
Entropy of a box of gas in an external gravitational field revisited

Sourav Bhattacharya,1,† Sumanta Chakraborty,2,* and T. Padmanabhan3,‡
1Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140 001, India

2Department of Theoretical Physics, Indian Association for the Cultivation of Science,
Kolkata 700 032, India

3IUCAA, Post Bag 4, Ganeshkhind, Pune University Campus, Pune 411 007, India
(Received 10 March 2017; published 16 October 2017)

Earlier it was shown that the entropy of an ideal gas, contained in a box and moving in a gravitational
field, develops an area dependence when it approaches the horizon of a static, spherically symmetric
spacetime. Here we extend the above result in two directions; viz., to (a) the stationary axisymmteric
spacetimes and (b) time-dependent cosmological spacetimes evolving asymptotically to the de Sitter or the
Schwarzschild–de Sitter spacetimes. While our calculations are exact for the stationary axisymmetric
spacetimes, for the cosmological case we present an analytical expression of the entropy when the
spacetime is close to the de Sitter or the Schwarzschild–de Sitter spacetime. Unlike the static spacetimes,
there is no hypersurface orthogonal timelike Killing vector field in these cases. Nevertheless, the results
hold, and the entropy develops an area dependence in the appropriate limit.
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I. INTRODUCTION

Killing horizons are null surfaces which act like one-way
membranes, hiding information from observers who do not
cross them. It is well known that such observers associate
thermodynamic characteristics like entropy and temperature
with these horizons (see, e.g., Chap. 8 of Ref. [1]). The well-
known examples include the Schwarzschild and the Rindler
spacetimes. In the Schwarzschild spacetime, an observer
located at any constant radial coordinate r such that r > 2M
associates an entropy S ¼ A=4 and a temperature T ¼
ð1=8πMÞ with the black hole horizon located at r ¼ 2M
[2–5], where A and M are the area of the event horizon and
the black hole’s mass, respectively. Similarly, an observer at
constant spatial coordinate x (with x > 0) in a Rindler
spacetime (with the metric ds2¼−g2x2dt2þdx2) will
associate a temperature T ¼ ðg=2πÞ and entropy density
1=4 with the Rindler horizon [6,7], located at
x ¼ 0 (see also Ref. [8] for a review). On the other hand,
the freely falling observers in either of these spacetimes will
not associate any thermodynamic features with the horizon,
because they have access to regions in both the interior and
exterior of the event horizon (or, the Rindler horizon), unlike
the case of static observers (see Refs. [9–11] for details and
also references therein) located outside the horizon.
The fact that we may erect locally a flat coordinate chart

around a given event of any nonsingular spacetime, and that
the flat chart could be mapped onto a Rindler frame, leads
one to associate a local temperature and hence a local

thermodynamic description of spacetimes [9,10,12]. This
has paved the way towards an emergent perspective for
gravity, since one can associate thermodynamic quan-
tities locally at any spacetime event, pointing towards an
underlying microscopic statistical description for gravity
[13–16]. This view has also received significant support
from various other investigations—notably, one can intro-
duce a thermodynamic perspective to the gravitational field
equations near any null surface. In particular, various
projections of the gravitational field equations can be
written as the Navier-Stokes equation of fluid dynamics,
as a thermodynamic identity, or as the heating and cooling
of the spacetime [17–20]. Remarkably enough, most of
these thermodynamic properties carry over quite naturally
(albeit nontrivially) to a more general class of gravity
theories [21,22]. These results also have implications for
classical gravity: for example, until recently, it was not very
clear how to formulate the variational principle for gravity
when part of the boundary is null [23–26]. A natural
question that emerges in this context is the following: Does
the interpretation of (Area/4) as the entropy still apply to an
arbitrary null surface which is not a Killing horizon?
Surprisingly, it turns out that the existence of such
thermodynamic properties is not necessarily true only for
Killing horizons—in fact, it was shown recently in
Ref. [27] using the Gaussian null coordinates that for a
large class of generic null surfaces, which are not neces-
sarily Killing horizons, the observers who do not cross
them would still associate entropy densities ð1=4Þ with the
relevant areas.
Given that the black holes have thermodynamic proper-

ties, it is natural to ask whether such notions could be
associated with cosmological or Hubble horizons as well.
Among them, perhaps the most interesting one is that of the
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de Sitter space, which has a Killing horizon. The de Sitter
horizon could also be associated with thermodynamic
properties such as the entropy and temperature, qualita-
tively similar to that of the black hole [28–32]. For
cosmological spacetimes other than the de Sitter, the
Hubble horizon, rðtÞ ¼ H−1ðtÞ [where t is the comoving
time, rðtÞ is the proper radius, andHðtÞ is the Hubble rate],
is not a Killing horizon. For a spatially flat cosmology, the
Hubble horizon also coincides with the apparent horizon,
where the expansion corresponding to one of the two
principle null congruences vanishes while the other is
positive. The notion of apparent horizon is dependent upon
the spacetime foliation. Attempts to build thermodynamics
by associating entropy and temperature with such horizons
can be seen in e.g. Refs. [33–35] and in references therein.
However, we note that unlike the Killing horizons, the
Hubble or apparent horizon is not a null surface in general
[36], as the normal to such surfaces,∇aðrðtÞHðtÞÞ, is not in
general a null vector.
In the usual statistical mechanics of normal matter, the

entropy depends upon the volume of the system, instead
of its area. Thus, the horizons are indeed some special
objects—qualitatively or quantitatively, as far as the thermo-
dynamic properties are concerned. It was shown in
Refs. [37,38] that in order for the entropy-area relation to
hold, the density of states near the horizon must have an
exponential “pileup” behavior, and any effective theory
describing a quantum field near the horizon must be nonlocal
over the Planck-length scale near the horizon. In Ref. [39],
the dynamics of a box containing an ideal gas moving in a
static and spherically symmetric black hole spacetime was
considered, and the area dependence of the entropy of the
gas was demonstrated near the horizon by introducing the
Planck length to be the cutoff near the horizon. Such a cutoff
could be thought of as an ultraviolet cutoff, making some
near-horizon divergent integrals finite. A similar result was
obtained in a quasistatic gravitational collapse scenario in
Ref. [40], for both Einstein and Lanczos-Lovelock gravity.
We further refer our reader to Refs. [41–43] and references
therein for different perspectives including the entanglement
of black hole entropy using matter fields as probes.
As emphasized earlier, the entropy-area relation in

general relativity transcends the horizons which arise in
static spacetimes and holds true in stationary spacetimes
and cosmological spacetimes. We already know from
previous work that the entropy for a normal thermody-
namic system also scales as area for static spacetimes when
it is close to the horizon. These two facts raise the following

interesting question: viz., whether the entropy of a normal
thermodynamic system also scales as area if it is located
near the stationary or cosmological horizon. It is also of
interest to understand what happens to the entropy of a box
of ideal gas when it is near the apparent horizon in a
cosmological spacetime which is not a null surface. Given
this motivational backdrop we will, in this work, extend the
formalism developed in Ref. [39] to spacetimes with a
positive cosmological constant admitting a cosmological
horizon or the Hubble horizon, as well to rotating solutions
in general relativity. First, we shall consider a box of ideal
gas moving in a general stationary axisymmetric spacetime
endowed with a positive cosmological constant (e.g., the
Kerr–Newman–de Sitter or the Plebanski–Demianski–de
Sitter). We shall assume that the spacetime admits Killing
horizons—both cosmological and black hole horizons. We
shall demonstrate the area scaling of the gas’s entropy for
both cases. Next, we shall consider a box moving close to
the Hubble horizon of a cosmological spacetime with the
scale factor being appropriate for the Λ cold dark matter
(ΛCDM for short) or the Λ radiation. We will show that an
area scaling of the entropy of the gas always exists, and as
the spacetime asymptotically evolves to the de Sitter, the
entropy of the gas smoothly merges with the de Sitter
Killing horizon behavior. We also will present a generali-
zation of this result with a central mass/black hole.
The rest of the paper is organized as follows: In the next

section, we describe the necessary geometric framework and
derive the entropy in stationary axisymmetric spacetimes.
Section III describes the calculation of the entropy and the
emergence of the area law for cosmological spacetimes. The
conclusions are summarized in Sec. IV. We shall assume
mostly positive signature for the metric ð−;þ;þ;þÞ and
will set c ¼ G ¼ κB ¼ 1 throughout. We shall also assume
spatially flat geometry (k ¼ 0), as the other plausible choice,
k ¼ þ1, seems to be relevant only for describing structures
at scales much smaller than the Hubble horizon [44].

