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Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme
gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent
gravitational wave observations by advancedLIGOhave provided the first glimpses into this regime, allowing
for the extraction of new inferences on different aspects of theoretical physics. For example, these detections
provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of
large extra dimensions, the temporal variability of Newton’s gravitational constant, and modified dispersion
relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints
obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we
study the degree to which theoretical physics inferences drawn from gravitational wave observations will
strengthen with detections from future detectors. We consider future ground-based detectors, such as the
LIGO-class expansions Aþ, Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based
detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that
space-based detectorswill place constraints on general relativity up to 12orders ofmagnitudemore stringently
than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the
ground-basedCosmicExplorer or theEinsteinTelescope (Aþ andVoyager only lead tomodest improvements
in constraints). We also generically find that improvements in the instrument sensitivity band at low
frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at
high frequencies lead to more modest gains. These results strengthen the case for the development of future
detectors, while providing additional information that could be useful in future design decisions.
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I. INTRODUCTION

The recent detection of gravitational waves by the
advanced LIGO (aLIGO) detectors [1,2] has revealed that
the gravitational interaction seems to behave as predicted
by Einstein’s theory of general relativity (GR), even in the
extreme gravity regime [3] where the gravitational inter-
action is strong, nonlinear, and highly dynamical [4]. This
confirmation of GR in extreme gravity can then be used to
extract inferences on fundamental theoretical physics by
imposing generic constraints on deviations from the pillars
of Einstein’s theory, i.e., constraints on physical mecha-
nisms that may or may not activate in the extreme gravity
regime [5]. Examples of these inferences include state-
ments about the mass of the graviton and thus about its
propagation speed (as predicted, e.g., in new massive
gravity [6–8] and bigravity [9]), whether Lorentz invariance
is violated in the gravitational sector (as predicted e.g.
in Einstein-Æther theory [10,11] and khronometric gravity
[12,13]), the existence of a large extra dimension (as
predicted e.g. in certain Randall-Sundrum scenarios
[14,15]), the temporal variability of fundamental physical
constants [16], and the dispersion relation of gravitational
waves (modifications of which are predicted in a plethora
of quantum gravitational models [17–22]).

Most of the constraints one can place on GR deviations
with gravitational waves, however, are not yet competitive
with constraints derived with Solar System or binary pulsar
observations [23]. This is in part because of the much higher
signal-to-noise ratio of Solar System and binary pulsar
observations relative to current gravitational wave observa-
tions. But this will undoubtedly change as next-generation
gravitational wave observatories begin operation in the
coming decades with much higher signal-to-noise ratio
observations. Although the future is uncertain, there are
proposals to upgrade the aLIGO instrument into an Aþ and
a Voyager configuration that would become operational by
∼2020 and ∼2027 respectively [24]. There are also plans to
construct an entirely new next-generation observatory, either
Cosmic Explorer or Einstein Telescope, by the middle of the
following decade [24]. We will describe some of the details
of these upgrades later, but suffice it to say that they will
allow for observations with signal-to-noise ratios that are
6 times, 12 times, and 60 times larger than current aLIGO.
By the mid 2030s, space-based gravitational wave observa-
tories, such as the proposed LISA [25], should also begin
operation, allowing us to observe gravitational waves emit-
ted by much more massive compact objects at very high
signal-to-noise ratios.
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This paper addresses the degree to which inferences on
theoretical physics will become stronger given gravitational
wave observations with future detectors. We have already
shown that inferences on the existence of dipole radiation
in the merger of compact binaries can be strengthened by
5–6 orders of magnitude with joint aLIGO-evolved LISA
observations [26]. We now extend this analysis to consider
(i) several other theoretical physics mechanisms that can
be constrained1 and (ii) several other future detectors (in
particular, upgrades to ground-based detectors) that will
allow for much louder future observations. We carry out a
large number of Fisher analysis calculations assuming
single events, sky averaging, and use both realistic and
phenomenological sensitivity curves. The latter are
included when developing a physical and mathematical
understanding of the results obtained using realistic sensi-
tivity curves. These Fisher calculations allow us to estimate
projected constraints on a variety of physical mechanisms,
and also on particular modified theories of gravity, as a
function of the post-Newtonian2 (PN) order at which the
modifications first enter the gravitational wave observable.
The results obtained in this paper strengthen the funda-

mental science case for future gravitational wave detectors,
both ground and space-based, and they provide information
that could be used in design decisions as these new
detectors are developed. For this reason, given the length
of the paper and the fact that the results obtained may be
interesting to different communities, we provide a short
summary of our main findings below.

1. Generic constraints with space-based detectors for
deviations that enter first at negative (positive) PN order
are constrained 12 (3) orders of magnitude better than
current LIGO constraints, but comparable and at most 3
orders of magnitude better than constraints with third-
generation ground detectors.

Constraints on GR deviations with space-based detectors
are certainly much more stringent than those that can be
placed with current ground-based detectors, if for no other
reason than because the former will detect gravitational
waves with a signal-to-noise ratio in the thousands. The
constraints become comparable, however, when one con-
siders what is achievable with third-generation detectors,
since these will also observe in the very high signal-to-
noise ratio regime. The improvement of space-over-ground
constraints is significantly larger when considering devia-
tions that enter at negative PN order; this is simply because

the former have access to a much lower frequency band,
allowing for the detection of low-mass binaries in the very
early stages of inspiral.

2. Improvements of ground-based detectors within
the current LIGO facilities will lead to only modest
improvements of constraints on GR deviations.

Aþ and Voyager type improvements of the current LIGO
facilities will lead to improved constraints on GR devia-
tions that will not exceed an order of magnitude. This is
because such projected modifications will not greatly
improve the low-frequency band of the detector noise
(see Fig. 1). Cosmic Explorer and Einstein Telescope type
improvements, which typically require entirely new facili-
ties, will greatly improve the low-frequency band of the
detector noise leading to impressive improvements in our
ability to test negative PN order GR deviations.

3. Negative PN GR deviations are best constrained by
gravitational waves produced by widely separated
binaries, while positive PN deviations are roughly
independent of the system considered.

GR deviations that enter first at negative PN order terms
(relative to the leading GR term) scale with inverse powers
of the gravitational wave frequency (and thus the orbital
frequency). Since inspiral signals have a chirping nature,
the low frequency part of a gravitational wave signal
corresponds to a large separation of the binary. An example
of this is the GW150914 event which, although observed
with aLIGO during the very late inspiral and merger phase,
would have been observed with a space-based detector

FIG. 1. Noise spectral density for all instruments used in our
analysis as a function of frequency. (e)LISA operates at much
lower frequencies than aLIGO. At such low frequencies, (e)LISA
is capable of detecting both gravitational waves from very
massive systems inaccessible to aLIGO, as well as the very early
inspiral of some systems whose merger-ringdown phases occur in
the aLIGO frequency band, such as GW150914-like systems.

1Indeed, generic theoretical physics mechanisms can be con-
strained with gravitational waves in a model-independent way,
such as Lorentz invariance or parity violation, as explained in
detail in [5].

2In the PN approximation, one solves the field equations as an
expansion in low velocities (relative to the speed of light) and
weak gravitational fields. For details/discussion, see [27].
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when it was very widely separated. Therefore, GR devia-
tions that enter first at negative PN order are best con-
strained by widely separated binaries. On the other hand,
GR deviations that enter first at positive PN order are
constrained equally well by all compact binary systems,
provided the late inspiral and merger is in band.

4. Sensitivity modifications at low frequencies greatly
improve our ability to constrain GR deviations that first
enter at negative PN order, but modifications at high
frequency do not improve positive PN constraints as
much as sensitivity modifications in the bucket of the
band.

This is because negative PN order modifications are very
large at low frequencies. Improving the noise sensitivity in
this regime leads to the accumulation of many more cycles
at low-frequencies, and thus, to the build up of more signal-
to-noise ratio precisely in the regime of the band where the
modifications are largest. This can be quantified in terms of
the effective cycles accumulated at low frequencies [28].

5. Both space- and ground-based detectors can place
constraints that are comparable to, and sometimes
better than, current constraints, though the former
can typically do somewhat better than the latter.

Future gravitational wave observations will certainly
lead to constraints that are in many cases more stringent
than current constraints, as seen in Table I. Though the

results are theory-dependent, space-based instruments can
often offer more stringent constraints on the properties of
nature in the extreme-gravity regime, such as the mass of
the graviton or the size of a large extra-dimension. This is
due in part to the high signal-to-noise ratio nature of
detections that are accessible to these kinds of detectors, as
well as the wide range of binary masses, separation
distances, and luminosity distances that produce mHz
frequency gravitational waves.

6. Future ground-based detectors are complementary to
space-based detectors when placing constraints on
modified theories of gravity.

