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Consider a dynamic general relativistic spacetime in which the proper infinitesimal interval along one
spatial coordinate direction decreases monotonically with time, while the corresponding intervals increase
along other spatial directions. In a system undergoing such complete anisotropic collapse/expansion, we
look for the formation of a cosmic double-jet configuration: free test particles in the ambient medium,
relative to the collapsing system, gain energy from the gravitational field and asymptotically line up parallel
and antiparallel to the direction of collapse such that their Lorentz factors approach infinity. A strong burst
of electromagnetic radiation is expected to accompany this event if some of the free test particles carry
electric charge. Previous work in this direction involved mainly Ricci-flat spacetimes; hence, we
concentrate here on inhomogeneous perfect fluid spacetimes. We briefly explore the possible connection
between these theoretical cosmic jets and astrophysical jets. We also discuss other general relativistic
scenarios for the formation of cosmic jets.
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I. INTRODUCTION

Collimated outflows are ubiquitous in astrophysics. In
particular, relativistic outflows occur in active galactic
nuclei (AGNs) as well as in galactic microquasars [1–3].
These relativistic jets consist of magnetically collimated
bipolar plasma outflows along the rotation axis of a central
collapsed configuration that is believed to be a rotating
black hole with an accretion disk. The speed of particles in
such jets can sometimes approach the speed of light.
An intriguing feature of general relativity is that double-

jet outflows (“cosmic jets”) arise theoretically in certain
dynamic anisotropically collapsing configurations. This
was first demonstrated via “gravitomagnetic jets” [4,5].
In these theoretically constructed cosmic jets, the speeds of
free test particles relative to fiducial static observers
asymptotically approach the speed of light. The underlying
mechanism for this phenomenon was investigated in
Refs. [6,7]. It was later pointed out that a similar phe-
nomenon occurs in plane wave spacetimes [8]. The purpose
of the present paper is to study further the characteristic
features of these theoretical constructs that could be related
to astrophysical jets.
Imagine a time-dependent solution of Einstein’s gravi-

tational field equations such that the proper infinitesimal
distance along one spatial coordinate direction monoton-
ically decreases with time, while at least one other spatial

direction expands with time. In this collapse/expansion
scenario, we are interested in the asymptotic (i.e., t → ∞)
behavior of the solutions of the timelike geodesic equation.
The motion of free test particles is referred to a family of
observers that are all at rest in space. Previous studies of
this problem have indicated the possible formation of a
double-jet pattern along the axis of gravitational collapse in
which free test particles move away from the central
collapsed configuration such that their speeds relative to
the static observers asymptotically approach the speed of
light [4–8]. We speculate that this invariant feature of the
cosmic jets comes about because free test particles gain
energy from the time-varying gravitational field.
Consider a stationary gravitational field with a timelike

Killing vector field ξμ. It is well known that a free test
particle with 4-velocity uμ has a constant of the motion
along its world line given by E ¼ −uμξμ. Time translation
invariance implies conservation of total energy and we can
assume that the total energy of the free test particle moving
in the stationary gravitational field is constant and propor-
tional to E. In a dynamic spacetime, where the gravitational
field is time dependent, we expect that free test particles
may exchange energy with the gravitational field in
analogy with the pointwise energy exchange that takes
place between charged particles moving in an electromag-
netic field. However, the pointwise gravitational energy
exchange cannot be properly discussed within the frame-
work of general relativity due to the purely local nature
of Einstein’s principle of equivalence. Therefore, we adopt
a different approach that involves the study of timelike
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geodesics in spacetimes that undergo complete gravita-
tional collapse along a spatial axis.
The spatially homogeneous Kasner spacetime provides a

perfect example for the generation of cosmic jets. The
introduction of spatial inhomogeneity, as in the case of
the double-Kasner spacetime, can impede the formation
of cosmic jets [7]. To gain further insight into the nature of
cosmic jets, one can investigate the known time-dependent
and spatially inhomogeneous solutions of Einstein’s gravi-
tational field equations undergoing asymmetric collapse/
expansion. This is a rather daunting task as a perusal of
Ref. [9] would reveal. We therefore concentrate here on
certain simple known solutions of general relativity (GR).
The aim of this work is to demonstrate the robustness of the
notion of cosmic jets. Previous work in this direction
regarding the collapse scenario mainly involved Ricci-flat
solutions of GR [4–8], whereas here we focus on perfect
fluid spacetimes.
The formation of a cosmic jet is a solitary occurrence. If

some of the free test particles in the cosmic jet are
electrically charged, then one expects that a strong burst
of electromagnetic radiation would result from the for-
mation of a cosmic double-jet configuration.
Is there a connection between cosmic jets and astro-

physical jets? Imagine a spinning cloud of gas and dust that
collapses into a disk around its rotation axis. To treat this
system properly within the framework of GR is exceed-
ingly difficult; therefore, we resort to simple exact solutions
of GR that represent anisotropic gravitational collapse.
Under favorable conditions, we expect the formation of jets
of free test particles parallel and antiparallel to the rotation
axis. In the ideal case that the thickness of the disk
approaches zero, the speed of the double-jet particles
would approach the speed of light; otherwise, a milder
version of the cosmic jet would occur. If the gravitational
collapse results in a rotating black hole surrounded by an
accretion disk, particles from the accretion disk can provide
a continuous flow to feed the jet via the gravitomagnetic
field [10]. Electromagnetic interactions are then necessary
to collimate and maintain the jet. The structure of the
resulting persistent bipolar plasma outflows would depend
on the magnetohydrodynamics (MHD) of the astrophysical
environment under consideration [1].
It is important to emphasize that our gravitational

considerations have to do with the origin of jets; on the
other hand, electromagnetic forces are indispensable to
sustain the jet.
Sections II, III and IV demonstrate the collapse scenario

for the formation of cosmic jets in certain inhomogeneous
perfect fluid spacetimes. In Sec. V, we study the single jet
pattern that develops along the direction of propagation of a
plane wave. Section VI demonstrates the limitations of the
wave scenario in the case of a nonplanar wave propagation.
A discussion of our results is contained in Sec. VII. We use
units such that G ¼ c ¼ 1, unless specified otherwise.

Greek indices run from 0 to 3, while latin indices run
from 1 to 3. The signature of the spacetime metric is þ2.

