þð3P̄cþ ρ̄Þ

�
3=2ρ̄

¼ ln

�
8πρ̄x2−3

−3

�
3=4ρ̄

ðA2Þ

is obtained. Solving this equation we find

FIG. 3. Left: Maximum mass of the star vs α. Right: Compactness which corresponds to the maximum mass of the star vs α. Here
M⊙ is the solar mass.
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P̄out
0 ¼ ρ̄

�
2ðPc þ ρ̄Þ

3ðPc þ ρ̄Þ − ð3Pc þ ρ̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8

3
πρ̄x2

q − 1

�
; ðA3Þ

where P̄c is a constant corresponding to P̄out
0 ð0Þ.

APPENDIX B: MATCHING THE SOLUTIONS

According to Van Dyke’s method, first the outer sol-
utions are written in terms of the inner variable, and they
are expanded up to OðϵÞ for small ξ. Similarly, the inner
solutions are written in terms of x, and they are expanded
up to OðϵÞ for small ϵ. Then, the matching conditions are
obtained by equaling both of them.
Accordingly, the matching condition for the mass

solutions is

4

3
πρ̄ð1 − 3xþ 3x2Þ þ ϵm̄out

1 ð1Þ
¼ A0 − 4πρ̄ð1 − xÞ þ ffiffiffi

ϵ
p

A1 þ 4πρ̄ð1 − xÞ2 þ ϵA2:

ðB1Þ

Obviously, A1 should be zero and

4

3
πρ̄ ¼ A0; m̄out

1 ð1Þ ¼ A2: ðB2Þ

Similarly, the matching condition for solutions of the
pressure is

ρ̄

�
2K

3K − L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p − 1

�
þ 4KLρ̄βð1 − xÞ
ð3K − L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p Þ2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p þ 2ρ̄

3K − L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p
�

LK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p
3K − L

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p
�
−

β

1 − 2β
−

2β2

ð1 − 2βÞ2
�

þ 4KL2β2

ð3K − L
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2β

p Þ2ð1 − 2βÞ
�
ð1 − xÞ2 þ ϵP̄out

2 ð1Þ ¼ A0ρ̄

2ð1 − 2A0Þ
ð1 − x2Þ; ðB3Þ

where

β ¼ 4

3
πρ̄; K ¼ Pc þ ρ̄; L ¼ 3Pc þ ρ̄: ðB4Þ

Obviously, P̄out
2 ð1Þ should be zero. The right-hand side

(RHS) and left-hand side (LHS) of Eq. (B3) can be matched
if the following conditions are satisfied:

(i) The third term equals the opposite sign and half of
the second term in LHS of the equation since there is
not any term proportional to x in the RHS of the
equation.

(ii) The summation of factors of the first, second, and
third terms equals the opposite sign of the factor of
the third term in the LHS of the equation since the
factor of x2 is the opposite sign of the constant term
in the RHS of the equation.

(iii) Combining the first condition with the second
condition gives that the first term in the LHS of
the equation should be zero.

All conditions are satisfied if

Pc ¼ ρ̄
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2A0

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2A0

p
− 1

: ðB5Þ

Finally, by using the above results, the matching con-
dition for the inner solution of the Ricci scalar can be
written as

6A0 −
18A2

0

1 − 2A0

ð1 − xÞ þ 9A0

ð1 − 2A0Þ2
½−2A2

0 þ A0�ð1 − xÞ2

þ ϵ
108A2

0

1 − 2A0

½3 − 7A0�; ðB6Þ

and for the outer solution of the Ricci scalar can be written
as

6A0 −
9A2

0

1 − 2A0

ð1 − x2Þ þ 24πϵ

�
−6ð1 − 2A0Þ

d2P̄out
0

dx2

����
x¼1

þ ð30A0 − 12ÞdP̄
out
0

dx

����
x¼1

	
; ðB7Þ

and

d2P̄out
0

dx2

����
x¼1

¼ dP̄out
0

dx

����
x¼1

¼ −
A0

1 − 2A0

: ðB8Þ

It can easily be shown that Eqs. (B6) and (B7) are equal to
each other.
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