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We study the heat capacity of a static system of self-gravitating radiations analytically in the context of
general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central
part and replace it with a regular spherically symmetric distribution of matters of which specifications
we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner
and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters
at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner
boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an
analytic form for the heat capacity, we use the thermodynamic identity δSrad ¼ βδMrad additionally, which
is derived from the variational relation of the entropy formula with the restriction that the mass inside the
inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the
presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An
interesting discovery is that another legitimate temperature can be defined at the inner boundary which is
different from the asymptotic one β−1.
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I. INTRODUCTION

In 1980, Landau and Lifshitz [1] pointed out that systems
bound by long range forces might exhibit negative heat
capacity even though the specific heat of each volume
element is positive. Since then, many such examples were
found, e.g., mainly stars and black holes. A self-gravitating
isothermal sphere also belongs to this class, which can be
regarded as a model of a small dense nucleus of stellar
systems [2]. Based on general relativity, the model was
dealt by Sorkin, Wald, and Jiu [3] in 1981 as a spherically
symmetric solution which maximizes entropy. Schmidt and
Homann [4] called the geometry a “photon star.” The heat
capacity and stability of the solution were further analyzed
in Refs. [5–8]. Thereafter, the system has drawn attentions
repeatedly in relation to the entropy bound [9,10], black
hole thermodynamics [11], maximum entropy principle
[12–14], holographic principle [15–17], and conjecture
excluding black hole firewalls [18]. A system of self-
gravitating radiations in an anti-de Sitter spacetime was
also pursued [19–21]. Studies on the system of self-
gravitating perfect fluids are ongoing [22]. An interesting
extension of the self-gravitating system was presented in
Refs. [4,23] where a conical singularity was inserted at the
center as an independent mass source from the radiation.
Some of the singular solutions were argued to have an
interesting geometry, which is similar to an event horizon
in the sense that 1 − 2mðrÞ=r has a minimum value close to
zero. Analytic approximation was tried to understand the
situation that a black hole is in equilibrium with the

radiations [24]. It was also argued that the thermodynamics
of a black hole in equilibrium implies the breakdown of
Einstein equations on a macroscopic near-horizon shell
[25]. The geometrical details of solutions having conical
singularity were dealt in Ref. [26].
Let us consider a static spherically symmetric system

of self-gravitating radiations confined in a spherical shell
bounded by two boundaries located at r ¼ r− and r ¼ rþ
in the context of general relativity. For a generic time
symmetric data, the initial value constraint equations
become simply ð3ÞR ¼ 16πρ. As described in Ref. [3],
this determines the spatial metric to be the form
hijdxidxj ¼ ½1 − 2mðrÞ=r�−1dr2 þ r2dΩ2, where

mðrÞ ¼ M− þ 4π

Z
r

r−

ρðr0Þr02dr0: ð1Þ

Here M− represents the mass inside the inner boundary
at r−. At present, we do not assume anything about the
nature ofM− except for the spherical symmetry. Therefore,
it can take negative value. The mass of the radiations in the
shell is

Mrad ¼ Mþ −M−; Mþ ≡ lim
r→∞

mðrÞ; ð2Þ

where Mþ denotes the total mass of the solution. We
neglect the energy density of the confining shell and
assume that no matters lie outside of the outer boundary
at rþ. We also assume that the radiation is thermodynami-
cally disconnected with matters inside r−. The energy*hckim@ut.ac.kr
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density of the radiation at the outer surface of the shell with
local temperature Tþ is

ρðrþÞ ¼ σT4þ; ð3Þ

where σ is the Stefan-Boltzmann constant.
Formally, the entropy of the radiation with equation of

state, ρðrÞ ¼ 3pðrÞ, can be obtained by integrating its
entropy density over the volume, [3]

s ¼ 4

3
σT3; Srad ¼

Z
rþ

r−

LðrÞdr;

L≡ 4ð4πσÞ1=4
3

r1=2½m0ðrÞ�3=4
χðrÞ ; ð4Þ

where χðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2mðrÞ=rp

. The variation of Srad with
respect to a small change of mðrÞ gives

δSrad ¼
Z

rþ

r−

�∂L
∂m −

d
dr

∂L
∂m0

�
δmdrþ

� ∂L
∂m0 δm

�
rþ

r−

¼
Z

rþ

r−

δSrad
δm

δmdrþ βþδMþ − β−δM−; ð5Þ

where

β� ≡
� ∂L
∂m0

�
r→r�

¼
�
r1=2

χ

�
4πσ

m0ðrÞ
�

1=4
�
r→r�

: ð6Þ

Noting the relation of mass with the surface energy density
in Eqs. (1) and (3), the local temperature Tþ is related with
β≡ βþ as

β−1 ¼ χþTþ: ð7Þ

One may introduce the metric component gtt so that the
local temperature at r is given by the Doppler-shifted
temperature as,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrÞ

p
TðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gttðrÞ

p �
ρðrÞ
σ

�
1=4

¼ β−1;

gttðrþÞ ¼ −grrðrþÞ−1; ð8Þ

where the second condition is introduced so that the metric
outside the shell is just the vacuum Schwarzschild solution.
This result can also be obtained by solving the Einstein’s
equation directly. This equation indicates that β−1 is the
global temperature measured at the asymptotic region. On
the other hand, β− is not directly related with the local
temperature T− by the relation in Eq. (8) but is related by

