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Continuum spectrum from black hole accretion disc holds enormous information regarding the strong
gravity regime around the black hole and hence about the nature of gravitational interaction in extreme
situations. Since in such strong gravity regime the dynamics of gravity should be modified from the
Einstein-Hilbert one, its effect should be imprinted on the continuum spectrum originating from the black
hole accretion. To explore the effects of these alternative theories on the black hole continuum spectrum in
an explicit manner, we have discussed three alternative gravitational models having their origin in three
distinct paradigms—(a) higher dimensions, (b) higher curvature gravity, and (c) generalized Horndeski
theories. All of them can have signatures sculptured on the black hole continuum spectrum, distinct from
the standard general relativistic scenario. Interestingly all these models exhibit black hole solutions with
tidal charge parameter which in these alternative gravity scenarios can become negative, in sharp contrast
with the Reissner-Nordström black hole. Using the observational data of optical luminosity for eighty
Palomer Green quasars we have illustrated that the difference between the theoretical estimates and the
observational results gets minimized for negative values of the tidal charge parameter. As a quantitative
estimate of this result we concentrate on several error estimators, including reduced χ2, Nash-Sutcliffe
efficiency, index of agreement etc. Remarkably, all of them indicates a negative value of the tidal charge
parameter, signaling the possibility of higher dimensions as well as scalar charge at play in those high
gravity regimes.
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I. INTRODUCTION

General relativity has been the most successful theory till
date in describing the spacetime structure around us. Even
though it has passed various observational tests so far with
flying colors, it has also failed in certain respects. The most
prominent one being the galaxy rotation curves and accel-
erated expansion of the universe [1–3]. There have been
efforts to explain these by either introducing some additional
matter fields, in which case the gravity theory is still given by
general relativity or, by invoking additional higher curvature
correction terms to general relativity [4–8]. The second
option where modifications are done to the Lagrangian of
the gravity sector, are known as alternative theories of
gravity. Setting up an alternative gravity theory as a viable
option is not an easy task. The theory has to pass through
several theoretical and observational hurdles—the theory
must be free from ghost modes, i.e., should not allow
superluminal propagating degrees of freedom, the theory
must be consistentwith solar system tests and should not give
rise to a fifth force in the local physics, the theory must have
something more to present, e.g., possible explanation of late
time acceleration. These alternative theories may also have

some completely different origin, such as the presence of
extra spatial dimensions, resulting into four dimensional
gravitational field equations different from that in Einstein
gravity [9].
Among the various alternative theories there exist broadly

three classifications: (a) The gravitational Lagrangian is
modified by introduction of higher curvature terms, e.g.,
Lanczos-Lovelock gravity, fðRÞ gravity etc. The Lanczos-
Lovelock theory is inherently ghost free, leading to second
order field equations, while fðRÞ gravity models have ghost
modes unless some specific conditions are being satisfied
(see e.g., [10–25]); (b) Modified gravitational dynamics due
to existence of extra dimensions, e.g., bulk Weyl tensor
contributes additional terms to the effective lower dimen-
sional gravitational field equations [26–37], and, finally
(c) Scalar-tensor theories of gravity, which was first intro-
duced as the Brans-Dicke theory and emerged in recent times
in amoregeneral context asHorndeski theories [38–55]. This
alike Lovelock models have higher powers of second
derivatives in the Lagrangian, while the field equations are
still of second order. In particular it can be generalized to
include higher form fields as well [56,57]. These models are
interlinked among themselves, e.g., Kaluza-Klein reduction
of Lovelock models from higher spacetime dimensions to
four dimensions leads to the Horndeski theories [46,52,58].
The best place to test these alternative theories is in the

near horizon regime of a supermassive black hole, since in
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that regime the curvature will be high enough for these
modifications leading to observable effects. The two most
significant phenomenon associated with the near horizon
geometry of supermassive black holes correspond to strong
gravitational lensing and structure of accretion disc. While,
the strong lensing will become an observable only a few
years later, the spectrum of the accretion disc around black
holes can be easily extracted from various x-ray telescopes
as well as very long baseline interferometers (in short
VLBI) to a good accuracy and hence can be used to find out
the possible presence of alternative gravity theories [59–73]
(see also [74]). We have already discussed the strong
gravitational lensing in alternative gravity theories in an
earlier work [75]. While in this work our main aim will be
to understand the impact of alternative gravity theories on
the electromagnetic observations from the accretion disc
around supermassive black holes. We will chiefly concen-
trate on the continuum spectrum from the black hole
accretion disc as it is highly sensitive to the geometric
properties of the background metric.
It has been well established that active Galactic nuclei

(henceforth referred to as AGN), which are the most
luminous persistent sources of electromagnetic radiation
in the universe are accretion powered [76,77]. Residing at
the center of most massive galaxies [76,78,79], AGNs emit
copious amount of radiation in several bands of electro-
magnetic spectrum from the radio to the gamma rays
[80–84]. The optical/UV emission of the AGN spectral
energy density (referred to as SED) is believed to be
emanated from the geometrically thin and optically thick
Keplerian disk generally extending in the intermediate and
larger distances from the black hole [85–91]. This emission
resembles a multicolored black body spectrum peaking in
the optical/UV/EUV range depending on the mass of the
black hole. Since the temperature of the accretion disk
varies as T ∝ M−1=4

BH [92], where MBH represents the mass
of the black hole, the blackbody spectrum for AGN disks
generally peaks in the UV [93]. Gravitational binding
energy released during the process of accretion produces
a luminosity ∼1044–47 ergs−1 [94,95], while the inner
accretion disk has a temperature of 105–106 K [96–98].
The spectrum from the thin accretion disk around a black

hole has been analytically computed in the Newtonian
approximation [87,88] as well as in the presence of general
relativity [99–104]. In this work we compute the emission
from the Keplerian disk around a set of eighty Palomar
Green (PG) quasars [104,105] assuming that the back-
ground metric is given by the alternative theories and
contrast the results with the outcomes from general
relativity [106–108]. The bolometric luminosity of these
quasars is determined based on optical [81], UV [82], far-
UV [83], and soft x-ray [84] observations. The observa-
tional values of the optical luminosities are used to compute
the accretion rates and these quantities are quoted in [104].
The masses of most of these PG quasars are estimated from

the characteristic velocities and radii of the broad line
region (known as BLR) and from high-quality spectros-
copy of the Hβ region given by [109], while the mass of the
remaining quasars are obtained from the M − σ relation
[110–114].
In this work, we have tried to understand the continuum

