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We construct regular configurations of the Einstein-Yang-Mills theory in various dimensions. The gauge
field is of meron-type: it is proportional to a pure gauge (with a suitable parameter λ determined by the field
equations). The corresponding smooth gauge transformation cannot be deformed continuously to the
identity. In the three-dimensional case we consider the inclusion of a Chern-Simons term into the analysis,
allowing λ to be different from its usual value of 1=2. In four dimensions, the gravitating meron is a smooth
Euclidean wormhole interpolating between different vacua of the theory. In five and higher dimensions
smooth meron-like configurations can also be constructed by considering warped products of the three-
sphere and lower-dimensional Einstein manifolds. In all cases merons (which on flat spaces would be
singular) become regular due to the coupling with general relativity. This effect is named “gravitational
catalysis of merons”.
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I. INTRODUCTION

The existence of topological solitons is one of the most
important nonperturbative effects in field theory [1].
These non-trivial topological objects are believed to play
a fundamental role in the color confinement problem (for
a detailed review, see [2]) which is one of the “big” open
issues in gauge field theory. A very important class of
topological solitons is the Euclidean one (namely, regular
solutions of the Euclidean theory). Euclidean topological
solitons are especially relevant as they play a very
important role at quantum level as nontrivial saddle
points of the path integral. The most important
Euclidean solutions are instantons (which are local
regular minima of the Euclidean action) and sphalerons
[which are saddle points with one-or a finite number of-
unstable mode(s)]. Unfortunately, analytic solutions are
available only in special cases (in particular, when
suitable Bogomol’nyi–Prasad–Sommerfield bounds can
be saturated). In the case of instantons of Yang-Mills
theory in 4 dimensions the saturation of the bound is
equivalent to the self-duality condition. From the point of
view of gravitational back-reaction, instantons are not
very interesting as the self-duality condition implies that
the energy-momentum tensor of the self-dual instanton
vanishes so that it does not back-reacts on the metric at
semiclassical level. From the Yang-Mills point of view, a
very important type of Euclidean configurations are the
so-called merons, first introduced in [3]. Merons are

gauge fields interpolating between different topological
sectors.1 In particular, instantons can be interpreted as
merons bound states [4–7]. It is commonly accepted that
merons are quite relevant configurations from the point of
view of the confinement problem (see, for instance, [2,6]).
In flat Euclidean spaces, merons are usually singular.
Hence, on flat Euclidean spaces, a single “isolated”
meron gives a vanishing contribution to the path integral
as its Euclidean action is divergent. It is well known that
merons are relevant only as “building blocks” of the
instantons in the usual cases.
It is quite obvious that in many physically relevant

situations the coupling with Einstein gravity2 cannot be
neglected (this is the case for instance in early cosmology
[8] when topological solitons are believed to play a
fundamental role). Consequently, a very important question
arises: Is it still true that merons are necessarily singular
even when the coupling with general relativity is taken into
account? Indeed, due to the reasons mentioned above,
whether or not merons are singular3 can have a big
influence on our understanding of the confinement prob-
lem. A first hint that the coupling of merons with general
relativity can change the “flat” picture quite considerably
can be found (with Lorentzian signature) in [9,10] where it
has been shown that the singularity of the simplest meron
can be hidden behind a black hole horizon.

*canfora@cecs.cl
†shoh.physics@gmail.com
‡patricio.salgado@uai.cl

1One of the results of the present paper, as it will be explained in
the next sections, is to construct a quite remarkable and concrete
confirmation of this interpretation in the gravitating case.

2Or, at the very least, the non-vanishing curvature of space-time.
3Hence, whether or not merons can give a finite contribution to

the semiclassical path integral through the corresponding saddle
points.
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A further very important situation where topological
solitons play a fundamental role is in three Euclidean
dimensions. The interest of the 3-dimensional case lies in
the fact that difficult non-perturbative questions are easier
to understand in three-dimensional Yang–Mills theory than
in the four dimensions. Despite being simpler than QCD,
three-dimensional Yang-Mills theory possesses local
interacting degrees of freedom. A further benefit of
three-dimensional Yang-Mills theory is that it is a good
approximation of high temperature QCD4 Last but not
least, the Chern–Simons term can be included [11,12],
leading to a mass for the gauge field which is of topological
origin. The inclusion of the Chern-Simons term is not only
a nice theoretical exercise since it can be shown that such a
term appears upon integrating out the fermions (see, for
instance [13,14]; a detailed review is [15]). Moreover, the
nonperturbative features of topologically massive Yang-
Mills theory in three dimensions are in a very good
agreement with the expected confinement picture [16].
Very deep open issues related to three-dimensional