II. STATIONARY AXISYMMETRIC SPACETIMES

A. The metric and the coordinate systems

We consider a box of ideal gas moving in a stationary
axisymmetric spacetime, endowed with a positive cosmo-
logical constantΛ. Inorder tomodel suchageneric spacetime,
let us first consider the example of the Kerr–Newman–de
Sitter spacetime, representing a charged and rotating black
hole sitting in the de Sitter universe (see e.g.Ref. [45] and also
references therein), whose spacetime metric reads

ds2 ¼ −
Δr − a2 sin2 θΔθ

ρ2
dt2 −

2a sin2 θ
ρ2Ξ

ððr2 þ a2ÞΔθ − ΔrÞdtdϕ

þ sin2 θ
ρ2Ξ2

ððr2 þ a2Þ2Δθ − Δra2 sin2 θÞdϕ2 þ ρ2

Δr
dr2 þ ρ2

Δθ
dθ2; ð1Þ
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where we have defined

Δr ¼ ðr2 þ a2Þð1 −H2
0r

2Þ − 2MrþQ2;

Δθ ¼ 1þH2
0a

2cos2θ; Ξ ¼ 1þH2
0a

2;

ρ2 ¼ r2 þ a2cos2θ; ð2Þ

where H2
0 ¼ Λ=3, and M, Q, and a are the parameters

specifying the mass, charge, and angular momentum,
respectively, of the black hole. Setting a ¼ 0 recovers
the static Reissner–Nördstrom–de Sitter spacetime,
whereas further setting M ¼ 0 ¼ Q recovers the de Sitter
spacetime written in the static coordinate system. The
cosmological and the black hole event horizons are given
by the largest (say, rC) and the next-to-largest (say, rH)
roots of Δr ¼ 0, respectively.
The Kerr–Newman–de Sitter spacetime is stationary and

axisymmetric—it is endowed with two Killing vector fields
ξa ≡ ð∂tÞa and ϕa ≡ ð∂ϕÞa, generating the stationarity and
axisymmetry, respectively. These two vector fields, being
coordinate fields, commute:

½ξ;ϕ�a ¼ £ϕa ¼ 0: ð3Þ

Since the 2-planes orthogonal to these two Killing vector
fields are spanned by coordinate vector fields, ð∂rÞa and
ð∂θÞa, they also commute with each other. This implies that
any two vector fields spanning these 2-planes form a Lie
algebra, and hence the r − θ planes are integral submani-
folds of the spacetime [46]. In other words, when these
planes are Lie-dragged along ξa and/or ϕa, they remain
intact.
We note that, unlike in the case of the static spacetimes,

the timelike Killing vector field is now not hypersurface
orthogonal, as ξ · ϕ ¼ gtϕ ≠ 0. The surface ξ · ξ ¼ gtt ¼ 0
defines the ergosphere. Since both the black hole and the
cosmological horizons correspond to Δr ¼ 0, it is clear that
unlike the static spacetimes, ξa is spacelike on the horizons.
This implies that unlike the Λ ≤ 0 stationary axisymmetric
spacetimes, we have two ergospheres, instead of one. From
Eq. (2), one can determine the locations of these ergo-
spheres: one surrounding the black hole, and the other one
appearing before the cosmological event horizon. These
ergospheres intersect the respective horizons at the axial
points θ ¼ 0, π, where the effect of rotation vanishes.
The angular velocities α ¼ −ðξ · ϕÞ=ðϕ · ϕÞ ¼ −gtϕ=gϕϕ

at the two horizons are given by

αH ¼ −
ξ · ϕ
ϕ · ϕ

����
r¼rH

¼ aΞ
r2H þ a2

;

αC ¼ −
ξ · ϕ
ϕ · ϕ

����
r¼rC

¼ aΞ
r2C þ a2

: ð4Þ

The Killing vector fields that become null on the black hole
and the cosmological horizons are given, respectively, by

χaH ¼ ξa þ αHϕ
a; χaC ¼ ξa þ αCϕ

a: ð5Þ

It is easy to see using the metric functions that χH · χHðr →
rHÞ and χC · χCðr → rCÞ vanish as OðΔrÞ. This completes
the basic geometric description of the Kerr–Newman–de
Sitter spacetime, given by Eq. (1).
Keeping this explicit example in mind, we shall now

build a model for addressing general stationary axisym-
metric spacetimes. Although we are primarily interested in
(3þ 1) dimensions, as we shall see at the end of this
section, the results easily generalize to arbitrary higher
dimensions as well. More details of the following dis-
cussions can be seen in Ref. [32] and references therein. We
assume that the two Killing vector fields of the spacetime
still commute [see, for example, Eq. (3)], and the 2-planes
orthogonal to them are integral submanifolds. Note that this
does not necessarily require that these vector fields be
coordinate fields—in fact, it only means that we may
locally define coordinates along those Killing vector fields.
We shall next construct a suitable (3þ 1)-foliation of the

spacetime in between the two Killing horizons as follows:
We define a vector field χa ¼ ξa − ðξ · ϕÞ=ðϕ · ϕÞϕa such
that χaϕa identically vanishes everywhere. Also, χ · χ ¼
ξ · ξ − ðξ · ϕÞ2=ðϕ · ϕÞ ¼ − ~β2 (say), so that χa is timelike
whenever ~β2 > 0. Since the term ðξ · ϕÞ2=ðϕ · ϕÞ is positive
definite, it is clear that χa is manifestly timelike outside
the ergospheres. Its behavior inside the ergosphere will be
discussed in due course.
The fact that the 2-planes orthogonal to the Killing fields

are integral submanifolds, and hence any two vector fields
tangent to them form a Lie algebra, implies the following
Frobenius-like conditions [46]:

ξ½aϕb∇cϕd� ¼ 0 ¼ ϕ½aξb∇cξd�; ð6Þ

which can be rewritten in terms of our vector field χa:

χ½aϕb∇cϕd� ¼ 0 ¼ ϕ½aχb∇cχd�: ð7Þ

Denoting the function −ðξ · ϕÞ=ðϕ · ϕÞ by αðxÞ, we have

∇aχb þ∇bχa ¼ ϕa∇bαþ ϕb∇aα: ð8Þ
We also get, from the commutativity of the two Killing
vector fields,

£ϕχa ¼ 0 and £χα ¼ 0 ¼ £ϕα: ð9Þ
Setting α ¼ 0, one immediately recovers the static space-
time. Using Eqs. (8) and (9), we can derive from the second
equality of Eq. (7)

∇½aχb� ¼ 2 ~β−2ðχb∇a
~β2 − χa∇b

~β2Þ; ð10Þ
which implies that χa satisfies the Frobenius condition of
hypersurface orthogonality; i.e., χ½a∇bχc� ¼ 0. In other
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words, the vector field χa is orthogonal to the family of
spacelike hypersurfaces spanned by ϕa and the aforemen-
tioned 2-submanifolds. We also note that the price we have
paid in making this foliation is that χa is not a Killing vector
field now [see Eq. (8)], unlike the static spacetimes. The
metric now reads

gab ¼ − ~β−2χaχb þ hab: ð11Þ

Note that since the foliation field χa can be thought of
as orthogonal to t ¼ constant hypersurfaces, hab is the
induced 3-metric over the spatial hypersurfaces orthogonal
to χa, spanned, e.g. in the Boyer-Lindquist coordinates,
by ðr; θ;ϕÞ.
As we have seen earlier, χa is manifestly timelike outside

the ergospheres. Since within the ergospheres, ξa is space-
like (ξ · ξ > 0), we might expect that χaχa ¼ − ~β2 would be
vanishing at some point. Equation (10) shows that on such
a surface using the torsion-free condition, we must have
χ½b∇a� ~β

2 ¼ ~β2∂ ½aχb� ¼ 0. In other words, the normal ∇a
~β2

to any ~β2 ¼ 0 surface becomes parallel to the foliation
field, χa:

∇a
~β2 ¼ −2κðxÞχa; ð12Þ

where κðxÞ is a function, assumed to be smooth. It turns out
from the above equation that £χκðxÞ ¼ 0. Then, if s is a
parameter along χa (i.e., χa∇as ≔ 1), it is easy to see that
the vector field ka ≔ e−κðxÞsχa is a null geodesic. By
considering the Raychaudhuri equation for the null con-
gruence fkag, one readily arrives at (see Ref. [32] and
references therein)

Tabkakb þ
f2e−2κs

2
ðDaαÞðDaαÞ ¼ 0; ð13Þ

where we have denoted ϕaϕ
a ¼ f2, andDa is the derivative

operator tangent to the ~β2 ¼ 0 hypersurface. Since £χα ¼ 0

always, the inner product ðDaαÞðDaαÞ is positive definite.
It is reasonable to assume that the matter energy-momen-
tum tensor satisfies the weak and null energy condition,
implying Tabkakb ≥ 0. Then the left-hand side of Eq. (13)
consists of positive-definite quantities, and the vanishing of
their sum implies that each of them is vanishing. This
means that the function αðxÞ is a constant over any ~β2 ¼ 0
hypersurface. In other words, the hypersurface orthogonal
vector field χa ¼ ξa þ αðxÞϕa becomes Killing whenever it
is null and that null hypersurface is a Killing horizon. This
result is analogous to the explicit result of the Kerr–
Newman–de Sitter spacetime discussed above. However,
we note that the above general result has been proven
without assuming any particular functional form of the
norm of the various basis vector fields, nor assuming any
particular matter field other than imposing the generic

energy conditions. In other words, we have found a well-
behaved timelike vector field in a general stationary
axisymmetric spacetime, foliating the region between the
two Killing horizons and becoming smoothly the Killing
fields on the horizons. This will be useful for our future
purposes.
It then follows that the function κ, known as the surface

gravity, is a constant on the Killing horizons [46]. We shall
assume that κ ≠ 0. We have explicitly specified two basis
vectors so far: χa and ϕa. For our purpose, we shall now
specify another one, which would in particular be useful
while dealing with the near horizons’ geometries. Let us
consider the vector field Ra ¼ 1