spectrum emitted by these quasars modulo existence of
gravity theories beyond Einstein. To understand possible
consequences of these modified theories on the electro-
magnetic emission from black hole accretion, we concen-
trate on three such alternative gravity models—one of them
corresponds to modifications of gravitational field equa-
tions due to existence of extra dimensions and the other
modifies the gravitational field equations by incorporating
higher curvature terms as, while the third one corresponds to
Horndeski (or, generalized Horndeski) theories of gravity.
The theoretically obtained optical luminosity is compared
with the observed values to identify which of these alter-
native gravity models best reproduce the observations.
The paper is organized as follows: In Sec. II we introduce

basics of these alternative gravity theories and then the
formulations of accretion disc has been carried out in
Sec. III. Subsequently, we apply this formalism to the black
hole spacetimes under consideration in Sec. IV, while the
observed data has been numerically analyzed in Sec. V.
Finally, we conclude with a discussion on our results.

II. ALTERNATIVE GRAVITY THEORIES:
A BRIEF INTRODUCTION

In this section we will provide a brief introduction to the
alternative gravity theories to be discussed in this work. We
will first provide the modifications brought to the gravi-
tational field equations due to presence of extra dimensions
as well as higher curvature terms in the gravitational action
and subsequently shall introduce the Horndeski theories.

(i) Black hole in higher dimensional Einstein gravity: In
presence of extra spatial dimensions, it is legitimate
to ask about the corresponding effect on the lower
dimensional hypersurface we live in (called as the
brane). Given the gravitational field equations in the
bulk, which we take to be the Einstein’s equations,
one can obtain the corresponding equations on a
lower dimensional hypersurface by projecting the
appropriate geometric quantities. The projection on
a timelike surface can be performed by using the
projector hab ¼ δab − nanb, such that habna ¼ 0. Then
one can use the Gauss-Codazzi equation, which
essentially projects the Riemann tensor on the
timelike hypersurface to which nc is the normal.
This leads to the intrinsic (or, in this case four
dimensional) Riemann tensor on the hypersurface as
well as extrinsic curvatures associated with the
normal na. Contraction of the above relation leads
to projections of the Ricci tensor [26]. Finally
combining all these curvatures together and using
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Israel junction conditions on the hypersurface along
with Z2 orbifold symmetry, the vacuum gravitational
field equations on the brane become,

Gμν þ Eμν ¼ 0; Eμν ¼ ð5ÞCμaνbnanb ð1Þ

Here, Eμν is the additional contribution to the
gravitational field equations, originating from the
bulk Weyl tensor. In principle unless one knows
about the structure of the bulk spacetime it is not
possible to get a handle on this term and in which
case the brane geometry gets automatically fixed.
Thus in absence of any knowledge about the bulk
spacetime, one must treat the Eμν as a source term.
Note that due to Bianchi identity one must have
∇μE

μ
ν ¼ 0, which along with Eq. (1) leads to a

system of closed equations to be solved to get the
brane geometry. In particular one can derive static
and spherically symmetric solutions associated with
the above field equations, which has been carried out
in [27,28]. The standard trick is to write down the
bulk tensor Eμν in terms of irreducible representa-
tions using a four velocity uμ, which leads to two
unknown radial functions, the dark radiation UðrÞ
and the dark pressure PðrÞ respectively. With the
following choice for the equation of state:
2U þ P ¼ 0, one can solve the conservation relation
to yield UðrÞ ¼ αðq=r4Þ, where α is the fourth
power of the ratio of four dimensional to five
dimensional gravitational coupling constants. The
corresponding spacetime structure is given by the
following line element,

ds2 ¼ −
�
1 −

2M
r

þ q
r2

�
dt2

þ
�
1 −

2M
r

þ q
r2

�
−1
dr2 þ r2dΩ2 ð2Þ

For q > 0, this solution behaves as a Reissner-
Nordström black hole, with an event horizon and
a Cauchy horizon. While the case q < 0 has no
analogue in general relativity and thus provides a
true signature of additional spatial dimensions [27].

(ii) Black hole in Einstein-Gauss-Bonnet gravity: So far,
we have been considering the effect of higher
spacetime dimensions to the gravitational dynamics
on a (1þ 3) dimensional brane. In this paragraph we
will discuss another scenario, where due to the
presence of a higher curvature term in the action
the gravitational field equations are different from the
Einstein’s equations. One of the most promising such
higher curvature scenario corresponds to Einstein-
Gauss-Bonnet gravity for which the gravitational
Lagrangian reads Rþ αG, where G ¼ RμρνσRμρνσ −
4RμνRμν þ R2 is theGauss-Bonnet invariant andα is a

positive constant of dimension ðlengthÞ2 [115]. In
normal units, i.e., with G ¼ c ¼ 1, the value of α is
much small compared to unity. From a purely geo-
metrical standpoint, the above theory is interesting in
its own right, since even though the Lagrangian is
higher order in the Riemann curvature, it still has only
second order field equations. However the Gauss-
Bonnet termG, corresponds to a total derivative in four
spacetime dimensions. Thus in order to capture some
nontrivial effects of the Gauss-Bonnet term one must
investigate the gravity theory in higher spacetime
dimensions. Thus alike the previous situation, in this
case as well we will be interested in four dimensional
spherically symmetric solution admitting black holes,
but originating from this higher curvature theory in
higher dimensions. One such exact solution has been
derived in [116] and is known as the Maeda-Dadhich
solution, which reads,

ds2 ¼−fðrÞdt2þ dr2

fðrÞþ r2dΩ2
2þ γABdxAdxB: ð3Þ

The above D dimensional spacetime has a product
structure and factorizes in a spherically symmetric
four dimensional spacetime and a (D − 4) dimen-
sional Einstein space. Surprisingly, this solution has
no general relativistic limit and the function fðrÞ in
the limit of small Gauss-Bonnet parameter α has the
following form [53]

fðrÞ ¼ 1 −
ðD − 4Þ ffiffiffi

α
p

m
r

−
ðD − 4Þαj ~qj

r2
ð4Þ

where, the effect of cosmological constant in the local
physics has been neglected. Given this form of fðrÞ,
one can identify the ADM mass and Newton’s
constant as: 2GM ¼ ðD − 4Þ ffiffiffi