β−1− ¼ χ−T− ¼ χ−
χþ

�
ρ−
ρþ

�
1=4

β−1þ : ð9Þ

In a case, β− could play a role of a temperature with respect
to the change of mass Mrad, which possibility will be
discussed in the last section.
Given the temperature β−1, the heat capacity for fixed

volume of the shells is defined by

CV ≡
�∂Mrad

∂β−1
�

r�
¼

�∂Mþ
∂β−1

�
rþ

−
�∂M−

∂β−1
�

r�
: ð10Þ

In the present case, the second term vanishes becauseM− is
held. In fact, the fixed volume condition is not transparent
because the metric grr contributes to the volume. We simply
use the terminology to represent that the areal radius of
the inner and the outer boundaries do not change. Direct
analytic calculation of the heat capacity is impossible
because it requires to solve the corresponding equation
of motions analytically, which was solved only numerically
in the previous literatures except for a few specific
situations. However, we find a detour through the variation
of entropy in this work.
Introducing scale invariant variables u and v as

u≡2mðrÞ
r

; v≡dmðrÞ
dr

¼4πr2ρðrÞ¼4πσr2TðrÞ4; ð11Þ

the variational equation δSrad=δm ¼ 0 becomes a first order
differential equation for u and v,

dv
du

¼ fðu; vÞ≡ 2vð1 − 2u − 2v=3Þ
ð1 − uÞð2v − uÞ : ð12Þ

This equation is equivalent to the general relativistic
Tolman-Oppenheimer-Volkoff equation of hydrostatic
equilibrium for a radiation. The allowed range of ðu; vÞ
is u < 1 and v ≥ 0, where each inequality represents the
fact that the spacetimes is static and the energy density
of radiations is non-negative, respectively. Integrating
Eq. (12) on the ðu; vÞ plane, solution curves were found
in Refs. [3,24]. Any solution curve will be parallel to the
u-axis when it crosses the line

P∶ 2uþ 2v
3

¼ 1; ð13Þ

and is parallel to the v-axis when it crosses the line

H∶ u ¼ 2v: ð14Þ

The solution curve eventually converges to the point
R≡ ð3=7; 3=14Þ where the line P crosses H. A specific
solution curve Cν is characterized by

ν≡ 1 − uH ¼ 1 −
2mðrHÞ

rH
; ð15Þ
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the orthogonal distance of Cν from the line u ¼ 1 on the
ðu; vÞ plane [26]. Here the subscript H represents the point
where Cν crosses H, which is the position of the approxi-
mate horizon defined by a surface that resembles an
apparent horizon [26]. We quote the name “approximate
horizon” from Ref. [25]. The value of ν varies from zero to
νr ≈ 0.50735. The value C0 and Cνr represent solution
curves on the verge of the formation of an event horizon
and the everywhere regular solution, respectively. A given
solution curve is parametrized by a scale invariant variable

ξ≡ log
r
rH

: ð16Þ

Therefore, the physically relevant region of ðu; vÞ plane can
be equivalently coordinated by using the set ðν; ξÞ. Now, a
specific sphere solution of radiation can be characterized
by choosing a boundary point on a curve Cν after picking
the radius of the boundary rþ.
A given spherical shell of radiation can be denoted by

four different numbers, ðν; rH; eξþ ; eξ−Þ, representing a
specific solution curve, the radius of the approximate
horizon for the solution curve, and the positions of the
inner and the outer boundaries relative to the approximate
horizon, respectively. The physical parameters at the outer
boundary are related with the total mass, the local temper-
ature, and the radius as

rþ ¼ rHeξþ ; uþ ≡ uνðξþÞ ¼
2Mþ
rþ

;

vþ ≡ vνðξþÞ ¼ 4πr2þρðrþÞ ¼ 4πσr2þT4þ; ð17Þ

where we put the subscript ν to u and v to represent the
specific solution curve Cν. The physical parameters at the
inner boundary are given by

r− ¼ rHeξ− ; u− ≡ uνðξ−Þ ¼
2M−

r−
;

v− ≡ vνðξ−Þ ¼ 4πr2−ρðr−Þ: ð18Þ

In this work, the value of u− and r− are held. On the other
hand, v− will be determined by tracing in the solution curve
Cν from the data at the outer boundary.
Even though the static solution of the self-gravitating

radiations was studied well, its stability needs additional
study. To achieve this purpose we study its heat capacity. In
Sec. II, we first derive the relation between the variations of
ðu; vÞ and those of ðν; ξÞ. By using the fact that ðδν; δξÞ at
the outer boundary is the same as that at the inner boundary
if ðuþ; vþÞ and ðu−; v−Þ are on a given solution curve Cν,
we relate the variations of physical parameters at the outer
boundary with those at the inner boundary. In Sec. III, we
calculate the heat capacity for fixed volume from the
variational equation of entropy. We show that the general
heat capacity is located in the middle of the two extreme

forms, that of the regular solution and that of other extreme.
In Sec. IV, we study various limiting behaviors of the heat
capacity. We summarize and discuss the results in Sec. V.
There are three appendices which deal with the detailed
calculations.