As shown in Table I, the constraints one can place on
modified gravitywith ground- and space-based detectors are
not significantly different. What is important is that
the constraints derived with either type of instrument are,
in many cases, orders of magnitude stronger than current
bounds obtained by other observations and experiments.
In this sense, the science case for the next generation of
ground-based instruments and for space-based instruments
is strong with regards to the inferences one can extract about
theoretical physics from future gravitational wave data.
The remainder of this paper describes in detail the

methodology used to reach the results summarized above
and is divided as follows. Section II explains how different
modifications to the pillars of GR imprint onto the
gravitational wave observable. Section III presents the data
analysis tools and gravitational wave models we employ in

TABLE I. Table summary of the best constraints on a variety of modified gravity modifications, listed in the first column. The second
column indicates the PN order at which the modification first enters the gravitational wave phase. The third column labels the parameters
that can be constrained. The fourth (fifth) column shows the best projected constraint achievable with a space-based (ground-based)
detectors, which is to be compared with current constraints on β (listed as the best constraint obtained with either of the GW150914 or
GW151226 detections), and with current constraints on theory parameters as given by the most stringent of either aLIGO or other
observations. The last two columns show the class of the system that lead to the best constraint. Constraints on Einstein-Æther/
khronometric Gravity are given as rough constraints on ðcþ; c−Þ=ðβKG; λKGÞ (for the contours, see Figs. 9 and 8).

GR Deviation PN Parameter
Best space
constraints

Best ground
constraints

Current
constraints

Best space
systems

Best ground
systems

Dipole radiation −1 β 4.9 × 10−12 1.9 × 10−10 4.4 × 10−5 EMRI NSNS
δ _EDip 7.8 × 10−8 3.2 × 10−8 1.8 × 10−3 EMRI=GW150914 NSNS

Large extra-
dimension

−4 β 2.2 × 10−22 6.4 × 10−20 9.1 × 10−11 EMRI NSNS
l [μm] 3.0 × 102 7.5 × 104 10 − 103 [29–33] EMRI=GW150914 BHBH

Time-varying G −4 β 2.2 × 10−22 6.4 × 10−20 9.1 × 10−11 EMRI NSNS
_G½1=yr� 6.8 × 10−8 1.1 × 10−3 10−12 − 10−13 [34–38] EMRI NSNS

Einstein-Æther
theory

0 β 4.0 × 10−8 6.7 × 10−5 3.4 × 10−3 EMRI lBHNS
ðcþ; c−Þ ð10−3; 3 × 10−4Þ ð10−2; 4 × 10−3Þ (0.03, 0.003) [39,40] EMRI NSNS

Khronometric
gravity

0 β 4.0 × 10−8 6.7 × 10−5 3.4 × 10−3 EMRI lBHNS
ðβKG; λKGÞ ð10−4; 10−2Þ=2 ð10−2; 10−1Þ=5 ð10−2; 10−1Þ=2 [39,40] EMRI GW150914

Graviton mass þ1 β 4.3 × 10−5 1.0 × 10−3 8.9 × 10−2 EMRI=IMBH lBHBH
mg [eV] 9.0 × 10−28 9.9 × 10−25 10−29–10−18 [41–45] SMBH=IMRI GW150914
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this paper. Section IV describes the projected constraints
we will be able to place on deviations from GR with future
observations. Section V maps these constraints to infer-
ences we can extract on fundamental theoretical physics.
Section VI concludes and points to future research.
Henceforth, we follow the conventions of [46]. In particu-
lar, the metric signature is ð−;þ;þ;þÞ, Latin and Greek
letters in index lists stand for parameter and spacetime
indices respectively, and we use geometric units in
which G ¼ 1 ¼ c.

II. MODIFICATIONS TO THE PILLARS OF GR

Modified theories of gravity have pervaded the realm of
gravitational physics for ages. However, we are now in a
position to begin to test these competing hypotheses against
actual data in the extreme gravity regime. Rather than focus
our study on a particular theory of gravity, we take the
alternative viewpoint of attempting to learn about and
constrain deviations in the pillars upon which GR rests,
agnostic to any particular theory. In this section, we classify
modified gravity effects by the main (i.e., leading-order in
the inspiral) deviations they impose on the pillars of GR,
separating them into two groups of deviations: those that
affect the generation of gravitational waves and those that
affect the propagation of gravitational waves. We then
discuss how such deviations imprint in the gravitational
wave observable. We do not present here all possible
modifications to GR pillars, and instead summarize a
few important modifications following the more compre-
hensive analysis of [5].

A. Modifications in the generation
of gravitational waves

Modifications in the generation of gravitational waves
are active only at times when the time derivatives of the
multipole moments of the spacetime that generates the
gravitational waves are nonzero. For a binary system, this
means that generation modifications are only active during
the coalescence event, whose duration depends on the total
mass of the system: at most ∼100 minutes for stellar-mass
binaries, but longer than the lifetime of space-based instru-
ments for extreme mass-ratio events. Clearly then, gen-
eration modifications depend on the local properties of the
binary, and not on global quantities like the distance of the
source to Earth.

1. Presence of dipole radiation

Far from the source, gravitational waves can be
described through a multipolar decomposition, known as
a post-Minkowskian expansion, i.e., an expansion about
Minkowski spacetime in the strength of the gravitational
field [27]. In Einstein’s theory and to leading-order in this
expansion, gravitational waves are generated by the second
derivative of the quadrupole moment of the matter source;

the monopole and dipole terms do not generate gravitational
waves due to conservation of mass and linear momentum,
which in turn arise due to the conservation of the stress-
energy tensor. In GR, then, compact binaries generate
predominantly quadrupolar gravitational waves, which then
carry predominantly quadrupolar energy away from the
source, forcing the binary to inspiral at a given rate.
In several modified gravity theories, however, additional

scalar and vector fields can activate in regimes of extreme
gravity, leading to additional sinks of energy that force
binaries to inspiral faster than in GR. This typically comes
about because these additional fields do not satisfy a
conservation law, i.e., their stress-energy does not satisfy
an equivalent version of matter stress-energy conservation
and therefore can have a monopolar structure far from the
source which then forces them to carry dipolar radiation as
they propagate out to spatial infinity [47]. For example, in
scalar-tensor theories [48–54], dipole radiation is activated
in the presence of neutron stars due to the excitation of a
scalar field, which causes binary neutron stars to inspiral
faster than predicted in GR.
Different modified theories predict that different types of

binaries activate a scalar field. In scalar-tensor theories
[48–54], no-hair theorems [55,56] guarantee that black
holes will not activate a monopolar scalar field, assuming
a constant background field,3 therefore black hole binaries
will not lose energy to dipole emission and will not inspiral
at a dipolar rate. In quadratic gravity theories [59–64],
however, the scalar field is sourced by curvature invariants,
so black holes can activate a monopole field. In such theories
then, black hole binaries will lose energy and inspiral faster
than predicted in GR. Since we wish to remain theory
agnostic, in this paper we will consider the activation of
dipolar radiation for any compact binary systems, regardless
of whether it contains neutron stars or black holes.
How does such dipole energy loss affect the gravitational

wave observable? The response function detected by
instruments on Earth is the projection of the gravitational
wave metric perturbation onto a response tensor. The
Fourier transform of the former can be computed in the
stationary-phase approximation (SPA) by integrating a
function that depends on the energy loss rate. Let us then
parametrize the latter for a quasicircular compact binary
inspiral via

_E ¼ _EGR þ δ _EDipv−2; ð1Þ

where _EGR is the energy loss rate predicted in GR, v is the
relative orbital velocity, and δ _EDip is a dipole correction to
the GR prediction. The latter is in principle a dimensionless
combination of the parameters of the system (like the
masses and spins) and the coupling constants of the theory.

3If the background scalar field is not constant, black holes can
grow hair as shown in [57,58].
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Notice that the dipole correction to the energy loss rate is
v−2 larger than the leading GR prediction, as expected
from a dipolar correction. Such a modification in the energy
flux leads to the following leading PN order correction
to the Fourier phase of the gravitational wave metric
perturbation [5]:

ΨGW;Dip ¼ ΨGW;GR −
3

224
η2=5δ _EDipðπMzfÞ−7=3; ð2Þ

where ΨGW;GR is the Fourier phase of the gravitational
wave metric perturbation in GR (see, e.g., [65,66] and
references therein), Mz ¼ ð1þ zÞM is the redshifted
chirp mass, M ¼ η3=5m is the source chirp mass, η ¼
m1m2=m2 is the symmetric mass ratio, m ¼ m1 þm2 is
the total mass, and f is the observed gravitational wave
frequency.