α
p

m and define a
dimensionless constant q ¼ ðD − 4Þj ~qj=m2 such that
the geometry associated with the spherically sym-
metric brane (defined by xA ¼ constant) becomes (in
the G ¼ 1 unit),

ds2 ¼ −
�
1 −

2M
r

−
4M2q
r2

�
dt2

þ
�
1 −

2M
r

−
4M2q
r2

�−1
dr2 þ r2dΩ2 ð5Þ

Here the effect of extra dimensions as well as Gauss-
Bonnet parameter is appearing through the tidal
charge parameter q. The effect of Gauss-Bonnet
parameter is hidden in the definition of q in terms
of more primitive ~q, but the effect of higher dimen-
sions can be immediately seen through the appearance
of q with a negative sign. This is opposite to the
positive signature of the electromagnetic term in the
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Reissner-Nordström black hole. This noteworthy
feature of the solution signals the gravitational origin
of this charge term, pointing towards existence of
higher dimensions. Note that a similar result exists for
the previous scenario as well, even though the origin
of the charge term was completely different. In the
first case it is due to the bulkWeyl tensor, while here it
is due to the presence of Gauss-Bonnet term in the
gravitational action.

(iii) Black hole in generalized Horndeski (scalar-vector-
tensor) theory: Having described purely gravita-
tional modifications to the field equations, let us
discuss another possibility, through nonminimal
coupling of gravity with a scalar field. The model
we will discuss regarding nonminimal scalar cou-
pling corresponds to a generalization of Horndeski
theories. In general, Horndeski theories refer to the
most general scalar-tensor theories with nonminimal
couplings and can have various higher powers of
derivatives of the scalar present in the action, even
though the field equations are still second order
[38–40,44,45]. While here we will also include an
additional gauge field and shall couple it to the scalar
sector nonminimally. This particular model has been
explored earlier in detail [51,55,117]. However due
to complicated nature of field equations it is difficult
to discuss these theories with most generality.
Despite the above, one can still consider a subset
of the same, leading to simpler field equations. We
will discuss one such scenario, where one couples
the Maxwell’s field to gravity as well as to a scalar
field, which itself is nonminimally coupled with
gravity. The corresponding action for the complete
system, including gravity, scalar, and gauge field
takes the following form [51]

A ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνFμν þ βGμν∇μϕ∇νϕ

− η∂μϕ∂μϕ

−
γ

2

�
FμσFν

σ −
1

4
gμνFαβFαβ

�
∇μϕ∇νϕ

�
: ð6Þ

Here the action for pure gravity is taken to be the
Einstein-Hilbert term, for the gauge field it is the
−ð1=4ÞFμνFμν term and finally for the scalar one has
the canonical kinetic term. However in addition one
has two more pieces—(a) nonminimal coupling of
gravity with scalar field through Einstein tensor and
(b) coupling of the stress tensor of the gauge field to
the scalar sector. These two pieces come with
arbitrary dimensionful coefficients β and γ respec-
tively. Even though the field equations in this
simplified setting as well are complicated, one can
use the additional symmetry ϕ → ϕþ constant to

derive a conserved Noether current. Further impos-
ing spherical symmetry to this problem simplifies
the field equations considerably to obtain exact
solutions. In the case with η ¼ 0, i.e., in absence
of any canonical kinetic term for ϕ one obtains the
following spherically symmetric solution [51]

ds2 ¼ −
�
1 −

2M
r

þ γðQ2 þ P2Þ
4βr2

�
dt2

þ
�
1 −

2M
r

þ γðQ2 þ P2Þ
4βr2

�−1
dr2 þ r2dΩ2

ð7Þ

where the charges associated with the gauge field can
be obtained from Ftr ¼ Q=r2 and Fθϕ ¼ P sin θ.
Further the scalar field (or, the Galileon field) present
in this model takes the following form [51]

ϕðrÞ¼qtþψðrÞ; ψ 0ðrÞ2¼
2M
r − γðQ2þP2Þ

4βr2�
1− 2M

r þ γðQ2þP2Þ
4βr2

�
2
q2:

ð8Þ

Here the additional constant q appearing in the
solution for the scalar field is related to the coefficient
of the nonminimal coupling between theGalileon and
gravity, as q2 ¼ 1=β. Thus one must have β > 0 to
ensure a real solution for q. Further the gauge field as
well as the scalar field with the positive branch of the
above equation forψðrÞ is regular at the event horizon.
At this stage one has no conditions on the coupling
between the gauge field and the Galileon, thus unlike
the higher dimensional scenario, the sign of 1=r2 term
can have either sign.

Note that in all the three distinct scenarios, the modifica-
tions to the gravity sector is being represented by the term
q=r2, which for the case q > 0 corresponds to standard
Reissner-Nordström like scenario. However the case q < 0
is completely unique and originates solely due to the
modifications to the Einstein’s equations. This suggests
some novel understanding regarding our universe in the
strong gravity regime, with possibility of signatures of
higher dimensions as well as higher curvature gravity along
with scalar hairs. This also helps to envisage the key
motivation behind this work, namely whether one can use
the strong gravity regime near a supermassive black hole to
extract information about the nature of gravity at such
energy scales. To explore this idea further, in the later
sections we will study the continuum spectrum originating
from the accretion disc around supermassive black holes
and shall witness what the spectrum has to tell about black
hole hairs and hence about the fundamental structure of our
spacetime.
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III. ACCRETION DISC IN A STATIC AND
SPHERICALLY SYMMETRIC SPACETIME:

A GENERAL ANALYSIS

In this section we will analyze the characteristics of
electromagnetic emission from an accretion disc in a
general static and spherically symmetric spacetime and
hence the associated observables. The results derived in this
context will be used extensively in the later sections to
derive the observables associated with accretion disc for the
alternative gravity theories introduced in Sec. II. For
generality and keeping future applications in mind we will
work out the details of the observables associated with the
accretion process onto a black hole represented by the most
general static and spherically symmetric metric ansatz in
four spacetime dimensions, which reads,

ds2 ¼ −fðrÞdt2 þ dr2

gðrÞ þ r2dΩ2 ð9Þ

where, fðrÞ and gðrÞ are arbitrary functions of the radial
coordinates and is dependent on the specific gravity theory
under consideration. Due to spherical symmetry, we
assume the disc to lie on the equatorial plane, i.e.,
θ ¼ π=2. The spacetime being static and spherically
symmetric there exist two Killing vectors ∂=∂t and
∂=∂ϕ respectively. This suggests existence of two con-
served quantities, namely the energy E and the angular
momentum L respectively. In the case of accretion disc, one
is primarily interested in the structure of circular geodesics
of a massive particle (characterized by r ¼ constant ¼ rc),
which for this metric structure has already been studied in
[118] and the expressions for energy and angular momen-
tum read,

Ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f2c
2fc − rcf0c

s
ð10Þ

Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r3cf0c
2fc − rcf0c

s
ð11Þ

where “prime” denotes differentiation with respect to the
radial coordinate along with fc and f0c referring to values of
fðrÞ and f0ðrÞ at r ¼ rc respectively. From these expres-
sions it is clear that both the energy and angular momentum
associated with the circular geodesic can be specified solely
in terms of the radius of the circular orbit rc. Basically
given the geodesic equations, one imposes the following
conditions dr=dϕ ¼ 0 ¼ d2r=dϕ2 on them to get the
energy and angular momentum of circular orbits. Using
the geodesic equations and expressions from Eq. (10) and
Eq. (11), one obtains the angular velocity of the particle
moving on the circular geodesic to be,

Ω≡ dϕ
dt

¼ Lc

Ec

fc
r2c

≡
ffiffiffiffiffi
M

p

r3=2c

1

B
ð12Þ

where, fc denotes the value of fðrÞ at the circular orbit
radius r ¼ rc. Here we have introduced the quantity B,
which has the following form,

B ¼
ffiffiffiffiffiffiffiffiffi
2M
r2cf0c

s
: ð13Þ

Note that in the Schwarzschild spacetime f0ðrÞ ¼ 2M=r2

and hence, B ¼ 1 [102]. Given the angular velocity, it is
possible to get the corresponding linear velocity by
introducing appropriate orthonormal frames. In this par-

ticular case, the relevant orthonormal frames are, eðϕÞi ¼
ð0; 0; 0; rÞ as well as eðtÞi ¼ ð ffiffiffiffiffiffiffiffiffi

fðrÞp
; 0; 0; 0Þ. Thus one can

obtain the corresponding linear velocity of the particle
traveling on a circular geodesic as,

vðϕÞ ¼ uieðϕÞi

ujeðtÞj
¼ rffiffiffi

f
p Ω≡

ffiffiffiffiffi
M
rc

s
1

B
ffiffiffiffi
D

p ð14Þ

where, the quantity B has been defined earlier and here we
have introduced one more object, D ¼ fc. Since the
particle is in a circular orbit one can easily convince
himself that the three velocity of the particle is
v ¼ ð0; 0; vðϕÞÞ. Moreover, in the asymptotic limit (viz.
r → ∞) it reduces to r _ϕ, thus setting vðϕÞ ¼ 1 yields the
photon circular orbit, following standard expectation.
Having obtained the linear velocity, one can compute
the Lorentz factor corresponding this velocity, which reads,

γ ¼ ½1 − ðvðϕÞÞ2�−1=2 ≡ B
ffiffiffiffi
D

pffiffiffi
C

p ð15Þ

where the quantity C introduced above has the following
expression,

C ¼ Mð2fc − rcf0cÞ
r2cf0c

: ð16Þ

Here again f0c denotes derivative of fðrÞ evaluated at the
circular orbit, located at r ¼ rc. Using these two pieces of
information one can construct the four-velocity of the
particle moving on the circular geodesic along the follow-
ing lines. The normalization of the four velocity demands,
ut ¼ Nγ, which from Eq. (14) helps to determine
uϕ ¼ ffiffiffi

f
p

NγvðϕÞ=r. This in turn determines the normaliza-
tion to be N ¼ 1=

ffiffiffi
f

p
. Thus the complete structure of the

four velocity becomes,
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uμ ¼ γffiffiffiffi
D

p
�
1; 0; 0;

ffiffiffiffi
D

p

rc
vðϕÞ

�

¼ Bffiffiffiffi
C

p
�� ∂

∂t
�

μ

þ
ffiffiffiffiffi
M
r3c

s
1

B

� ∂
∂ϕ

�
μ
�
: ð17Þ

Given the four velocity, it is possible to compute
the shear tensor associated with this congruence of circular
geodesics on the equatorial plane, leading to σrϕ ¼
−ð3=4ÞðD=CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM=r3cÞ

p
as the only nonzero component.

This expression will find its use later on.
The other quantity of interest corresponds to marginally

stable circular orbits, often denoted by rms. This actually
determines the location of the last stable circular orbit.
After crossing this radius the particle has to fall inside the
black hole. Thus rms provides the minimum radius after
which (i.e., for r < rms) the accretion disc structure gets
destroyed. Computation of this radius can be done by
noting the points of inflection of the effective potential
VeffðrÞ, which corresponds to V 00

effðrÞ ¼ 0 along with
V 0
effðrÞ ¼ 0. Use of both these conditions lead to the

following algebraic equation

2rfðrÞf00ðrÞ − 4rfðrÞ02 þ 6fðrÞf0ðrÞ ¼ 0 ð18Þ

depending solely on the gtt component, fðrÞ and its deriva-
tives. For fðrÞ ¼ 1 − ð2M=rÞ, i.e., for Schwarzschild, one
can solve the above equation, leading to rms ¼ 6M, which
will receive corrections in the alternative theories.
In order to proceed further and obtain the total flux out of

the accretion disc in a closed form, we will have to make
certain reasonable assumptions regarding the structure and
properties of the accretion disc [102]. First of all, we
assume that the central plane of the accretion disc coincides
with the equatorial plane of the black hole. We assume the
disc structure to be thin, i.e., hðrÞ=r ≪ 1. Moreover, the
disc is assumed to be in a quasi-steady state, i.e., when
averaged over a length scale ∼Oðheight of the discÞ and
time scale ∼O(time interval required for the accreting gas
to travel a radial distance equivalent to the disc scale
height), any turbulent phenomenon are supposed to be
washed out, resulting in a steady state behavior of physical
quantities. Finally, one assumes that macroscopically the
gas of the disc moves in almost circular orbits with an
additional small radial velocity arising due to viscous
stresses. Further, the velocity component in the vertical
direction is assumed to be negligibly small.
At this stage, one must write down the corresponding

stress energy tensor associated with the fluid accreting
around black holes. The stress energy tensor must involve
four contributions—(a) The standard energy-momentum
tensor due to the geodesic flow ρ0uαuβ; (b) Specific internal
energy of the system Π; (c) Stress-tensor as measured in
local rest frame of the accreting fluid tαβ and finally, (d) the

energy flux qα. The corresponding expression for stress-
energy tensor takes the following form,