II. VARIATIONS OF THE SCALE
INVARIANT VARIABLES

The difficulty in calculating the heat capacity of spheri-
cal shell of matters lays on the fact that the physical
parameters at the inner boundary are dependent on those at
the outer boundary, where the exact relation between them
requires the knowledge of analytic solutions. Rather than
searching for an exact analytic solution, we find a varia-
tional relation between them. Because δr− ¼ 0 ¼ δM−,
we have δu− ¼ 0 leaving only δv− be dependent on the
variations at the outer boundary. We study how to relate the
variations at the outer boundary with those at the inner
boundary in a general setting. To do this, we calculate δν
and δξ corresponding to the variations ðδuþ; δvþÞ. Then,
we use (i) The variation δν is independent of the position of
ðu−; v−Þ if it is on the same solution curve Cν as ðuþ; vþÞ.
(ii) The variation δξ ¼ δr=r − δrH=rH is also independent
of the position of ðu−; v−Þ if r ¼ r� are held. (iii) ν and ξ
defines an orthogonal coordinates system which is equiv-
alent to ðu; vÞ physically.
With these in mind, we find, in the Appendices A and B,

that the variations at the outer boundary are related with
those at the inner boundary as

δu− ¼ fþf−
1þ f2þ

�
B−

Bþ
þ 1

fþf−

2v− − u−
2vþ − uþ

�
δuþ

þ f−
1þ f2þ

�
−
B−

Bþ
þ fþ

f−

2v− − u−
2vþ − uþ

�
δvþ; ð19Þ

δv− ¼ fþ
1þ f2þ

�
−
B−

Bþ
þ f−
fþ

2v− − u−
2vþ − uþ

�
δuþ

þ 1

1þ f2þ

�
B−

Bþ
þ fþf−

2v− − u−
2vþ − uþ

�
δvþ: ð20Þ

where f ¼ F=G and B� ≡ B�ðu�; v�Þ is, in Appendix B,
given by

Bðu; vÞ ¼ αν

ffiffiffiffiffiffi
rH
r

r
v3=4χG
F2 þG2

;

αν ≡ 23=4

3

ð7ν − 4Þð1 − νÞ1=4
ν1=2

: ð21Þ

Here ν and r=rH ¼ eξ are implicitly dependent on u and v
and

F≡ 2v

�
1 − 2u −

2v
3

�
; G≡ ð1 − uÞð2v − uÞ: ð22Þ

HEAT CAPACITY OF A SELF-GRAVITATING SPHERICAL … PHYSICAL REVIEW D 96, 084029 (2017)

084029-3



The function Bðu; vÞ goes to zero on H as expected in
Eq. (A7). It vanishes on v ¼ 0 and u ¼ 1 too. It diverges at
the point R. The proportionality constant αν is negative
definite because ν is restricted to be 0 < ν ≤ νr < 4=7.
Based on the variational relations (19) and (20), we

obtain, in Appendix B,

� ∂v−
∂Mþ

�
r�;M−

¼ 2

rþ

f−þf−1−
fþþf−1þ

2v−−u−
2vþ−uþ

�
1

fþ
þ2rþvþ

Tþ
C−1
local

�
;

ð23Þ

where

Clocal ≡
�∂Mrad

∂Tþ

�
r�;M−

: ð24Þ

The explicit values of Clocal are obtained at Eq. (C6) in
Appendix C.

III. HEAT CAPACITY

The heat capacity (10) can be obtained based on the
value of Clocal. At the present case, the second term in
Eq. (10) vanishes because M− is held. Let us calculate the
first term in the right-hand side. Varying Eq. (7), we get

δβ−1 ¼ MþTþ
χ2r2þ

δrþ −
Tþ
rþχ

δMþ þ χδTþ; ð25Þ

where we regard β as a function of Tþ, Mþ, and rþ.
Generally, the three variations δTþ, δMþ, and δrþ are
independent. However, if the state inside the inner boun-
dary is invariant under the changes of the physical
parameters at the outer boundary, i.e :δr− ¼ 0 ¼ δM−,
only two of the three variations will be independent. If the
size of the shell does not change, δrþ ¼ 0, only one
independent variation remains. In this case, the variations
δTþ and δMþ must be related. Dividing Eq. (25) by δMþ
we find that the heat capacity (10) is related with Clocal by

1

β−1CV
¼ 1

TþClocal
−

1

rþχ2
: ð26Þ

Note that the heat capacity CV is positive when

0 < Clocal <
rþχ2

Tþ
:

Therefore, the positivity of the heat capacity is not always
guaranteed by the positivity of Clocal.
Inserting the value of Clocal in Eqs. (C6) to (26), the heat

capacity for a shell of radiations is given by

CV ¼ rþχ2

β−1
1 −A

χ2fþ=ð2vþÞ − 1þ ðχ2=ð2vþfþÞ þ 1ÞA ;

A≡
ffiffiffiffiffi
r−
rþ

r
Aþ
A−

; ð27Þ

where A� ≡ Aðu�; v�Þ with

ð2v−uÞAðu;vÞ≡v3=4

χ

f
ð2v−uÞð1þf2Þ¼

χv3=4F
F2þG2

: ð28Þ

Note that the function ð2v − uÞAðu; vÞ is a regular function
over the whole range of physical interest other than the
point R, where R corresponds to the asymptotic infinity
r → ∞ of all solution curves. It vanishes on the lines P
and v ¼ 0. The function Aðu; vÞ is positive definite in the
region with u → −∞ and changes signature when a
solution curve crosses the lines P and H.
In the limit A → 0, the heat capacity reproduces that of

the regular sphere given in Ref. [5]:

Creg
V ¼

�∂Mþ
∂β−1

�
rþ

¼ −
rþχ2

β−1
2vþ − uþ

8vþ=3 − 1þ uþ
: ð29Þ

The heat capacity changes sign on the lineH and is singular
on the line

Q∶
8vþ
3

þ uþ ¼ 1: ð30Þ

On the opposite limit A → ∞, we have

CP
V≡ lim

A→∞
CV

¼−
rþχ2

β−1
4v2ð1−2uþ−2vþ=3Þ

ð1−uþÞ2ð2vþ−uþÞþ4v2þð1−2uþ−2vþ=3Þ
:

ð31Þ

As shown in the right panel of Fig. 1, the heat capacity in
this limit vanishes on the line P and is singular on the curve

SP∶ ð1 − uþÞ2ð2vþ − uþÞ þ 4v2þð1 − 2uþ − 2vþ=3Þ ¼ 0:

ð32Þ

The curve passes the pointR. For vþ ≪ 1, it overlaps with
the line H and, for vþ ≫ 1, approaches the line

1 − uþ ¼ γvþ;

γ ¼ 2

3

�
−1 −

22=3

ð4þ 3
ffiffiffi
2

p Þ1=3 þ ð8þ 6
ffiffiffi
2

p
Þ1=3

�

≈ 0.5062: ð33Þ

These behaviors are manifest in the right panel of Fig. 1.
Note that the form of the heat capacity are completely
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different from that of the regular solution. As for a regular
solution, Creg

V is singular on the line Q and changes sign on
H. On the other hand, CP

V is singular on SP and vanishes on
the line P. This implies that the excision of the central

conical singularity plays an important role in the thermo-
dynamics of the system.
Writing the heat capacity (27) explicitly in terms of

ðuþ; vþÞ, we get

CV ¼ rþχ2

β−1

ð2vþ − uþÞðF2þ þ G2þÞ − v3=4þ χþ
A−ðrþ=r−Þ1=2 Fþ

ð1 − uþ − 8vþ
3
ÞðF2þ þ G2þÞ þ v−1=4þ χþ

2A−ðrþ=r−Þ1=2 ð2vþFþ þ χ2þGþÞ
: ð34Þ

Note that the information at the inner boundary come into
with the combination of A−r−1=2− . The denominator of
Eq. (34) vanishes on the curve given by

S∶
�
1 − uþ −

8vþ
3

�
ðF2þ þ G2þÞ

þ v−1=4þ χþ
2A−ðrþ=r−Þ1=2

ð2vþFþ þ χ2þGþÞ ¼ 0: ð35Þ

On this curve, the heat capacity is singular. The curve
passesR along the curve SP because Fþ → 0 and Gþ → 0
at R leaving the last term in Eq. (35) as the first nontrivial
corrections. Equation (35) indicates that the singular curve
S must be around the line Q and the curve SP when
A−ðrþ=r−Þ1=2 ≫ 1 and A−ðrþ=r−Þ1=2 ≪ 1, respectively.
These behaviors are manifest in the left and right panels
of Fig. 2, respectively. As Fþ or Gþ are larger, i.e., χ or vþ
increases, the singular curve gradually approaches the line

FIG. 2. β−1þ CV=rþ on the plane ðuþ; vþÞ. The heat capacities for A−ðrþ=r−Þ1=2 ¼ 20, 1, and 1=20, respectively from the left.

FIG. 1. Heat capacities, β−1CV=rþ, for the limits of A → 0 (L) and A → ∞ (R).
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Q. Combining the pictures in Figs. 1 and 2, one may find
that the singular curve gradually change from the line Q to
the curve SP as A−ðrþ=r−Þ1=2 decreases.
The numerator of Eq. (34) vanishes on the curve

N∶ ð2vþ − uþÞðF2þ þG2þÞ

−
v7=4þ χ

A−ðrþ=r−Þ1=2
�
1 − 2uþ −

2vþ
3

�
¼ 0: ð36Þ

The heat capacity changes sign on N. The curve passes the
pointR along the line P because Fþ → 0 andGþ → 0 atR
leaving the last term in Eq. (36) as the first nontrivial
corrections. Equation (36) indicates that the curve N must
be located around the line H for A−ðrþ=r−Þ1=2 ≫ 1 and
around P for A−ðrþ=r−Þ1=2 ≪ 1, respectively. These
behaviors are manifest in the left and right panels of
Fig. 2, respectively. Combining the pictures in Figs. 1
and 2, one may find the curveN gradually changes from the
line H to the line P as A−ðrþ=r−Þ1=2 decreases. When

viewed from the clockwise direction centered at the
point R, the heat capacity takes positive values from N
to S and negative values elsewhere.

IV. VARIOUS LIMITS

Because the functional forms of the heat capacity are
complicated, we present various physically interesting
limits to improve our understanding on the system.