2. Anomalous accelerations, large extra dimensions
and time-varying fundamental constants

Modified theories that attempt to reconcile quantum
mechanics with GR sometimes posit the existence of extra
dimensions (in addition to the four spacetime dimensions
of GR). In string theory, these extra dimensions are
typically compactified and small, but in the late 1990s
researchers began to consider the possibility of large extra
dimensions [14–16,67]. For example, in the Randall-
Sundrum braneworld scenario [14,15] (which we will
consider in this paper), four-dimensional spacetime resides
on a (4-dimensional) brane, with a large extra dimension
orthogonal to it leading to the bulk.
Until recently, it was not clear whether stable black hole

solutions exist in such braneworld models. Initially, it was
believed that stable solutions do not exist, and thus, that
brane-localized black holes evaporate at a rate dictated
in part by the mass of the black hole and the size of the
large extra dimension [68,69]. Recently, however, brane-
localized black hole solutions have been found [70–72],
therefore it is possible that classical black holes do not need
to evaporate in such models. Nonetheless, if black holes
were to evaporate, they would force a binary containing at
least one black hole to acquire an anomalous acceleration
(since the mass would become time-dependent), leading to
a clear signature in the gravitational wave observable [73].
An anomalous acceleration due to an evaporating mass is

equivalent to a time-varying gravitational constant G [16].
This is because the binding energy of a binary, which
controls the acceleration, depends on the product of the
total mass of the binary and the gravitational constant,
where the latter acts as a conversion factor between mass
and energy [16]. Scalar tensor theories [48,49] can be
thought of as promoting the gravitational constant to a
function of a spacetime-dependent scalar field in the
presence of matter, while FðRÞ theories [74] and bimetric
theories [75] can introduce a time-dependence in G in pure

vacuum spacetimes. One can then imagine, for example, a
situation in which the mass is constant but G is a slowly-
varying function of time so that it can be Taylor expanded
about the time of coalesce as G ¼ G0 þ _G0ðt − tcÞ plus
higher-order terms. This would lead to an anomalous
acceleration and modification to the gravitational wave
observable that is similar to that induced by an evaporating
braneworld black hole.
The promotion of G to a spacetime quantity violates

local position invariance, one of the key components of a
fundamental pillar of GR, the strong equivalence principle
(SEP). The SEP states that the trajectory of any body
(weakly- or self-gravitating) is not only independent of its
internal structure and composition, but also of the velocity
of the (freely-falling) frame in which one measures this
trajectory and of when and where in the Universe the object
is located; this last component of the SEP is called local
position invariance. Therefore, a constraint on the anoma-
lous acceleration caused by a time-variation of G or ofM is
a test of the SEP.
How does this anomalous acceleration affect the gravi-

tational wave observable? In the case of an evaporating
black hole binary, the leading PN order correction to the
Fourier phase of the gravitational wave metric perturbation
is [5,73]:

ΨGW;ED ¼ ΨGW;GR þ 25

851968
_m

×
3 − 26ηþ 34η2

η2=5ð1 − 2ηÞ ðπMzfÞ−13=3 ð3Þ

where, as before, ΨGW;GR is the Fourier phase of the
gravitational wave metric perturbation in GR, while _m≡
dm=dt is the source’s evaporation rate which depends
on the size of the extra dimension. Of course, this is only
valid for binaries that contain black holes, since these
contain singularities through which gravitons can, in
principle, leak into the bulk of a higher dimensional model.
In the case of a time-dependent gravitational constant, the
Fourier phase is [5,16]:

ΨGW; _G ¼ ΨGW;GR −
25

65526

_GzMz

G
ðπMzfÞ−13=3 ð4Þ

where _Gz ¼ _G=ð1þ zÞ is the observed rate of change
of Newton’s constant. In both cases, the correction to GR
depends on the same power of frequency, and one can map
ΨGW;ED toΨGW; _G through a redefinition of _G in terms of _m.

3. Local Lorentz symmetry violation

The SEP requires that local Lorentz symmetry be
preserved by the gravitational interaction, i.e., that the
outcome of all gravitational experiments be independent
of the velocity of the (freely-falling) laboratory frame in
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which the measurements are performed. Violations of this
symmetry are present when one introduces preferred
frames aligned with dynamical vector fields, as is the case
in Einstein-Æther theory [10,11] or when one chooses a
preferred foliation of spacetime through a dynamical scalar
field, as in a (healthy) version of Hořava-Lifshitz gravity
[76–79] called khronometric gravity [13,80].
The magnitude of the violation of Lorentz symmetry is

controlled by the magnitude of the coupling constants of
the theory [39,40,81]. In Einstein-Æther theory, the degree
of Lorentz violation depends on four coupling constants
ðc1; c2; c3; c4Þ, two of which are stringently constrained
by Solar System experiments, leaving only two, namely
c� ¼ c1 � c3, that are weakly constrained. In khronometric
gravity, the degree of violation is controlled by three
coupling constants ðαKG; βKG; λKGÞ, the first of which is
stringently constrained by Solar System experiments,
leaving only the latter two weakly constrained. The best
constraints on these two degrees of freedom in both
Einstein-Æther theory and khronometric gravity comes
from binary pulsar observations [39,40].
How do gravitational Lorentz-violations affect the gravi-

tational wave observable? In Einstein-Æther theory, the
leading PN order correction to the Fourier phase of the
gravitational wave metric perturbation is [81]:

ΨGW;EA ¼ ΨGW;GR þ
3

128
ðπMzfÞ−5=3

�
1−

�
1−

c14
2

�

×

�
1

w2

þ 2c14c2þ
ðcþ þ c− − c−cþÞ2w1

þ 3c14
2w0ð2− c14Þ

�

þ SA2 þ S2A3

�
ð5Þ

while in khronometric gravity one finds [81]:

ΨGW;KG ¼ ΨGW;GR þ 3

128
ðπMzfÞ−5=3

�
1 − ð1 − βKGÞ

×

�
1

wKG
2

þ 3βKG
2wKG

0 ð1 − βKGÞ
�
þ SA2 þ S2A3

�
ð6Þ

where wn is the propagation speed of the spin-n mode,
S ¼ ðs1m2 þ s2m1Þ=m, with s1;2 the sensitivities of the
compact objects,4 and A2;3 given in [39,40]. Notice that
both corrections enter atNewtonian order, meaning they are
both proportional to ðπMfÞ−5=3 which is the leading PN
order dependence on frequency of ΨGW;GR. In principle,
there is also a correction that enters at −1PN order, but this
is proportional to the difference in the sensitivities of the

compact object, which have not yet been calculated for
black holes in either theory. In Sec. IV, we will neglect this
-1PN order correction, thus obtaining conservative pro-
jected constraints, i.e. constraints that could in principle
become more stringent if the -1PN term were included once
the sensitivities are calculated.

B. Modifications in the propagation
of gravitational waves

Modifications in the propagation of gravitational waves
are active only while the wave travels from the source to
Earth. Since all sources are at cosmological distances,
billions of light years away, there is ample time for these
modifications to compile during their travel to Earth. This
means, in particular, that propagation modifications are
proportional to a positive power of the source’s distance to
Earth, a global quantity, and thus, they can typically be
many orders of magnitude larger than generation modifi-
cations (assuming both types are present). Typically,
propagation modifications are enhanced relative to gen-
eration modifications by a factor of the ratio of the times
during which each of these effects is active, i.e.,
∼tprop=tgen ∼DL=M, where DL is the luminosity distance
and M is the total mass [5].
In GR, the gauge boson that carries the gravitational

interaction, the graviton, is massless which need not be the
case in modified theories. In massive gravity theories
[7,8,85,86], the gravitational interaction is mediated by a
massive gauge boson that must travel slower than the speed
of light. Using insight from special relativity, one then
expects that the (phase) velocity of a massive graviton vg
should satisfy

v2g
c2

¼ 1 −
m2

gc4

E2
; ð7Þ

where c is the speed of light, mg is the rest mass of
the graviton, and E is its rest energy [23]. If mg > 0, then
vg
c < 1 and the velocity of the gravitational wave will be
slower than the speed of light. In the limit mg → 0, one of
course recovers the predictions of Einstein’s theory.
Such a modification in the graviton’s dispersion relation

will then propagate into a correction to the gravitational
wave observable. To all PN order, the modified Fourier
phase is [5,7,8,85,86]:

ΨGW;MG ¼ ΨGW;GR þ π2
D0

ð1þ zÞ
Mz

λ2MG
ðπMzfÞ−1 ð8Þ

where D0 is a measure of the distance to the source, Mz is
the redshifted chirp mass, z is the cosmological redshift,
and λMG is the Compton wavelength of the massive
graviton [85]. Notice that, as expected, the massive gravity

4The sensitivities of the compact objects are essentially a
measure of how the mass changes as the scalar field varies. See,
e.g., [82–84].
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modification is proportional to the distance traveled by
the wave.
In addition to a propagation modification, massive

gravity theories may also modify the generation of gravi-
tational waves, although this depends much more on the
particular massive gravity model considered. As demon-
strated in [5], however, when both a modification to the
generation and to the propagation of gravitational waves
are present, the latter will dominate the former, i.e., the ratio
of a propagation modification to a generation modification
scales as DL=M.