Tμν ≡ ρ0ð1þ ΠÞuμuν þ tμν þ uμqν þ qμuν ð19Þ

The flux of radiation going out of this system can be
obtained by averaging the ð0; zÞ component of the above
stress-energy tensor, which essentially corresponds to hqzi.
The conservation of mass, along with the previous assump-
tions implies the rate of mass loss to be approximately
constant and is denoted by _M0. Subsequently, one can
impose conservation of angular momentum, which reads,
∇μ½Tμ

νð∂=∂ϕÞν�. Finally the energy conservation demands,
uν∇μT

μ
ν ¼ 0, which reads,

ρ0
dΠ
dt

þ∇αqα þ σαβtαβ þ
1

3
θtαα þ aμqμ ¼ 0: ð20Þ

Here, the first term depicts transfer of energy to internal
forms, while ∇αqα denotes transportation of energy out of
the accretion disc and the last term is a correction to the
energy flow vector qα. The other two terms are the source
terms: (a) σαβtαβ denotes energy generation by viscous
heating; (b) θtαα represents energy generation due to
compression while (c) aμqμ is related to the inertia of
the flowing energy q. Using the facts that the accreting gas
is in quasisteady state as well as the nearly geodesic motion
of the gas particles, one can obtain a simpler version of
energy conservation. This result when coupled with the
angular momentum conservation leads to the following
expression for flux,

F ¼ 3 _M0M
8πr3

Q

B
ffiffiffi
C

p ð21Þ

where, r is the radial distance and the quantity Q is
defined as,

Q ¼ L −
3

2

ffiffiffiffiffi
M
r

r
I
Z

r

rms

dr
L

BCI

ffiffiffiffiffi
M
r3

r
: ð22Þ

Here L is defined in terms of the marginally stable circular
orbit rms as,

L ¼ 1ffiffiffi
C

p −
Lmsffiffiffiffiffiffiffi
Mr

p ð23Þ

where Lms is the angular momentum associated with the
marginally stable circular orbit. Further one must compute
the following integral, leading to the expression for I,

I ¼ exp
�
−
3

2

Z
∞

r
dr

M
BCr2

�
: ð24Þ

It is clear from the above discussion that the flux from the
accretion disk varies with the radial distance from the black
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hole. The disk emits locally as a black body, such that the
radiated energy follows a Planck distribution with
the effective temperature at a particular radial distance
given by, Teff ¼ ðF=σÞ1=4. The luminosity from the disk is
obtained by integrating the Planck function over the disk
surface,

Lν ¼ 8π2 cos iR2
g

Z
Rout

Rin

BνðTeffðrÞÞrdr; ð25Þ

where, Lν is the luminosity from the disk at frequency ν
assumed to be emitted over the 4π solid angle, i is the
inclination of the disk to the line of sight, andBν is the Planck
function. The theoretically derived optical luminosity is
obtained by, Lopt ≡ νLν where the value of ν correspond
to the wavelength of 4681 Å [104]. As nearly edge on
systems are likely to be obscured, we assume cos i ∼ 0.5–1
for the systems under consideration. Following [104], we
adopt a typical value for cos i ∼ 0.8. We will discuss about
this particular choice of the inclination angle in somewhat
more detail in the later sections.
This completes our discussion on the accretion disc

observables in terms of the metric elements in an arbitrary
static and spherically symmetric spacetime. In particular,
we have expressed the energy flux coming from the
accretion disc in terms of the unknown functions fðrÞ,
gðrÞ and their derivatives. Thus we can use this result to
derive the corresponding flux, had these accreting black
holes be solutions of some alternative theories which can
possibly lead to stringent constraints on these theories. We
will next take up the job of computing the flux from
accreting black holes in higher dimensional, higher curva-
ture and generalized Horndeski theories for the scenarios
detailed in Sec. II.

IV. ACCRETION DISC STRUCTURE IN
ALTERNATIVE GRAVITY THEORIES

In this section we will explicitly discuss the structure as
well as observables associated with accretion around
supermassive black holes in the context of alternative
theories elaborated in Sec. II. A quick look at all the black
hole solutions would convince one that, these solutions
even though have completely different origin have super-
ficial mathematical similarity. In particular all of them can
be written as,

fðrÞ ¼ gðrÞ ¼ 1 −
2

r
þ 4q

r2
: ð26Þ

Here we have introduced a new length scale rnew ¼ rold=M,
which for notational convenience will be denoted by r only.
The parameter q is a constant and dependent on various
couplings and physical charges of these various models.
For example, in the context of Einstein-Gauss-Bonnet
gravity in higher spacetime dimensions, one have q to

be dependent on the Gauss-Bonnet parameter α besides
being negative. In the rest of the analysis we will keep the
parameter q arbitrary and shall let the continuum spectrum
emitted by accretion disc around supermassive black holes
to provide the necessary information regarding the same,
which can possibly indicate to the nature of gravity at such
high curvature regimes. Given the above metric elements
one can compute the following quantities, necessary
for flux computation, at some given circular orbit with
radius r, as

B ¼
�
1−

4q
r

�
−1=2

; C ¼ 1− 3
rþ 8q

r2

1− 4q
r

; D¼ 1−
2

r
þ 4q

r2
:

ð27Þ

Use of these results to Eq. (12), Eq. (15), and Eq. (17) will
lead to expressions for angular velocity, Lorentz factor, and
four velocity respectively as functions of q. Thus any
geometrical objects associated with accretion flow can be
determined as these three quantities in Eq. (27) are being
used. With a knowledge of B, C, D, and fðrÞ one can work
out L, I , and Q as discussed in the previous section and
thus obtain the flux F from the accretion disk. We use
Eq. (25) to derive the optical luminosity from the thin disk
in the background of these alternative gravity theories.
The other important object corresponds to the location of

marginally stable circular orbit, rms, already discussed in
Sec. III. This can be obtained by solving the following
algebraic equation,

r3 − 6r2 þ 36qr − 64q2 ¼ 0 ð28Þ

derived using the form of fðrÞ and gðrÞ in Eq. (18),
leading to,

rmsðqÞ ¼ 2þ 22=3ð2þ 8q2− 9qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64q4 − 36q3þ 5q2

q
Þ1=3

þ 2−2=3ð2þ 8q2 −9q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64q4− 36q3þ 5q2

q
Þ−1=3ð4− 12qÞ ð29Þ

For q ¼ 0, one can immediately check that rmsð0Þ ¼ 6,
demonstrating that we get back the Schwarzschild geom-
etry correctly under appropriate limits. The flux generated
by the accretion disc depends on the charge parameter q
nontrivially. At this stage we should mention that not all
values of q are allowed. For positive q, one must have
q ≤ 0.25, otherwise the event horizon would disappear and
a naked singularity would be generated. On the other hand,
for negative q any value of the charge parameter is allowed.
With this parameter space in mind the flux generated by
viscous stresses within the accreting material takes the
following form,
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FðqÞ ¼ 3 _M0M
8πr3

