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We develop a unified description, via the Boltzmann equation, of damping of gravitational waves by
matter, incorporating collisions. We identify two physically distinct damping mechanisms—collisional and
Landau damping. We first consider damping in flat spacetime, and then generalize the results to allow for
cosmological expansion. In the first regime, maximal collisional damping of a gravitational wave,
independent of the details of the collisions in the matter is, as we show, significant only when its
wavelength is comparable to the size of the horizon. Thus damping by intergalactic or interstellar matter for
all but primordial gravitational radiation can be neglected. Although collisions in matter lead to a shear
viscosity, they also act to erase anisotropic stresses, thus suppressing the damping of gravitational waves.
Damping of primordial gravitational waves remains possible. We generalize Weinberg’s calculation of
gravitational wave damping, now including collisions and particles of finite mass, and interpret the
collisionless limit in terms of Landau damping. While Landau damping of gravitational waves cannot occur
in flat spacetime, the expansion of the universe allows such damping by spreading the frequency of a
gravitational wave of given wave vector.
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I. INTRODUCTION

The opening of a new window on the universe through
the ongoing observations of gravitational waves [1] under-
lines the importance of reexamining how they propagate
through the matter in the universe, and asking what
gravitational wave measurements can teach one about this
matter. Half a century ago, Hawking showed that if matter
could be treated in the hydrodynamic limit the damping rate
of a gravitational wave would be γ ¼ 16πGη, where G is
Newton’s gravitational constant and η the viscosity of the
matter [2,3]. Using this result, Goswami et al. [4] argued
that gravitational wave observations could be used to
constrain the viscosity of dark matter between the source
and Earth. But, as Hawking first pointed out, there are in
general too few collisions in matter for hydrodynamics to
be valid, and the damping would be less than the hydro-
dynamic result. Reference [5] estimated damping in the
almost collisionless limit by investigating the response of
individual particles to a gravitational wave and found that
the damping rate of the wave by nonrelativistic particles is

γ ∼
Gnm
ω2

�
v̄
c

�
2 1

τ
: ð1Þ

Here ω is the frequency of the wave, n the particle density,
m the particle mass, v̄ the typical particle velocity, and τ the
particle-particle collision time; the damping is ∼1=ðωτÞ2
smaller than the viscous result.

In addition to damping by collisions in matter, gravita-
tional waves can also be attenuated by Landau damping, in
which particles surf the gravitational wave and extract its
energy, first proposed for gravitational waves in Ref. [6].
This effect was originally investigated in the context of
plasma physics [7], then in galactic dynamics [8], and later
in quantum chromodynamic plasmas [9]. In a static flat
universe massive particles cannot produce Landau damping
since they move more slowly than a gravitational wave. In
an expanding universe, however, Landau damping becomes
possible, as we show, since the expansion in the presence of
matter effectively spreads the frequency of a gravitational
wave. Indeed the damping of cosmological gravitational
waves by noninteracting neutrinos, as examined by
Weinberg [10]1 and expanded upon in Refs. [12–15],
can in fact be understood in terms of Landau damping,
as we indicate below.
Our aim in this paper is to present a unified treatment of

the damping of gravitational waves by matter, for arbitrary
collision rates, thus encompassing the hydrodynamic and
nearly collisionless limits studied earlier, as well as
cosmological expansion. We begin, in Sec. II, by consid-
ering a weak gravitational wave propagating through a
dilute gas of colliding particles of arbitrary mass in an
otherwise flat spacetime, and calculate, in Sec. III, the
response of the matter to the wave using the Boltzmann

1Similar effects were previously studied in the context of
cosmic microwave anisotropies by Misner in [11].

PHYSICAL REVIEW D 96, 084033 (2017)

2470-0010=2017=96(8)=084033(10) 084033-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.084033
https://doi.org/10.1103/PhysRevD.96.084033
https://doi.org/10.1103/PhysRevD.96.084033
https://doi.org/10.1103/PhysRevD.96.084033


equation. For simplicity we work in the relaxation or
collision time approximation.
As we show, in Sec. IV, the maximum damping of the

amplitude of a gravitational wave with frequency ω is or
order 1=ðωτHÞ where τH is the age of the universe. Thus
collisional damping by matter of gravitational waves gen-
erated by astrophysical sources cannot provide useful
information about the nature of matter in the universe.
Furthermore, damping by dense environments surrounded
localized sources of gravitational radiation is, as we esti-
mate, insignificant. After a general discussion of Landau
damping in Sec. VI, we generalize the Boltzmann equation
results in Sec. VII to describe collisional damping by
particles of arbitrary mass in the presence of an expanding
cosmological background.