III. DATA ANALYSIS, MODELS, DETECTORS
AND SOURCES

Gravitational waves interact very weakly with matter,
which is why they are typically buried in detector noise. If
one knows the shape of the gravitational wave one expects
to detect, then the optimal search strategy is matched
filtering, when the noise is stationary and Gaussian. In
this strategy, one maximizes the cross-correlation of the
detector’s output and a waveform response model or
template (weighted by the detector’s spectral noise density)
with respect to the template’s parameters to find the best fit.
In this section, we will first describe the gravitational wave
models we employ, and then continue with a discussion of
our data analysis strategy and a description of future
detectors through their spectral noise density.

A. Gravitational wave models to test GR

Amatched filtering strategy to test GR with gravitational
waves requires the use of waveform templates that re-
present the gravitational wave response function in modi-
fied gravity, the first step of which is the construction
of accurate templates within GR. In this paper, we use
the inspiral, merger, and ringdown (IMR) templates of
[65,66,87], sometimes referred to as the (nonprecessing)
PhenomDmodel; we refer the reader to those references for
a detailed description of how such waveform models are
constructed. These waveforms are appropriate to describe
the gravitational waves emitted in the inspiral, merger, and
ringdown of binary black holes. Indeed, PhenomD was
constructed by fitting the plunge and merger phase to
numerical relativity simulations of approximately equal-
mass black hole coalescences. In spite of this, we will
continue to use PhenomD when modeling the inspiral of
binaries with at least one neutron star component, as well as
when modeling extreme mass-ratio inspirals. When con-
sidering the former, we will be forced to stop all of
calculations before the merger occurs, i.e., at the gravita-
tional wave frequency corresponding to first contact since
the merger is typically drastically different. When consid-
ering the latter, one should in principle include higher
PN order corrections to the inspiral phase. In this paper,
however, we will use the PhenomD model as a kludge

waveform when considering extreme- and intermediate-
mass ratio systems, as was done in the past, e.g., in [88].
This kludge treatment should be enough to obtain a correct
qualitative understanding of the constraints we can place
with such systems; when more accurate waveforms are
computed for these systems, the conclusions of this paper
can be refined.
For the waveform model in modified gravity, we use the

parametrized post-Einsteinian (ppE) framework [89], a
nested super-model built on top of a given GR model.
This framework modifies any given GR waveform model
through the introduction of two classes of theory param-
eters: exponent parameters (that specify the particular type
of GR deviation) and amplitude parameters (that control
the magnitude of the GR deformation). Gravitational wave
detectors are much more sensitive to the gravitational wave
phase than to their amplitude, and thus, neglecting ampli-
tude modifications for simplicity, the simplest ppE model is
of the form [89]

~hppEðfÞ ¼ ~hGRðfÞeiβub ð9Þ

where u ¼ ðπMfÞ1=3 is a reduced frequency, β is a ppE
amplitude parameter, and b is a ppE exponent parameter.
Lacking numerical relativity intuition of how gravita-

tional waves are modified in the merger phase of a binary
coalescence, we will only consider modifications to the
inspiral part of the waveform. An analysis similar to what
is done in this paper was done in [90] but for ringdown
modes. The ppE inspiral-merger-ringdown waveform
becomes

~hppE ¼
(

~hinsGReiβu
b

f < fIM;
~hMR
GR f > fIM;

ð10Þ

where ~hinsGR and ~hMR
GR are the GR Fourier waveforms in the

inspiral and in the merger-ringdown respectively, and fIM is
the frequency of transition from the inspiral phase to the
merger-ringdown phase, with the fitting parameters of the
model chosen to ensure continuity of the waveform across
fIM. As previously stated, we will model the GR part of the
waveform with the IMRPhenomD model.
The ppE model is particularly useful because it not only

allows us to constrain generic deviations from GR, it also
allows us to map these parameter constraints to bounds
on physical processes that modify the pillars of Einstein’s
theory. In particular, different values of b correspond to
different physical mechanisms that introduce such mod-
ifications, as should be clear by comparing Eq. (10) to the
Fourier phase corrections presented in Sec. II (see also [5]).
Table II presents a simple reference to connect the devia-
tions presented in Sec. II to ppE parameters.
Given a gravitational wave observation that is consistent

with GR, one can then determine how large β can be while
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remaining consistent with statistical noise. To do so,
one must maximize the cross-correlation between the
signal, which we will assume to be given exactly by the
waveform evaluated in GR (i.e., the ppE model with
β ¼ 0), and the ppE model with respect to all parameters
of the latter. The parameters of the ppE model are
θa ¼ ðlnA;ϕc; tc; lnM; ln η; χs; χa; βÞ, where A is an
amplitude factor that scales with M5=6

z =DL, Mz is the
redshifted chirp mass, DL is the luminosity distance, ϕc is
the phase of coalescence, tc is the time of coalescence,
and χs;a ≡ ðχ1 � χ2Þ=2 are symmetric and anti-symmetric
combinations of the (dimensionless) spin parameters
χ1;2 ≡ S⃗1;2=m2

1;2, where S⃗1;2 is the spin angular momentum
of the compact object. We do not include the polarization
angle or the sky location angles in the parameter vector, as
we are using sky-averaged waveforms.

B. The basics of a Fisher analysis

The most accurate way to determine how stringently
modified gravity deviations can be constrained with future
observations is through a Bayesian analysis. In such a study
one calculates the full posterior probability distribution of
the search parameters given the observations. The width of
such posteriors then provides a measure of how much
statistical wiggle room there is for parameters that represent
GR deviations to vary from zero.
For sufficiently high signal-to-noise ratio signals [91,92],

an approximation to this Bayesian calculation, a Fisher
analysis, provides an upper bound on constraints when
testing GR by the Cramer-Rao bound [93,94]. In a Fisher
analysis, one assumes the likelihood probability function
has a single Gaussian peak, and approximates the behavior
of the signal about that peak through a Taylor expansion.
What results is a measure of the variance and the covariance
of parameters in the template model through integrals that
depend only on the templates and the spectral noise density
of the detector. In what follows, we summarize the main
details of this calculation, following the notation of
[82,95,96]. Given a waveform model hðt; θaÞ with param-
eter θa, the root-mean-squared (1σ) error on any single
parameter in a Fisher analysis is given by

Δθa ¼
ffiffiffiffiffiffiffi
Σaa

p
; ð11Þ

where no sum is here implied and where the variance-
covariance matrix Σab is found by inverting the Fisher
matrix Γab, i.e. Σab ¼ ðΓabÞ−1. The Fisher matrix is given
by

Γab ≡
� ∂h
∂θa

���� ∂h∂θb
�
; ð12Þ

where ∂h=∂θa is the partial derivative of the waveform
model with respect to the parameter θa, and where we
have defined the inner product between two waveform
models via

ðh1jh2Þ≡ 2

Z
fhigh

flow

~h1 ~h
�
2 þ ~h�1 ~h2
SnðfÞ

df: ð13Þ

In the inner product, the overhead tilde stands for the
Fourier transform, the superscript star stands for complex
conjugation, and SnðfÞ is the detector’s spectral noise
density. With this definition of the inner product, the
signal-to-noise ratio is simply

ρ≡ ðhjhÞ1=2: ð14Þ

The lower and upper limits of integration in the inner
product can be effectively taken to be the frequencies at
which the noise of the detector becomes very large. For
space-based detectors, we choose flow to be

fspacelow ¼ max ðflratio; f3 yearsÞ; ð15Þ

where flratio is the (low) frequency at which the amplitude
of the gravitational wave signal is ten times smaller than
the noise spectrum, while f3 years is the frequency that
corresponds to three years prior to reaching the inner most
stable circular orbit frequency, fisco, for a test particle in a
Schwarzschild spacetime. Similarly, we choose fhigh to be

fspacehigh ¼ fhratio; ð16Þ

TABLE II. Mapping between violations to the pillars of GR (first column), a few example modified theories in which such violations
occur (second column), and the ppE parameters that recover such modifications (third and fourth column), together with the leading PN
order at which they enter (last column). The table is divided into those modifications that arise during the generation of gravitational
waves (top) and those that appear during the propagation of gravitational waves (bottom) [5].