II. COLLAPSE SCENARIO: FIRST EXAMPLE

Let us consider a perfect fluid spacetime with coordi-
nates ðt; x; y; zÞ that all have dimensions of length. The
spacetime metric is given by

ds2¼−e−2x=T0dt2þdx2þe−ð2xþtÞ=T0dy2þe−ð2x−tÞ=T0dz2;

ð1Þ

where T0 is a constant length. This Petrov type D solution
is a rather special case of the more general inhomogeneous
perfect fluid solution due to Sintes et al. [11]. A discussion
of the general case is contained on page 372 of Ref. [9]. The
general solution, which depends upon a parameter a,
reduces to Eq. (1) for a ¼ −1. The special solution satisfies
the gravitational field equations

Rμν −
1

2
Rgμν þ Λgμν ¼ κ0Tμν; ð2Þ

where κ0 ¼ 8πG=c4, Λ is the cosmological constant and
Tμν is the energy-momentum tensor of a perfect fluid with
energy density ρ and pressure P,

Tμν ¼ ðρþ PÞUμUν þ Pgμν: ð3Þ

Here, U, ρ and P are given by

U ¼ ex=T0∂t; κ0ðρþ PÞ ¼ −
1

2T2
0

e2x=T0 ;

κ0P − Λ ¼ 12 − e2x=T0

4T2
0

: ð4Þ

The Kretschmann scalar K,

K ≔ RαβγδRαβγδ; ð5Þ

for this solution is given by

K ¼ 96 − 8e2x=T0 þ 3e4x=T0

4T2
0

: ð6Þ

It follows from these results that there is a curvature
singularity at x ¼ ∞; moreover, the density and pressure
are unphysical and donot dependupon time in this collapsing
configuration. However, this circumstance appears to have
little direct bearing on the cosmic jet that develops in this
solution. We note that

ffiffiffiffiffiffi−gp ¼ expð−3x=T0Þ vanishes as
x → ∞. There are three Killing vector fields in this space-
time, namely,
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2T0∂t þ y∂y − z∂z; ∂y; ∂z: ð7Þ

We now turn to the solution of the timelike geodesic
equation.
As is well known, the geodesic equation can be obtained

via the Euler-Lagrange equation associated with a
Lagrangian that is given, up to a proportionality constant,
by ðds=dτÞ2, where τ is the proper time along the geodesic
world line with unit tangent vector uμ ¼ dxμ=dτ. From
the projection of uμ upon the Killing vector fields ∂y and
∂z, we find

dy
dτ

¼ Cyeð2xþtÞ=T0 ;
dz
dτ

¼ Czeð2x−tÞ=T0 ; ð8Þ

where Cy and Cz are constants of the motion. Moreover,
uμuμ ¼ −1 implies that

e−2x=T0

�
dt
dτ

�
2

− ð1þ _x2Þ ¼ C2
yeð2xþtÞ=T0 þ C2

zeð2x−tÞ=T0 ;

ð9Þ

where _x ≔ dx=dτ. Using Eq. (8), the remaining equations
for the motion of a free test particle can be expressed as

d
dτ

�
e−2x=T0

dt
dτ

�
¼ 1

2T0

½C2
yeð2xþtÞ=T0 − C2

zeð2x−tÞ=T0 � ð10Þ

and

ẍ ¼ 1

T0

e−2x=T0

�
dt
dτ

�
2

−
1

T0

½C2
yeð2xþtÞ=T0 þ C2

zeð2x−tÞ=T0 �:

ð11Þ

To solve these equations, we note that Eqs. (9) and (11)
can be combined to get

T0ẍ ¼ 1þ _x2: ð12Þ

Integrating this equation once, we find

_x ¼ tan

�
τ þ B
T0

�
; ð13Þ

which, upon further integration, implies that

e−x=T0 ¼ A cos

�
τ þ B
T0

�
; ð14Þ

where A ≠ 0 and B are constants of integration. Suppose
that at the initial proper time τ ¼ 0, ðt; x; y; zÞ ¼
ðti; xi; yi; ziÞ. To avoid the curvature singularity (x ¼ ∞)
at this initial event, we must assume that cosðB=T0Þ ≠ 0; to
simplify matters, we henceforth choose B such that

0 ≤ B=T0 < π=2. Indeed, with the initial conditions that
at τ ¼ 0, x ¼ xi and _x ¼ _xi are finite, the solution of
Eq. (12) is given by

e−ðx−xiÞ=T0 ¼ cosðτ=T0Þ − _xi sinðτ=T0Þ: ð15Þ

Next, we define

e−2x=T0
dt
dτ

≔ F; ð16Þ

and write Eq. (10) as

2F
dF
dt

¼ 1

T0

½C2
yet=T0 − C2

ze−t=T0 �: ð17Þ

Integrating this equation we find

F2 ¼ C2
yet=T0 þ C2

ze−t=T0 þ C; ð18Þ

where C is an integration constant. We assume that the
temporal coordinate increases monotonically with proper
time along the timelike geodesic; hence, it follows from
Eq. (16) that we must choose FðtÞ to be positive, namely,

F ¼ ½C2
yet=T0 þ C2

ze−t=T0 þ C�1=2; ð19Þ

where positive square roots are considered throughout.
From Eqs. (14), (16) and (19), we find

A2

T0

Z
t

ti

dt0

Fðt0Þ ¼ tan

�
τ þ B
T0

�
− tan

�
B
T0

�
: ð20Þ

As t → ∞, the left-hand side of this relation is finite, which
means that τ → τf such that τf þ B < πT0=2. It follows
that the domain of variation of x is finite throughout the
geodesic motion and free test particles stay away from the
curvature singularity at x ¼ ∞.
Let us now analyze the motion of free test particles in this

spacetime with respect to comoving observers that are at
rest in space with 4-velocity vector U ¼ e0̂. The natural
orthonormal tetrad frame of such observers is given by

e0̂ ¼ ex=T0∂t; e1̂ ¼ ∂x; e2̂ ¼ eð2xþtÞ=ð2T0Þ∂y;

e3̂ ¼ eð2x−tÞ=ð2T0Þ∂z: ð21Þ

The 4-velocity vector of the free test particles relative to the
static observers can be expressed as

uα̂ ¼ uμeμα̂ ≔ Γð−1; Vx; Vy; VzÞ; ð22Þ

where the geodesic particle’s Lorentz factor is given by

Γ ¼ ex=T0FðtÞ ð23Þ
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and

Vx ¼
1

Γ
tan

�
τ þ B
T0

�
; Vy ¼ Cy

et=ð2T0Þ

FðtÞ ;

Vz ¼ Cz
e−t=ð2T0Þ

FðtÞ : ð24Þ

As t → ∞, the range of x is finite and FðtÞ∼
jCyj expð12 t=T0Þ; hence Γ → ∞. Moreover, in this limit,
ðVx; Vy; VzÞ → ð0;�1; 0Þ, resulting in a double-jet con-
figuration in a region free of curvature singularities along
the y direction, which is the collapse axis in this case.