topologically massive Yang-Mills theory are related to
the following fact. Such a theory in a suitable range of
parameters (see [16]) is confining. Standard arguments (see
[2]) suggest that regular nontrivial Euclidean saddle points
of the path integral must play a fundamental role to
understand confinement. However, in three Euclidean
dimensions, it is not possible to construct the usual
self-dual Yang-Mills instantons (since one would need
the four-dimensional Levi-Civita ε-symbol). In fact, as it
will be discussed in the next sections, although there are no
self-dual instantons in three Euclidean dimensions one can
still construct regular smooth gravitating merons.
In general, it is very difficult to analyze the gravitational

properties of topologically nontrivial configurations. Due to
the difficulties in constructing analytic regular configura-
tions of the four-dimensional Einstein-Yang-Mills system
many of the available results are numerical (see, for
instance, [17–21]).
The first aim of the present paper is to show that,

nevertheless, it is possible to construct analytic regular
solutions corresponding to gravitating merons in various
dimensions in Euclidean Einstein-Yang-Mills theory. In
order to achieve this goal two techniques are combined.
The first technique is based on the SUð2Þ-valued generalized
hedgehog ansatz (introduced in [22–37]), which works both
for the Skyrme model and for the Yang-Mills-Higgs system.
The second is based on the Cho approach [38–42].
The second aim is to show the coupling with Einstein

gravity can change quite dramatically the usual physical
interpretation of merons. In the three-dimensional case, we
construct regular gravitating meron-like configurations and
include a Chern-Simons term into the analysis. Due to
the fact that in three dimensions it is not possible to define

self-dual configurations, the regular Euclidean saddle points
constructed here are likely to play a fundamental role to
understand the non-perturbative features of the theory. In the
four-dimensional case, we construct different regular gravi-
tatingmeron-like configurations. Such configurations can be
seen as smooth Euclidean wormholes interpolating between
different vacua of the theory. Euclidean wormholes [43–55]
(see, for a recent view on this topic, [56]) can be defined as
extrema of the action in Euclidean quantum gravity con-
necting distant regions. It is widely recognized that such
configurations can have quite remarkable physical conse-
quences (as discussed in details in the above references). In
five dimensions we construct regular meron-like configura-
tions that generalize the three-dimensional result previously
found for λ ¼ 1=2. The metric is given by the a two-
dimensional constant curvature space times the three-sphere.
This result can be further extended to arbitrary higher
dimensions. In dimension D > 6 the metric turns out to
be given by the warped product of the three-sphere and any
solution of the D − 3-dimensional Einstein equations in
vacuum with an effective cosmological constant.
This paper is organized as follows: in Sec. II, meron-like

configurations within the Euclidean Einstein-Yang-Mills
theory are introduced. In Sec. III, we present a general
ansatz to construct merons and Einstein-Yang-Mills equa-
tions are discussed. In Sec. IV the solutions are constructed.
First, three-dimensional smooth regular gravitating merons
are considered, the effects of the Chern-Simons term are
included and the corresponding Euclidean action is com-
puted. In four-dimensional case, smooth and regular
gravitating merons are presented and their interpretation
as Euclidean wormholes is discussed. Finally, we construct
regular meron-like configurations in five and higher
dimensions. In Sec. V, some conclusions are drawn.

II. THE SYSTEM

We consider the Euclidean Einstein-Yang-Mills system
in D dimensions with cosmological constant. The action of
the system is

S ¼ SG þ SSUð2Þ; ð1Þ
where the gravitational action SG and the gauge field action
SSUð2Þ are given by

SG ¼ −
1

16πG

Z
dDx

ffiffiffi
g

p ðR − 2ΛÞ; ð2Þ

SSUð2Þ ¼ −
1

8e2

Z
dDx

ffiffiffi
g

p
TrðFμνFμνÞ; ð3Þ

where R is the Ricci scalar,G is Newton’s constant,Λ is the
cosmological constant, Fμν ¼ ∂μAν − ∂νAμ þ ½Aμ; Aν� is
the field strength associated to the gauge field Aμ, and e
is the Yang-Mills coupling constant. In our conventions
c ¼ ℏ ¼ 1. The resulting N-dimensional Einstein equa-
tions are4In which case themass gap plays the role of themagnetic mass.
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Gμν þ Λgμν ¼ 8πGTμν; ð4Þ

whereGμν is the Einstein tensor and Tμν is the stress-energy
tensor of the Yang-Mills field

Tμν ¼
2ffiffiffi
g

p δSSUð2Þ
δgμν

¼ −
1

2e2
Tr

�
FμαFνβgαβ −

1

4
gμνFρσFρσ

�
:

ð5Þ

The Yang-Mills equations are given by

YMμ ¼ ∇νFμν þ ½Aν; Fμν� ¼ 0; ð6Þ

where ∇μ is the Levi-Civita covariant derivative. The
connection Aμ ¼ AA

μ tA takes values on the SUð2Þ algebra,
whose generators are defined as

tA ¼ iσA; A ¼ 1; 2; 3; ð7Þ

σA being the Pauli matrices.
Meron-like configurations as well as their important role

in the non-perturbative sector of Yang-Mills theory have
been extensively discussed in the literature (see, for
instance, [3–7]). All the most important examples can be
written in the following form5[7]

Aμ ¼ λU−1∂μU; λ ≠ 0; 1: ð8Þ

As it will be shown in the following, the Yang-Mills
equations fix the parameter λ. Therefore, our definition of
meron in the present paper will be a regular configuration
of the form in Eq. (8) constructed with a topologically
nontrivial SUð2Þ map UðxμÞ. Note that the definition of
meron in Eq. (8) works both with Euclidean and with
Lorentzian signature. Although we will focus in this work
mainly on the Euclidean case, many of the present results
can be easily extended to the Lorentzian case.
We adopt the standard parametrization of the SUð2Þ-

valued scalar UðxμÞ

U�1ðxμÞ ¼ Y0ðxμÞI� YAðxμÞtA;
ðY0Þ2 þ YAYA ¼ 1; ð9Þ

where I is the 2 × 2 identity. The last equality implies that
ðY0; YAÞ is a unit vector in a three sphere, which is naturally
accounted for by writing

Y0 ¼ cos α; YA ¼ nA · sin α;

n1 ¼ sinΘ cosΦ; n2 ¼ sinΘ sinΦ; n3 ¼ cosΘ.

ð10Þ

As it will be explained in the next sections, the ansatz for
the α, Θ, and Φ functions will be chosen in order to have a
nonvanishing winding number.

III. ANSATZ

For our purposes it will be convenient to introduce the
left-invariant Maurer-Cartan forms on SUð2Þ, which can be
defined in terms of the Euler angles xi ¼ ðψ ; θ;φÞ by

Γ1 ¼
1

2
ðsinψdθ − sin θ cosψdφÞ;

Γ2 ¼
1

2
ð−cosψdθ − sin θ sinψdφÞ;

Γ3 ¼
1

2
ðdψ þ cos θdφÞ;

0 ≤ ψ < 4π; 0 ≤ θ < π; 0 ≤ φ < 2π:

We will consider a D-dimensional euclidean space-time of
the form

ds2¼gμνdxμdxν¼ γabðzÞdzadzbþρðzÞ2
X3
i¼1

Γi⊗Γi; ð11Þ

where we have split the coordinates as xμ ¼ ðza; xiÞ,
a ¼ 1;…; d ¼ D − 3, γab is a d-dimensional metric and
ρðzÞ is a warping factor depending on the coordinates
za only.
As it has been discussed in [30,36,37], the following

choice for the functions in (10) is suitable for the class of
metrics (11):

Φ¼ψþφ

2
; tanΘ¼ cotðθ

2
Þ

cosðψ−φ
2
Þ ; tanα¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2Θ

p

tanðψ−φ
2
Þ :

ð12Þ

It is easy to verify directly that in any background metric of
the form in Eq. (11), a meron ansatz of the form in Eqs. (8),
(10) and (12) identically satisfies the Lorentz gauge
condition (something which simplifies considerably the
Yang-Mills equation):

∇μAμ ¼ 0: ð13Þ

It is also worth to emphasize that the present ansatz is
topologically nontrivial as it has a nontrivial winding
number along the za ¼ const hypersurfaces of the metric
in Eq. (11):

5It is more common to use the ’t Hooft symbol (which is a
Levi-Civita ε-tensor in which some of the indices are internal
while other are space-time indices). On flat spaces, the usual
notation is equivalent to the one in Eq. (8). On curved spaces the
notation in Eq. (8) is much more convenient as it avoids the
problem to properly define the ’t Hooft symbol on curved spaces.
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W ¼ −
1

24π2

Z
S3
tr½ðU−1dUÞ3�

¼ −
1

2π2

Z
sin2α sinΘdαdΘdΦ ¼ 1: ð14Þ

Hence, the present configuration cannot be deformed
continuously to the trivial vacuum.