κ∇a
~β. Using the commu-

tativity of the two Killing vector fields, it is easy to see that
χa∇a

~β ¼ 0 ¼ ϕa∇a
~β. By Eq. (12), we have

κ2 ¼ lim
~β2→0

ð∇a
~β2Þð∇a ~β2Þ
4 ~β2

≡ lim
~β2→0

ð∇a
~βÞð∇a ~βÞ: ð14Þ

Thus, if R is a parameter along Ra [such that Ra∇aR ≔ 1

and if λðxÞ is any function, Ra∇aλ ¼ dλ
dR], then

RaRa ¼
1

κ
Ra∇a

~β ¼ 1

κ

d ~β
dR

¼ 1; ð15Þ

which means, since κ is a constant,

R ¼
~β

κ
: ð16Þ

On the other hand, if μa is the fourth basis tangent to the
horizon, we must have μaRa ∼Oð ~βÞ infinitesimally close
to the Killing horizon, as ~β ¼ 0 on the horizon. Thus, with
our specified basis, we have ~β2 ¼ κ2R2, and the metric in
Eq. (11) near any of the Killing horizons could be written as

gab ¼ −ðκRÞ−2χaχb þ RaRb þ f−2ϕaϕb þ μ−2μaμb; ð17Þ

where μ2 ¼ μaμ
a. The χ-R part of the metric could now be

identified with the Rindler space. Note that the square root
of the norm ~β has been used here as a coordinate along Ra,
to express the notion of the “off the horizon” direction. This
would be useful in defining the ultraviolet cutoff while
probing the near-horizon geometry of a stationary axisym-
metric spacetime.
Even though we have emphasized Λ > 0, the above

analysis holds for anti–de Sitter or asymptotically flat
spacetimes, for which the cosmological event horizon
would be absent. We once again emphasize here that we
have arrived at Eq. (17) using purely generic arguments and
assumptions, incorporating the effect of any matter field
satisfying the weak/null energy conditions.
As an explicit example, let us go back to the Kerr–

Newman–de Sitter spacetime (1), for which we have for the
Killing horizons
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− ~β2 ¼ gtt −
ðgtϕÞ2
gϕϕ

¼ −
Δrρ

2

ðr2 þ a2Þ2 þOðΔ2
rÞ;

κH;C ¼ Δ0
r

2ðr2 þ a2Þ
����
rH;rC

¼ rH;Cð1 −H2
0r

2
H;CÞ −H2

0rH;Cðr2H;C þ a2Þ −M

r2H;C þ a2
;

ð18Þ
where the subscriptsH and C denote the black hole and the
cosmological event horizons, respectively, and the prime
denotes differentiation with respect to the radial coordinate.
The aforementioned basis vector μa equals ð∂θÞa here, and
ð∂θÞaRa ¼ Oð ffiffiffiffiffiffi

Δr
p Þ. In other words, near the horizons, the

four vector fields χa, Ra, ϕa; ð∂θÞa furnish a well-behaved
basis for the near-horizon geometry.
Although we built our general formalism starting with

the Kerr–Newman–de Sitter spacetime, it applies well to
more general de Sitter black hole spacetimes as well. Such
generalizations become necessary when we recall the
potential non-uniqueness properties of de Sitter black holes
[47]. For example, the general family of the Plebanski–
Demianski–de Sitter–class spacetimes has the metric [48]

ds2 ¼ 1

Ω2

�
−
Δr

ρ2

�
dt −

�
asin2θ þ 4lsin2

θ

2

�
dϕ

�
2

þ ρ2

Δr
dr2 þ P

ρ2
ðadt − ðr2 þ ðaþ lÞ2ÞdϕÞ2

þ ρ2

P
sin2θdθ2

�
; ð19Þ

where

Ω ¼ 1 −
~α

ω
ðlþ a cos θÞr; ρ2 ¼ r2 þ ðlþ a cos θÞ2;

P ¼ sin2θð1 − a3 cos θ − a4cos2θÞ;

Δr ¼ ðω2kþ q2 þ q2mÞ − 2Mrþ ϵr2 −
2~αn
ω

r3

− ð ~α2kþH2
0Þr4: ð20Þ

The parameters ~α, ω, q, qm, ϵ, and k are independent, and
a3 and a4 are determined from them via some constraints.
Physical meaning to these parameters could be asserted for
only certain special subclasses of Eq. (19). In particular, for
~α ¼ 0, the above metric reduces to the Kerr–Newman–
NUT–de Sitter solution [48],

ds2 ¼ −
Δr

ρ2
½dt − ða sin2 θ þ 4l sin2 θ=2Þdϕ�2

þ ρ2

Δr
dr2 þ P

ρ2
½adt − ðr2 þ ðaþ lÞ2Þdϕ�2

þ ρ2

P
sin2 θdθ2; ð21Þ

where

ρ2 ¼ r2 þ ðlþ a cos θÞ2;
P ¼ sin2θð1þ 4alH2

0 cos θ þH2
0a

2cos2θÞ;
Δr ¼ ða2 − l2 þ q2 þ q2mÞ − 2Mrþ r2

− 3H2
0ðða2 − l2Þl2 þ ða2=3þ 2l2Þr2 þ r4=3Þ; ð22Þ

where q and qm are the electric and magnetic charges,
respectively, and l is the Newman-Unti-Tamburino (NUT)
parameter. Note that, in order to have a well-behaved black
hole solution with H0 ¼ 0, one must have both the
acceleration parameter and the NUT charge be vanishing.
Nevertheless, in what follows, we shall formally consider
the most general Plebanski–Demianski–de Sitter class
given by Eq. (19), assuming implicitly that it indeed
represents de Sitter black holes subject to suitable param-
eter values, which, for our current purpose, are not an
explicit concern.
The black hole and the cosmological horizons are, as

shown earlier, given by the two largest roots ofΔr ¼ 0. The
integrability of the 2-submanifolds orthogonal to the
two commuting Killing vector fields follows trivially.
The hypersurface orthogonal vector field χa behaves near
the horizons as

χH;C ¼ ξa þ a
r2H;C þ ðaþ lÞ2 ϕ

a;

χaχa ¼ − ~β2 ¼ −
Δrρ

2

Ω2½r2 þ ðaþ lÞ2�2 þOðΔ2
rÞ: ð23Þ

The above geometrical setup can also be generalized to
higher-dimensional spacetimes as well, permitting larger
numbers of commuting Killing vector fields whose
orthogonal space is spanned by integral submanifolds of
appropriate dimensions. In that case, the hypersurface
orthogonal timelike vector field χa is given by χa ¼
ξa þ αðiÞϕa

ðiÞ, where i denotes the number of axisymmetric

Killing vector fields, and the αðiÞ functions are determined
by solving the algebraic equations, χaϕa

ðiÞ ¼ 0 for each i. In

fact, all existing stationary and axisymmetric solutions fall
within the scope of this geometric setup. We shall not go
into further details here, and refer the interested reader to
Ref. [32] and references therein.
Previous work [39] shows that it is necessary to

introduce a cutoff near the Killing horizons to regularize
some divergent integrals in calculating the entropy. Such a
cutoff could also be physically justified from the fact that
for any finite Killing-coordinate time interval, no particle
can reach the horizon. The natural cutoff in probing the
near-horizon geometry is the Planck length. Specifically,
for a static and spherically symmetric nonextremal black
hole spacetime,
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ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2;

we introduce the Planck-length cutoff as the minimum
proper radial distance of the approaching side of the box

LP ≔
Z

r¼LaþrH

r¼rH

drffiffiffiffiffiffiffiffiffi
fðrÞp ≈

ffiffiffiffiffiffiffiffi
2La

κH

s
; ð24Þ

where it is assumed that La ≪ rH, so that we could expand
in the integrand, fðr → rHÞ ≈ 2κHðr − rHÞ. If we try to
define a similar cutoff for the stationary axisymmetric
spacetimes, we face an immediate difficulty, because the
pure radial path near the horizon of a stationary axisym-
metric spacetime makes no sense. In particular, within the
ergosphere, all particles will rotate due to the frame-
dragging effect [46]. Also, since the metric functions
now depend upon both the radial and polar coordinates,
defining proper length as above seems to be inconsistent.
For example, in the case of Eq. (1), the proper radial

distance should be
R
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2 cos2 θ

Δr

q
, which is θ dependent.