1 − 4q
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3
r þ 8q

r2

q
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4q

r

1 − 3
r þ 8q

r2

vuut −
Lmsffiffiffiffiffiffiffiffiffi
M2r

p

−
3

2
ffiffiffi
r

p exp

�
−
3

2

Z
∞

r

dr̄
r̄2

ð1 − 4q
r̄ Þ3=2

1 − 3
r̄ þ 8q

r̄2

� Z
r

rms

dr̄

r̄3=2

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4q2

r̄

1 − 3
r̄ þ 8q2

r̄2

vuut −
Lmsffiffiffiffiffiffiffiffiffi
M2r̄

p

1
CA

× exp

�
3

2

Z
∞

r̄

dr0

r02
ð1 − 4q

r0 Þ3=2
1 − 3

r0 þ 8q
r02

� ð1 − 4q2

r̄ Þ
3=2

1 − 3
r̄ þ 8q2

r̄2

9=
;: ð30Þ

Having obtained the radiation flux from the accretion disc
around a supermassive black hole, one can obtain the
corresponding luminosity by assuming a Planck distribu-
tion for the radiated energy. Since the luminosity depends
on the charge parameter q, one can plot the luminosity
against frequency for different choices of q. This will
clearly demonstrate how the presence of q affects the
emission from the accretion disc. As anticipated, from
Fig. 1 it is clear that q affects the optical luminosity in a
nontrivial manner. The modifications in the luminosity due
to presence of q is small at low frequencies, but the high
energy behavior is significantly different compared to the
Schwarzschild scenario. In particular the sign of q plays a

very important role in the departure of the luminosity from
Schwarzschild counterpart, since the positive q enhances
luminosity at high energies, while negative charge param-
eter lowers the luminosity at high frequencies. Thus there is
a distinctive signature of extra dimensions, which predict a
negative value for q, on the continuum spectrum from black
hole accretion disc. The same applies to black hole scalar
hairs as well. In the next section we will scrutinize this
surprising test bed for alternative theories yielding possible
signatures of extra dimensions as well as nature of black
hole hairs in detail.

V. NUMERICAL ANALYSIS: WHAT
DO OBSERVATIONS TELL US?

In this section we derive the theoretical values of optical
luminosity for a sample of eighty PG quasars studied in
[104] using the metric given by Eq. (26) as the background.
The characteristic velocities and radii of the BLR as well as
the high-quality spectroscopy of the Hβ region [109] have
been used to constrain the masses of most of these PG
quasars [104]. For the remaining quasars, the tight corre-
lation between the mass M and the stellar velocity
dispersion σ is exploited to estimate their masses
[110,111]. There are thirteen such sources for which σ is
estimated from [112,113] and the masses derived from the
relation are given in [114]. One can determine the bolo-
metric luminosity using a number of observations, e.g.,
high quality optical [81], UV [82], far-UV [83], and soft
x-ray [84]. The observational values of the optical lumi-
nosities and the accretion rates of these eighty PG quasars
are quoted in [104]. For every value of q we compare the
theoretically derived optical luminosity with the observed
value for all the eighty PG quasars and calculate the
reduced χ2 estimates, the Nash-Sutcliffe efficiency, the
index of agreement, and the modified forms of the Nash-
Sutcliffe efficiency and the index of agreement. This
analysis enables us to predict the value of q which is most
favored from observational considerations.
To understand the effect of tidal charge parameter on the

electromagnetic spectrum emanating from the accretion

FIG. 1. The above figure illustrates the variation of the
theoretically derived luminosity from the accretion disc with
frequency for two different masses of the supermassive black hole
and for seven different values of q, both positive and negative.
The case q ¼ 0 corresponds to the standard Schwarzschild
scenario, which is depicted by the thick black line in the middle.
Further, a clear distinction between positive and negative q values
is evident from the above figure, for positive values of q the
optical luminosity is larger than the Schwarzschild value, while
for negative values of q it is smaller. The accretion rate assumed is
1 M⊙yr−1 and cos i is taken to be 0.8. See text for more
discussions.
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disc in a qualitative manner, we plot the observed optical
luminosity with the black hole mass and accretion rate
along with theoretical estimates for the luminosity. The
difference between the observed and theoretical values may
indicate a preferred value for q. Keeping this in mind, in
Fig. 2, the theoretically derived optical luminosities and the
corresponding observed values are plotted as a function of
the mass of the quasars for various negative values of q.
The figure illustrates that for intermediate and lower masses
the difference between the calculated and the observed

luminosities is more for less negative values of q. On the
other hand, towards the high mass end, this difference is
more for more negative values of q. Thus, one can see from
this figure that for the entire sample of eighty quasars the
predicted theoretical luminosities is closest to the corre-
sponding observed values for some intermediate negative
value of q. Fig. 3 mimics Fig. 2 except for the fact that
positive values of q are being used. It is clear that the
difference between observed and theoretical value increases
without limit as larger and larger positive values of q are
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FIG. 2. Theoretical optical luminosities along with the observed luminosity values for high mass PG quasars have been plotted with
black hole mass M for different negative values of the tidal charge parameter q. The differences between theoretical and observational
values have also been depicted. It is quite clear that some intermediate value of negative q should minimize the difference between
theoretical estimates and observed data. See text for more discussions.
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being considered. Thus in Fig. 3 q ¼ 0 is the most favored
model as this minimizes the difference between the
observed and the theoretical luminosities when the entire
sample is taken into consideration.
Figure 4, in contrast to Fig. 2, depicts the variation of the

calculated and the observed luminosities with respect to the
mass accretion rates. In this case for intermediate and lower
accretion rates, the difference between the observed and the
calculated luminosities increases for more negative values