A. Yang-Mills equations

In the coordinates xμ ¼ ðza; xiÞ, the gauge potential is
split in two parts Aμ ¼ fAa; Aig. The ansatz in Eqs. (8),
(10) and (12) leads to the following form for Ai

Aψ ¼ −
λ

2
ðsin θ cosφt1 þ sin θ sinφt2 − cos θt3Þ;

Aθ ¼
λ

2
ðsinφt1 − cosφt2Þ;

Aφ ¼ λ

2
t3; ð15Þ

while the components Aa identically vanish

Aa ¼ 0:

As the connection is time independent, the non-Abelian
“electric” field vanishes and this meron-like configuration
is purely “magnetic.” In fact, the nonvanishing space-time
components of the field strength are

Fψθ ¼ −
λðλ − 1Þ

2
ðcos θ cosφt1 þ cos θ sinφt2 þ sin θt3Þ;

Fψφ ¼ λðλ − 1Þ
2

sin θðsinφt1 − cosφt2Þ;

Fθφ ¼ λðλ − 1Þ
2

ðcosφt1 þ sinφt2Þ ð16Þ

and the left-hand sides of Yang-Mills equations (6) become,

YMψ ¼ 8λðλ − 1Þ
ρ4 sin θ

ð2λ − 1Þðcosφt1 þ sinφt2Þ;

YMθ ¼ 8λðλ − 1Þð2λ − 1Þ
ρ4

ð− sinφt1 þ cosφt2Þ;

YMφ ¼ −
8λðλ − 1Þð2λ − 1Þ

ρ4 sin θ

× ðcos θ cosφt1 þ cos θ sinφt2 þ sin θt3Þ;
YMa ¼ 0. ð17Þ
Therefore, the Yang-Mills equations are identically satisfied
for

λ ¼ 1

2
: ð18Þ

This is the standard value of λ formeronic configurations (8).
As we will show, in three-dimensions it is possible to find a
different result for λwhen aChern-Simons term is included in
the action for the SU(2) gauge field. For D > 3 however,
λ ¼ 1

2
will be assumed.

B. Einstein equations

In (11), the metric gμν splits as gij ¼ ρðzÞ2hijðxÞ,
gab ¼ γabðzÞ, gia ¼ 0, where hij is the metric of the three
sphere in the coordinates xi,

X3
i¼1

Γi ⊗ Γi ¼ hijdxidxj

¼ 1

4
ðdψ2 þ 2 cos θdψdφþ dθ2 þ dφ2Þ:

The Ricci tensor and the Ricci scalar are then given by

Rij ¼ 2hij

�
1 − ~∇aρ ~∇aρ −

1

2
ρ ~∇2ρ

�
;

Ria ¼ 0;

Rab ¼ ~Rab −
3

ρ
~∇b

~∇aρ;

R ¼ ~Rþ 6

ρ2
ð1 − ~∇aρ ~∇aρ − ρ ~∇2ρÞ: ð19Þ

where ~Rab, ~R and ~∇ denote the Ricci tensor, the Ricci scalar
and the covariant derivative associated to the metric γab
respectively. Therefore, the Einstein tensor takes the form

Gij ¼ hij

�
~∇aρ ~∇aρþ 2ρ ~∇2ρ −

ρ2

2
~R − 1

�
;

Gia ¼ 0;

Gab ¼ ~Rab −
1

2
γab ~R

þ 3

ρ2
½γabð ~∇cρ ~∇cρþ ~ρ∇2ρ − 1Þ − ρ ~∇b

~∇aρ�: ð20Þ

The stress-energy tensor (5) for the meron field is given by

Tij ¼
2λ2ðλ − 1Þ2

e2ρ2
hij;

Tia ¼ 0;

Tab ¼ −
6λ2ðλ − 1Þ2

e2ρ4
γab; ð21Þ

and therefore Einstein equations (4) yield

~∇aρ ~∇aρþ2ρ ~∇2ρ−
ρ2

2
~RþΛρ2−1¼16πG

e2ρ2
λ2ðλ−1Þ2; ð22Þ
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ρ2

3
~Gab þ γab

�
~∇cρ ~∇cρþ ~ρ∇2ρþ Λρ2

3
− 1

�
− ρ ~∇b

~∇aρ

¼ −
16πG
e2ρ2

λ2ðλ − 1Þ2γab: ð23Þ

where we have defined ~Gab ¼ ~Rab − 1
2
γab ~R as the Einstein

tensor associated to the metric γab. Notice that the ði; jÞ
components of the field equations reduce into a single
equation (22). It should be emphasized that the same
reduction of the ði; jÞ components of the field equations
hold even with the Gauss-Bonnet term on the left-hand side
of the field equations, which is given by

Hμν ¼ 2ðRRμν − 2RμρRρ
ν − 2RρσRμρνσ þ Rμ

ραβRνραβÞ

−
1

2
gμνðR2 − 4RαβRαβ þ RαβγδRαβγδÞ: ð24Þ

This can be easily shown by observing the following
equations

Rijkm ¼ ρ2ð1 − ~∇aρ ~∇aρÞðhikhjm − himhjkÞ; ð25Þ

Rijab ¼ Riabc ¼ Raijk ¼ 0; ð26Þ

Riajb ¼ −ρhij ~∇a
~∇bρ; ð27Þ

from which one has Hia ¼ 0, and Hij ∝ hij. To solve the
Einstein-Yang-Mills equations for meron configurations
with the Gauss-Bonnet term is a valuable task in its own
right. In this paper, however, we focus only on the Einstein-
Hilbert action for the gravity sector, and the issues related to
the Gauss-Bonnet gravity will be studied in a separate paper.