A. Thin shell limit

We first consider the thin shell limit, δr≡ rþ − r− ≪
rþ ≈ r, δu≡ uþ − u− ≪ uþ, and δv≡ vþ − v− ≪ vþ. By
using

δr ¼ rδξ ¼ rδu
2v − u

; δv ¼ fðu; vÞδu;

in this limit, the heat capacity takes the form,

χ−1CV

δr
≈

v
Tðf þ f−1Þ

�
1 − 2r

δ logA
δr

�

≈
2vð2v − uÞFG
3TðF2 þ G2Þ

�
4v2 − 4v − u2 þ 28uv=3

ð1 − uÞð2v − uÞ2 −
2

1 − 2u − 2v=3

þ 2

3

−16v3 þ 4ð7 − 13uÞv2 þ 2ðu − 1Þð5u − 3Þv − 9uðu − 1Þð2u − 1Þ
F2 þ G2

�
: ð37Þ

Interestingly, the heat capacity is regular over all physically
allowed values of ðu; vÞ ≠ R. Even though it can take both
signatures, its value change smoothly.

B. r− ≪ rH approximation

Let us next consider the “almost sphere” case which
excises only the central singularity by using the limit
r− → 0. We are interested in a solution having a conical
singularity at the center, i.e. ν ≠ νr. Solving Eqs. (11)
and (12) around the center (or simply quoting results in
Ref. [26]), one gets approximately

mðr−Þ ¼ −
μ0rH
2

þ κrH
10

�
r−
rH

�
5

; u− ¼ −
rHμ0
r−

;

v− ¼ κ

2

�
r−
rH

�
4

¼ κμ40
2

u−4− : ð38Þ

Note that there is a central conical singularity with negative
mass at r ¼ 0 unless it is excised. By using the results in
Eq. (38), we get

A− ¼ v3=4−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u−

p
2v− − u−

F−

F2
− þ G2

−

¼ 4
v7=4−

ju−j7=2
¼ 4

�
v−
u2−

�
7=4

¼ 4

�
κμ40
2u6−

�
7=4

:

Therefore, A−ðrþ=r−Þ1=2 ≪ 1 in the limit. Now, the heat
capacity takes the form in Eq. (31). Its behaviors are shown
on the right panel of Fig. 1.
Let us observe the case that both boundaries are located

around the center, r− ≪ rþ ≪ rH. The entropy of the
system is given by

Srad ¼ Sþ − S− ¼ r3=2H

6

�
8πσ

κμ20

�
1=4 rþ − r−

rH
þ � � � : ð39Þ

where

S� ¼ r3=2H

3

e3ξ�=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u�

p
�
4πσ

v�

�
1=4

�
2v�
3

þ u�

�

≈
r3=2H

3

�
8πσμ20

κ

�
1=4

�
−1þ 1

2μ0

r�
rH

þ � � �
�
:
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Note that S� has a nonvanishing negative constant con-
tribution in the r → 0 limit. The heat capacity of the system
is independent of the information at the inner boundary and
takes negative value,

CV ≈ −
2κ2rH
μ0

�
rþ
rH

�
10

þ � � � :

Therefore, the system must be unstable under perturba-
tions. The heat capacity becomes positive after the solution
curve passes the line P, where approximation rþ ≪ rH
does not hold any more.

C. Near approximate horizon case

We next consider the case that r− is located around the
approximate horizon. We assume that the approximate
horizon is about to form an event horizon, ν ∼ 0. A special
case is that the inner boundary is located exactly at the
approximate horizon. Then, the heat capacity is given by
that of the regular solution as discussed in the paragraph
just after Eq. (C6).
First, let us consider the case that both boundaries are

located around the approximate horizon, 1 − u� ≪ 1 and
ε2 ≪ vþ < v− ≪ ε−2=3, where ε ¼ 9ν=16 is a small expan-
sion parameter. In this region,1 the solution curve Cν

satisfies [26]

1 − u ≈ ε
ð2v=3þ 1Þ2ffiffiffiffiffi

2v
p þOðε2Þ: ð40Þ

The radius is given by

r ¼ rHeξ; ξ ¼ εffiffiffiffiffi
2v

p
�
1 −

v
6

�
−
11ε

12
; ð41Þ

where we choose ξ ¼ 0 atH. Note that r changes only a bit
for a large change of v in this region. This gives, by using
rþ ≃ r− ≃ rH and u≃ 1,

ð2v − uÞAffiffiffi
r

p ≈ −2−5=4
ffiffiffiffiffiffiffiffi
ε

rHv

r
⇒ A ¼

ffiffiffiffiffiffi
v−
vþ

r
2v− − 1

2vþ − 1
:

Therefore, the heat capacity becomes

χ−1CV ≈ −
εrþffiffiffi
2

p
vþTþ

�
2vþ
3

þ 1

�
ð ffiffiffiffiffiffi

vþ
p −

ffiffiffiffiffiffi
v−

p Þ

× ½2ðvþ þ v− þ ffiffiffiffiffiffiffiffiffiffiffi
vþv−

p Þ − 1�: ð42Þ

Because vþ < v−, the sign of the heat capacity is deter-
mined by the sign of 2ðvþ þ v− þ ffiffiffiffiffiffiffiffiffiffiffi

vþv−
p Þ − 1. For

v− ≥ 1=2, the heat capacity is positive definite. The heat

capacity becomes negative only if v− < 1=2 and
vþ < ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 − 3v−
p