II. STATIC SPACETIME

Initially, we do not include the expansion of the universe,
and consider rather the Minkowski space metric with a
gravitational wave superimposed:

ds2 ¼ −dt2 þ gijdxidxj; ð2Þ

where

gij ¼ δij þ hijðr⃗; tÞ; ð3Þ

with hij the weak metric perturbation caused by a gravi-
tational wave. We work with hij in the transverse–traceless
gauge, and generally set c ¼ 1.
The effects on a gravitational wave passing through

matter are given in terms of the gravitational wave equation
in the transverse traceless gauge

∂μ∂μhij ¼
�
−

∂2

∂t2 þ∇2

�
hij ¼ −16πGπij; ð4Þ

where πij is the transverse traceless part of the matter stress
tensor, Tij;M, defined by

πij ≡ Ti
j;M −

δij
3

X3
k¼1

Tk
k;M: ð5Þ

In equilibrium, 1
3

P
3
k¼1 T

k
k;M is simply the pressure P of the

matter.
The effect of a gravitational wave on a particle is given in

terms of the dispersion relation,

pμpνgμν þm2 ¼ 0; ð6Þ

which in the present case implies that the particle energy ϵ
is given by

ϵ2 ¼ gijpipj þm2: ð7Þ

Thus a weak gravitational wave changes the particle
dispersion relation from ϵ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
to

ϵ ¼ ϵ0 þ δϵ: ð8Þ

To first order in hij

δϵ ¼ 1

2
hij

pipj

ϵ0
¼ −

1

2
hij

pipj

ϵ0
; ð9Þ

since to this order, hij ¼ −hij.

III. BOLTZMANN EQUATION

We treat the matter as a dilute gas and calculate πij from
the Boltzmann equation for the matter. We first write the
nonlinear Boltzmann equation for the particle distribution
function fðri; pjÞ as a function of the particle positions and
canonical momenta,

� ∂
∂tþ ∇⃗pϵ · ∇⃗r − ∇⃗rϵ · ∇⃗p

�
f ¼ C; ð10Þ

where C is the collision term. Here position gradients are
taken with respect to ri, and momentum gradients with
respect to pi. This form of the equation is valid for
relativistic as well as nonrelativistic particles.
The conservation laws of energy and momentum are

found by taking the moments of Eq. (10) with respect to pi
and ϵ; assuming that collisions conserve the total energy
and momentum of the particles, we find (as in standard
Fermi liquid theory)

∂
∂t

Z
p
ϵf þ∇i

Z
p
ϵvif ¼

Z
p

∂ϵ
∂t f; ð11Þ

and

∂
∂t

Z
p
pif þ∇jT

j
i;M ¼ −

Z
p
ð∇riϵÞf; ð12Þ

where
R
p ≡g

R
d3p=ð2πÞ3, with g the number of internal

states, e.g., spin, and

Tj
i;M ¼

Z
p
pivjf ¼ gjk

Z
p

pipk

ϵ
f ð13Þ

is the matter stress tensor.
With Eq. (9) the right side of Eq. (11) becomes

Z
p

∂ϵ
∂t f ¼ 1

2

∂hij
∂t

Z
p

pipj

ϵ
f ¼ 1

2

∂hij
∂t Tij;M; ð14Þ
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so that the change in energy of the matter is given by

∂E
∂t ¼ 1

2

Z
d3r

∂hij
∂t πij: ð15Þ

Only the transverse-traceless part of the stress tensor,
Eq. (5), enters Eq. (14).
Note that, for a wave of the formHðz − ctÞ, say, the right

side of Eq. (12) becomes

−
Z
p

∂ϵ
∂z f ¼ 1

2

∂hij
∂t πij; ð16Þ

indicating that as momentum q is transferred from the
gravitational wave, energy q is also transferred. Since πij is
itself at least of first order in hij the energy and momentum
transfers are second order and higher in the amplitude of the
gravitational wave.
We turn now to calculating the transverse-traceless part

of the matter stress tensor, Eq. (13); to linear order in hij,

δTij;M ¼
Z
p

pipj

ϵ0

�
δf −

δϵ

ϵ0
f0

�
ð17Þ

where δf ¼ f − f0, with f0 the distribution function in the
absence of hij. The δϵ term arises from the dependence of ϵ
in the denominator on hij, Eq. (9). Subtracting out the trace,
we find, after using the vanishing trace of hij and writing
the equilibrium pressure of the matter as

R
pðp2=3ϵ0Þf0, that

πij ¼
Z
p

pipj

ϵ0

�
δf −

δϵ

ϵ0
f0

�
þ hij

Z
p

p2

3ϵ0
f0: ð18Þ

The second term of this expression is manifestly traceless;
the trace of the first term vanishes since the integrations
over both δf and δϵ, being symmetric in angles, vanish.
The latter two terms that contain f0 can be simply

combined, with an integration by parts using the transverse-
traceless structure of hij, into a term proportional to ∂f0=∂ϵ
so that Eq. (18) becomes,