IV. SOLUTIONS

A. D = 3

In three dimensions γab ¼ 0 and ρ ¼ ρ0 is constant.
Therefore the metric (11) is simply given by

ds2 ¼ ρ20
X3
i¼1

Γi ⊗ Γi

¼ ρ20
4
ðdτ2 þ 2 cos θdτdφþ dθ2 þ dφ2Þ; ð28Þ

where we have considered ψ ¼ τ as the Euclidean time. In
this case, Einstein equations (22) yield one single algebraic
equation for ρ0,

Λρ20 − 1 ¼ 16πG
e2ρ20

λ2ðλ − 1Þ2; ð29Þ

which can be solved forΛ > 0. As Yang-Mills equations (17)
require λ ¼ 1=2, Eq. (29) fixes ρ0 to be

ρ20 ¼
1

2Λ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4πGΛ

e2

r �
: ð30Þ

Themeronic configuration in this case is defined on the three-
sphere with overall fact ρ0 and it is regular and smooth
everywhere.

1. Chern-Simons term

In the three-dimensional case it is possible to find a more
general meron-like solution by adding a Chern-Simons
term to the action (3) and considering

SSUð2Þ ¼ −
1

8e2

Z
dDx

ffiffiffi
g

p
TrðFμνFμνÞ þ SCS;

where the Chern-Simons action for the SUð2Þ valued gauge
field is given by

SCS ¼
k
2e2

Z
Tr

�
AdAþ 2

3
A3

�
; ð31Þ

and k is related to the Chern-Simons level6 This modifi-
cation leads to the Yang-Mills-Chern-Simons equations

YMCSμ ¼ ∇νFμν þ ½Aν; Fμν� þ kϵνρσFρσ ¼ 0: ð32Þ

Using (17) and (16) it is straightforward to check that

YMCSψ ¼ 8λðλ−1Þ
ρ4 sinθ

ð2λ−1þkρ0Þðcosφt1þ sinφt2Þ

YMCSθ ¼ 8λðλ−1Þð2λ−1þkρ0Þ
ρ4

ð−sinφt1þ cosφt2Þ;

YMCSφ ¼−
8λðλ−1Þð2λ−1þkρ0Þ

ρ4 sinθ

× ðcosθcosφt1þ cosθ sinφt2þ sinθt3Þ; ð33Þ

which leads to

λ ¼ 1

2
ð1 − kρ0Þ ð34Þ

(note that in the Einstein-Yang-Mills case (k ¼ 0) we get
the usual “meronic” value λ ¼ 1=2).
Due to its topological nature, the Chern-Simons term

does not contribute to the energy-momentum tensor (21).
This means that, when (31) is included in the gauge field
action, the only modification in the Einstein equations (29)
is the value of λ. In this case we obtain

6There are two possible conventions for the Chern-Simons
level k: we will comment on them in the following sections.
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ρ20Λ − 1 ¼ πG
e2ρ20

ð1 − k2ρ20Þ2; ð35Þ

which can be solved for Λ > 0 to give

ρ20 ¼
e2 − 2πGk2 � e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ 4πGðΛ − k2Þ

p
2e2Λ − 2πGk4

: ð36Þ

Note that for ρ20 to be positive, one of the following
conditions must hold:

ðiÞ e2þ4πGðΛ−k2Þ> 0; 2πGk2>e2; e2Λ< πGk4;

ðiiÞ e2Λ> πGk4;

ðiiiÞ e2þ4πGðΛ−k2Þ¼ 0;

ðe2−2πGk2Þðe2Λ−πGk4Þ> 0;

ðivÞ e2Λ¼ πGk4; k2=Λ< 2:

2. Imaginary coupling

In order for the theory to have a well-defined Lorentzian
continuation, the Euclidean Chern-Simons term must have
imaginary coupling (k → ik, k ∈ N, i2 ¼ −1). In this case
the solutions look very similar with the difference that the
meron parameter λ is not real anymore:

λ ¼ 1

2
ð1 − ikR0Þ; R0 ∈ R:

These configurations represent complex saddle points of the
Einstein-Yang-Mills-Chern-Simons action. In recent years, it
has been shown in many nontrivial examples (see [57] and
references therein; for detailed reviews see [58–60]) that
nontrivial complex saddle points are necessary to give a
consistent nonperturbative definition of the path integral. In
particular, when such complex saddles are not included in the
analysis, inconsistencies appear. Hence, the present results
strongly suggest that these gravitating merons are relevant
building blocks to get a consistent path-integral in the
Einstein-Yang-Mills-Chern-Simons case.