To handle this difficulty, we would instead use the
coordinate R defined in Eq. (16) for our purpose. (Note
that since ~β is dimensionless and the surface gravity κ has
inverse length dimension, R has the dimension of length.)
Since ~β ¼ 0 on the horizons, R ¼ 0 there too, and we
simply have, in this new coordinate,

LP ≔
Z

La

0

dR: ð25Þ

In other words, since R ∼ ~β and sufficiently close to the
horizon ~βmust be monotonic, we are using the value of ~β to
indicate a measure of how far off we are from the horizon.
This does not depend upon any specific path. Thus, the
above generalization provides a natural way to impose a
cutoff in probing the near-horizon geometry for stationary
axisymmetric spacetimes.
Before we end this discussion, let us illustrate how this

works out explicitly for the Kerr–Newman–de Sitter
spacetime, presented in Eq. (1). We consider the volume
integral over the ðr; θ;ϕÞ-hypersurface,Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

gθθgϕϕ
p

dθdϕ
ρffiffiffiffiffiffi
Δr

p dr; ð26Þ

and take the near-horizon limit, Δr → 0. Taking the differ-
ential of Eq. (16), we get

dR ¼ ρΔ0
rdr

2ðr2 þ a2Þ ffiffiffiffiffiffi
Δr

p
κ
−

ffiffiffiffiffiffi
Δr

p
κðr2 þ a2Þ

×
�

2ρr
r2 þ a2

drþ a2 sin 2θ
2ρ

dθ
�

≈
ρΔ0

rdr
2ðr2 þ a2Þ ffiffiffiffiffiffi

Δr
p

κ
¼ ρdrffiffiffiffiffiffi

Δr
p ; ð27Þ

where in the last equality we have used the second equation
of Eq. (18) and have also used the fact that since θ is
tangent to the horizon, dθ really remains infinitesimal there.
In other words, in the near-horizon limit we haveZ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gθθgϕϕ
p

dθdϕ
ρffiffiffiffiffiffi
Δr

p dr →
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

gθθgϕϕ
p

dθdϕdR; ð28Þ

which is exactly analogous to the static horizons written in
Rindler coordinates, thereby establishing the universality of
the horizon properties of these two kind of spacetimes.
With these necessary ingredients, we are now ready to
calculate the entropy of a box of gas.

B. Entropy calculation

Let us consider a box of ideal gas containing N particles
in thermal equilibrium with its surroundings at temperature
β−1. For a static spacetime, one can use the canonical
ensemble [39]. Let us denote the density of states and the
phase space volume (respectively) by gðEÞ and PðEÞ. Then
we have

gðEÞ ¼ dPðEÞ
dE

;

QðβÞ ¼
Z

e−βEgðEÞdE ¼
Z

e−βEdPðEÞ; ð29Þ

where QðβÞ is the canonical one-particle partition function,
related to the density of states via a Laplace transform. For
general static spacetimes, the phase space volume can be
written as [39,49]

PðEÞ ¼
Z

d3xd3pΘðE − jξapajÞ; ð30Þ

where the integration is over any spacelike hypersurface
orthogonal to the timelike Killing vector field, ξa. The
4-momentum of a timelike or null geodesic is denoted by
pa, and E ¼ −ξapa is the conserved energy along the
geodesic. By the definition of step function, it is clear that
the above integral essentially computes the total phase
space volume within the surface E ¼ jξapaj. Further, the
integration measure can be seen to be invariant under local
Lorentz transformations—the spatial volume gets con-
tracted whereas the spatial momentum gets dilated—
effectively leaving the phase space measure invariant (a
proof of the same can be found in standard textbooks like
Refs. [50–52]). A quick proof can be given using the
invariance of d3p=Ep and d4x and using the fact that
dt=ds ∼ E, where the symbol ∼ stands for “transforms
as.” Then ðd3p=EpÞðd4xÞðdsÞ ∼ ðd3p=EpÞðd3xÞðdt=dsÞ∼
d3pd3x. Since ðd3p=EpÞðd4xÞðdsÞ is manifestly invariant,
so is d3pd3x.
In a nonstatic spacetime, the definition of energy as a

conserved quantity, with respect to a hypersurface
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orthogonal timelike Killing vector field, does not exist.
Nevertheless, the quantity ΘðEþ ξapaÞ could still be used
anyway as follows. Let us replace E with some scalar
function EðxÞ (x can stand for all spatial and the temporal
coordinates), and we take EðxÞ ¼ −χapa, where χa is some
timelike vector field orthogonal to a family of spatial
hypersurfaces used in the integration measure. If we take
both χa and pa to be future directed (i.e., both χ0, p0 > 0
[46]), it is obvious that EðxÞ would be positive. This is a
formal argument in favor of using Eq. (30) in general
nonstatic spacetimes. Thus, the above definition of the
probability distribution for general spacetimes seems to be
dependent on the foliation. Then, it is natural to ask what is
the appropriate foliation to work with. The answer to this
question lies in the notion of local temperature. Given a
spacetime, only a particular foliation of it would lead to a
correct value for the surface gravity in the Rindler limit,
and one must use this foliation for getting meaningful
results pertaining to spacetime thermodynamics. While for
static spacetimes with Killing horizons there is no such
ambiguity—one must always use the Killing time to define
the foliation—for nonstatic spacetimes, we shall use only
those which ensure the existence of the proper Rindler limit
of the spacetime.
Let us evaluate PðEÞ for the stationary axisymmetric

spacetimes, taking χa to be the foliation vector field, as
discussed in the previous section. Since the gas molecules
individually move along geodesics, we note that the
quantities ϵ ¼ −ξapa and λ ¼ ϕapa are conserved, being
the energy and the orbital angular momentum, respectively.
This means that EðxÞ ¼ −paχ

a ¼ ðϵ − λαðxÞÞ. Since αðxÞ
is constant only on horizons, E is not conserved every-
where. Setting α ¼ 0 recovers the static spacetime. We
have from Eq. (11), for a timelike geodesic,

−
ðχ · pÞ2

~β2
þ habpapb ¼ −m2: ð31Þ

But for the spatial momentum, we have clearly p2≡
habpapb, where p denotes the magnitude square of the
spatial momentum, giving

p2 ¼ ðϵ − λαðxÞÞ2
~β2

−m2: ð32Þ

Thus, we have

Pðϵ; λÞ ¼ 4π

3

Z ffiffiffi
h

p
d3x

�ðϵ − λαðxÞÞ2
~β2

−m2

�3
2

: ð33Þ

To arrive at the above integral, we have used the fact that
the phase space volume includes a step function, and
hence the only contribution to the phase space volume
will come from the interior of the surface E ¼ jξapaj,

which corresponds to a sphere in the momentum space with
the radius given by Eq. (32). Thus, in addition to a

ffiffiffi
h

p
factor, the momentum integral over the phase space simply
yields ð4π=3Þp3, where jpj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
habpapb

p
. The above

integral cannot be evaluated in general, even in the
Schwarzschild spacetime. Nevertheless, apparently there
is no reason for the above integral to lead to any area
scaling of entropy, in general.
Let us evaluate the above integral, infinitesimally close

to any of the horizons of a stationary axisymmetric
spacetime. We use now Eq. (17), α ¼ const.; the mass
term goes away, giving

Pðϵ; λÞ ¼ 4πðϵ − λαÞ3
3

Z
½d2X� dR

κ3R3
; ð34Þ

where ½d2X� is the invariant “volume” measure of the
spatial 2-surface on the horizon (spanned by μa and ϕa in
Eq. (17); for general compact horizons such as that of the
Kerr–Newman–de Sitter spacetime, μa ¼ ð∂θÞa. Using
the Planck length as the ultraviolet cutoff, we can perform
the above integration. The side of the box away from the
horizon gives very little contribution to the integral (this is
in accordance with the exponential “pileup” of the acces-
sible microstates near a Killing horizon [37,38]), because
the size of the box must be much greater than the Planck
length. We get the leading contribution, coming from near
the horizon:

Pðϵ; λÞ ≈ 2πA⊥ðϵ − λαÞ3
3κ3L2

P
; ð35Þ

where A⊥ ¼ R ½d2X� is the transverse area of the side of the
box close to and tangent to the horizon. Evidently, the
above result holds irrespective of whether we are dealing
with the black hole or the cosmological event horizon.
Considering the quantity ðϵ − λαÞ as the total or effective

conserved energy E, and taking it to be positive definite
(i.e., we are not considering any negative energy modes or
the superradiant instability [46]), the second equation of
Eq. (29) now gives