πij ¼
Z
p

pipj

ϵ0

�
δf − δϵ

∂f0
∂ϵ

�
: ð19Þ

This combination of terms falls out naturally, as we shall
see, from the Boltzmann equation.
Collisions between the particles, prior to freeze-out, tend

to bring the distribution function into a local equilibrium in
the presence of hij:

f → fh ¼
1

eβðϵ−μÞ ∓ 1
; ð20Þ

where ϵ, given by Eq. (7), depends on hij; β is the inverse
temperature, and μ the particle chemical potential. Note that
to first order in hij,

fh ¼ f0 þ δϵ
∂f
∂ϵ : ð21Þ

For simplicity we employ a collision time approximation.
Since the only disturbances relevant here involve spherical
harmonics of degree greater than one, we can write the
collision term as

C ¼ −
f − fh

τ
¼ −

1

τ

�
δf − δϵ

∂f
∂ϵ

�
; ð22Þ

where τ is the collision time, and δf − δϵ∂f=∂ϵ is the
deviation of the distribution from local equilibrium; the
additional terms commonly introduced to ensure conser-
vation of particle number and total momentum (which
involve spherical harmonics of degree zero and one) are not
relevant [7]. The linearized Boltzmann equation then
reduces to

� ∂
∂tþ

1

τ
þ v⃗ · ∇⃗r⃗

�
δf ¼

�
v⃗ ·∇rδϵþ

1

τ
δϵ

� ∂f0
∂ϵ : ð23Þ

With hijðr⃗; tÞ ¼ eiðq⃗·r⃗−ωtÞhij, and Fourier transforming in
space and time we find the solution of Eq. (23),

δf ¼ ∂f0
∂ϵ

�
−q⃗ · v⃗þ i=τ

ω − q⃗ · v⃗þ i=τ

�
δϵ: ð24Þ

The deviation from local equilibrium is thus given by

δf −
∂f0
∂ϵ δϵ ¼ −

�
ω

ω − q⃗ · v⃗þ i=τ

� ∂f0
∂ϵ δϵ: ð25Þ

We then find the general result,

πijðq;ωÞ ¼
Z
p

pipj

ϵ0
δϵ

�
ω

q⃗ · v⃗ − ω − i=τ

� ∂f0
∂ϵ : ð26Þ

Fourier transformed back to time, the stress tensor is

πijðq; tÞ ¼ −
Z
p

pipj

ϵ0

Z
t

−∞
dt0e−ðiq·vþ1=τÞðt−t0Þ ∂f0

∂ϵ _δϵðt0Þ:

ð27Þ

The response can be written in the more general form

πijðq;ωÞ ¼ −ωhij
Z

dω0

2π

Aðq;ω0Þ
ω − ω0 þ iξ

; ð28Þ
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where the spectral function is

Aðq;ωÞ¼−2
Z
p

�
pxpy

ϵ0

�
2 1=τ
ðω− q⃗ · v⃗Þ2þ1=τ2

∂f0
∂ϵ ; ð29Þ

and ξ is a positive infinitesimal. In the collisionless limit,
1=τ → 0, and for relativistic particles,

Aðq;ωÞ ¼ πρhð1 − ζ2Þ2δðω − qζÞi; ð30Þ

where ρ is the energy density of the excitations, and the
angular brackets denote the average over ζ ≡ q̂ · v̂. Fourier
transformed back to time,

πijðq; tÞ ¼ −
Z

t

−∞
dt0

Z
dω
2π

e−iωðt−t0ÞAðq;ωÞ _hijðt0Þ: ð31Þ

The damping of gravitational waves is governed by the
imaginary part of the response,

ℑ
�
πij
hij

�
¼−ω

Z
p

�
pipj

ϵ

�
2 1=τ
ðω− q⃗ · v⃗ Þ2þ1=τ2

∂f0
∂ϵ : ð32Þ

In the collision-dominated regime, τ ≪ 1=ω; doing the
angular averages in the integrals we have

πij ¼ iτω
Z
p

pipj

ϵ0
δϵ

∂f0
∂ϵ ¼ −

iτω
15

Z
p

p4

ϵ20

∂f0
∂ϵ hij

¼ −η _hij: ð33Þ

The viscosity calculated in the relaxation time approxima-
tion is

η ¼ −
Z
p

�
pipj

ϵ0

�
2 ∂f0
∂ϵ0 τ; ð34Þ

with i ≠ j. In this limit the damping rate of a gravitational
wave, from Eq. (4), is 16πGη, in agreement with earlier
hydrodynamic treatments [2,3].
For nonrelativistic matter, T ≪ mc2, the q⃗ · v⃗ in the

denominator of A can be neglected, and we have

πij ≃ ω

ωþ i=τ
Phij: ð35Þ

From the imaginary part of Eq. (4), the dispersion relation
of gravitational waves is

ω≃ qþ 8πG
ω

πij
hij

; ð36Þ

so that the damping of a wave is given by

ℑω ¼ 8πG
ω

ℑ

�
πij
hij

�
: ð37Þ

For fully relativistic matter, in the nearly collisionless limit,
to first order in 1=τω,

πij ¼ −P
�
1 −

2i
τω

�
hij; ð38Þ

while in the collision-dominated regime, πij is given by
Eq. (33).