− ffiffiffiffiffiffi
v−

p Þ=2.
We next consider the case that the both boundaries are

located in the region outside the horizon satisfying v� ≪ 1

and ε2=3 ≪ uþ < u− < 1.2 In this case, r, u, and v are
related by

v ¼ ε2

2u2ð1 − uÞ2 ; r ≈
rH
u

�
1 −

11ε

12

�
þ � � � : ð43Þ

Then, the function A is given by

Affiffiffi
r

p ≈
ε7=2

23=4r1=2H

2u − 1

u6χ10
:

Putting this to Eq. (27), the heat capacity becomes

CV ¼ rHχ2þ
β−1uþ

u6−χ10−
2u− − 1

�
2uþ − 1

u6þχ10þ
−
2u− − 1

u6−χ10−

�
: ð44Þ

Because ð2u − 1Þ=ðχ10u6) is a monotonically increasing
function of u and uþ < u−, the terms inside the parenthesis
is negative definite. Therefore, CV is positive definite
because u− < 1=2 in this region.
Finally, we consider the case that the inner and the outer

boundaries are located around the approximate horizon and
outside of the approximate horizon, respectively. The heat
capacity is given by

CV ¼ εrH
β−1

1

εuþ þ ffiffiffiffiffiffiffiffi
2v−

p ð2v− − u−Þ
≈
εrH
β−1

1ffiffiffiffiffiffiffiffi
2v−

p ð2v− − u−Þ
;

ð45Þ

where the last equality is valid unless 2v− ¼ u−. Usually,
the value of heat capacity is of OðεÞ. If the inner boundary
is located on H, the heat capacity suddenly jumps to Oð1Þ,
which value is the same as that of the regular solution in
Eq. (29) as expected just after Eq. (27).

V. SUMMARY AND DISCUSSIONS

In this work, we have studied analytically the heat
capacity of a static spherically symmetric self-gravitating
radiations in the context of general relativity. To avoid
ambiguity due to the central conical singularity, we excise
the central region and introduce an inner boundary at r−.
Then, the system inside the inner boundary is assumed
to be filled with matters of spherically symmetric distri-
bution with its total mass M− being held. Therefore, the
radiations are confined inside a shell bounded by two stiff
boundaries at rþ and r−. The distribution of the radiations
and the geometry are described by putting the boundary

1This region corresponds to ½R;S� in Ref. [26]. 2This corresponds to the region ½S;S0� in Ref. [26].
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values on a solution curve Cν on a two dimensional plane
ðu ¼ 2mðrÞ=r; v ¼ 4πr2ρÞ of scale invariant variables,
which curve can be found by solving the TOV equation.
We first derived how to relate the variations at the outer

boundary with those at the inner boundary. At the outer
boundary, there are three independent variables, rþ, Mþ,
and ρþ. To obtain the heat capacity of the radiations for
fixed volume, we have assumed that the location of the
inner and the outer boundaries are held. Then at the
outer boundary, there remains two independent variables
which can be varied. Because M− and r− are held, only v−
can be varied at the inner boundary. The variation δv− will
induce the variations δuþ and δvþ at the outer boundary
through the TOV equation. Because there are only one
variation at the inner boundary, the variations at the outer
boundary should be related and the relation shows up
as a heat capacity. To get an analytic form for the heat
capacity, we additionally use the thermodynamic identity
δSrad ¼ βδMrad, which is derived from the variation of the
entropy formulae.
Let us display a few interesting results. There are two

limiting forms for the heat capacity. (i) When the inner
boundary is located at the approximate horizon, the heat
capacity of the shell of the radiations are the same as that of
the self-gravitating sphere of regular solution. (ii) When the
inner boundary is located on the line P∶2u− þ 2v−=3 ¼ 1,
the heat capacity shows other limiting form much different
from that of the regular one. As the outer boundary
changes, a heat capacity may take singular or null values
at a specific point on the ðuþ; vþÞ plane. The singular
curve S changes from Q∶8vþ=3þuþ¼1 to SP∶ð1 − uþÞ2
ð2vþ − uþÞ þ 4v2þð1 − 2uþ − 2vþ=3Þ ¼ 0. On the other
hand, the null curve N changes from H to P. When viewed
from the clockwise direction centered on R, the heat
capacity is positive definite from N to S. For the case of
the zero size limit of the inner boundary, r− → 0, it was
shown that the heat capacity does not go to the form of the
regular solution. Rather, they approaches the opposite limit
(ii) unless the solution curve is that of the regular one.
Finally, we have obtained the heat capacity for the case that
both boundaries are located around the approximate hori-
zon. We find that there are no singularity of heat capacity
contrary to the general case.
An interesting topic is that the possibility to define a new

heat capacity such as Clocal. The heat capacity provides an
important criterion for determining stable equilibrium.
For the case of the heat capacity CV, the concavity of the
entropy is directly related with the positivity of CV because
δ2S=δM2þ ¼ −β2C−1

V . However, for the case of Clocal, the
concavity may not be directly related with the positivity of
Clocal. This is because the energy inside rþ with respect to a
local observer is not given byMþ. In this sense,Clocal cannot
play a role discriminating the concavity of the entropy.
An interesting discovery is that the variation of the

entropy of the system of the radiations in a spherical shell is

related not simply with the variation of the radiation’s mass
but also with the variation of the mass inside the inner
boundary. Once the radiations satisfy the equation of
motions in Eq. (12), the variational relation (5) of the
entropy is given with the variations at the boundaries by