Modified GR pillar Example theories b β PN

Dipole radiation Scalar tensor, EdGB −7 βST [57,61], βEdGB [62] −1
Local position invariance (SEP) Extra dimension [14–16,67], GðtÞ −13 βED [73], β _G [16] −4
Local lorentz violation (SEP) Einstein-Æther, khronometric −5 βEA [10,11], βKG [13,80] 0

Massive graviton Massive gravity −3 βMG [7,8,85,86] þ1

Modified dispersion relation Quantum gravity 3α − 3 βMDR [5] 1þ 3
2
α
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where fhratio is the (high) frequency at which the gravita-
tional wave amplitude is once again ten times smaller than
the noise. For ground-based detectors, we choose flow to be

fgroundlow ¼ max ðflow�cut; flratioÞ; ð17Þ

where flow�cut ¼ 5 Hz when considering aLIGO at design
sensitivity, Aþ, Voyager, and CE, while flow�cut ¼ 1 Hz
when considering ET. Similarly, we choose fhigh to be

fgroundhigh ¼ min ðfhratio; fhigh�cutÞ; ð18Þ

where fhigh�cut ¼ fcont is the gravitational wave frequency
at contact when considering binaries with at least one
neutron star, and fhigh�cut ¼ fhratio when considering binary
black holes. We stop the integration at the contact fre-
quency when considering neutron stars because the wave-
form model we use does not incorporate features present in
neutron star mergers (see Sec. III A)
With this machinery in hand, in Sec. IV we will present

estimates of the projected accuracy to which GR deviations
can be constrained through a Fisher analysis on ppE
PhenomD models, with the amplitude multiplied by the
square root of the number of detectors (one for both CE and
ET-D, and two for aLIGO, Aþ, Voyager, and the space-
based detectors). The noise curves used in the analysis are
sky-averaged, as discussed in Sec. III C. All calculations
are carried out in Mathematica, making sure that the
numerical accuracy of all calculations is high enough to
be accurate to at least percent level. In particular, the Fisher
matrix is inverted through a Cholesky decomposition to
reduce numerical error from matrix inversion. The Fisher
analysis is carried out to constrain β for ppE exponent
parameters b ∈ f−13;−12;…;−1g, equivalent to modi-
fied gravity corrections of n ∈ f−4;−3.5;…;þ2g PN
order. One could in principle consider a wider range of
values for b, but this prior range suffices to capture all of the
physical processes presented in Sec. II.

C. Future detectors and their sources

This subsection describes a few possible detector con-
figurations that have been considered by the community
and the sources we expect to detect with them. We will
not provide a detailed technical description of each of the
future instruments, but instead we characterize them via
their spectral noise density. The latter will effectively
determine how well parameters can be measured with a
Fisher analysis. For more details about the detectors, we
refer the reader to [24,25,97]

1. Space-based detectors and their sources

A proposal for the final design of LISA has recently been
submitted for review by ESA [25]. This instrument will
have six-links with 2.5 Gm arms and low acceleration noise

demonstrated possible with LISA Pathfinder [98]. We also
consider three other previously suggested eLISA configu-
rations with different sky-averaged, six-link sensitivity
curves presented in [97] that differ only in the length of
the arms (1, 2, and 5 Gm corresponding to the labels A1,
A2, and A5). We only consider configurations with low
acceleration noise; these correspond to the N2 configura-
tions of [97]. Figure 1 presents the spectral noise densities
for each LISA configuration we consider as a function of
frequency. Each successive eLISA configuration improves
the sensitivity of the instrument in the low- and middle-
frequency regions, with N2A5 being the most sensitive
configuration (the “classic LISA” design). All throughout
we will assume a three-year mission duration.
For each LISA configuration, we consider gravitational

waves emitted by the following classes of systems:
(i) GW150914-like systems (GW150914): A low mass

black hole binary with moderate spins, low redshift,
and a mass ratio of q≡m2=m1 ∼ 0.8.

(ii) Extreme mass-ratio inspirals (EMRIs): A low-mass
black hole (with a mass between 10–100 M⊙)
inspiralling into a supermassive black hole (with a
mass between 105–107 M⊙) with moderate to high
spins and a relatively low redshift.

(iii) Intermediate mass-ratio inspirals (IMRIs): An in-
termediate-mass black hole (with a mass between
103–104 M⊙) inspiralling into a supermassive black
hole (with a mass between 105–107 M⊙) with
moderate to high spins and redshifts of order unity.

(iv) Intermediate mass black hole binaries (IMBH): Two
intermediate-mass black holes with masses between
103–105 M⊙, moderate to high spins, and at mod-
erate redshift.

(v) Supermassive black hole binaries (SMBH): Two
supermassive black holes with masses between
106–107 M⊙, moderate to high spins, moderate to
high redshifts, and a high mass ratio.

All systems are assumed to be on a quasicircular inspiral
trajectory. The luminosity distance is fixed individually for
each system, with all distances corresponding to a redshift
smaller than 10. Notice that since the signal-to-noise ratio
scales with A, which is proportional to the chirp mass,
these signal-to-noise ratios are typically much larger than
the signal-to-noise ratios of events that will be detected
by ground-based instruments. For each of these classes,
we pick three representative systems to explore projected
constraints on deviations from GR. One representative of
each class is listed in detail in Table III. In this paper, we do
not consider constraints obtained by stacking multiple
events, as this will be studied separately in the future [99].
Since detections with space-based instruments will have

very high signal-to-noise ratios, it becomes important to
consider not only statistical error in our parameter estima-
tions, but also systematic error. Systematic error becomes
dominant to statistical error for sufficiently loud signals
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which will have the effect of saturating our projected
bounds. However, as detectors improve, waveform model-
ing will also become more accurate, and thus, systematic
error will also decrease. We expect the results of this study
to be roughly insensitive to the inclusion of additional
complexity in the inspiral waveforms as more accurate
models become available.

2. Ground-based detectors

We consider a set of spectral noise density curves that
correspond to modeled estimates of the noise in various
instrument realizations: aLIGO (at design sensitivity), Aþ,
Voyager, CE, and ET-D [24,100,101]. The second and third
are currently projected as aLIGO upgrades, while the last
two are new, third-generation ground-based detectors.
Some key properties of these future instruments are the
following:

(i) Aþ: Projected date of operation of ∼2020, improves
the level of quantum noise and coating thermal
noise, increasing the observational range of aLIGO
by 140%.

(ii) Voyager: Projected date of operation of ∼2027,
reduces the aLIGO noise by using silicon in place
of glass in mirrors and suspensions, as well as
operating at a lowered temperature of 120K (rather
than aLIGO’s 295K), increasing the observational
range of Aþ by a factor of roughly two.

(iii) CE: Projected date of operation of ∼2035, will be a
new facility that is much larger than aLIGO and
possibly underground, increasing the observational
range of aLIGO by a factor of 10 to 100.

(iv) ET-D: With a projected date of operation of
∼2030–2035, will be a new facility built under-
ground to decrease the low-frequency noise, thus
increasing the observational range of aLIGO by
roughly the same amount as CE.

Figure 1 presents the spectral noise density curves for each
of these instruments.
For each ground-based detector, we consider gravita-

tional waves emitted by the following classes of systems:
(i) Neutron star binaries (NSNS): A neutron star binary

system with negligible spins at very low redshift.

(ii) Low-mass black hole-neutron star binaries
(lBHNS): A neutron star inspiraling into a stellar-
mass black hole with small spins at very low
redshift.

(iii) Low-mass black hole binaries (lBHBH): A stellar-
mass (5–10 M⊙) black hole binary system with
small to moderate spins at small redshift.

(iv) Black hole binaries (BHBH): A black hole binary
system with masses in the tens of solar masses, small
to moderate spins, and at small redshift.

(v) GW150914-like binary systems (GW150914): As
previously defined in Sec. III C 1.

As in the space-based case, all systems are assumed to be
on a quasicircular inspiral trajectory. The luminosity dis-
tances for the ground-based systems are chosen such that
each system has a signal-to-noise ratio of ∼25 when
detected with aLIGO at design sensitivity, except for the
GW150914 case which uses the actual detection parame-
ters. As expected, at a fixed luminosity distance, the signal-
to-noise ratios increase as the instrument sensitivity
improves. As in the space-based case, for each of these
classes we pick three representative systems to explore
projected constraints on deviations from GR (the properties
of one of these is listed in Table IV). As in the case of
sources for space-based detectors, we will not consider
constraints obtained by stacking multiple events, leaving
this to future work [99].

IV. PROSPECTS FOR FUTURE TESTS OF GR

This section discusses how projected constraints on
deviations from GR are improved with future detectors.
We begin by presenting these constraints and conclude with
an explanation of the improvements using phenomenologi-
cal noise curves.

A. Future ground-based and space-based tests

The left panel of Fig. 2 shows the projected constraints
that space-based detectors can place on modified gravity as
a function of the ppE PN order at which the modification
first enters for a variety of systems (the region above the
curves would be ruled out given such observations).
The constraints are presented as shaded regions, which

TABLE III. Intrinsic (source) properties of one representative system considered for space-based detectors, chosen to be representative
of various classes that could emit gravitational waves in the frequency-range of these detectors. The luminosity distances were chosen to
conform with astrophysical expectations and are fixed across detectors. The signal-to-noise ratios vary depending on the instrument used
to evaluate this statistic, and here we present only those provided by the LISA configuration.