IV. MAXIMUM COLLISIONAL DAMPING

As one can see from Eq. (32), ℑðπxy=hxyÞ has its
maximum magnitude for ωτ ∼ 1. The possible damping
is thus limited by

MaxðjℑωjÞ ≲ −
8πG
ω

Z
p

p4

15ϵ20

∂f0
∂ϵ ≤

8πGP
ω

; ð39Þ

where P is the total local pressure of the matter under
consideration, which gives rise to the damping. It is
instructive to write this bound in terms of the expansion
rate of the universe, defined by

1

τ2H
¼ 8πG

3
ρ̄ ¼

�
_a
a

�
2

; ð40Þ

where a is the cosmological scale parameter and ρ̄ the mean
mass density of the universe. Since the mean pressure
obeys P̄ ≤ ρ̄=3, we find

MaxðjℑωjÞ≲ P
P̄

1

ωτ2H
: ð41Þ

A wave traversing matter will average the local pressure,
and thus we can conclude,

MaxðjℑωjÞ≲ 1

ωτ2H
; ð42Þ

indicating that damping of a gravitational wave by matter in
the universe can only be significant for a wave of frequency
of order 1=τH. This bound includes all contributions from
dark matter particles as well [4].
To express the result (42) in another way, the collisional

damping of a gravitational wave within the characteristic
expansion time of the universe is of order 1=ωτH. For
ω ∼ 103 s−1, as in the recent gravitational wave detections
[1], and τH ∼ 1018 s, this ratio is ∼10−21. Collisional
damping in intergalactic or interstellar matter of gravita-
tional waves produced by astrophysical sources is not
useful to determine the nature of matter in the universe.
This result is valid for any particle-like form of dark matter,
including that in a possible shadow universe [16] or matter
that only interacts with gravitationally suppressed inter-
actions [17]. Furthermore, collisional damping in locally
high dense environments, e.g., in the neighborhood of
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mergers of black holes or neutron stars, is also negligible
for gravitational waves produced by astrophysical sources,
as we argue in the next section. On the other hand for
primordial gravitational waves with ω ∼ 10−16 − 10−15,
one has 1=ωτH ∼ 10−3 − 10−2, an effect that could play
a role in interpretation of future precision measurements of
the spectrum of primordial gravitational radiation.2

As we discuss in the following sections, Landau damp-
ing cannot occur in a flat spacetime. Even in an expanding
universe, the Landau damping rate is ∼1=ω2t3H, so that the
total damping within the expansion time of the universe is
∼1=ðωtHÞ2, a factor 1=ωtH smaller than the maximum
collision damping.
One can write the contribution to the damping from a

particular component, s, of the matter, e.g., neutrinos or
dark matter, in the form

jℑωjs ≡ nsσGW;s; ð43Þ

where σGW;s is the graviton scattering cross section on
particles of species s, and ns is the number density of
species s. The ratio of the cross section to the Planck length,
lPl, squared is essentially bounded above by

σGW;s

l2
Pl

≲ hpvis
ω

ð44Þ

where hpvis is the mean product of the particle momentum
and velocity of species s, which is of order the temperature
for a species in thermal equilibrium, or the temperature at
which the species froze out. Thus in general,

σGW;i

l2
Pl

≲ T
ω
; ð45Þ

with the above understanding of T.

V. MAXIMAL COLLISIONAL DAMPING
IN DENSE ENVIRONMENTS

We look now at the damping of gravitational wave
produced by binary astrophysical sources as the waves pass
through the dense medium surrounding the sources.
Collisional damping is limited by jℑωj < γmax, where from
Eq. (39),

γmax ∼
1

M2
pl

P
ω
¼ w

M2
pl

ρ

ω
; ð46Þ

we have introduced the Planck mass M−2
pl ¼ 8πG and

written the relation between the pressure and the energy
density by the equation of state parameter w ¼ P=ρ.