III. COLLAPSE SCENARIO:
SECOND EXAMPLE

Next, let us consider the spacetime metric given by

ds2 ¼ −e−2x=T0dt2 þ dx2 þ e−2x=T0 ~t1þbdy2

þ e−2x=T0 ~t1−bdz2; ð25Þ

where ~t ¼ t=T0, T0 is a constant length as before and b is a
dimensionless constant. This solution is of Petrov type D
and is a particular case of the general inhomogeneous
perfect fluid solution due to Mars and Wolf [12]; see
Appendix A. As before, it follows from the gravitational
field equations that U, ρ and P are given by

U ¼ ex=T0∂t; κ0ðρþ PÞ ¼ −
b2 − 1

2t2
e2x=T0 ;

κ0P − Λ ¼ 3

T2
0

−
b2 − 1

4t2
e2x=T0 : ð26Þ

The Kretschmann scalar for this solution is

K ¼ 96t4 − 8ðb2 − 1Þt2T2
0e

2x=T0 þ 3T4
0ðb2 − 1Þ2e4x=T0

4t4T4
0

:

ð27Þ

It follows from these results that there are curvature singular-
ities at t ¼ 0 andx ¼ ∞,where

ffiffiffiffiffiffi−gp ¼ ðt=T0Þ expð−3x=T0Þ
vanishes as well. The perfect fluid source becomes unphysical
for b2 > 1. As before, there are three Killing vector fields

2t∂tþ2T0∂xþð1−bÞy∂yþð1þbÞz∂z; ∂y; ∂z: ð28Þ

The physical characteristics of this solution depend upon
b2. Thus with no loss in generality we assume b > 0.
Furthermore, to ensure that we have an anisotropically
collapsing configuration, we must assume

b > 1; ð29Þ

in the rest of this section. This means that, just as in Sec. II,
the perfect fluid source here is essentially unphysical.
The similarity between this spacetime and the one in the

previous section implies that the equations of motion of free
test particles are closely related. In fact, there are constants
of the motion C2 and C3 due to the existence of the Killing
vector fields ∂y and ∂z such that

dy
dτ

¼ C2e2x=T0 ~t−ð1þbÞ;
dz
dτ

¼ C3e2x=T0 ~t−ð1−bÞ: ð30Þ

Furthermore, it follows from uμuμ ¼ −1 that

e−2x=T0

�
dt
dτ

�
2

− ð1þ _x2Þ ¼ e2x=T0 ½C2
2
~t−ð1þbÞ þ C2

3
~t−ð1−bÞ�:

ð31Þ
Moreover, we have the additional equations of motion

d
dτ

�
e−2x=T0

dt
dτ

�

¼ −
T0e2x=T0

2t2
½C2

2ð1þ bÞ~t−b þ C2
3ð1 − bÞ~tb� ð32Þ

and

ẍ ¼ 1

T0

e−2x=T0

�
dt
dτ

�
2

−
1

T0

e2x=T0 ½C2
2
~t−ð1þbÞ þ C2

3
~t−ð1−bÞ�:

ð33Þ

To solve these differential equations, we assume that at
some initial proper time τ ¼ 0, ðt; x; y; zÞ ¼ ðti; xi; yi; ziÞ,
where ti > 0 in order to avoid the t ¼ 0 curvature singu-
larity at this initial event. It follows from Eqs. (31) and (33)
that the x coordinate of a free particle satisfies exactly the
same equation as Eq. (12). To avoid the x ¼ ∞ curvature
singularity at the initial proper time τ ¼ 0, we have as
before

_x ¼ tan

�
τ þ B0

T0

�
; e−x=T0 ¼ A0 cos

�
τ þ B0

T0

�
; ð34Þ

where A0 ≠ 0 and B0 are integration constants and
0 ≤ B0=T0 < π=2. Let us now define the function Φ,

Φ ≔ e−2x=T0
dt
dτ

; ð35Þ

then, as before, Eq. (32) can be integrated and the solution
for dt=dτ > 0 is

ΦðtÞ ¼ ½C2
2
~t−ð1þbÞ þ C2

3
~t−ð1−bÞ þ C0�1=2: ð36Þ

Using Eqs. (34)–(36), it is possible to express t as a
function of τ, namely,
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A2
0

T0

Z
t

ti

dt0

Φðt0Þ ¼ tan

�
τ þ B0

T0

�
− tan

�
B0

T0

�
; ð37Þ

where ti > 0 by assumption. As t → ∞, the left-hand side
of this equation diverges for 1 < b ≤ 3, which means that
τf þ B0 ¼ πT0=2 and xf ¼ ∞, while for b > 3, the left-
hand side remains finite, τf þ B0 < πT0=2, and the range
of x is finite.
To describe the motion of free test particles relative to

comoving observers, we note that the natural orthonormal
frame of static observers is given by

e0̂ ¼ ex=T0∂t; e1̂ ¼ ∂x; e2̂ ¼ ex=T0 ~t−ð1þbÞ=2∂y;

e3̂ ¼ ex=T0 ~t−ð1−bÞ=2∂z: ð38Þ

The projection of the 4-velocity vector of the free test
particlesuμ onto the tetrad frame of the static observers eμα̂ is
given, as before, by uα̂¼ uμeμα̂≔Γð−1;Vx;Vy;VzÞ. Hence,
the relative Lorentz factor is given by Γ ¼ exp ðx=T0ÞΦðtÞ,
where as t → ∞, Φ has the asymptotic behavior given by
Φ ∼ jC3j~t−ð1−bÞ=2. It follows from b > 1 that as t → ∞,
Φ → ∞. On the other hand, expðx=T0Þ diverges asymp-
totically for 1 < b ≤ 3, but is finite for b > 3. In either case,
Γ diverges asymptotically. Specifically, one can show that in
the spacetime under consideration,

Vx ¼
A0

ΦðtÞ sin
�
τ þ B0

T0

�
; Vy ¼

C2

ΦðtÞ ~t
−ð1þbÞ=2;

Vz ¼
C3

ΦðtÞ ~t
−ð1−bÞ=2: ð39Þ

As t → ∞,

ðVx; Vy; VzÞ → ð0; 0;�1Þ; ð40Þ

which is again a double-jet configuration in the direction of
collapse. The cosmic jet occurs in a region free of spacetime
singularities for b > 3, while for 1 < b ≤ 3, the free test
particles end up at the curvature singularity x ¼ ∞.