Name m1½M⊙� m2½M⊙� ðχ1; χ2Þ DL z ρLISA

GW150914 35.1 29.5 (0.31, 0.39) 400 Mpc ∼0.09 6.6
EMRI 105 10 (0.8, 0.4) 1 Gpc ∼0.2 102.2
IMRI 105 103 (0.7, 0.9) 5 Gpc ∼0.8 297.5
IMBH 5 × 103 4 × 103 (0.7, 0.9) 16 Gpc ∼2 102.7
SMBH 5 × 106 4 × 106 (0.7, 0.9) 48 Gpc ∼5 486.7
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represent variation due to instrument choice and represen-
tative system choice. In all cases, the N2A5 configuration
can do best at testing GR, as expected from Fig. 1. For
negative PN order modifications, the SMBH class is worst
at placing constraints, while the EMRI and GW150914
classes are best. For positive PN order modifications, all
classes do approximately equally well, except for the
GW150914 class, which does the worst.
Let us explain this behavior. Negative PN order mod-

ifications to GR are proportional to negative powers of the
orbital velocity (relative to the leading PN order GR term).
Therefore, negative PN corrections are naturally larger for
systems that are more widely separated since their orbital
velocity is smaller by the Virial theorem (a version of which
typically holds in modified gravity) or by Kepler’s third
law. The GW150914-like systems that space-based detec-
tors could observe are by far the most widely separated and,
therefore, lead to the best projected constraints at negative
PN order. EMRI systems could also be emitting gravita-
tional waves during the entire lifetime of the space-based
missions at relatively small velocities, although not as small

as those of GW150914-like systems. Gravitational waves
emitted by SMBH systems, on the other hand, are at such
low-frequencies that the majority of the inspiral occurs
outside of the sensitive frequency band of space-based
detectors, such that negative PN order terms cannot be
constrained as stringently. Nonetheless, the constraints one
could place with EMRIs at negative PN orders are compa-
rable to those we can place with GW150914-like systems
because (i) we have chosen signal-to-noise ratios an order of
magnitude larger for EMRIs and (ii) the gravitational waves
emitted by these EMRI systems start in the bucket of the
LISA noise curve (at about 5 × 10−3 Hz).
At positive PN order, the projected constraints on

modifications to GR one could place seem to be roughly
independent of the system considered. Positive PN correc-
tions are largest in the last stages of the inspiral of binary
systems, and in particular, during their merger. But the
maximum velocity reached by all these systems is roughly
the same before merger. This, combined with the different
signal-to-noise ratios of the different systems explains why
they roughly achieve the same constraints. Of course, this is

TABLE IV. Same as Table III but for one representative system appropriate to ground-based detectors. The distances were fixed such
that the signal-to-noise ratio is always ∼25 for an aLIGO detection at design sensitivity, except for the distance to (and other properties
of) the GW150914 system which was fixed to be approximately that of the actual GW150914 event.

Name m1½M⊙� m2½M⊙� ðχ1; χ2Þ DL ρaLIGO ρAþ ρVoyager ρET�D ρCE

NSNS 2 1.4 (0.01, 0.02) 100 Mpc 23.2 33.6 109.5 238.4 382.7
lBHNS 5 1.4 (0.2, 0.02) 150 Mpc 21.7 31.3 102.8 225.1 361.2
lBHBH 8 5 (0.2, 0.3) 250 Mpc 27.7 39.8 131.4 289.0 463.7
BHBH 25 20 (0.3, 0.4) 800 Mpc 21.7 28.4 108.2 253.4 409.1
GW150914 35.1 29.5 (0.31, 0.39) 400 Mpc 54.6 71.5 271.8 641.7 1031.1

FIG. 2. Projected constraints on modified gravity effects as a function of ppE PN order at which they first enter for a variety of space-
based (left) and ground-based (right) detectors and a variety of systems (anything above the regions is projected to be ruled out). The
shaded regions are bounded by the highest and lowest constraints that can be placed at a given PN order for all instruments studied. For
comparison, we also include the constraints that have already been placed by aLIGO with the GW150914 detection [1,2] (thin cyan
line), as well as constraints that can be placed with binary pulsars [102] (dashed black line). Observe that the magnitudes of the projected
constraints with space-based and ground-based instruments are comparable, with the former being better by roughly 2–4 orders of
magnitude at negative PN order.
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not the case for the GW150914-like systems, since these do
not merge in the LISA band.
The projected constraints presented here are clearly

better than current constraints we can place with the
aLIGO GW150914 and GW151226 observations (even
if this had been detected at design sensitivity). This is
particularly true at negative PN order, where constraints
can be ten orders of magnitude more stringent with future
LISA observations. Such a result was already anticipated in
[26], where constraints on dipole radiation were inves-
tigated. Indeed, our results are consistent with those in [26],
extending them to other PN orders.
Comparing constraints on modified gravity that can be

achieved with space-based detectors in the future to those
we can place with aLIGO today is unfair. By the time LISA
flies, it is very probable that new and improved versions of
aLIGO will be operational. For this reason, the right panel
of Fig. 2 shows projected constraints as a function of
PN order using aLIGO (at design sensitivity) and all future
ground-based detectors for a variety of systems. As
expected, systems that sample the smallest orbital velocities
(NS binaries in the ground-based case) will lead to the most
stringent constraints on negative PN order effects, while all
systems do approximately the same at positive PN order.
Comparing the best constraints on the left and the right
panels, we also see that LISA can place constraints that are
roughly 3 orders of magnitude better than the best future
ground-based constraints at negative PN order, while the
constraints are roughly the same at positive PN order.
Another feature we notice by comparing the left and

right panels of Fig. 2 is that the shaded regions are much
wider in the ground-based case than in the space-based

case. This is because although there are several possible
LISA configurations, they differ little relative to future
improvements to ground-based instruments. For this rea-
son, it is instructive to look at the fractional improvement in
the projected constraints with future upgrades to ground-
based instruments relative to the constraints we can obtain
with aLIGO at design sensitivity as a function of PN order
at which they enter. This is shown in Fig. 3 where the
fractional improvement is defined via

Frac: Improv ¼ FutureDet:
aLIGODesign

; ð19Þ

with the shaded regions representing variability in the
constraints due to the different systems that could be
detected. Observe that the Aþ and Voyager detectors
improve the constraints we can place on modified gravity
at all PN orders by a factor of about 2–10 respectively. On
the other hand, the ET and CE detectors can lead to drastic
improvements in our ability to test GR, with enhancements
of up to three orders of magnitude at negative PN order and
one order of magnitude at positive PN order. Observe that
CE is better than ETat positive PN orders, while the reverse
is true at negative PN orders, which is due to the improved
low-frequency sensitivity of ET, as shown in Fig. 1.
The constraints obtained with binary pulsars (such as

J0737-3039 [102]) appear to do noticeably better than
gravitational wave constraints for all negative PN orders.
However, as one considers more advanced ground-based
detectors and a larger class of systems, gravitational waves
can do better than binary pulsars for modifications that
enter at PN orders ≳ − 1. Similarly, in the space-based

FIG. 3. Left: Projected constraints on β, given a GW150914-like detection with different ground-based detectors. Observe that ET-D
provides better constraints than CE for all negative PN orders due to its low-frequency improvement, but they become comparable for
PN orders ≥0. Right: Fractional improvement to the projected constraints on GR modifications relative to those achievable with aLIGO
at design sensitivity, as a function of PN order. The boundaries of the shaded regions are determined by the minimum and maximum
constraints that can be placed with an instrument when considering all systems under study. Observe that while Aþ improves the
constraints only marginally relative to aLIGO, Voyager and CE can provide constraints that are roughly 5 and 20 times better
respectively. Observe also that ET-D leads to drastically better constraints relative to aLIGO at negative PN orders, but this improvement
becomes comparable to that obtained with CE at positive PN orders, as also shown on the left panel.
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case, gravitational waves can do better than binary pulsars
for modifications that enter at PN orders ≳ − 2.
When comparing binary pulsar constraints to gravita-

tional wave constraints, caution is advised. Binary pulsar
constraints obviously require spacetimes with matter, since
the observations depend on radio pulses emitted by neutron
stars. Many modified theories of gravity, however, modify
GR predominantly in vacuum spacetimes, almost exactly
reducing to GR near stars, regardless of their compactness.
For example, in Einstein dilaton Gauss-Bonnet gravity
[61,62] and in dynamical Chern-Simons gravity [103,104],
black holes acquire nontrivial scalar hair, but the scalar
hair of neutron stars is greatly suppressed [59]. Therefore,
binary pulsar observations cannot constrain these classes of
theories at all, and thus, it is important to make observations
involving at least one black hole (be it with an as-of-yet
undetected radio pulsar observation from a black hole-
neutron star binary, or with gravitational wave observations
of coalescing black hole or black hole-neutron star
binaries).