Assuming the gravitational wave source to a binary
system inside a region surrounded by matter with a given
density profile with equation of state parameter w, we find
collisional damping along a line of sight to be significant if

Z
R

0

drγmax ∼ 1 ð47Þ

where R is a physical radius enclosing the ambient matter.
A reasonable first estimate is simply to associate the
integral with the characteristic size Rc of the dense region:

Z
R

0

drγmax ∼
w
M2

pl

ρ

ω
Rc ∼

w
M2

plR
2
c

M
ω

ð48Þ

where M is the total mass in the region with characteristic
size Rc. To go beyond this estimate, one could take the
density profile from detailed calculations, e.g. the profile of a
typical dark matter halo (determined via phenomenological
models that fit N-body simulations such as the Navarro-
Frenk-White or Einasto density profiles [18]), and find
numerical factors that little affect the conclusion. In “natural”
units, one solar mass M⊙ ∼ 1066 eV, 1 Hz ∼ 10−15 eV,
M−1

pl ¼ lPl ∼ 10−35 m, and 1 kpc ∼ 1019 m, one has

Z
R

0

drγmax ∼ w
10−27

ðRc=kpcÞ2
�

M
M⊙

�
1

ðν=HzÞ ; ð49Þ

where ν ¼ ω=2π. We first consider a typical galactic halo
surrounding a binary system source of the gravitational
wave. Here, typically M ∼ 1012 M⊙, Rc ∼ 100 kpc, so that

Z
R

0

drγmax ∼ w
10−19

ðν=HzÞ ð50Þ

which is feeble for all astrophysical sources within the halo.
We next consider the ambient region surrounding a

binary system similar to that which gave rise to
GW150914—containing a dense distribution of (not nec-
essarily dark) matter. If the ambient matter has a mass
comparable to that of the binary system localized within
some region Rc ≫ Rs, the Schwarzschild radius associated
with the total mass of the binary system, we find that at the
lowest frequencies of the binary system, the factor
M=M⊙ × ðν=HzÞ−1 is Oð1Þ; furthermore for the expected
nonrelativistic low pressure surrounding matter, w ∼ c2s , the
square of the adiabatic sound velocity. Thus

Z
R

0

drγmax ∼ c2s
1011

ðRc=mÞ2 : ð51Þ

which can only be of order unity if the ambient matter is
localized to within a radius Rc ≲ cs × 300 km around the
binary system, which even for mildly nonrelativistic
ambient matter [e.g. cs ∼Oð10−1Þ] would require a mass

2We thank Vicky Kalogera and Chris Pankow for this
observation.
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comparable to that of the binary system to be crammed
into a region comparable to the Schwarzschild radius of the
final merged black hole (∼70 km ∼ Rs); such a high
density is contrary to our initial assumption that
Rc ≫ Rs. Requiring that this matter be distributed within
a region an order of magnitude larger than the binary
system yields

R
R
0 drγmax ∼ c2s ≪ 1. We conclude that a

distribution of nonrelativistic matter of high density sur-
rounding the source of gravitational radiation is not capable
of significantly damping gravitational radiation.
More realistically, one is in general far from the con-

dition of maximal collisional damping, that the collision
rate τ−1, be comparable to the frequency of the gravitational
wave. Maximal collisional damping is a highly unlikely
prospect even for relativistic matter jets and lobes close to
the merger of neutron star/black hole binary systems
[19,20]. To see this we write roughly, τ−1 ¼ nσv, where
n is the density of particles, σ is a particle-particle scattering
cross section, and v a mean particle velocity. In terms of the
mass, M, and characteristic radius, Rc, of the dense
environment,

1

τ
∼

M
M⊙

1035

ðRc=mÞ3
�

σ

fm2

�
v
c
s−1; ð52Þ

Clearly, for a typical nuclear or particle physics cross
section, the above is much larger than the typical frequency
of an astrophysical binary system by many orders of
magnitude, so that ωτ ≪ 1.

VI. LANDAU DAMPING: GENERAL
CONSIDERATIONS

In flat space in the collisionless limit (τ → ∞) Eq. (32)
reduces to

ℑ

�
πij
hij

�
¼ πω

Z
p

�
pipj

ϵ0

�
2

δðω − q⃗ · v⃗Þ ∂f0∂ϵ ; ð53Þ

a result describing Landau damping, the decay of the mode
into a single particle–hole pair.3 The particle-hole excita-
tions are spacelike. For a gravitational wave, ω ¼ q, the
integral vanishes except possibly for massless particles
moving in the same direction, say ẑ, as the gravitational
wave. However, for such particles, the factor p2

i p
2
j → p2

xp2
y

vanishes; Landau damping is forbidden in the absence of
cosmological expansion. Following general remarks on
Landau damping in this section we show in the following
section how the collisionless damping process described by

Weinberg [10] can be understood as a generalization of
Landau damping, driven by the expansion of the universe.
In an expanding universe, the gravitational wave energy

changes during expansion, i.e., the frequency of the
gravitational wave is not constant, since the expansion
absorbs energy from the wave. This energy loss is different
from Landau damping by the matter traversed by the wave.
When the phase velocity of the wave is different from the
group velocity of the excitations in the matter, energy in
flat spacetime is pumped to and fro between the wave and
the matter, but the net rate of transfer is zero because
the energy transferred in one half-cycle of the wave is
exactly cancelled by the loss in the other half-cycle.
In an expanding universe, however, the cancellation is
incomplete.
We recall the energy loss caused by expansion. A weak