3. Euclidean action

Also in the three-dimensional case the non-perturbative
nature of this configurations is apparent as they depend on
1=e2. In particular, the classical Euclidean action IE
corresponding to the set of solutions can be easily com-
puted to give:

IE¼h

�
1

e2
;Λ;G;k

�

¼πρ0
4G

ðρ20Λ−3Þþ12π2

e2ρ0
λ2ðλ−1Þ2−4π2k

e2
λ2ðλþ3Þ: ð37Þ

The obvious relevance of this result is that, at semiclassical
level, the contribution of this configuration to the path-
integral is proportional to ZE,

ZE ≈ exp ½−IE�: ð38Þ
Therefore, gravitating merons play an important role in the
nonperturbative sector of the theory. This is especially
important in the three-dimensional case in which self-dual
instantons do not exist and, consequently, these Euclidean
smooth regular (and with finite actions) configurations can
be quite relevant.
It is alsoworthwhile to emphasize the remarkable effect of

the Chern-Simons term which supports the existence of
gravitating merons with λ ≠ 1=2. To the best of the authors’
knowledge, these are the first examples of smooth merons
with this characteristic. Due to the fact that theChern-Simons
term can arise upon integrating over Fermionic degrees of
freedom, it is natural to wonder whether one could construct
merons with λ ≠ 1=2 even with Fermionic matter fields. We
hope to come back on this very interesting question in a
future publication. As it has been already emphasized, in the
case in which the Chern-Simons coupling is taken as ikwith
k ∈ R, the present configurations have to be considered as
smooth regular complex saddle points. Correspondingly, the
Euclidean action also gets a nontrivial imaginary part. These
configurations have to be properly analyzedusing resurgence
techniques (following [57–60]). We hope to come back on
this issue in a future publication.
As far as the evaluation of the Euclidean action of the

four dimensional solutions is concerned, it involves some
subtleties. The reason is that, in the presence of a negative
cosmological constant, one needs to include suitable
boundary terms to obtain a finite results. The construction
of these boundary terms when topologically nontrivial non-
Abelian gauge fields are present has not been discussed in
details in the literature. We hope to come back to this
interesting issue in a future publication.

B. D = 4

In four dimensions we consider only one extra coor-
dinate z ¼ r in (11) and for simplicity we will just take
γrr ¼ 1. The metric then takes the form

ds2¼ dr2þρ2ðrÞ
4

ðdτ2þ2cosθdτdφþdθ2þdφ2Þ: ð39Þ

where again we have considered ψ ¼ τ as the Euclidean
time. Einstein equations (22) and (23) are reduced to two
ordinary differential equations

ρ02 þ 2ρρ00 þ Λρ2 − 1 ¼ πG
e2ρ2

; ð40Þ

ρ02 þ Λ
3
ρ2 − 1 ¼ −

πG
e2ρ2

; ð41Þ
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where we have already replaced (18). If we plug the
Eq. (41) into (40), then we have a single ordinary differ-
ential equation of ρðrÞ,

ρρ00 þ Λ
3
ρ2 −

πG
e2ρ2

¼ 0: ð42Þ

When the cosmological constant Λ is positive, there does
not exist real solution to this equation. Now let us examine
the cases of zero and negative cosmological constants.
Similar results have been discussed in [43–47].
Case 1: Λ ¼ 0
When Λ ¼ 0, the solution to (42) is,

ρðrÞ ¼ 1

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðrþ bÞ2 þ πGe2

a

r
; ð43Þ

where a and b are integration constants. This solution
satisfies the Eqs. (40) and (41) if

a ¼ e2:

Thus the solution for vanishing cosmological constant is,

ρðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πG
e2

þ ðrþ bÞ2
r

: ð44Þ

Hence, these configurations can be interpreted as smooth
asymptotically flat Euclidean wormholes sourced by mer-
ons. The size of the throat is proportional to 1=e2 thus
showing explicitly that the “opening of the throat” is a
nonperturbative phenomenon. Moreover, the fact that such
Euclidean wormholes are sourced by Yang-Mills merons
(which, by themselves, represent tunneling between differ-
ent Gribov vacua [7]) sheds considerable light on the
physical interpretation of these Euclidean wormholes.
Indeed, the solution is smooth and regular everywhere,
the gauge field is regular and the scale factor ρ is smooth
and non-vanishing. In particular, both asymptotic regions
(corresponding to r → �∞) are flat (the wormhole throat
being at r ¼ −b). Similar Euclidean wormhole solutions
have been studied in [43–46]. Examples of Euclidean
wormholes embedded in higher dimensional theories as
well as including the explicit presence of axionic fields
have been worked out in [48–56].
Case 2: Λ < 0
When Λ < 0, the solution to (42) is,