B. Exploration of detector design

In the previous subsection, we provided an intuitive
explanation of why certain sensitivity improvements
impact certain PN order modifications more than others.
Here, we verify these explanations by investigating con-
straints with phenomenological noise curves that isolate
improvements to the sensitivity in the low-, mid-, and high-
frequency regimes.
Let us begin by presenting the phenomenological noise

curves we consider. We constructed an analytic fit to the
design-aLIGO spectral noise density (zero-detuned, high-
power) noise curve [101] that resembles in functional form
the one presented in [105]. We then divide the frequency
range over which aLIGO operates into three domains: the

low-frequency regime (f < 50 Hz), the mid-frequency
regime (50 Hz < f < 900 Hz), and the high-frequency
regime (f > 900 Hz).We improve the sensitivity by roughly
a factor of ten without modifying the other domains, leading
to a “left wall” improvement (low-frequency regime), a
“lower wall” improvement (mid-frequency regime), and a
“right wall” improvement (high-frequency regime), as seen
on the left panel of Fig. 4.
The right panel of Fig. 4 shows the relative fractional

improvement in the constraints we can place on modified
gravity with these phenomenological noise curves as a
function of PN order. Observe that the left-wall improve-
ments dominate at negative PN orders, while the lower- and
right-wall improvements dominate at positive PN order.
The reason for this is that as one improves the sensitivity at
low-frequencies, the detector is now able to capture
gravitational waves when the binary system was more
widely separated and the orbital velocity was smaller,
precisely where negative PN order corrections are larger
(since they enter as negative powers of the velocity).
Similarly, as one improves the sensitivity in the mid-
and the high-frequency regimes, the detector is more
sensitive to the very late inspiral and merger, where the
binary reaches the highest velocities and where positive PN
order corrections are larger.
One may wonder why the constraints obtained with the

right-wall improvement are worse than those obtained with
the lower-wall improvement. The former improves the
noise curve in the high-frequency regime, and thus, one
may think this noise curve would be better at constraining
high PN order deviations from GR. This, however, is not
true, as shown in the right panel of Fig. 4. For any chirping
signal, there are typically many more cycles at lower
frequencies than at higher frequencies, and thus, more
cycles accumulate in the regime improved by the

FIG. 4. Left: Phenomenological noise spectral density curves as a function of frequency. Right: Relative fractional improvement of the
constraints on β provided by the phenomenologically modified sensitivity curve over those provided by a fit to design aLIGO. Observe
that the noise curve improved at low-frequencies leads to the largest improvements at negative PN order, while the opposite is true for the
noise curves improved in the mid- and high-frequency ranges.
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lower-wall noise curve. The distinguishability of non-GR
signals (as measured for example by the Bayes factor) is not
simply a function of the integrated dephasing induced by
the non-GR corrections, but rather is a function of the
integrated noise-weighted dephasing, which [28] calls the
effective cycles. The lower-wall improvement leads to more
effective cycles of phase for high PN order corrections than
the right-wall improvement, explaining the feature we see
in the right panel of Fig. 4.
The improvement in the constraints is roughly the

square root of the improvement in the sensitivity curve.
Mathematically, this is easy to see; the constraint scales as
the square-root of the variance-covariance matrix in
Eq. (11), and the latter scales inversely with the spectral
noise. The improvement in the constraints is not quite a
factor of 3 throughout because we have only increased the
sensitivity curve in one part of the frequency domain.
Physically, one can also understand the constraint improve-
ment as a result of an increase in signal-to-noise ratio,
which also scales with the square root of the spectral noise,
i.e., by increasing the sensitivity by an order of magnitude,
we have roughly increased the signal-to-noise ratio by a
factor of three, since we have kept the luminosity distance
fixed.
The behavior observed in Fig. 4 is reminiscent of that

found in Sec. IVA within the ground-based instruments.
For example, Aþ has the same sensitivity as design aLIGO
at low-frequencies (see Fig. 1), which is why Aþ cannot
improve constraints on modified gravity at negative
PN orders relative to what we can do with aLIGO at
design sensitivity. ET-D is more sensitive than CE at low-
frequencies, and thus, it allows for the most stringent
constraints on negative PN order modifications to GR
relative to those we can obtain with design aLIGO.
Voyager’s increased sensitivity in the mid and high
frequencies has a fractional improvement that is similar
to that obtained with the lower- and right-wall models.

V. THEORETICAL PHYSICS IMPLICATIONS

Experimental relativity consists of more than just carry-
ing out null-hypothesis tests and constraining generic
deviations from GR. A crucial next step is to use such
constraints to make inferences on modified gravity mech-
anisms that, since GR has been confirmed, cannot be active
in the extreme gravity regime. In this section, we will map
the constraints on the ppE parameters derived in the
previous section to constraints on the magnitude of certain
corrections to the pillars that GR rests on, as described in
Sec. II. We will enhance the study of the previous section
by considering more than a single characteristic source per
class, and instead consider 3 sources per class, which will
allow us to show a range of possible inferences. We will
then explore how these inferences change as a function of
the instrument used.

A. Presence of dipole radiation

If the orbit of compact binaries decays faster than
predicted in GR due to the emission of dipole radiation,
the gravitational wave phase will acquire a leading-order
correction that enters at -1PN order, as described in Sec. II.
The modified waveform can then be modeled as described
in Sec. III A with the ppE mapping:

β ¼ −
3

224
δ _EDipη

2=5; b ¼ −7: ð20Þ

Therefore, for a given constraint on β, we obtain stronger
constraints on δ _EDip if the signal accumulates significant
SNR at lower frequencies, i.e., when the gravitational wave
producing binary is widely separated. Indeed, as seen in
Fig. 5, the LISA configurations give the best constraints
using GW150914-type and EMRI systems, while ground
based detectors do best with neutron star binary systems.
In both cases, the constraints are roughly 4–5 orders of
magnitude stronger than the current bound obtained from
observation of low-mass x-ray binaries [106].
We also see that dipole radiation can be constrained

comparably well with future ground-based and space-based
instruments, although we see that the former can do better
than the latter in the best case by roughly one order of
magnitude. This seems to contradict the constraints on β
shown in Fig. 2, which at -1PN order are roughly the same

FIG. 5. Projected constraints on the strength of dipolar emission
δ _EDip as a function of instrument. Current constraints on dipole
radiation from the low mass X-ray binary pulsar are given by the
horizontal dashed yellow line. The vertical lines represent the
variability of the constraint within the class of systems consid-
ered. Observe the projected constraints are 4–5 orders of
magnitude stronger than the current bound (which is given by
the low-mass x-ray binary [106]), and that those obtained with
third-generation ground-based detectors are comparable to those
obtained with space-based detectors.
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with EMRIs and neutron star binaries, the best space- and
ground-based systems at this PN order, respectively. The
reason space-based detectors do worse is that in converting
the constraint on β to a constraint on δ _EDip, one must divide
by η2=5 which induces a suppression in the EMRI case, but
barely affects the neutron star case.

B. Anomalous accelerations, large extra dimensions
and time-varying fundamental constants

The existence and size of a single large extra-dimension
introduces a leading-order modification to the gravitational
wave phase that enters at -4PN order, as described in
Sec. II. In this case, however, constraints are only possible
when at least one of the binary components is a black hole,
as otherwise there is no leakage into the extra dimension.
In this study, we only consider black hole binaries as a
generalization. As before, the gravitational wave can then
be modeled as in Sec. III A with

β ¼ dm
dt

25

851968

�
3 − 26ηþ 34η2

η2=5ð1 − 2ηÞ
�
; b ¼ −13 ð21Þ

where dm
dt ≡ _m ¼ _m1 þ _m2 and

_ma ¼ −2.8 × 10−7
�
M⊙
Ma

�
2
�

l
10μm

�
2

M⊙ yr−1 ð22Þ

where, in this case,Ma is the mass of one of the black holes
and l is the size of the large extra dimension that we are
interested in constraining. Here, l is weighted by the best
current constraints placed by torsion-pendulum experi-
ments, astrophysical observations of black holes in globular
clusters, and by black hole x-ray binaries [29–33].
Because the modification enters at negative PN order

as in the case of dipole radiation, we expect the best
constraints on β to come from gravitational waves emitted
by widely separated systems. However, the mapping above
shows that any constraint on _m will be enhanced by a factor
of η2=5, thus suggesting that the systems with most extreme
masses will lead to the best constraints. Indeed, as seen in
Fig. 6, the best constraints are obtained with EMRI systems
detected with space-based detectors. These constraints are
approximately comparable to current constraints [29–33],
but 7 orders of magnitude better than the best constraints
achievable with ground-based detectors.
The time-variability of Newton’s constant G can also be

constrained by studying a −4PN order deviation from GR.
As discussed in Sec. II, the ppE mapping is in this case

β ¼ 25

65526

_Gz

G
Mz; b ¼ −13; ð23Þ

which then suggests that systems with large chirp mass
(due to the β– _G mapping) and those that are widely

separated (due to the negative PN correction) will place
the most stringent constraints. This is indeed reflected
in Fig. 7, where we see the best constraints come from
EMRI systems, which are 4–6 orders of magnitude better
than the best constraints we can place with third-generation
ground-based detectors. Since current constraints on _G
are 10−13=yr [34–36], none of these will be directly
competitive.