gravitational wave of period small compared with the age
of the universe behaves in the absence of matter as
hij ¼ χðuÞe−iqu, where u is conformal time, related to
coordinate time by du ¼ dt=aðtÞ; as we see in the next
section, χðuÞ ∝ 1=aðuÞ. This structure is expected on the
basis of simple arguments: the energy of a gravitational
wave packet is proportional to the energy density in the
wave packet times the volume of the packet. The energy
density of the wave varies as giið∂χ=∂xiÞ2 ∼ a−4 and the
volume of the packet varies as a3, so the total energy
decreases as 1=a. This result also agrees with simple
redshift arguments: The energy of a massless particle varies
as 1þ z ∼ 1=a owing to the expansion of the universe, and
thus the energy density measured in locally Minkowskian
spacetime (ds2 ¼ −dt2 þ ðdr⃗Þ2) varies as 1=ð1þ zÞ4. For
example, the redshift of the first LIGO event GW150914
was z ¼ 0.09þ0.03

−0.04 [1], leading to an energy density reduc-
tion by a factor ≃1 − 1=ð1.09Þ4 ≈ 30% from cosmological
expansion. By comparison, even were the intervening
matter collisionless, Landau damping of the wave would
be totally negligible, ∼1=ðωtHÞ2.

VII. GRAVITATIONAL WAVE DAMPING
WITH COSMOLOGICAL EXPANSION

We turn now to relate the gravitational radiation damping
derived by Weinberg [10] to the calculations above, and to
Landau damping in collisionless plasmas, driven by the
expansion of the universe. We first generalize the treatment
of [10] to allow for massive particles and collisions,
working in conformal time, u, related to coordinate time
by dt ¼ adu, where a is the scale parameter of the
expansion. The metric in the presence of expansion and
a gravity wave is given by

ds2 ¼ aðuÞ2½−du2 þ ðδij þ hijÞdxidxj�: ð54Þ

Owing to the explicit a2, upper and lower components
of vectors are related by xμ ¼ a2xμ to zeroth order in h.

3In the language of quantum mechanics, the damping may be
regarded as the creation, with amplitude ∝ 1=ðω − q⃗ · v⃗sÞ, of a
virtual single particle–hole pair, which subsequently decays into
two real particle–hole pairs. Equation (32) can be understood,
when 1=τ → 0, as this amplitude squared, summed over all
momenta.
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In addition, the energy of a particle in the metric (54) is
given, in the absence of hij, by

ϵ20 ¼ p2
i þ a2m2: ð55Þ

We study, following [10], the evolution of the coupled
gravitational wave—matter system, after an initial time u0
at which the matter distribution function is given as f0,
essentially the fh in Eq. (20). Since f0 includes the metric
perturbations hijðu0Þ at that time, the additional perturba-
tions of the energy that modify the distribution function by
δfðuÞ at later time depend only on the deviation from
hijðu0Þ, that is,

δϵ ¼ −
pipj

2ϵ0
½hijðuÞ − hijðu0Þ�: ð56Þ

The Boltzmann equation in conformal time, Fourier
transformed in space [cf. Eq. (23)] is

� ∂
∂uþ 1

τc
þ iq⃗ · v⃗

�
δf ¼ ∂f0

∂ϵ
�
1

τc
þ iq⃗ · v⃗

�
δϵ; ð57Þ

The particle velocity, v, the distribution function f0, and the
conformal collision time τc ¼ τ=a, are directly dependent
on the scale factor. (More generally τ will depend on the
cosmological epoch and thus contain further dependence
on the scale factor, a question we do not pursue here.)
In particular

vi ¼ ∂ϵ0=∂pi ¼
piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pjpj þm2aðuÞ2
q : ð58Þ

Similarly, an equilibrium distribution function,

f0 ¼
1

eϵ0=T0ðuÞ ∓ 1
ð59Þ

(with ∓ for bosons or fermions) depends on a through the
term m2a2 in ϵ, and T0ðuÞ=aðuÞ is the temperature of the
dark matter. For massless particles, T0 is constant. In
addition τc is a function of the ambient density along
the trajectory of the gravitational wave, and so in general
depends on time through its dependence on the scale factor,
as well as through the evolving particle distributions.
Equation (57) has the general solution

δfðu; pÞ ¼
Z

u

u0

du0
∂e−Φðu;u0Þ

∂u0
∂f0
∂ϵ ðu0Þδϵðu0Þ; ð60Þ

where we write

Φðu; u0Þ≡
Z

u

u0
du00

�
1

τcðu00Þ
þ iq⃗ · v⃗ðu00Þ

�

¼ lðu; u0Þ þ iq̂ · p̂sðu; u0Þ; ð61Þ

in terms of

lðu; u0Þ ¼
Z

u

u0

du00

τcðu00Þ
; ð62Þ

and

sðu; u0Þ ¼ q
Z

u

u0
du00vðu00Þ; ð63Þ

which is the displacement of the particle in the interval u0 to
u times the wave vector. The deviation from local equi-
librium in (65) is therefore