δSrad ¼ βþδMþ − β−δM−

¼ βþδMrad þ ðβþ − β−ÞδM−

¼ ðβþ − β−ÞδMþ þ β−δMrad: ð46Þ

The present law is different from the ordinary thermody-
namic first law in the sense that the entropy variation
is dependent not only to δMrad but also to δM−. When
δM− ¼ 0 or βþ ¼ β−, one can identify β−1 ≡ β−1þ as the
temperature measured in the asymptotic region. On the
other hand, when δMþ ¼ 0 with δM− ≠ 0, i.e., the outer
boundary isolates the system from the outside thermody-
namically and the heats flow through the inner boundary,
β−1− plays the role of a temperature in the sense that
δSrad ¼ β−δMrad. However, β−1− is different from the
asymptotic temperature β−1 and is not directly related with
the local temperature T− by the Tolmann formula unless
ρþ ¼ ðχ4−=χ4þÞρ−. In this sense, the variational relation (46)
appears to admit two different legitimate temperatures
depending on physical situations. Mathematically, the
origin of this dual temperatures is gttðr−Þgrrðr−Þ ≠ −1.
A physical explanation for this difference is that the change
of the mass of the radiation, δMrad, through the inner
boundary must accompany with the change of the mass
inside the inner boundary, which modifies not only the
thermodynamic situation but also the gravity of the shell
through the Birkhoff’s theorem. On the other hand, the
change of mass outside of rþ does not affect the gravity
inside directly. One may define a heat capacity based on β−
too, which may raise a new instability problem of the
system. Physical implication of β− needs further studies in
the future research.
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APPENDIX A: GENERIC VARIATIONS

Let us consider the variation δξ and δν, which represent
the variations parallel to and orthogonal to the solution
curve Cν, respectively. The two variations are orthogonal to
each other and define most general changes of boundary
points, ðu; vÞ≡ ðu�; v�Þ, onCν. An important point here is
that ν is independent of the choice of the boundary point on
Cν by definition and the variation of ξ� ¼ logðr�=rHÞ is
required to be dependent only on the change of rH because
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r� are held. Therefore, we have δξþ ¼ δrH=rH ¼ δξ−. In
this subsection, we omit the subscript � for notational
simplicity.
From Eqs. (11) and (16), we get ð∂u=∂ξÞ ¼ 2v − u. By

using Eq. (12), the tangent along Cν is

∂
∂ξ ¼ ð2v − uÞ ∂

∂uþ ð2v − uÞfðu; vÞ ∂
∂v ; ðA1Þ

where fðu; vÞ ¼ ðdv=duÞν along the solution curve given
in Eq. (12). On the other hand, the derivative orthogonal to
Cν can be written as

∂
∂ν ¼ −Bðu; vÞfðu; vÞ ∂

∂uþ Bðu; vÞ ∂
∂v ; ðA2Þ

where we use ∂=∂ξ⊥∂=∂ν and B is a local function of
ðu; vÞ defined by

Bðu; vÞ≡
�∂v
∂ν

�
ξ

: ðA3Þ

The explicit functional form of B will be determined at
Eq. (C9) in Appendix B from consistency. From Eqs. (A1)
and (A2), we determine δu and δv in terms of δν and δξ as,

δu ¼ ð2v − uÞδξ − Bfδν; δv ¼ ð2v − uÞfδξþ Bδν:

ðA4Þ

Inverting Eq. (A4), the variation δν and δξ are given by

δν ¼ −fδuþ δv
Bð1þ f2Þ ; δξ ¼ δuþ fδv

ð2v − uÞð1þ f2Þ : ðA5Þ

Let us see the results at the point r ¼ rH where uH ¼ 2vH.
At this point, δξ and δν are parallel to δv and δu,
respectively. Therefore, ðδu=δξÞr¼rH ¼0, ðδv=δνÞr¼rH ¼0.
In addition, from Eq. (A4),

δvH ¼ ½ð2v − uÞfðu; vÞ�r→rHδξ ¼ −
2ð14vH=3 − 1Þ

1 − 2vH
vHδξ;

δuH ¼ −½ lim
r→rH

Bðu; vÞfðu; vÞ�δν: ðA6Þ

From the first equation, one notes that δvH diverges as
vH → 1=2, which corresponds to the limit of forming an
event horizon. The second equation, by using Eq. (15),
determines the normalization of B to be

lim
r→rH

fðu; vÞBðu; vÞ ¼ 1: ðA7Þ

In Appendix B, we finalize the function B from this
normalization condition. Because fðu; vÞ diverges on H,
the value of B vanishes there.

APPENDIX B: VARIATIONS AT THE INNER
AND THE OUTER BOUNDARIES

By using the fact that δν and δξ are independent of the
position on a given solution curve Cν, we relate the
variations at the outer boundary with those at the inner
boundary. From Eqs. (A4) and (A5), the variation of u− can
be written by the variations at the outer boundary as

δu− ¼ −B−f−δνþ ð2v− − u−Þδξ

¼ fþf−
1þ f2þ

�
B−

Bþ
þ 1

fþf−

2v− − u−
2vþ − uþ

�
δuþ

þ f−
1þ f2þ

�
−
B−

Bþ
þ fþ

f−

2v− − u−
2vþ − uþ

�
δvþ; ðB1Þ

where B� and f� stand for Bðu�; v�Þ and fðu�; v�Þ,
respectively. Using Eq. (24) after dividing Eq. (B1) by
δMþ, we get