ρðrÞ ¼ 1

4e

�
2C1

��
64πGe2

C2
1

þ C2
2

�
exp

�
2

ffiffiffiffiffiffiffi
−Λ
3

r
r

�

−
3

4Λ
exp

�
−2

ffiffiffiffiffiffiffi
−Λ
3

r
r

�
þ

ffiffiffiffiffiffiffi
3

−Λ

r
C2

��
1=2

; ð45Þ

where C1 and C2 are integration constants. The above
solution is real whenever C1 is positive. In addition, this

solution satisfies the Eqs. (40) and (41) if C1 and C2 are
related by

C1C2 ¼ −4e2
ffiffiffiffiffiffiffi
3

−Λ

r
:

With these conditions, we have the solution ρðrÞ given by,

ρðrÞ ¼ 1

4e

�
2

C1

�
64πGe2 −

48e4

Λ

�
exp

�
2

ffiffiffiffiffiffiffi
−Λ
3

r
r
�

−
3C1

2Λ
exp

�
−2

ffiffiffiffiffiffiffi
−Λ
3

r
r

�
þ 24e2

Λ

�
1=2

: ð46Þ

Let us notice that the argument of the square root is positive
definite, and its minimum value

ρmin ¼
ffiffiffi
6

p

2
ffiffiffiffiffiffiffi
−Λ

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4πGΛ
3e2

r
− 1

�1=2
ð47Þ

occurs at

r ¼ 1

2

ffiffiffiffiffiffiffi
3

−Λ

r
Log

� ffiffiffi
3

p
C1

8e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3e2 − 4πGΛ

p
�
; ð48Þ

if the right-hand side of (48) is positive. Therefore, if we
choose a sufficiently small positive constant C1, then the
corresponding solution is regular and smooth everywhere
for any r ∈ R. In these cases both asymptotic regions
(namely, r → �∞) are (the Euclidean version of) AdS.
Thus, both in Case 1 and in Case 2 described above the

gravitating merons can be interpreted as smooth Euclidean
wormholes interpolating between the vacua of the theory. It
is also worthwhile to emphasize that also in this case the
(size of the) wormhole throat is nonperturbative in the
Yang-Mills coupling e2 (as it depends on 1=e2: see
Eqs. (44) and (47)). Consequently, the present configura-
tions will be relevant in the nonperturbative sector of
Einstein-Yang-Mills theory.

C. D = 5

Solutions with constant ρ analogous to the three-
dimensional one (30) previously constructed cannot be
generalized to four dimensions, as in that case the Eqs. (22)
and (23) do not admit solutions for constant ρ. For D > 4,
however, the warping factor ρ can be taken as a constant ρ0.
In five dimensions we can consider coordinates za ¼ ðτ; rÞ,
were τ is the Euclidean time and r a radial coordinate. The
simplest solutions of the form (11) can be obtained by
considering a two-dimensional metric γab with constant
curvature ~R ¼ K and

γab ¼
� r2 0

0 1
1−K

2
r2

�
:
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In that case, Einstein equations (22) and (23) take the form

�
K
2
− Λ

�
ρ20 þ 1þ πG

e2ρ20
¼ 0; ð49Þ

Λρ20
3

− 1þ πG
e2ρ20

¼ 0: ð50Þ

Equation (49) fixes K in terms of ρ0, Λ, G and e,

K ¼ 2Λ −
2

ρ20

�
1þ πG

e2ρ20

�
;

while Eq. (50) determines ρ20:
(i) For Λ > 0 and 4πGΛ

3e2 ≤ 1,

ρ20 ¼
3

2Λ

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πGΛ
3e2

r �
: ð51Þ

(ii) For Λ ¼ 0,

ρ20 ¼
πG
e2

: ð52Þ

(iii) For Λ < 0,

ρ20 ¼
3

2Λ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πGΛ
3e2

r �
: ð53Þ

As in the three-dimensional case, one could be tempted
to add a five-dimensional Chern-Simons term to the
Yang-Mills actions (3). However the five-dimensional
Chern-Simons equations are proportional to ϵμνρσλFνρFσλ

which vanishes for the meron field-strength (16). The same
argument holds in higher odd-dimensional cases.