C. Local Lorentz symmetry violation

In Lorentz violating theories, a vector field is introduced
that carries additional energy away from the inspiraling
binaries, inducing modifications that enter at −1PN order.
These corrections, however, depend on the difference of
the compact object sensitivities, which are not known for
black holes. Wewill thus here estimate future constraints on
Lorentz violating effects using the sensitivities calculated
for neutron stars (the sensitivities of which have been
calculated) through the next-to-leading order term in the
phase, which enters at Newtonian order, as explain in
Sec. II. Once more, the gravitational wave can be modeled
as in Sec. III A with

β ¼ −
3

128

��
1 −

c14
2

�
ðAEA;1 þ SAEA;2 þ S2AEA;3Þ

�
;

b ¼ −5 ð24Þ

FIG. 6. Projected constraints on the size of a large extra
dimension as a function of instrument. Current constraints on
l are between 10 and 103 μm (see Table I) as shown with
horizontal dashed lines [29–33]. Observe that EMRIs can place
constraints on the size of a large extra dimensions that are ∼1012
orders of magnitude more stringent than those placed with
SMBHs, and that these constraints are roughly competitive with
current constraints.
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where S≡ ðs1m2 þ s2m1Þ=m and s1;2 are the compact
object sensitivities, AEA;1 can be found in Eq. (91) of
[81], and AEA;2=3 can be found in Eqs. (111) and (112) of
[40]. Notice from the mapping that, in this case, the
modification depends on more than a single coupling
parameter (e.g., c� in the Einstein-Æther case) and that
since these are dimensionless, there is no additional
function of the binary’s system parameters required in
the conversion. We thus expect a relatively simple two-
dimensional mapping between β and the coupling constants
of the theory, as shown in Fig. 8. Observations of some
black hole inspirals and mergers with space-based detectors
do best at constraining these modifications because they are
able to see the merger phase, which breaks a chirp mass-
total mass degeneracy in parameter estimation (see also
discussion in [107,108]). However, ground-based detectors
become competitive with space-based detectors when one
considers binary black hole systems. The ground-based
constraints provided by the observation of neutron star
inspirals (solid lines in Fig. 8) do not include the merger
phase5 in this study, as described in Sec. III A.
Similarly to Einstein-Æther, khronometric gravity intro-

duces modifications to GR at Newtonian order, and thus we
expect black hole observations of the merger (with both
space- and ground-based detectors) to do better than

ground-based observations of neutron star inspirals6 The
gravitational wave can be modeled as in Sec. III A with:

β ¼ −
3

128

��
1 −

αKG
2

�
ðAKG;1 þ SAKG;2 þ S2AKG;3Þ

�
;

b ¼ −5 ð25Þ

where αKG ¼ 2βKG,AKG;1 can be found in Eq. (91) of [81],
and AKG;2=3 can be found in Eqs. (121) and (122) of [40].
As before, observations of black hole inspirals and mergers
do best at constraining these modifications. We see in Fig. 9
that constraints with future space-based detectors would
be able to greatly shrink the allowed parameter space.
Projected constraints with NSNS systems lie outside of the
bounds of this plot.

D. Massive graviton

A special relativistic modification to the dispersion
relation of gravitational waves to include a mass for the
graviton introduces a correction in the gravitational wave
phase that enters at 1PN order, as discussed in Sec. II. With
the waveform model of Sec. III A, the ppE mapping is then

β ¼ π2D0Mz

λ2
; b ¼ −3 ð26Þ

where D0 is given in Eq. 25 of [5] and λg is the wavelength
of the graviton.
Notice that in solving for a constraint on mg, one must

divide by the product of the luminosity distance and the
chirp mass. We thus expect that the gravitational waves
emitted from the most distant and the most massive systems
will lead to the most stringent constraints. This is indeed
verified in Fig. 10, where we see the best constraints
come from space-based detectors, which can observe
supermassive black hole mergers at Gpc distances. These
constraints can be as much as 2–3 orders of magnitude
better than the best constraints with third-generation ground
based detectors. All of these, nonetheless, are as much as 5
orders of magnitude better than current constraints with
aLIGO, rapidly approaching the scale at which a mass of
the graviton could be comparable to the cosmological
constant (∼10−31 eV).

VI. FUTURE DIRECTIONS

We have investigated the constraints we will be able to
place on deviations from GR with future space- and

FIG. 7. Projected constraints on the magnitude of the time
variability of Newton’s constant G as a function of instrument.
Future generation detectors will be able to place constraints up to
12 orders of magnitude more stringent than design aLIGO, with
space-based detectors beating ground-based by as much as 7
orders of magnitude. Current constraints are about 10−13=yr
[34–36], shown with a dashed horizontal line near the bottom of
the figure.

5The merger of binary neutron stars occurs at kHz frequencies
where the detectors are less sensitive and where the simple
PhenomD waveform model would not be accurate.

6Note that the constraints that we find are roughly one order of
magnitude worse that what was found in [81]. This is due to a
difference in waveforms used when performing the Fisher
analysis. In this paper, we use the spin-dependent PhenomD
waveform model, as described in Sec. II–III A, while in [81] the
Taylor F2 model was used.
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ground-based detectors. We found that constraints can
improve bymore than an order ofmagnitude as one compares
future ground-based instrument observations to current
aLIGO bounds. These improvements, however, become
much closer to those provided by space-based instruments
when considering the future generation detectors. We also

quantified the degree to which improvements in different
bands of the sensitivity noise leads to improvements in
constraints of GR, finding that modest low-frequency
improvements can have large effects while high-frequency
improvements typically have lesser, but still substantial,
effects. We found that this is due to low-frequency improve-
ments that greatly increase the number of effective cycles for
certain GR modifications.
The work we have done can be used to extrapolate

conclusions about design decisions, but certainly more
work could be done to refine the analysis and solidify the

FIG. 8. Projected constraint regions placed by ground-based (left) and space-based (right) detectors on the coupling parameters of
Einstein-Æther theory for various systems. The region above the black solid line excludes values of ðcþ; c−Þ that violate certain stability
constraints [13,109,110]. All values of ðcþ; c−Þ outside of the darker grey region are ruled out by binary pulsar observations [39,40]. The
regions above and to the right of the colored lines correspond to values of ðcþ; c−Þ that would be ruled out with future gravitational wave
observations using different ground-based instruments.

FIG. 9. Projected constraint regions on the coupling parameters
of khronometric theory. The region below the solid black line, the
region to the right of the dashed black line, and the region above
the dotted black line contain values of ðβKG; λKGÞ that violate
certain stability constraints [13,109,110], binary pulsar con-
straints [39,40], and cosmological constraints [10,111–113]
respectively. The regions above and to the right of the different
color lines correspond to values of ðβKG; λKGÞ that would be ruled
out with future gravitational wave observations using different
ground-based instruments. The EMRI and IMRI lines correspond
to future projected constraints with LISA, while the CE and ET-D
lines correspond to future projected constraints with GW150914-
like observations.

FIG. 10. Projected constraints on the mass of the graviton as a
function of instrument. Notice that SMBH binary systems, which
are both the most massive and most distant binary systems
considered, can constrain the mass of the graviton up to ∼5 orders
of magnitude more stringently than current bounds.
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conclusions. One example would be to redo the study with
a Bayesian analysis instead of a Fisher analysis; we expect
this will have a small effect on our conclusions because
most of the signals considered have very large signal-to-
noise ratio. Another example would be to quantify the
systematic errors induced by our approximate waveform
modeling in their impact of constraints on deviations of
GR; we expect this will also have a small effect for binaries
that are widely separated, but the modeling must certainly
be improved when considering EMRIs or to include the
effects of spin precession. One could also consider the
effect of stacking multiple signals on the constraints
derived here [99]; we expect this to improve the constraints
by a factor of roughly N1=2 when stacking N signals, but
this could affect space- and ground-based instruments
differently as they may detect a very different number of
sources (since they observe very different populations).
A final simple extension would be to consider constraints

with multi-wavelength observations (i.e., with both ground-
and space-based detectors); given the analysis in [26], we
expect multi-wavelength observations to improve con-
straints by a factor of a few.
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