QðβÞ ¼ 4πA⊥
β3κ3L2

P
: ð36Þ

We now expand the metric function −g00 ≡ −gabχaχb ¼
κ2R2 appearing in Eq. (17) around R ¼ 0 in the radius LP to
get −g00 ¼ κ2L2

p. We can then rewrite QðβÞ as

QðβÞ ¼ 4πA⊥LP

ðβ ffiffiffiffiffiffiffiffiffiffi−g00
p Þ3 ¼

4πLPA⊥
β3loc

; ð37Þ

where βloc ¼ β
ffiffiffiffiffiffiffiffiffiffi−g00

p
is the inverse local Tolman temper-

ature at a Planck distance away from any of the Killing
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horizons. The N-particle partition function is given by
QN ¼ ðQÞN , and the entropy of the system is given by
S ¼ ð1 − βloc∂βlocÞ lnQN ,

S ¼ N

�
ln

�
4πLPA⊥
Nβ3loc

�
þ 3

�
; ð38Þ

which is exactly similar to the static and spherically
symmetric spacetimes [39]. This completes our main
computational part pertaining to the stationary axisymmet-
ric or rotating black holes.
The following point deserves mention. As is evident

from Eq. (38), the entropy associated with normal matter
(in this case, an ideal gas) behaves as ln(area) at the
appropriate limit. On the other hand, we know that the
black hole entropy scales as area. This shows that there is a
large increase in the number of degrees of freedom
associated with a gravitational system before and after
the formation of the black hole. That is, as a star collapses
to ultimately form a black hole, its entropy just before
crossing the would-be event horizon scales as the logarithm
of the area, while once the black hole has been formed, the
entropy scales as area. This is possibly hinting towards
the fact that the gravitational degrees of freedom associated
with black holes have to be far greater in number com-
pared to the degrees of freedom of a normal system. This
may have interesting consequences, such as for one
seeking a microscopic description of black hole entropy
(and some possibilities have been previously discussed in
Refs. [37,38]).
The result holds for higher-dimensional spacetimes as

well, for which the near-Killing-horizon metric becomes,
analogous to Eq. (17),

gab ¼ −ðκRÞ−2χaχb þ RaRb þ γðn−2Þab ; ð39Þ

where γðn−2Þab is the (n − 2)-dimensional analogue of the
2-metric ðμ−2μaμb þ f−2ϕbϕbÞ, appearing in Eq. (17). It is
then straightforward to obtain after some algebra

QðβÞ ¼ ðn − 1Þ!πn−1
2 Aðn−2Þ;⊥LP

Γðnþ1
2
Þðn − 2Þβn−1loc

; ð40Þ

and the entropy

S ¼ N

�
ln

�ðn − 1Þ!πn−1
2 Aðn−2Þ;⊥LP

Γðnþ1
2
Þðn − 2Þβn−1loc

�
þ ðn − 1Þ

�
: ð41Þ

For the sake of completeness, we will next present another
derivation of the above result also, by explicitly using the
lapse and shift functions. The chief goal is to explicitly
demonstrate the existence of the coordinate R above,
for a Killing horizon located at some constant radial
coordinate—say, r ¼ rH.

C. An alternative derivation of the entropy

Any metric in (3þ 1) dimensions could be expressed in
terms of ten independent functions by choosing a particular
time foliation, known as the Arnowitt-Deser-Misner
decomposition [1,53]. However, the symmetries of the
spacetime for the present case—i.e., stationary and axi-
symmetry—demand that five of the off-diagonal metric
components vanish and that all the remaining components
be independent of time as well as one of the angular
coordinates. Thus, any stationary, axisymmetric black hole
is characterized by five nonzero functions of ðr; θÞ, which
are denoted by Nðr; θÞ, Nϕðr; θÞ, hrrðrθÞ, hθθðr; θÞ, and
hϕϕðr; θÞ, so that the line element becomes

ds2 ¼ −N2dt2 þ hrrdr2 þ hθθdθ2 þ hϕϕðdϕþ NϕdtÞ2
¼ −fN2 − hϕϕðNϕÞ2gdt2 þ 2hϕϕNϕdtdϕ

þ hrrdr2 þ hθθdθ2 þ hϕϕdϕ2: ð42Þ

Among the above functions, the function Nðr; θÞ is known
as the lapse, while Nϕðr; θÞ is known as the shift. The
corresponding components for the inverse metric will be

gtt ¼ −
1

N2
; gtϕ ¼ Nϕ

N2
; grr ¼ hrr ¼ 1

hrr
;

gθθ ¼ hθθ ¼ 1

hθθ
; gϕϕ ¼ 1

hϕϕ
−
�
Nϕ

N

�
2

; ð43Þ

such that hϕϕ ¼ 1=hϕϕ. Obviously, the above spacetime has
two Killing vectors: ξa ¼ ð∂tÞa corresponding to time
translation, and ϕa ¼ ð∂ϕÞa corresponding to rotational
invariance. The norms of these vectors are

ξaξa ¼ gtt ¼ −fN2 − hϕϕðNϕÞ2g; ð44Þ

ϕaϕa ¼ gϕϕ ¼ hϕϕ: ð45Þ

It is evident from the above equations that the vector ξa is
not timelike everywhere—for the spacetime region in
which N2 < hϕϕðNϕÞ2, the norm of this vector is positive,
indicating existence of the ergosphere. We introduce the
following function:

αðr; θÞ≡ −
ξaϕa

ϕaϕa
¼ −

gtϕ
gϕϕ

¼ −Nϕ; ð46Þ

which essentially coincides with the shift function, and
another vector,

χa ¼ ξa − Nϕϕa: ð47Þ

The norm of this vector eventually evaluates to
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χaχa ¼ gabχaχb ¼ gabðξa − NϕϕaÞðξb − NϕϕbÞ
¼ gtt − 2gtϕNϕ þ hϕϕðNϕÞ2 ¼ −N2: ð48Þ

To proceed further, we shall assume that there is some
surface, say Φ, on which N2 ¼ 0, and on that surface α—
i.e., Nϕ—is a constant. (Note that this condition ensures
that the geometry depicted above represents a black hole
spacetime.) Thus, on that surface, χa is the Killing vector,
and the Killing horizon of this spacetime corresponds to
χ2 ¼ 0—i.e., the surface Φ. We will also assume that the
surface N2 ¼ 0 corresponds to some r ¼ rH, and thus one
can write N2 as

N2 ¼ ΔðrÞfðr; θÞ; ð49Þ

such that r ¼ rH is a solution of the equation ΔðrÞ ¼ 0.
Since r ¼ rH is a Killing horizon, on this surface the norm
of the vector ∇ar must vanish, suggesting grr ¼ 0. Hence,
we also have

grr ¼ hrr ¼ ΔðrÞgðr; θÞ: ð50Þ

It is useful to introduce yet another vector field,

Ra ≡∇aR≡∇a

�
N
ζ

�
; ζ ¼ constant; ð51Þ

where ζ is a constant to be determined later. The compo-
nents of this vector are

Rr ¼
1

ζ
∂rð

ffiffiffiffi
Δ

p ffiffiffi
f

p
Þ ¼

ffiffiffi
f

p
Δ0

2ζ
ffiffiffiffi
Δ

p þ
ffiffiffiffi
Δ

p
f0

2ζ
ffiffiffi
f

p ;

Rr ¼ hrrRr ¼
g
ffiffiffi
f

p
Δ0 ffiffiffiffiΔp

2ζ
þ Δ3=2gf0

2ζ
ffiffiffi
f

p ; ð52Þ

Rθ ¼
ffiffiffiffi
Δ

p ∂θf
2ζ

ffiffiffi
f

p ; ð53Þ

where a prime denotes a derivative with respect to the radial
coordinate r. For stationary spacetime, one can prove that
ð∇aNÞð∇aNÞ is a constant in the limit r → rH, defined as
the square of the surface gravity κ, leading to

lim
r→rH

RaRa ¼ κ2

ζ2
¼ grr

� ffiffiffi
f

p
Δ0

2ζ
ffiffiffiffi
Δ

p
�

2

¼ gfΔ02

4ζ2
: ð54Þ

Requiring RaRa ¼ 1 on the surface r ¼ rH, we obtain

ζ ¼ κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
gfΔ02

4

r ����
r¼rH

: ð55Þ

Since this has to be constant, one obtains that fðr; θÞgðr; θÞ
should be independent of θ on the Killing horizon. Thus,

we get N2 ¼ κ2R2. Using this expression for the lapse
function N, the metric can be written as

gab ¼ −
1

κ2R2
χaχb þ hab; ð56Þ

where, of course, hab is purely spatial. To rewrite it as fit for
the near-horizon limit, we note that the spatial metric can be
further expanded, leading to

hab ¼ hϕϕϕaϕa þ hθθð∂θÞað∂θÞb þ hrrð∂rÞað∂rÞb

¼r≃rH hϕϕϕaϕa þ hθθð∂θÞað∂θÞb þ RaRb þOðΔÞ: ð57Þ

The last line follows from the fact that ðRrÞ2 ¼
ΔðrÞgðr; θÞ þOðΔ2Þ, coinciding with the correct leading-
order behavior for hrr, while both RrRθ and RθRθ are
∼OðΔÞ and do not contribute in the near-horizon limit.
Thus, the full metric in the near-horizon regime becomes
Rindler-like:

gab ¼r≃rH hϕϕϕaϕa þ hθθð∂θÞað∂θÞb þ RaRb −
1

κ2R2
χaχb:

ð58Þ

Thus, given any stationary and axisymmetric black hole
spacetime, the metric near the black hole horizon can
always be written in a Rindler form. Since we are chiefly
interested in the behavior of a box full of ideal gas in the
near-horizon regime, the above Rindler form straightfor-
wardly suggests that the entropy of the ideal gas should
scale as area. To see this explicitly, wewill first compute the
probability of a particle in the ideal gas to have an energy E.
Since the probability distribution involves an integral over
phase space [see Eq. (30)] which extends up to the energy E
in momentum space, one can integrate out the momentum
degrees of freedom and finally obtain

PðEÞ ¼ 4π

3

Z
d3x

ffiffiffi
h

p �
E2

N2
−m2

�
3=2

; ð59Þ

where E ¼ −paξ
a, linearly dependent on the conserved

energy and angular momentum of the particle, and we may
identify N ≡ ~β in our earlier analysis. Note that the above
result holds for any stationary and axisymmetric space-
times. Finally, specializing to the Kerr metric, the integral
leading to the probability distribution near the horizon
becomes

PðEÞ ¼ 8π2E3

3

Z
drdθ

Σ4 sin θ
ρ2Δ2

; ð60Þ

where Δ ¼ r2 þ a2 − 2Mr, ρ2 ¼ r2 þ a2 cos2 θ, and
Σ ¼ ðr2 þ a2Þ2 − a2Δ sin2 θ. In order to simplify the above
result, we perform a change of coordinates, ðr; θÞ → ðR; θÞ,
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where R ¼ N=κ ¼ ρ
ffiffiffiffi
Δ

p
=ðκΣÞ, with the last equality hold-

ing for the Kerr metric. The Jacobian associated with the
above coordinate transformation becomes

J ¼ det

0
B@

1ffiffiffiffi
gΔ

p
ffiffiffi
Δ

p ∂θf
2κ
ffiffi
f

p

− 2κ
ffiffi
f

p
Δ ffiffi

g
p ∂θf 1

1
CA ¼ 2ffiffiffiffiffiffi

gΔ
p ¼ 2ρffiffiffiffi

Δ
p : ð61Þ

The Jacobian evaluated above is completely general and
applies to any stationary and axisymmetric spacetimes;
however, for the purpose of illustration, in the last expres-
sion we have used the results for the Kerr metric. Then the
integral leading to probability distribution can be rewritten
in the new coordinate system ðR; θÞ as

PðEÞ ¼ 8π2E3

3

Z
dRdθJ−1

Σ4 sin θ
ρ2Δ2

¼ 4π2E3

3

Z
dRdθ

Σ4 sin θ

ρ3Δ3=2

¼ 4π2E3Σ
3κ3

Z
dRdθ

sin θ
R3

¼ 2πE3A⊥
3κ3

Z
dR
R3

¼ 2πE3A⊥
3κ3L2

P
; ð62Þ

where in the last line we have used the fact that the box is a
Planck length away from the black hole. Given this
probability distribution, one immediately observes that
the distribution itself scales with area, and it is the source
of the area dependence of entropy for the ideal gas. Since
the distribution is known to us, one can compute the
partition function using Eq. (29), where β will be the
inverse temperature associated with the black hole. Thus,
we arrive at the following expression for the partition
function:

QðβÞ ¼ 2πA⊥
κ3L2

P

Z
dEE2e−βE ¼ 2πA⊥

κ3L2
P

∂2

∂β2
�
1

β

�
¼ 4πA⊥

β3κ3L2
P
:

ð63Þ

Introducing a redshifted local temperature, βloc ¼ Nβ ¼
βðκLPÞ, where N ¼ κLP is the redshift factor, we finally
obtain

QðβlocÞ ¼
4πA⊥
β3loc

; ð64Þ

which matches exactly with our earlier result. Thus, starting
from the lapse and shift functions, and imposing the
symmetries, one ends up with the Rindler form of the
metric in the near-horizon region and an area scaling for
entropy. This provides another way of looking into the
problem by explicitly using coordinates and perhaps is
interesting from the gravitational dynamics standpoint.

III. THE COSMOLOGICAL SPACETIMES

A. The metric and suitable coordinate choice

In this section, we shall further apply the formalism for
cosmological spacetimes which are essentially nonstation-
ary. Let us start with the Friedmann-Lemaitre-Robertson-
Walker spacetime with flat spatial sections,

ds2 ¼ −dt2 þ a2ðtÞ½dx2 þ dy2 þ dz2�: ð65Þ

The first of the Einstein equations reads

H2ðtÞ ¼
�
_a
a

�
2

¼ 8πρðtÞ þ Λ: ð66Þ

For any generic matter field with a linear equation of state,
pðtÞ ¼ wρðtÞ, where w is a constant, the energy-momen-
tum conservation corresponding to Eq. (65) gives

ρðtÞ ¼ ρ0
a3ð1þwÞðtÞ ;

where ρ0 is a constant. Plugging this into Eq. (66), we get

aðtÞ ¼
�
8πρ0
Λ

� 1
3ð1þwÞ

�
sinh

3ð1þ wÞH0t
2

� 2
3ð1þwÞ

; ð67Þ

where H0 ¼
ffiffiffiffiffiffiffiffiffi
Λ=3

p
, as earlier. We shall in particular be

interested in cold dark matter (w ¼ 0) and radiation
(w ¼ 1=3). For the first, the scale factor reads

aðtÞ ¼
�
8πρ0
Λ

�1
3

sinh2=3
3H0t
2

: ð68Þ

For t → ∞, the above scale factor evolves to that of the de
Sitter, aðtÞ ∼ eH0t. Likewise, for the radiation we have

aðtÞ ¼
�
8πρ0
Λ

�1
4

sinh1=2 2H0t: ð69Þ

Rewriting Eq. (65) in terms of spherical polar coordinates
ðR; θ;ϕÞ and introducing the proper or the physical radius
r ¼ RaðtÞ, we get

ds2 ¼ −ð1 −H2ðtÞr2Þdt2 − 2HðtÞrdrdtþ dr2 þ r2dΩ2:

ð70Þ

The Hubble horizon radius, H−1ðtÞ, is manifest in the
above coordinate system. The coordinate singularity at the
surface r ¼ H−1ðtÞ is not in general a null surface for any
scale factor like aðtÞ ¼ a0 sinhp

H0t
p , as can be seen by

computing the norm of the 1-form ∇aðrHðtÞÞ normal to
that surface,
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gab∇aðrHðtÞÞ∇bðrHðtÞÞ

¼ −
H2

0=p
sinh2ðH0t=pÞ

�
1

pcosh2ðH0t=pÞ
− 2

�
≠ 0; ð71Þ

while the equality certainly holds in the de Sitter
limit H0t → ∞.
Let us suppose that we are dealing with the empty de

Sitter space, so that HðtÞ in Eq. (70) coincides with H0.
One can then introduce a new timelike coordinate, T (see,
e.g., Ref. [54]),

t ¼ T þ 1

2H0

ln j1 −H2
0r

2j; ð72Þ

to get

ds2 ¼ −ð1 −H2
0r

2ÞdT2 þ ð1 −H2
0r

2Þ−1dr2 þ r2dΩ2;

ð73Þ

which is manifestly static inside the cosmological event
horizon radius, H−1

0 . However, since we are interested in a
time-dependent Hubble expansion rate, we cannot define a
coordinate transformation like the above by just replacing
H0 with HðtÞ [55].
On the other hand, using indeed the transformation of

Eq. (72), the metric of Eq. (70) can be rewritten as

ds2 ¼ −ð1 − r2H2ðT; rÞÞdT2

þ 2r

�
H0ð1 −H2ðT; rÞr2Þ

1 −H2
0r

2
−HðT; rÞ

�
dTdr

þ
�
1þ 2r2HðT; rÞH0

1 −H2
0r

2
−
H2

0r
2ð1 − r2H2ðT; rÞÞ
ð1 −H2

0r
2Þ2

�
dr2

þ r2dΩ2: ð74Þ

Clearly the current Hubble radius, H−1ðtÞ, is smaller than
the cosmological horizon radius, H−1

0 , of the de Sitter
space. Accordingly, it is easy to see that the second term in
grr is always greater than the third term, which is negative.