δf −
∂f
∂ϵ δϵ ¼ −

Z
u

u0

du0e−Φðu;u0Þ ∂
∂u0

�∂f0
∂ϵ δϵðu0Þ

�
: ð64Þ

On a cosmological background,

πij ¼
Z
p

pipjffiffiffiffiffiffi−gp
ϵ0

�
δf −

∂f
∂ϵ δϵ

�
; ð65Þ

the generalization of Eq. (19), where in the absence of a
gravitational wave,

ffiffiffiffiffiffi−gp ¼ a4. With Eq. (64), we then have

πijðq;uÞ¼−
Z
p

pipj

aðuÞ4ϵ0

Z
u

u0

du0e−Φðu;u0Þ ∂
∂u0

�∂f0
∂ϵ δϵðu0Þ

�
:

ð66Þ

This equation is the direct generalization of Eq. (28) to an
expanding spacetime.
Using ϵdϵ ¼ pdp we have

πij ¼
1

aðuÞ4
Z
p

pipjpkpl

2pϵ0ðuÞ
Z

u

u0

du0e−Φðu;u0Þ

×
∂
∂u0

�∂f0
∂p ðhklðu0Þ − hklðu0ÞÞ

�
: ð67Þ

Since k ≠ l the angular average above has the form
ðδikδjl þ δilδjkÞKðsÞ where in terms of spherical Bessel
functions KðsÞ ¼ j2ðsÞ=s2, and explicitly,

KðsÞ ¼
Z

dΩ
4π

e−iζsð1 − ζ2Þ2sin2φcos2φ

¼ −
sin s
s3

− 3
cos s
s4

þ 3
sin s
s5

; ð68Þ

with ζ ¼ cos θ; thus
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πijðq; uÞ ¼
1

aðuÞ4
Z
p

p3

ϵ0ðuÞ
Z

u

u0

du0e−lðu;u0ÞKðsÞ

×
∂
∂u0

�∂f0
∂p ðhijðu0Þ − hijðu0ÞÞ

�
: ð69Þ

In the massless limit, we integrate the momentum
derivative by parts, using ϵdϵ ¼ pdp, and noting that
s → qðu − u0Þ, to obtain

πij ¼ −4ρ̄
Z

u

u0

du0e−lðu;u0ÞKðqðu − u0ÞÞh0ijðu0Þ; ð70Þ

where the prime denotes d=du, and

ρ̄ ¼ 1

a4

Z
p
pf0 ð71Þ

is the mass density of the matter. Away from the massless
limit, generalizing Ref. [10], we find extra contributions
from the p dependence of s in K, an effect that was
investigated in the context of collisionless massive neu-
trinos and axions in [15], where it was found that the
damping is reduced when including masses. We see from
Eq. (69) or (70), that, as expected, the net effect of
collisional interactions is to efficiently erase anisotropic
stresses, and hence limit their ability to damp gravita-
tional waves.
Since astrophysical sources of gravitational waves have

characteristic frequencies much greater than the inverse
Hubble scale at late times, we can expand the time
dependence of the mode functions in powers of a0=ðaqÞ.
For such a wave, the spatial Fourier component q⃗ obeys the
equation of motion,

h00ij þ 2
a0

a
h0ij þ q2hij ¼ 16πGa2πij: ð72Þ

The solution for hijðq; uÞ in the absence of matter is, to
lowest order in a0=ðaqÞ,

hijðq; uÞ ∝
e−iqu

aðuÞ ð73Þ

(during radiation domination, this result is exact). We
assume that the gravitational wave is in the form of a
wave packet for which

hijðr⃗; uÞ ¼
Z

d3q
ð2πÞ3

e−iqu

aðuÞ FðqÞ; ð74Þ

where FðqÞ is localized about a wave vector q⃗0. We
consider the absorption by a region of matter much smaller
than the horizon size.
To see the mechanism of Landau damping in the absence

of collisions, we calculate the damping of the wave directly

in terms of the energy transfer to the matter, writing, from
Eq. (15), using conformal time

∂E
∂u ¼ −

1

2

Z
d3rh0ijðr⃗; uÞπijðr⃗; uÞ

¼ −
1

2
ℜ
Z

d3q
ð2πÞ3 h

0
ij
�ðq; uÞπijðq; uÞ: ð75Þ

We work in the massless limit, in order to illustrate the
physics with the fewest complications. Then f0 does not
depend on a, and Φðu; u0Þ → iqζðu − u0Þ, and one has,