IV. COLLAPSE SCENARIO: THIRD EXAMPLE

Finally, we consider a solution due to Mars and Wolf
[12] that can be expressed as

ds2 ¼ −~x2Qdt2 þ ~t2p1dx2 þ ~x2Q~t2p2dy2 þ ~x2Q~t2p3dz2;

ð41Þ

where

~t ≔
t
T0

; ~x ≔
x
L0

: ð42Þ

Here, T0 and L0 are constant lengths and we assume that in
general t > 0 and x > 0. Moreover,

p1 ¼
α

αþ 2
; p2 ¼

1 − β

αþ 2
; p3 ¼

1þ β

αþ 2
;

Q ¼ 2αþ 1 − β2

α2
; ð43Þ

where α and β are constant parameters such that α ≠ 0, −2.
For Q ¼ 0, we recover the Kasner solution, while for
Q ≠ 0, we have a solution that is conformally related to a
Kasner-like solution; see Appendix A.
The source of the Mars-Wolf solution is a perfect

fluid that is in motion along the x direction. That is,
let us consider observers that are at rest in space. The
natural tetrad frame eμα̂ of these static observers is
given by

e0̂ ¼ ~x−Q∂t; e1̂ ¼ ~t−p1∂x;

e2̂ ¼ ~x−Q~t−p2∂y; e3̂ ¼ ~x−Q~t−p3∂z: ð44Þ

With respect to this tetrad frame, the 4-velocity of the
perfect fluid can be written as

U ¼ γ0ðe0̂ þ ν0e1̂Þ; γ0 ¼ ð1 − ν20Þ−1=2: ð45Þ

We can now determine the energy density and the pressure
of the fluid from the gravitational field equations. The
results are

κ0ðρþ PÞ ¼ 2Qp2
1

t2
~x−2Qð1 − ν20Þ; ð46Þ

κ0P − Λ ¼ Qp2
1

t2
~x−2Q −

Qð2 − 3QÞ
x2

~t−2p1 : ð47Þ

Moreover, the fluid velocity is given by

ν0 ¼ −
t

p1x
~xQ~t−p1 ; ð48Þ

which should satisfy the requirement that

−1 < ν0 < 1: ð49Þ

Let us now assume that the cosmological constant
vanishes. With Λ ¼ 0, ρ and P are given by

κ0ρ ¼ Qp2
1

t2
~x−2Q −

3Q2

x2
~t−2p1 ; ð50Þ

κ0P ¼ Qp2
1

t2
~x−2Q −

Qð2 − 3QÞ
x2

~t−2p1 ; ð51Þ

so that

κ0ðρ − PÞ ¼ 2Qð1 − 3QÞ
x2

~t−2p1 : ð52Þ
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It is clear that if Q < 0, then ρ < 0 and ρ < P. On the
other hand, if Q > 0 and ρ > 0, then 3Qν20 < 1; moreover,
P > ρ > 0 for Q > 1=3, while for Q < 1=3, P < ρ.
For Q ¼ 1=3, we have P ¼ ρ. Therefore, we must have
0 < Q ≤ 1=3 to ensure that reasonable energy conditions
can be satisfied for the perfect fluid source under consid-
eration here; furthermore, we must maintain condition (49)
as well.
The Kretschmann scalar for the Mars-Wolf solution

simplifies and is given by

K ¼ 4
3Q2p4

1 − 4p1p2p3

t4
~x−4Q þ 8

p2
1Q

2ðQ − 2Þ
t2x2

~t−2p1 ~x−2Q

þ 12
Q2ð1 − 2Qþ 2Q2Þ

x4
~t−4p1 : ð53Þ

It follows that in general t ¼ 0 and x ¼ 0 are curvature
singularities of the Mars-Wolf spacetime. Let us note thatffiffiffiffiffiffi−gp ¼ ~t~x3Q. Moreover, there are two spacelike Killing
vector fields in this spacetime,

∂y; ∂z; ð54Þ

and a homothetic vector field given by

1 −Q
1 − p1

t∂t þ x∂x þ
1 −Q
1 − p1

ð1 − p2Þy∂y

þ 1 −Q
1 − p1

ð1 − p3Þz∂z; ð55Þ

which reduces to x∂x for Q ¼ 1.

A. Timelike geodesics

The motion of free test particles in the Mars-Wolf
spacetime involves two constants of the motion Cy and
Cz that can be obtained from the projection of uμ,
the 4-velocity vector of a geodesic particle, upon the
Killing vectors ∂y and ∂z, respectively. It is then useful
to define

F ðtÞ ¼ C2y~t−2p2 þ C2z~t−2p3 ; ð56Þ

since uμuμ ¼ −1 can be written as

~x2Q
�
dt
dτ

�
2

¼ 1þ ~t2p1 _x2 þ ~x−2QF ðtÞ: ð57Þ

Furthermore, let us introduce W,

W ≔ ~t2p1 _x: ð58Þ

Then, the equations of motion of free test particles are
given by

dt
dτ

¼ ~x−QΓ;

dx
dτ

¼ ~t−2p1W;

dW
dτ

¼ −
Q
x
ð1þ ~t−2p1W2Þ;

dy
dτ

¼ Cy ~x−2Q~t−2p2 ;

dz
dτ

¼ Cz ~x−2Q~t−2p3 ; ð59Þ

where

Γ ¼ ½1þ ~t−2p1W2 þ ~x−2QF ðtÞ�1=2: ð60Þ

It has not been possible to find analytic solutions of
these equations. We must therefore numerically integrate
these equations with the initial conditions that at τ ¼ 0, we
have the following initial values: tð0Þ; xð0Þ;Wð0Þ; yð0Þ
and zð0Þ. We integrate forward in proper time τ towards
t ¼ ∞ and backward towards the t ¼ 0 singularity.
As before, we wish to express the motion of free test
particles relative to observers that are at rest in the Mars-
Wolf spacetime. Using the tetrad frame (44) and
uα̂ ¼ uμeμα̂ ≔ Γð−1; Vx; Vy; VzÞ, we find