Also, in the limitHðT; rÞ → H0, we recover the static patch
of the de Sitter space. Putting these all together, it is clear
that the coordinate system used in Eq. (74) is well defined
within the current Hubble radius. The above coordinate
system would be very useful for our purpose of analyzing
systems asymptotically evolving to the de Sitter spacetime.
The metric in Eq. (74) can also be generalized easily to

include a central mass/black hole. The version of Eq. (65) is
now given by the McVittie spacetime written in the
spherical polar coordinates [56,57]:

ds2 ¼ −

 
1 − M

2RaðtÞ
1þ M

2RaðtÞ

!
2

dt2 þ a2ðtÞ
�
1þ M

2RaðtÞ
�

4

× ðdR2 þ R2dΩ2Þ: ð75Þ

Defining the proper radius r ¼ RaðtÞð1þM=2RaðtÞÞ2, the
above metric can be rewritten as

ds2 ¼ −
�
1 −

2M
r

−H2r2
�
dt2 − 2Hr

�
1 −

2M
r

�
−1
2

drdt

þ
�
1 −

2M
r

�
−1
dr2 þ r2dΩ2: ð76Þ

For H ¼ H0, the above simply represents the
Schwarzschild–de Sitter spacetime. In particular, defining

t ¼ T −H0

Z
rdr

ð1 − 2M=rÞ12ð1 − 2M=r −H2
0r

2Þ ;

the above metric with H ¼ H0 takes the standard form of
the Schwarzschild–de Sitter,

ds2 ¼ −
�
1−

2M
r

−H2
0r

2

�
dT2 þ

�
1−

2M
r

−H2
0r

2

�
−1
dr2

þ r2dΩ2; ð77Þ

whereas for a generic scale factor, we find, in place of
Eqs. (74) or (76),

ds2 ¼ −
�
1 −

2M
r

−H2ðT; rÞr2
�
dT2 þ 2rdTdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2M=rÞp �

H0ð1 − 2M
r −H2ðT; rÞr2Þ

ð1 − 2M
r −H2

0r
2Þ −HðT; rÞ

�

þ dr2

ð1 − 2M=rÞ
�
1þ 2HðT; rÞH0r2

ð1 − 2M
r −H2

0r
2Þ −

H2
0r

2ð1 − 2M
r −H2ðT; rÞr2Þ

ð1 − 2M
r −H2

0r
2Þ2

�
þ r2dΩ2; ð78Þ

in which setting H → H0 recovers the Schwarzschild–de
Sitter spacetime. Note that the above metric could also
represent the dynamical horizon of a black hole. The
dynamical cosmological and black hole apparent horizons
are given by the larger and the smaller roots of gTT ¼ 0,
respectively.

First, we shall be interested in the dynamics of space-
times in Eqs. (74) or (78) when they are close to the
de Sitter or Schwarzschild–de Sitter spacetimes. In that
case, the Hubble rate, H ¼ _a=a, corresponding to the
scale factors of Eqs. (68) and (69), takes the form
H0ð1þ δHðT; rÞÞ (with H0t ≫ 1), where
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δHðT; rÞ ≈ 6H0tðT; rÞe−3H0tðT;rÞ ðfor ΛCDMÞ;
δHðT; rÞ ≈ 8H0tðT; rÞe−4H0tðT;rÞ ðfor Λ radiationÞ:

ð79Þ

The above relations show that the Λ-radiation universe
evolves faster to the de Sitter spacetime than does ΛCDM,
just because of the fact that the pressure of the radiation
dilutes itself faster than the cold dark matter. Equation (74)
takes the form up to OðδHÞ:

ds2 ¼ −ð1 − r2H2
0 − 2r2H2

0δHðT; rÞÞdT2

− 2δHðT; rÞH0r
1þH2

0r
2

1 −H2
0r

2
dTdr

þ ð1 −H2
0r

2Þ−1
�
1þ 2δHðT; rÞr2H2

0

1 −H2
0r

2

�
dr2 þ r2dΩ2:

ð80Þ

We note that we must take the δH → 0 limit before taking
the limit r → H−1

0 , as the de Sitter cosmological horizon
radius is larger than the dynamical Hubble radius
H−1ðT; rÞ, and our coordinate system is well behaved only
up to the latter. Likewise, Eq. (78) becomes

ds2 ¼ −
�
1 −

2M
r

− r2H2
0 − 2r2H2

0δHðT; rÞ
�
dT2

−
2H0δHðT; rÞrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − 2M=rÞp ð1 − 2M

r þH2
0r

2Þ
ð1 − 2M

r −H2
0r

2Þ dTdr

þ dr2

ð1 − 2M=r −H2
0r

2Þ
�
1þ 2H2

0r
2δHðT; rÞ

ð1 − 2M=r −H2
0r

2Þ
�

þ r2dΩ2: ð81Þ

The spacetimes in Eqs. (80) and (81), now being close to
the de Sitter or the Schwarzschild–de Sitter (respectively)
can be treated as quasistatic. We shall use these two forms
of the actual metrics in order to explicitly evaluate the
entropy of a box filled with ideal gas in the next section.

B. Calculation of the entropy

Let us consider Eq. (80), in which we need to first obtain
a suitable spatial hypersurface and an orthogonal timelike
vector field, χa. Certainly, the most convenient choice of
the spatial hypersurface would be the ðr; θ;ϕÞ hyper-
surfaces. Since ð∂TÞa is not orthogonal to that hypersurface,
we define a vector field

χa ¼ ð∂TÞa −
ð∂T · ∂rÞ
ð∂r · ∂rÞ

ð∂rÞa: ð82Þ

Clearly, the above construction is analogous to what we
did in the stationary axisymmetric case, with the difference

that ð∂rÞa is not a Killing vector field here. We have the
norm of χa,

χaχa ¼ − ~β2 ¼ −ð1 − r2H2
0 − 2r2H2

0δHðT; rÞÞ þOðδHÞ2;
ð83Þ

guaranteeing that χa is indeed timelike within the current
Hubble radius. Since by construction χað∂rÞa ¼ 0, we shall
use χa in Eq. (30). Putting these all together, and using the
momentum dispersion relation papa ¼ −m2, the phase
space volume, Eq. (30), becomes

PðEðTÞÞ ¼ 4π

3

Z
drdθ sin θdϕ

r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2

p
×

�
1þ r2H2

0δHðT; rÞ
1 −H2

0r
2

�

×

�
E2ðr; TÞ

1 −H2
0r

2 − 2r2H2
0δHðT; rÞ −m2

�3
2

; ð84Þ

where we have defined Eðr; TÞ ¼ −paχ
a; and since χa is

not a Killing vector field here, this quantity is not a
constant. Setting H0 ¼ 0 corresponds to the flat spacetime,
whereas setting δHðT; rÞ ¼ 0 corresponds to the de Sitter
spacetime, which we shall briefly consider first, following
Ref. [39]. Note that in this limit, the vector field χa is
Killing, and E should be regarded as the conserved energy.
Once again, we need to impose the Planck-scale cutoff in

probing the near-horizon geometry. But we can now use the
radial coordinate itself for this purpose, unlike in the
stationary axisymmetric spacetimes. Let us imagine that
the box is close to the cosmological event horizon, with its
sides located at ra (the outer side, closer to the horizon) and
rb (the inner side). Let ra ¼ H−1

0 − La and rb ¼ H−1
0 − Lb.

We choose La to be such that it is related to the Planck
length LP as

LP ¼
Z

H−1
0

H−1
0
−La

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2

p ¼
ffiffiffiffiffiffiffiffi
2La

H0

s
: ð85Þ

We assume that LP ≪ H−1
0 , which is very natural, owing to

the observed tiny value of the cosmological constant. The
cosmological event horizon has a negative surface gravity
−κC ¼ −H0, owing to the repulsive effect. The integral in
Eq. (84) for the de Sitter space becomes, as r → H−1

0 ,

PðEÞ ¼ 4πE3

3

Z
ra

rb

dr sin θdθdϕ
r2

ð1 −H2
0r

2Þ2 ; ð86Þ

which yields, after using Eq. (85) at the leading order,

PðEÞ ≈ 2πE3

3

A⊥
L2
Pκ

3
C
; ð87Þ
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where as earlier, A⊥ is the transverse area of the box,
tangent to the cosmological event horizon. The partition
function is obtained from the second relation in Eq. (29),

QðβÞ ¼ 4πA⊥
β3κ3CL

2
P
: ð88Þ

Now, using Eq. (85), we find ð1 −H2
0r

2Þjr¼ra ≈ L2
PH

2
0.