∂E
∂u ¼ −

1

4aðuÞ4 ℜ
Z

d3q
ð2πÞ3 h

0
ij
�ðq; uÞ

Z
p

pipjpkpl

p2

×
Z

u

u0

du0e−iq⃗·p̂ðu−u0Þ
∂f0
∂p h0klðq; u0Þ

¼ −
1

16aðuÞ4ℜ
Z

d3q
ð2πÞ3 h

0
ij
�ðq; uÞ

Z
p
p2

∂f0
∂p

× ð1 − ζ2Þ2
Z

u

u0

du0e−iqζðu−u0Þh0ijðq; u0Þ: ð76Þ

From Eq. (73), we see that h0ijðuÞ ¼−ðiqþHðuÞÞhijðuÞ,
where H≡ a0ðuÞ=aðuÞ. The explicit HðuÞ, which is small
relative to the q term and for an astrophysical gravitational
wave produces only a small correction to the Landau
damping, can be neglected. Over the time span of a
gravitational wave packet transversing a given region of
matter, the scale factor aðu0Þ in hijðu0Þ can be expanded as
aðu0Þ ¼ aðuÞ þ a0ðuÞðu0 − uÞ≃ aðuÞeHðu0−uÞ. Thus the u0
integral can be written as

−iqe−iquFðqÞ
aðuÞ

Z
u

u0

du0eðiqð1−ζÞþHðuÞÞðu−u0Þ

≃ 1

Hþ iqð1 − ζÞ ðh
0
ijðq; uÞ − e−iqζðu−u0Þh0ijðq; u0ÞÞ:

ð77Þ

Since the characteristic frequencies are large compared
with 1=ðu − u0Þ the phase factor in the final term will
average to zero inside the q and ζ integrals in Eq. (76). We
find then

∂E
∂u ¼ ρ̄

4

Z
d3q
ð2πÞ3 jh

0
ijðq; uÞj2

Z
1

−1

dζ
2

Hð1 − ζ2Þ2
H2 þ q2ð1 − ζÞ2 :

ð78Þ

We see here how expansion of the universe introduces a
spread in frequencies ∼�H about q, thus allowing Landau
damping; in the absence of expansion, H ¼ 0, and Landau
damping vanishes.
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To lowest order inH=q the integral is simply 4=3, so that

∂E
∂u ¼ ρ̄

3

a0

a

Z
d3q
ð2πÞ3

jh0ijðq; uÞj2
q2

: ð79Þ

The energy density of the gravitational wave is

Egw ¼
Z

d3q
ð2πÞ3

jh0ijðq; tÞj2
32πG

; ð80Þ

so that for a wave packet centered about a frequency q̄

∂E
∂u ¼ 32πGρ̄

3q̄2
HEgw: ð81Þ

Finally we note that 8πGρ̄=3 ∼ ða0=a2Þ2 and thus

∂E
∂u ∼

4H3

ðaq̄Þ2 Egw: ð82Þ

The characteristic absorption time via Landau damping is
thus ∼ω2t3H (with ω ¼ q̄), which is thoroughly negligible.
The corresponding fractional change in energy over an
expansion time of the universe is ∼1=ðωtHÞ2.

VIII. CONCLUDING REMARKS

In this paper we have laid out a framework for evaluating
the damping of gravitational radiation by matter with
arbitrary mass particles and collision strengths. By con-
sidering the damping of gravitational waves in both flat
spacetime and in an expanding universe, we identify two
distinct mechanisms through with damping can occur—the
first in which collisions produce the damping, and the
second, via Landau damping.
When the expansion of spacetime can be neglected, the

damping of a wave of a given frequency, proportional to the
relaxation rate 1=τ in the collisionless regime (ωτ ≫ 1)
and to the collision time, τ, in the hydrodynamic regime
(ωτ ≫ 1), is maximal when ωτ≃ 1. For the frequencies to
which LIGO is sensitive and for plausible models of dark

matter, calculations of damping based on hydrodynamical
considerations are gross overestimates, and we conclude
that it is impossible from current observations of gravita-
tional waves to put useful bounds on the properties of dark
matter. Landau damping in this case is not possible because
particles have velocities less than c. As we estimate in
Sec. V, collisional damping of gravitational waves of
frequencies produced by astrophysical binary systems,
propagating through dense local environments, is also
insignificant.
Collisionless damping is possible in an expanding

universe since the frequency of the gravitational wave
and the energies of particles depend on time. Damping of
gravitational waves by free-streaming relativistic particles
as discussed by Weinberg [10], may, as we have shown, be
regarded as a generalization of Landau damping; we have
also generalized Weinberg’s formalism to allow for colli-
sions in the matter. We note in passing that one can
straightforwardly extend the present framework to incor-
porate scenarios of nonthermal dark matter, since it was not
essential to assume a specific functional form for the
distribution, see, e.g., Eq. (20).
In the future we will apply the present framework to

study damping of stochastic gravitational waves produced
after inflation, e.g., in (first order) phase transitions in the
early universe, during matter domination where the matter
consists of ultralight dark matter. Such scenarios are similar
to damping by neutrinos during radiation domination
[10,13,15], and might describe damping by axions [21–23].
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