Vx ¼ ~t−p1
W
Γ
; ð61Þ

Vy ¼
Cy
Γ

~x−Q~t−p2 ; ð62Þ

Vz ¼
Cz
Γ
~x−Q~t−p3 : ð63Þ

It is interesting to note here that for some metric
parameters, such as ðα; βÞ ¼ ð4;�3Þ, Q ¼ 0; then, W is
constant, W ¼ Cx, and our treatment reduces to the
determination of cosmic jets in Kasner spacetime [6]. In
fact, one can compare and contrast our Q ≠ 0 treatment
with the Kasner case to determine the impact of inhomo-
geneity on the formation of cosmic jets.
For Q ≠ 0, the behavior of the timelike geodesics along

the x direction crucially depends upon whether Q > 0 or
Q < 0. In fact, inspection of the geodesic equations of
motion (59) reveals that upon forward integration in the
Q > 0 case, an initial positive value of coordinate x
monotonically decreases to the curvature singularity at
x ¼ 0, while in the Q < 0 case, x would monotonically
increase away from the singularity. Furthermore, Q < 0
automatically implies that ρ < 0 and the perfect fluid
source is unphysical, while in the Q > 0 case, we can
only ensure that the world lines of the free particles initially
pass through a perfect fluid medium with reasonable
physical properties.
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Indeed, unlike the simpler solutions treated in Secs. II and
III, we have some control here over the nature of the source.
That is, for Q > 0, we can ensure that the initial conditions
are such that at the beginning the timelike geodesics go
through the perfect fluidwhere ρ ≥ P > 0 and−1 < ν0 < 1.
As an example, let ðα; βÞ ¼ ð3;−2Þ, so that Q ¼ 1=3 and
p1 ¼ p2 ¼ 3=5,p3 ¼ −1=5; hence, it follows fromEq. (52)
that ρ ¼ P in this case. To ensure that ρ > 0 and hence ν20 <
1 initially at τ ¼ 0, we let tð0Þ ¼ 1, xð0Þ ¼ 103,Wð0Þ ¼ 0,
yð0Þ ¼ 0 and zð0Þ ¼ 0. Moreover, in the geodesic Eq. (59),
we assume Cy ¼ Cz ¼ 1 and T0 ¼ L0 ¼ 1 unit of length, so
that ~t ¼ t and ~x ¼ x. We recall that there are curvature

singularities at x ¼ 0 and t ¼ 0. In this case, collapse takes
place along the z axis but forward numerical integration runs
into thex ¼ 0 curvature singularity at τ ≈ 3.428 × 106, while
the formation of a cosmic jet along the z axis is taking place;
see Figs. 1 and 2. We note that in this case, the nature of the
perfect fluid along the geodesicworld line is reasonable up to
about τ ¼ 2 × 105, but after that ρ < 0 and perfect fluid
motion is superluminal. The presence of spatial inhomoge-
neity in theMars-Wolf solution results in the existence of the
curvature singularity at x ¼ 0, which for Q > 0 generally
intervenes in the formation of cosmic jets.
Let us now consider backward integration of geodesic

equations of motion from τ ¼ 0 with the same initial
conditions as before towards the other curvature singularity
at t ¼ 0. Along the geodesic world line, the perfect fluid
source is completely reasonable, a cosmic jet develops in the
ðx; yÞ plane that is mostly in the y direction with a deviation
angle of 0.03 radians towards the x direction and with
Γ → ∞ as we reach the t ¼ 0 singularity at τ ≈ −9.612.
For the sake of completeness, we consider next an

example where Q < 0. That is, let ðα; βÞ ¼ ð−1;−1Þ, so
that p1 ¼ −1, p2 ¼ 2, p3 ¼ 0 and Q ¼ −2. It follows that
ρ < 0 and the fluid source is unphysical. We assume
tð0Þ ¼ 1=2, xð0Þ ¼ 1=2, Wð0Þ ¼ 0, yð0Þ ¼ 0, zð0Þ ¼ 0
and Cy ¼ Cz ¼ 1. In this case, collapse takes place along
the x direction and a cosmic jet develops along the axis of
collapse as shown in Fig. 3.
In the particular example under consideration with

Q ¼ −2, the range of the spacetime coordinates ðt; x; y; zÞ
is unrestricted. Moreover, Eq. (59) remains invariant under

FIG. 1. Graph of x versus proper time τ for the parameter values
ðα; βÞ ¼ ð3;−2Þ and Q ¼ 1=3. At τ ¼ 0, we have xð0Þ ¼ 103,
tð0Þ ¼ 1, Wð0Þ ¼ 0 and yð0Þ ¼ zð0Þ ¼ 0. Furthermore, we
assume Cy ¼ Cz ¼ 1.

FIG. 2. The figure depicts, from left to right, graphs of Vx, Vy and Vz versus τ for the parameter values ðα; βÞ ¼ ð3;−2Þ andQ ¼ 1=3.
We assume that at τ ¼ 0, tð0Þ ¼ 1, xð0Þ ¼ 103, Wð0Þ ¼ 0 and yð0Þ ¼ zð0Þ ¼ 0. As before, Cy ¼ Cz ¼ 1.

FIG. 3. The figure depicts, from left to right, graphs of Vx, Vy and Vz versus proper time τ for the parameter values ðα; βÞ ¼ ð−1;−1Þ
with xð0Þ ¼ 0.5 at τ ¼ 0. Moreover, tð0Þ ¼ 0.5, Wð0Þ ¼ 0, yð0Þ ¼ zð0Þ ¼ 0 and Cy ¼ Cz ¼ 1.
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the transformations x ↦ −x and W ↦ −W. The result is
that Vx ↦ −Vx, but Vy andVz remain the same. This means
that if we start with xð0Þ ¼ −1=2, forward integration results
in the cosmic jet antiparallel to the x direction. For an initial
random distribution of free test particles, a double-jet
configuration develops asymptotically along the x direction
with Γ → ∞ and

ðVx; Vy; VzÞ → ð�1; 0; 0Þ: ð64Þ

It is interesting to consider backward integration in
proper time towards t ¼ 0 with our original initial con-
ditions in this case. The result is that as we encounter the
t ¼ 0 curvature singularity at τ ≈ −0.467, a cosmic jet
develops with Γ → ∞ and ðVx; Vy; VzÞ → ð0; 1; 0Þ, since
in this case y is the direction of collapse when t → 0.
The cosmic jets that come about in the collapse scenario

are all in principle double-jet configurations. It turns out that
single cosmic jets also form in plane wave spacetimes [8].
The wave scenario is further explored in Secs. V and VI.