D. Higher dimensions

Solutions of the form (51) can be easily extended to
arbitrarily higher dimensions. In fact, for ρ ¼ ρ0 a constant,
and γab a d-dimensional metric. Einstein equations (22)
and (23) reduce in general to

�
~R
2
− Λ

�
ρ20 þ 1þ πG

e2ρ20
¼ 0 ð54Þ

~Gab þ
�
Λþ 3

ρ20

�
πG
e2ρ20

− 1

��
γab ¼ 0: ð55Þ

The first equation implies that the Ricci tensor ~R for the
metric γab is constant, while the second equation can be
written as the Einstein equations for γab with an effective
cosmological constant:

~Λ ¼ Λþ 3

ρ20

�
πG
e2ρ20

− 1

�
:

This means that in any dimension D ¼ dþ 3 with d > 2,
the metric γab is an Einstein manifold with cosmological
constant ~Λ, i.e.,

~Rab ¼
2 ~Λ
d − 2

γab;

which means that the Ricci scalar ~R is given by

~R ¼ 2d
d − 2

�
Λþ 3

ρ20

�
πG
e2ρ20

− 1

��
:

Plugging this back in Eq. (54) we find ρ20 to be
(i) For Λ > 0 and 4πGΛð2d−1Þ

e2ðdþ1Þ2 ≤ 1,

ρ20 ¼
dþ 1

2Λ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πGΛð2d − 1Þ
e2ðdþ 1Þ2

s 3
5: ð56Þ

(ii) For Λ ¼ 0,

ρ20 ¼
πGð2d − 1Þ
e2ðdþ 1Þ : ð57Þ

(iii) For Λ < 0,

ρ20 ¼
dþ 1

2Λ

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πGΛð2d − 1Þ
e2ðdþ 1Þ2

s 3
5: ð58Þ

The fact that any d-dimensional Einstein manifold with
cosmological constant ~Λ and constant provides a solution for
γab is very interesting. In higher dimensions one could use
different known solutions plus the three-sphere to construct
Euclidean geometries supporting meron-like configurations
of the form (15). One interesting example would be, for
instance, to use the Euclidean Schwarzschild-AdS or
Euclidean Kerr-AdS black holes in four dimensions as the
metric γab, to form a seven-dimensional black brane with
three compact dimensions. It would be also very interesting
to construct solutions with a nonconstant and regular warp
factor. This task, however, is quite nontrivial and it is likely
that some extra ingredients are required to achieve it. We
hope to come back to this issue in a future publication.

V. CONCLUSIONS

Analytic smooth configurations of Euclidean Einstein-
Yang-Mills system have been constructed. The ansatz for the
gauge field is ofmeron-type: it is proportional to a puregauge
(with a suitable parameter λ which is determined by solving
the field equations). The smooth gauge transformation used
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to construct the meron cannot be deformed continuously to
the identity as it possesses a nonvanishing winding number.
In the three dimensional case, the solution is smooth and the
spatial geometry is a three-sphere. The effects of the
inclusion of a Chern-Simons term can be studied explicitly.
Interestingly enough, one of the effects of the Chern-Simons
term is that, unlikewhat happens in the pureYang-Mills case,
the parameter λ is in general different from 1=2: the value of λ
in the 3DYang-Mills-Chern-Simons case depends explicitly
on the Chern-Simons coupling. In dimensions greater than
three, one gets λ ¼ 1=2. In four dimensions the correspond-
ing geometry can be interpreted as a smooth Euclidean
wormhole interpolatingbetweendifferent vacuaof the theory
(thus, extending the usual flat interpretation of merons). In
five dimensions regular meron-like configurations have been
found, where the metric is given by the three-sphere times a
constant curvature space. This last result can be extended to
arbitrary higher dimensions where the metric is given by the
warped product the three-sphere with any solution of the
(D − 3)-dimensional Einstein equations in vacuum with an
effective cosmological constant. In all theses cases, the
coupling of the meron with general relativity “regularizes”
the configurations. Namely, Yang-Mills configurations
(which on flat spaces would be singular) become regular
when the coupling with general relativity is considered. This
remarkable effect could be named gravitational catalysis of
merons. One of the consequences of this fact is that, while in
the flat case the Euclidean action of merons is divergent (so

that a single meron gives vanishing contribution to the
semi-classical path integral), gravitating merons can be
smooth and regular and, consequently, they can give a
nonvanishing contribution to the semiclassical path integral
(as the present examples clearly show). InCho’s approachwe
can express the vacuum potential Ωμ ¼ U−1∂μU explicitly
with n̂ ¼ ðn1; n2; n3Þ, and express the ansatz (11) solely by n̂.
With this we can obtain the same result using n̂ [38–42]. A
very interesting issue (to which we hope to come back in a
future publication) is the resurgence analysis (along the lines
of [57]) of the complex regular meron-like saddle points
which appear in theEinstein-Yang-Mills-Chern-Simons case
when the Chern-Simons coupling constant is taken as ik.
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