Putting this back into the above equation, we get

QðβÞ ¼ 4πA⊥LP

β3locðraÞ
; ð89Þ

where βlocðraÞ ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffi
L2
PH

2
0

p
is the inverse of the blueshifted

local temperature as earlier. For N noninteracting particles,
we find the partition function to be QN ¼ QNðβÞ and the
entropy

S ¼ N

�
ln

�
4πLPA⊥
Nβ3locðraÞ

�
þ 3

�
; ð90Þ

which, as expected, is exactly formally similar to the result
for stationary axisymmetric spacetimes, Eq. (38).
Let us consider the generic case now. We cannot evaluate

Eq. (84) along the above lines, as we do not know the
behavior of the function Eðr; TÞ. However, we can still
determine the scaling properties of the entropy when the
spacetime is close to the de Sitter, as follows.
The Hubble horizon radius rCðTÞ is given in this case by

gTT ¼ −ð1 −H2
0r

2 − 2r2H2
0δHÞ ¼ 0:

rCðTÞ ≈
1

H0

ð1 − δHÞ: ð91Þ

When one side of the box is close to the Hubble horizon,
the integral of Eq. (84) diverges. In order to regularize
this integral, we need to define a time-dependent cutoff,
LPðTÞ, as

LPðTÞ ¼
Z

rCðTÞ

rCðTÞ−La

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2 − 2r2H2

0δH
p ; ð92Þ

where, as in Eq. (85), ðrCðTÞ − LaÞ is the (time-dependent)
radial coordinate of the side of the box which is close to the
Hubble horizon. (If we set δH ¼ 0 above, we recover the
Planck length LP as the cutoff.) Assuming that the length
scale of the box is much smaller compared to the horizon
length scale, we have

LPðTÞ ≈
ffiffiffiffiffiffiffiffi
2La

H

r
: ð93Þ

We can also define the “surface gravity” of the Hubble
horizon as κ2ðTÞ ≔ 1

4 ~β2
gabð∇a

~β2Þð∇b
~β2Þ, which becomes,

to the leading order,

−κðTÞ ≈ −HðTÞ ¼ −H0ð1þ δHÞ þOðδHÞ2: ð94Þ

Now, by noting that in the leading order we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −H2

0r
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2H2ðT; rÞ

q �
1þ H2

0r
2δH

1 −H2
0r

2

�
;

Eq. (84) becomes, when the box is close to the Hubble
horizon,

PðEðTÞÞ ≈ 4π

3

Z
ra

rb

dr sin θdθdϕ
r2E3ðr; TÞ

ð1 − r2H2ðT; rÞÞ2 ;

ð95Þ

which is formally similar to the Killing horizon case,
certainly due to the quasi–de Sitter approximation. Since
in this limit δH ≪ 1 in Eq. (79), it follows that the function
Eðr; TÞ varies slowly compared to the divergent denom-
inator of the above integrand. Also, we can pull the r2 ¼
r2CðTÞ term outside the integration. Putting all of these
together and performing the angular integration, we obtain

PðEðTÞÞ≈ 4πE3ðTÞA⊥ðTÞ
3

Z
ra¼rCðTÞ−La

rb¼rCðTÞ−Lb

dr
ð1− r2H2ðT;rÞÞ2 ;

ð96Þ

where A⊥ðtÞ ¼ Ωr2CðTÞ is the section of the transverse area
of the Hubble horizon, parallel to the approaching side of
the box, with Ω being the relevant solid angle. This
expression could further be simplified as

PðEðTÞÞ ≈ πE3ðTÞA⊥ðTÞ
3

Z
ra¼rCðTÞ−La

rb¼rCðTÞ−Lb

dr
κ2ðTÞðrCðTÞ − rÞ2

ð97Þ

and could easily be evaluated by using Eqs. (91), (93), and
(94), and once again the fact that δH is a slowly varying
quantity:

PðEðTÞÞ ≈ 2πE3ðTÞA⊥ðTÞ
3κ3ðTÞL2

PðTÞ
: ð98Þ

The corresponding expression for the entropy becomes

S ≈ N

�
ln

�
4πLPðTÞA⊥ðTÞ

Nβ3locðTÞ
�
þ 3

�
; ð99Þ

which is formally similar to the result in the case of the de
Sitter spacetime. Since all the time-dependent quantities
appearing above have a smooth de Sitter limit, the above
expression for the entropy asymptotes to Eq. (90) at late
times. (To the best of our knowledge, this is the first
demonstration of the emergence of the entropy-area
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relation in a physical scenario for a Hubble horizon.) Even
though we have performed the above computations in the
asymptotic de Sitter limit, we shall argue at the end of this
section that such area scaling should occur in the case of a
generic Hubble horizon as well. In other words, our
analysis shows that the area scaling for the entropy for a
Killing horizon, Eq. (90), should come from a smooth limit
from a non-Killing or dynamical horizon.
There is, however, one caveat to the above derivation.

The notion of the entropy of a given system is usually
related to the lack of information to the observer, as
happens in the case of a null surface, e.g. Ref. [27]. For
such surfaces, we get an area scaling due to the piling up of
accessible states near the horizon [37,38] for the observers
who do not cross the surface. This also makes the Planck-
scale cutoff imposed earlier physically meaningful. On the
other hand, since the Hubble horizons are not null surfaces,
the time-dependent cutoff LPðTÞ used in Eq. (98) should
perhaps be regarded as merely a regulator to handle the
divergence of the near-horizon integral.
The above analysis works for the McVittie spacetime of

Eq. (81) as well, for which the dynamical black hole
ðrHðTÞÞ and the Hubble horizons (rCðTÞ) are the two real
positive roots of

ð1 − 2M=r − r2H2
0 − 2r2H2

0δHðT; rÞÞ ¼ 0:

The integral of Eq. (95) now modifies to, when close to
either of these horizons,

PðEðTÞÞ ≈ 4π

3

Z
ra

rb

dr sin θdθdϕ

×
r2E3ðTÞ

ð1 − 2M=r − r2H2
0 − 2r2H2

0δHÞ2 : ð100Þ

By taking one side of the box close to either of the horizons,
the above integral could be evaluated as earlier to obtain
similar results, by expanding various terms to OðδHÞ from
their stationary (i.e., Schwarzschild–de Sitter) values.
Let us finally consider the generic case of Eq. (74) and

take the near-Hubble-horizon limit,

PðEðTÞÞ

≈
4π

3

Z
ra

rb

dr sin θdθdϕ

×
r2E3ðr; TÞ�

1þ 2r2HðT;rÞH0

1−H2
0
r2 − H2

0
r2ð1−r2H2ðT;rÞÞ
ð1−H2

0
r2Þ2

	
1=2ð1 − r2H2Þ3=2

:

ð101Þ
To the best of our knowledge, the above integral cannot be
evaluated analytically. However, we may easily estimate it
and argue in favor of the area scaling near the Hubble
horizon as follows. Since the ð1 −H2ðT; rÞr2Þ term in the

denominator is divergent near the Hubble horizon and the
integration is defined on a constant time hypersurface, we
may safely pull the energy function out of the integral as
earlier. Also, we can define the time-dependent cutoff near
the Hubble horizon:

LPðTÞ ¼
Z

rCðTÞ

rCðTÞ−La

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2H2ðT; rÞ

p :

Now, if we are far away from the de Sitter limit,
H0 ≪ HðT; rÞ, we may pull the

ffiffiffiffiffiffi
grr

p
term out of the

integral as well. Putting these all together, and performing
the trivial angular integration, we obtain

PðEðTÞÞ ≈ 4πA⊥ðTÞE3ðTÞ=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H0=H

1−H2
0
=H2

q Z
ra

rb

dr

ð1 − r2H2Þ3=2 : ð102Þ

Even though it is not similar to what we obtain for the case
of the Killing horizon, Eq. (86), an area scaling is manifest.
In fact, we note that the quadratic divergence in the
denominator for the Killing horizon is “tamed” here a
little bit—indicating a lesser value of the probability
function compared to a Killing horizon of the same area.
Perhaps this should be attributed to the fact that a Hubble
horizon cannot hide information completely—modes can
reenter through them.

IV. SUMMARY AND DISCUSSIONS

It was shown a few years back in Ref. [39] that when a
box of ideal gas approaches the Killing horizon of a static
spherically symmetric spacetime, the entropy of the gas
develops an area dependence. In this work, we have
extended this result for nonstatic spacetimes with a positive
cosmological constant, like the stationary axisymmetric
and the cosmological spacetimes.
For the stationary axisymmetric spacetimes, the impo-

sition of a Planck-length cutoff in the near-horizon diver-
gent integral requires care, and we have accomplished this
by using the norm of the timelike, hypersurface orthogonal
vector field χa. The final result in Eq. (38) is exactly the
same as that of the static and spherically symmetric
spacetime. We also have provided an expression for generic
spacetime dimensions in Eq. (41). These results hold on an
equal footing for both the black hole and the cosmological
event horizons. We note that the techniques developed in
Ref. [32] (and references therein) were very essential in this
computation, as the coordinate R defined in Eq. (16) was
very crucial in defining the Planck-length cutoff near the
horizon, irrespective of the path of the box.
In the case of cosmological spacetimes evolving to the

(Schwarzschild-) de Sitter spacetime, we first built a
suitable coordinate system to deal with the Hubble horizon,
Eqs. (74) and (78). When the spacetime is close to the de
Sitter model, we have explicitly evaluated the leading-order
expression of the entropy of the gas when it is close to the
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Hubble horizon and have shown that it is formally similar
to that of the de Sitter. For a generic cosmological
spacetime, also, we also have formally demonstrated the
area scaling when the box is close to the Hubble horizon.
It would be highly interesting to apply our methods to

deal with various nonstatic spacetimes in other approaches
as well, such as the so-called brick wall formalism [58]. We
hope to return to this issue in the near future.
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