V. WAVE SCENARIO: PLANE
GRAVITATIONAL WAVE

The study of timelike geodesics of exact gravitational
plane wave spacetimes has revealed that a single cosmic jet
can asymptotically develop in the direction of motion of the
plane wave [8]. A more general treatment of this subject
within the framework of linearized general relativity is
contained in the recent work of Tucker and Walton [13].
To illustrate the wave scenario, let us consider a

spacetime with metric [14]

ds2 ¼ −2L2dudvþ u2s2dx2 þ u2s3dy2; ð65Þ

where L is a constant length, u and v are related to the
retarded and advanced null coordinates, respectively, and

s2 þ s3 ¼ s22 þ s23: ð66Þ

Let us note that s2 and s3 cannot both be negative; either
they are both positive, or one is positive and the other is
negative. If either s2 or s3 is equal to zero or unity, this
spacetime is flat. Otherwise, it can be shown that this metric
belongs to a class of Petrov type N gravitational fields.
These spacetimes represent linearly polarized plane gravi-
tational waves [8,15,16]. A general discussion of pp waves
is contained in Sec. 24.5 of Ref. [9]. Writing u and v in
terms of standard coordinates t and z, we have

u ≔
1ffiffiffi
2

p
L
ðt − zÞ; v ≔

1ffiffiffi
2

p
L
ðtþ zÞ: ð67Þ

In this section we measure all lengths in units of L; hence,
we can in effect set L ¼ 1 for the rest of our consider-
ations here.

As before, we can introduce observers that are at rest in
this spacetime with a natural tetrad frame

e0̂ ¼ ∂t; e1̂¼ u−s2∂x; e2̂¼ u−s3∂y; e3̂¼ ∂z: ð68Þ

It turns out that these static observers are free and their
tetrad frames are parallel propagated along their geodesic
world lines. The spacetime curvature as measured by the
static fiducial observers is given by

KðuÞ ≔ 1

2
ðs2 − s3Þðs2 þ s3 − 1Þ 1

u2
; ð69Þ

see Appendix B. Thus there is a curvature singularity at the
wave front u ¼ 0. We therefore limit our considerations to
u > 0 for arbitrary ðs2; s3Þ subject to Eq. (66). This
spacetime admits five Killing vector fields, namely,

∂v ¼ ð∂t þ ∂zÞ=
ffiffiffi
2

p
; ∂x; ∂y ð70Þ

as well as

x∂v þ
u1−2s2

1 − 2s2
∂x; y∂v þ

u1−2s3

1 − 2s3
∂y ð71Þ

for s2 ≠ 1=2 or s3 ≠ 1=2. Let us note that in case s2 ¼ 1=2
and s3 ¼ ð1� ffiffiffi

2
p Þ=2, for instance, then instead of the

Killing vector in Eq. (71) we have

x∂v þ ln u∂x; ð72Þ

etc. In addition, the plane wave under consideration in this
paper admits a homothetic vector field given by

t∂t þ ð1 − s2Þx∂x þ ð1 − s3Þy∂y þ z∂z: ð73Þ

Let dxμ=dτ ¼ ð_t; _x; _y; _zÞ denote the 4-velocity vector of
free test particles in this spacetime. It follows from the
existence of the null Killing vector ∂v that

_t − _z ¼ k0; ð74Þ

where k0 > 0 is a constant of the motion. Here, we have
assumed that for a constant z, time increases with increas-
ing proper time so that _t > 0. Moreover, we have

du
dτ

¼ k0ffiffiffi
2

p : ð75Þ

Next, the spacelike Killing vectors ∂x and ∂y imply that

_x ¼ kxu−2s2 ; _y ¼ kyu−2s3 ; ð76Þ

where kx and ky are constants of the motion as well. These
results together with the fact that the 4-velocity vector is a
timelike vector of unit length imply that
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_t ¼ 1

2

�
k0 þ

1

k0

�
þ 1

2k0
ðk2xu−2s2 þ k2yu−2s3Þ; ð77Þ

and

_z ¼ 1

2

�
−k0 þ

1

k0

�
þ 1

2k0
ðk2xu−2s2 þ k2yu−2s3Þ: ð78Þ

Let us observe that with k0 ¼ 1 and kx ¼ ky ¼ 0, we
recover the 4-velocity of the static fiducial observers.
Projecting the 4-velocity of the free test particles onto the

tetrad frame of the fiducial observers (68), we find that
relative to the static observers, the 4-velocity of the free
particles uα̂ is given by Γð1; Vx; Vy; VzÞ, where

Γ¼ _t; Vx ¼ kx
u−s2

Γ
; Vy ¼ ky

u−s3

Γ
; Vz¼

_z
Γ
: ð79Þ

Inspection of these results indicate that two different
situations can arise. If s2 > 0 and s3 > 0, then as
t → ∞, τ → ∞ and u → ∞, so that

ðVx; Vy; VzÞ → ð0; 0; V0Þ; V0 ¼
1 − k20
1þ k20

;

Γ ¼ 1

2

�
k0 þ

1

k0

�
; ð80Þ

which is a mild form of the cosmic jet. On the other hand, if
s2 or s3 is negative, then

ðVx; Vy; VzÞ → ð0; 0; 1Þ; Γ → ∞: ð81Þ

In either case, it is remarkable that the free test particles all
line up parallel to the direction of motion of the plane wave.
If s2 > 0 and s3 > 0, the proper distance along the x and y
directions both expand as time increases for a constant z,
while if either s2 or s3 is negative, then one direction
expands but the other contracts. It is interesting that the
latter case leads to the formation of a cosmic jet for which
Γ → ∞. However, the direction of the cosmic jet is not
parallel to the direction of collapse; rather, it is in the
direction of wave propagation.

VI. NONPLANAR WAVE SCENARIO

Let us next consider a Ricci-flat solution of GR due to
Harrison [17] that we write as

ds2 ¼ −x̌4=3dt2 þ λ2ǔ6=5dx2 þ x̌−2=3ǔ−2=5dy2 þ x̌4=3dz2;

ð82Þ

where

x̌ ≔
x
T0

; ǔ ≔
t − z
T0

: ð83Þ

Here, T0 is a constant length and λ > 0 is a dimensionless
parameter. The dimensionless quantity ǔ is simply related to
the retarded null coordinateu. Equation (82) can be obtained
via straightforward coordinate transformations from the
second degenerate solution obtained by Harrison and
classified as the “III-2; D2” metric [17]. This nonplanar
gravitational wave spacetime is of type D in the Petrov
classification [18]. The Kretschmann scalar for the Harrison
solution can be expressed as

K ¼ 64

27T4
0λ

4
x̌−4ǔ−12=5: ð84Þ

It follows that hypersurfaces x ¼ 0 and the wave front
t − z ¼ 0 are curvature singularities of the Harrison space-
time. We note that

ffiffiffiffiffiffi−gp ¼ λjx̌jǔ2=5, which vanishes at these
singularities. For the Harrison spacetime,