of q. On the other hand, for higher accretion rates, this
difference increases for less negative values of q. Thus,
again we can presume that this difference will be mini-
mized for the entire sample for some intermediate negative
value of q. Fig. 5 plots the same quantities as in Fig. 4
except for positive values of q. The figure depicts that from
intermediate to higher accretion rates the difference
between the observed and the calculated luminosities
increases with increasing q. Only for some quasars with
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FIG. 3. Theoretical optical luminosities associated with the electromagnetic radiation emanating from the accretion discs around the
most massive black holes among the eighty PG quasars have been plotted against the black hole massM for different positive values of
q. The same plot also depicts the corresponding observed values. The difference between the two values have been depicted in red lines.
It is obvious that as one increases the value of q the difference between the theoretical values and observed data also increases. See text
for more discussions.
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low accretion rates this difference is more for lesser values
of q. Thus, we can guess that q ¼ 0 is a more favored
model in Fig. 5.
The above discussion qualitatively indicates that a

negative value of the tidal charge parameter q is more
favored from observations. To achieve a more quantitative
understanding of this result we briefly discuss several
estimates of error along with their possible advantages
and drawbacks. It is clear from the above discussion that for
every value of q, for the entire sample of eighty quasars we

have an observed and a theoretically estimated value
corresponding to the optical luminosity. By comparing
these values we wish to compute several estimates of error
to find out the most favored value of q and hence the
observationally favored alternative gravity model.

(i) Reduced χ2:
Given a set of observed data fOig, with possible

errors fσig and corresponding theoretical estimates
fT ig dependent on the charge parameter q, one can
define the χ2 distribution as,
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FIG. 4. Theoretical optical luminosity for different negative values of q, along with observed luminosity values have been plotted for
the high mass black holes among the eighty PG quasars against the accretion rate _M. The difference between theoretical and
observational values have also been illustrated. In this case also it is clear that for some intermediate negative value for q the difference
between theoretical values and observed data are minimum.
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χ2ðqÞ ¼
X
i

fOi − T iðqÞg2
σ2i

ð31Þ

The errors in the above expression essentially
provide proper weightage to each observations.
Since in our case the errors σi are not known, we
simply consider each observation with equal weight-
age. This estimate, also known as the reduced χ2

estimate will be a function of the tidal charge
parameter q. The value of q for which χ2Red is

minimized corresponds to the most favorable value
of q. In Fig. 6, we have plotted χ2Red against the tidal
charge parameter q. This explicitly demonstrates that
as far as black hole continuum spectrum is consid-
ered, negative value of tidal charge parameter is
more favored. This provides an indirect evidence for
extra dimensions or scalar charges associated with
black holes.

(ii) Nash-Sutcliffe efficiency: This particular error
estimator between theoretical predictions and
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FIG. 5. Theoretical optical luminosities for different positive values of q, along with the observed luminosity values have been plotted
for high mass black holes among the eighty PG quasars against the mass accretion rate. The difference between theoretical and
observational values can be clearly seen. The increase in the difference between theoretical values and observed data as q is being
increased, is also present here.
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observational results was first proposed by Nash and
Sutcliffe [119–121]. This is again related to the sum
of the absolute squared differences between the
predicted and observed values, but normalized by
the variance of the observed values in contrast to the
χ2 estimator. This efficiency takes the following
mathematical form,

EðqÞ ¼ 1 −
P

ifOi − T iðqÞg2P
ifOi −Oavg2

ð32Þ

where Oav stands for average observed value of the
optical luminosity from the accreting disc. In con-
trast with the reduced χ2 estimate, in this case, the
maximum of the Nash-Sutcliffe efficiency depicts
the value of tidal charge parameter minimizing the
deviation of theoretical predictions from observa-
tional estimates. The variation of E with tidal charge
parameter q has been presented in Fig. 7, where the
maximization of Nash-Sutcliffe efficiency occurs for
negative q and more precisely for q ∼ −0.4. Note
that this is in very close agreement with the value of
q, which minimizes χ2Red as well. Hence once
again the scenarios with higher dimensions or non-
minimal scalar coupling to gravity and gauge fields
is more preferred.

(iii) Index of agreement: This error estimator is denoted
as d and was first proposed in [121,122] in order to
overcome the insensitivity of Nash-Sutcliffe effi-
ciency towards the differences between the observed
and predicted means and variances [120]. The above
estimator is defined as:

dðqÞ ¼ 1 −
P

ifOi − T iðqÞg2P
ifjOi −Oavj þ jT iðqÞ −Oavjg2

ð33Þ
where again Oav denotes average value of the
observed luminosity. Since the index of agreement
is a function of the tidal charge parameter q, its
maximum value indicates the preferred value of q
leading to minimum deviation between theory and
observations. Following the earlier trend, in this case
the index of agreement peaks at q ∼ −0.4 (see
Fig. 8), consistent with earlier observations and
confirming possible signature of extra dimensions
as well as scalar hairs.

(iv) Modified estimators: One can use modified forms of
the Nash-Sutcliffe efficiency as well as that of index
of agreement to overcome the oversensitivity of
them to extreme observed values [121]. This in-
sensitivity is resulted by the mean square error in the
Nash-Sutcliffe efficiency as well as in the index of
agreement. In order to increase the sensitivity of
these estimators for lower observational values a
more general form of Eq. (32) and Eq. (33) can be
put forward [121]:

E1ðqÞ ¼ 1 −
P

ijOi − T iðqÞjP
ijOi −Oavj

ð34Þ

d1ðqÞ¼ 1−
P

ijOi−T iðqÞjP
ifjOi−Oavjþ jT iðqÞ−Oavjg

ð35Þ

Both of these modified error estimators are depen-
dent on the tidal charge parameter q and again the
most favorable value of qmust extremize both them.
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From Fig. 9 it is clear that both of them go through a
maximum as the tidal charge parameter is being
varied and the location of the maximum corresponds
to q ∼ −0.3, again negative and consistent with
earlier error estimators.