∂t þ ∂z; ∂y ð85Þ

are null and spacelike Killing vector fields, respectively. In
addition, there is a homothetic vector field given by

5t∂t þ 6x∂x þ 12y∂y þ 5z∂z: ð86Þ

The Harrison solution represents the propagation of non-
planar gravitational waves in the z direction at the speed
of light.
For the motion of free test particles in Harrison’s

spacetime, we find two constants of the motion from the
projection of the 4-velocity of the free test particle on the
null and spacelike Killing vector fields. That is, we have

_t − _z ¼ η0x̌−4=3 ð87Þ

and

_y ¼ η2x̌2=3ǔ2=5; ð88Þ

where η0 and η2 are dimensionless constants. We assume
η0 > 0, so that for constant z, coordinate time increases
monotonically with proper time along the timelike geodesic
world line. It follows that

dǔ
dτ

¼ η0
T0

x̌−4=3: ð89Þ

Furthermore, uμuμ ¼ −1, implies that

η0ð_tþ _zÞ ¼ 1þ λ2 _x2ǔ6=5 þ η22x̌
2=3ǔ2=5: ð90Þ

The remaining geodesic equation for the motion of free test
particles can be written as
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λ2
d
dτ

ðǔ6=5 _xÞ ¼ −
2

3x

�
1þ λ2 _x2ǔ6=5 þ 3

2
η22x̌

2=3ǔ2=5
�
: ð91Þ

It proves useful to define new quantities ζ and W,

ζ ≔ ǔ1=5; W ≔ ǔ1=5x̌1=3: ð92Þ

Then, using Eq. (89), Eq. (91) can be expressed as the
autonomous second-order differential equation

d2W
dζ2

þ hW3 þ h0W5 ¼ 0; ð93Þ

where h and h0 are constants given by

h ≔
50

9

1

λ2η20
; h0 ≔

25

3

η22
λ2η20

: ð94Þ

Integrating Eq. (93) once, we find

�
dW
dζ

�
2

þ h
2
W4 þ h0

3
W6 ¼ E; ð95Þ

where E > 0 is an integration constant.
This result can be interpreted in terms of a one-

dimensional motion of a particle with positive energy E
in a simple symmetric effective potential well; in fact, the
motion is periodic with turning points�W0, whereW0 > 0
and �W0 are the only real roots of

E −
h
2
W4 −

h0

3
W6 ¼ 0: ð96Þ

In the special case that η2 ¼ 0 and hence h0 ¼ 0, WðζÞ can
be expressed in terms of the Jacobi elliptic functions.
It is important to recall here that the Kretschmann scalar

K, apart from constant coefficients, can be expressed as
W−12. Thus, asW periodicallymoves from−W0 toW0, only
the half periods with W > 0 or W < 0 are free of singular-
ities and such spacetime domains then occur between
curvature singularities at W ¼ 0, where dW=dζ ¼ � ffiffiffiffi

E
p

.
To have a more explicit form of WðζÞ, let us note that

according to Eq. (92) if ζ ¼ 0, W ¼ 0 for finite x.
Henceforth, we assume that Wð0Þ ¼ 0. We can then
express WðζÞ in the neighborhood of ζ ¼ 0 as

WðζÞ ¼ �
ffiffiffiffi
E

p
ζ

�
1 −

h
20

Eζ4 −
h0

42
E2ζ6 þOðζ8Þ

�
: ð97Þ

Let 2w be the period of the functionWðζÞ, which therefore
vanishes at ζ0 ¼ 0 and ζn¼nw, where n¼�1;�2;�3;���.
Let us turn now to the motion of free test particles

relative to the fiducial observers at rest in this spacetime.
The natural tetrad frame field of the static observers is
given by

e0̂ ¼ x̌−2=3∂t; e1̂ ¼
1

λ
ǔ−3=5∂x;

e2̂ ¼ x̌1=3ǔ1=5∂y; e3̂ ¼ x̌−2=3∂z: ð98Þ

Projecting uμ¼ð_t; _x; _y; _zÞ on eμα̂ results in uα̂ ¼
Γð1;Vx;Vy;VzÞ, where

Γ ¼ x̌2=3_t; Vx ¼
λ

Γ
ǔ3=5 _x;

Vy ¼
_y

WΓ
; Vz ¼

_z
_t
: ð99Þ

In terms of ζ and W, x̌2=3 ¼ W2=ζ2 and ǔ3=5 ¼ ζ3; more-
over, we can write the components of uμ ¼ ð_t; _x; _y; _zÞ as

_t ¼ 1

2η0

�
1þ η20

ζ4

W4
þ η22W

2 þ 2

h
W2

�
; ð100Þ

_x ¼ 3η0
5ζ3

W; ð101Þ

_y ¼ η2W2; ð102Þ

_z ¼ 1

2η0

�
1 − η20

ζ4

W4
þ η22W

2 þ 2

h
W2

�
; ð103Þ

where

W ¼ 1

W

�
1

W
dW
dζ

−
1

ζ

�
: ð104Þ

Finally, we note that the Lorentz factor is given by

Γ ¼ W2

2η0ζ
2

�
1þ η20

ζ4

W4
þ η22W

2 þ 2

h
W2

�
: ð105Þ

When free test particles approach the spacetime singu-
larity at WðζÞ ¼ 0, ζ is either ζ0 ¼ 0 or ζn ¼ nw. The
Lorentz factor Γ is finite at ζ0 ¼ 0, but diverges at ζn ¼ nw.
Indeed, for ζ → ζn, dW=dζ → � ffiffiffiffi

E
p

and a cosmic jet
develops with

ðVx; Vy; VzÞ → ðσ; 0; σ0Þ; ð106Þ

where σ and σ0, σ2 þ σ02 ¼ 1, can be simply computed
using Eq. (99). The result is

σ ¼ � η0ζ
2
n

ffiffiffiffiffiffiffiffiffi
2Eh

p

Eþ 1
2
η20hζ

4
n
; σ0 ¼ E − 1

2
η20hζ

4
n

Eþ 1
2
η20hζ

4
n
; ð107Þ

where the upper sign in σ is for jnj ¼ even and the lower
sign is for jnj ¼ odd. The direction of jet motion is different
from the z axis, which is the direction of wave propagation.
It is therefore clear that in this case the cosmic jet develops
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as the spacetime singularity at ζn, n ¼ �1;�2;�3; � � �, is
approached.