This shows that our earlier qualitative argument is revali-
dated by more quantitative error estimators as well, i.e., a
negative value of q is more favoured as far as black hole
continuum spectrum is considered. To solidify the above
claim a bit more, we will discuss about another potential
source of uncertainty associated with this computation.
This has to do with the choice of the inclination angle i, or
in other words, the effect of the parameter cos i on the
theoretical luminosity. In particular, we would like to

discuss the stability of our claim in lieu of the various
viable estimates of cos i. First, the unified model of the
AGNs, discussed in [123], indicates that the sample of the
quasars considered in this work are more or less face on
systems. This is further corroborated from the works of
Polletta et al. [124] and Reyes et al. [125]. Thus, we expect
that the inclination angle should not exceed sixty degrees,
i.e., maximum range of cos i ∼ 0.5–1.0, although a smaller
range is expected. Further, cos i ∼ 1 is also ruled out
because such systems are called blazars and in such cases
the emission from the jet would be dominant compared to
the disk emission. Second, the uncertainty in cos i is also
going to affect the luminosity estimate in the Schwarzschild
spacetime as well. To avoid this situation one can try to find
out the value of cos i which may minimise the difference
between observed and theoretical luminosities when the
charge parameter q ¼ 0, i.e., in the Schwarzschild scenario
itself. In this situation as well one can use all the
machineries elaborated earlier, e.g., reduced χ2 test,
Nash-Sutcliffe efficiency and so on, leading to the follow-
ing range of values for cos i: 0.77 < cos i < 0.82, mini-
mizing the error between theoretical and observed
luminosities. Thus we have chosen a representative value,
namely cos i ¼ 0.8 in our work. Further, one can also check
that for the inclination angles (or, cos i) in the above range,
if one introduces the charge parameter q, then again the
error will be minimised for negative values of q only. Thus
if one minimizes the error between the theoretical and
observed luminosity one will end up with cos i ∼ 0.8 and
negative values for the tidal charge parameter signaling
possible existence of theories beyond general relativity.
Before concluding this section, we would like to briefly

mention about the effect of the tidal charge parameter on
accretion rate and radiative efficiency respectively. For a
particular numerical value of the tidal charge parameter q
one can determine the empirical relation between the
accretion rate _M, the calculated optical luminosity Lcalc

 0.91

 0.915

 0.92

 0.925

 0.93

 0.935

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2

M
od

ifi
ed

 in
de

x 
of

 a
gr

ee
m

en
t (

d 1
)

tidal charge parameter (q)

 0.82

 0.83

 0.84

 0.85

 0.86

 0.87

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2

M
od

ifi
ed

 N
as

h-
S

ut
cl

iff
e 

ef
fic

ie
nc

y 
(E

1)

tidal charge parameter (q)

FIG. 9. The above figures depicts variation of the modified error estimators with tidal charge parameter. The left one illustrates
modified index of agreement d1 while the right one corresponds to the modified Nash-Sutcliffe efficiency E1. Both of them follows an
identical trend of being maximum at some negative values of tidal charge parameter as fit with our earlier discussions.

 0.986

 0.987

 0.988

 0.989

 0.99

 0.991

 0.992

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2

In
de

x 
of

 a
gr

ee
m

en
t (

d)

tidal charge parameter (q)

FIG. 8. Plot of index of agreement d against the tidal charge
parameter q. The plot shows that for negative values of q, the
index of agreement is larger than for positive q values. In
particular for q ∼ −0.4 it depicts a maximum, pointing to the
fact that for this value of q, theoretical predictions are much
closer to the observational one and thus it is more preferred
compared to the Schwarzschild scenario. See text for more
discussions.

BANERJEE, CHAKRABORTY, and SENGUPTA PHYSICAL REVIEW D 96, 084035 (2017)

084035-14



and the black hole mass M. From such a empirical relation
it is possible to comment on some features associated with
the accretion rate. For example, in this particular situation
one may infer that if the value of q is being changed, the
power law behavior remains intact. Thus the tidal charge
parameter has very little effect on the accretion rate. A
similar empirical relation for the radiative efficiency η can
also be derived in terms of the black hole mass M and
theoretical luminosity Lcalc. In this case as well the
empirical relation is insensitive to the value of the tidal
charge parameter. Thus neither the accretion rate nor the
radiative efficiency will differ considerably from the sit-
uation in general relativity and hence will be consistent
with the corresponding observations.

VI. CONCLUDING REMARKS

In this work our main aim was to understand the
distinctive signature of alternative gravity theories in the
context of black hole continuum spectrum. In particular we
were mainly interested in possible effects on the electro-
magnetic emission from accretion disc around black holes
due to presence of higher dimensions, higher curvature as
well as scalar hairs in the theory. We have discussed three
such possible scenarios—(i) Higher dimensions manifested
by modification of lower dimensional gravitational field
equations, (ii) Einstein-Gauss-Bonnet gravity in higher
spacetime dimensions modifying black hole solutions in
four-dimensions, and finally (iii) scalar hairs in black
hole spacetime, inherited by Horndeski (or, generalized
Horndeski) models. Interestingly in all the three scenarios,
black hole solutions inherit tidal charge parameters which
can be negative, in contrast with the Reissner-Nordström
scenario. Thus if the sign of tidal charge parameter can be
estimated by some means it will provide an interesting
window to look for possible signatures of these alternative
gravity models.
For this purpose, we have used the continuum spectrum

emanating from accretion disc around supermassive black
holes for this purpose, where the effect of gravity theory
beyond Einstein is most prominent and the imprint of tidal
charge parameter on the continuum spectrum can be
estimated. Keeping this in mind, we have studied 80

quasars harboring supermassive black holes and have
provided a qualitative estimate of the difference between
theoretical and observational results, showing a minimiza-
tion of error for negative values of the tidal charge
parameter. We have made this statement more quantitative
by discussing several estimators of errors—(a) reduced χ2,
(b) Nash-Sutcliffe efficiency, (c) index of agreement and
modified versions of the last two respectively. Most
interestingly, all of them points toward a negative value
for the tidal charge parameter, minimizing deviation from
observations. This may indicate emergence of alternative
gravity models harboring black holes beyond
Schwarzschild. The models with extra dimensions as well
as scalar hairs are seemingly two such natural choices.
The above analysis opens up new observational avenues

to explore, such as, measurement of strong gravitational
lensing using VLBI, or understanding the gravitational
waveform emanating from collision of two black holes with
higher precision (e.g., using Advanced Laser Inter-
ferometer Gravitational-wave Observatory or Laser
Interferometer Space Antenna) and their implications on
these alternative gravity theories. It may also be worthwhile
to explore the robustness of our result in more detail, e.g.,
whether the conclusion is affected if one considers some
other sample of supermassive black holes or, how much
dependent the results are on the statistics. Further, one can
search for other alternative gravity theories, such as, gravity
with torsion, pure Lovelock theories and fðRÞ theories, in a
similar context. We are currently pursuing some of these
aspects and will possibly report elsewhere.
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