VII. DISCUSSION

We have searched for the formation of cosmic jets in
certain simple exact solutions of GR that are mostly self-
similar and hence admit homothetic Killing vector fields. In
addition to the collapse and wave scenarios for cosmic jet
formation, a new scenario has been identified in Sec. VI in
connection with a nonplanar gravitational wave spacetime
and appears to be a new form of the wave scenario.
In connection with the collapse scenario, let us consider

a system that collapses under its own gravity such that it
contracts along one spatial axis and expands along the other
spatial axes. We are interested in the invariant velocity of
the free test particles relative to the natural tetrad frame of
the class of static observers in this gravitational field. We
have demonstrated that in some simple exact spatially
inhomogeneous perfect fluid solutions of GR, the magni-
tude of this relative velocity decreases along an expanding
axis and asymptotically goes to zero as the expansion tends
to infinity. On the other hand, the magnitude of the relative
velocity increases along the contracting axis and asymp-
totically goes to the speed of light as the contraction tends
to zero. This feature is observer independent and can be
interpreted to mean that free test particles gain kinetic
energy from the time-dependent gravitational field and
asymptotically form a double-jet configuration. These con-
clusions are consistent with our previous results [4–8]. The
perfect fluid examples we have analyzed in this paper are
much too simple and idealized to have any direct physical
relevance; however, it is clear from our numerical consid-
erations that inhomogeneities can significantly interfere
with the formation of cosmic jets.
The specific type of spatial inhomogeneity that would

not impede the development of cosmic jets deserves further
investigation. It appears from our numerical results that
under reasonable physical conditions most inhomogene-
ities can block the tendency of anisotropically collapsing
configurations toward cosmic jet formation. This circum-
stance may be related to the fact that relativistic jets are
observed in only a small fraction of active galactic nuclei,
while supermassive collapsed configurations are generally
presumed to exist in the nuclei of most, if not all, massive
galaxies.
The formation of a cosmic jet is expected to be

accompanied by a strong burst of electromagnetic radia-
tion, since some of the test particles in the ambient medium
are presumed to be electrically charged.
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APPENDIX A: MARS-WOLF METRIC

The Mars-Wolf solution under consideration in this
paper is in fact Solution A given in Ref. [12], namely,

ds2 ¼ tαX−2þ2α2=qð−dt2 þ dX2 þ t1−α−βdy2 þ t1−αþβdz2Þ;
ðA1Þ

where

q ¼ β2 þ α2 − 2α − 1 ≠ 0: ðA2Þ

A discussion of this solution is contained on page 569 of
Ref. [9]. In its general form, this metric is of type I in the
Petrov classification.
For α ¼ 0, let X ¼ exp x and β ¼ −b; then, Eq. (A1)

reduces to the Petrov type D metric (25) discussed in
Sec. III. Henceforth, we assume that α ≠ 0.
If q ¼ α2, the Mars-Wolf solution reduces to the Kasner

solution. We thus define

Q ≔ 1 −
q
α2

¼ 2αþ 1 − β2

α2
ðA3Þ

and introduce Kasner-like parameters p1 ¼ α=ðαþ 2Þ,
p2 ¼ ð1 − βÞ=ðαþ 2Þ and p3 ¼ ð1þ βÞ=ðαþ 2Þ. With
simple coordinate transformations involving t and X, the
Mars-Wolf metric takes the form (41) in Sec. IV. We note
that in this form the metric is conformally related to a
Kasner-like metric for which p1 þ p2 þ p3 ¼ 1,
but p2

1 þ p2
2 þ p2

3 ¼ 1–2Qp2
1.

APPENDIX B: CURVATURE OF THE
PLANE WAVE

The components of the Riemann curvature tensor of the
plane wave discussed in Sec. V as measured by the static
reference observers are given by

Rα̂ β̂ γ̂ δ̂ ¼ Rμνρσeμα̂eνβ̂e
ρ
γ̂eσ δ̂; ðB1Þ

where the tetrad frame eμα̂ is given by Eq. (68). One can
express these quantities as a 6 × 6matrix ðRIJÞ, where I and
J are indices that belong to the set f01; 02; 03; 23; 31; 12g.
In a Ricci-flat spacetime, ðRIJÞ can be written as

�
E B

B −E

�
; ðB2Þ

where E and B are symmetric and traceless 3 × 3 matrices.
For the plane wave under consideration in Sec. V, we find

E ¼KðuÞ

2
64
−1 0 0

0 1 0

0 0 0

3
75; B ¼KðuÞ

2
64
0 1 0

1 0 0

0 0 0

3
75; ðB3Þ
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where KðuÞ, given by Eq. (69), can also be written as

KðuÞ ¼ s2ðs2 − 1Þ
u2

¼ −
s3ðs3 − 1Þ

u2
: ðB4Þ

It follows that if either s2 or s3 vanishes, then the spacetime
is flat.
In connection with E and B, the “gravitoelectric” and

“gravitomagnetic” components of the Weyl tensor, respec-
tively, an error in Eq. (25) of Ref. [8] must be corrected: the
3 × 3 matrices must be the same as in our Eq. (B3).
The metric of the plane wave in Sec. V depends upon s2

and s3 such that s2 þ s3 ¼ s22 þ s23. It follows that if s2 < 0,
then s23 − s3 ¼ s2 − s22 < 0 and hence 0 < s3 < 1. By
symmetry, if s3 < 0, then 0 < s2 < 1. The relationship
between s2 and s3 can be written in terms of an angular
parameter θ, 0 ≤ θ < 2π, as

s2 ¼
1

2
ð1þ

ffiffiffi
2

p
cos θÞ; s3 ¼

1

2
ð1þ

ffiffiffi
2

p
sin θÞ: ðB5Þ

We note that for 3π=4 < θ < 5π=4, we have s2 < 0 and
s3 > 0, while for 5π=4 < θ < 7π=4, we have s2 > 0 and
s3 < 0. Otherwise, s2 ≥ 0 and s3 ≥ 0.

In terms of θ, KðuÞ can be written as

KðuÞ ¼ 1

4u2
cos 2θ: ðB6Þ

We recall that the spacetime curvature vanishes if either s2
or s3 is zero. To illustrate this point explicitly for s3 ¼ 0 and
s2 ¼ 1, consider metric (65) in this case, namely,

ds2 ¼ −2dudvþ u2dx2 þ dy2 ðB7Þ

and let ðv; xÞ ↦ ðξ; ζÞ, where

v ¼ ξ −
1

2

ζ2

u
; x ¼ ζ

u
: ðB8Þ

Then,

−2dudvþ u2dx2 ¼ −2dudξþ dζ2: ðB9Þ

Thus the plane wave spacetime reduces to Minkowski
spacetime if either s2 or s3 vanishes as a consequence of the
symmetry between s2 and s3.
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