�
fþ −

2rþvþ
Tþ

C−1
local

�
B−

Bþ

¼ −
�

1

fþ
þ 2rþvþ

Tþ
C−1
local

�
fþ
f−

2v− − u−
2vþ − uþ

; ðB2Þ

where we use ð∂u−=∂MþÞr�;M−
¼ 0 because r− and M−

are held. In a similar manner, the variation of v− can be
written by means of the variations at the outer boundary as

δv− ¼ B−δνþ ð2v− − u−Þf−δξ

¼ fþ
1þ f2þ

�
−
B−

Bþ
þ ð2v− − u−Þf−
ð2vþ − uþÞfþ

�
δuþ

þ 1

1þ f2þ

�
B−

Bþ
þ ð2v− − u−Þf−fþ

2vþ − uþ

�
δvþ: ðB3Þ

Using Eq. (24) after dividing Eq. (B3) by δMþ, we get

� ∂v−
∂Mþ

�
r�;M−

¼ 2

rþ

1

1þ f2þ

�
−
�
fþ −

2rþvþ
Tþ

C−1
local

�
B−

Bþ

þ fþf−
2v− − u−
2vþ − uþ

�
1

fþ
þ 2rþvþ

Tþ
C−1
local

��
:

ðB4Þ

Putting Eqs. (B2) to (B4), one gets

� ∂v−
∂Mþ

�
r�;M−

¼ 2

rþ

f−þf−1−
fþþf−1þ

2v−−u−
2vþ−uþ

�
1

fþ
þ2rþvþ

Tþ
C−1
local

�
:

ðB5Þ

Once we get Clocal explicitly we can obtain the function B
from Eq. (B2) in addition to the relation between the outer
boundary and the inner boundary through Eq. (B5). The
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explicit form of the function B will be calculated in
Eq. (C9) in a subsequent appendix.

APPENDIX C: CALCULATION OF
HEAT CAPACITY

Direct calculation of the heat capacity needs to solve the
equation of motion (12) from r− to rþ, which is impossible
analytically. On the other hand, the entropy has an exact
analytic expression. Fortunately, the integration in Eq. (4)
can be executed to give an analytic form for the entropy of
the radiation of the shell [3,6],

Srad ≡ Sþ − S−;

S�ðu�; v�; r�Þ ¼
r3=2�
3χ�

�
4πσ

v�

�
1=4

�
2v�
3

þ u�

�

¼ r�β�
3

�
2v�
3

þ u�

�
: ðC1Þ

Remember that S� does not represent the entropy of the
objects inside r� unless the contribution from the central
conical singularity vanishes. For later convenience, we put
the derivative of S� as

β−1� dS� ¼ 1

2

�
2v�
3

þ u�

�
dr� þ r�

6

2 − u� þ 2v�=3
1 − u�

du�

þ r�
12

2v� − u�
v�

dv�: ðC2Þ

If we consider on-shell variations [du and dv are related
by Eq. (12)], we get the first law of thermodynamics,
dM� ¼ β−1� dS� − p�ð4πr2�Þdr� from this equation even
though S� does not represent the entropy of the corre-
sponding system inside.
Therefore, it would be better to use Eq. (46) to obtain the

heat capacity. We assume that the radiation is thermody-
namically isolated from the matters at r < r−. Therefore,
the mass inside the inner boundary must be independent of
the thermodynamic changes of the radiations, which
requires δM− ¼ 0. Then, Eq. (46) becomes

0 ¼
� ∂Srad
∂Mrad

�
r�;M−

− β ¼
� ∂Sþ
∂Mþ

�
rþ

− β −
� ∂S−
∂Mþ

�
r�;M−

;

ðC3Þ

where Srad is given in Eq. (C1). Because r� and M− are
held, Sþ and S− are local functions of ðuþ; vþÞ and v−,
respectively.
Before dealing complex general cases, let us review

how the heat capacity for a self-gravitating radiation
sphere with regular center was calculated in Ref. [5]
by choosing ν ¼ νr and r− ¼ 0. Because S− ¼ 0, the
last term in the right-hand side of Eq. (C3) vanishes.

Noting rþ is held, by using Eqs. (17) and (C2), the right-
hand side of Eq. (C3) becomes
� ∂Sþ
∂Mþ

�
rþ

− β

¼ 2

rþ

�∂Sþ
∂uþ

�
rþ;vþ

þ 4vþ
Tþ

�∂Tþ
∂Mþ

�
rþ

�∂Sþ
∂vþ

�
rþ;uþ

− β

¼ βrþð2vþ − uþÞ
12vþ

�
−
2fþ
rþ

þ 4vþ
Tþ

�∂Tþ
∂Mþ

�
rþ

�
: ðC4Þ

For a regular solution, there remains only one free degree
of freedom in the physical parameters at the outer
boundary because the size rþ is held. Therefore, the
variations δuþ and δvþ must be dependent on each other,
which relation determines Clocal. Now, Clocal for the
regular solution is given after setting Eq. (C4) to zero:

Creg
local ¼

�∂Mþ
∂Tþ

�
rþ

¼ 2rþ
Tþ

vþ
fþ

: ðC5Þ

The value of Clocal for self-gravitating regular sphere of
radiations is positive definite in the region with uþ → −∞
and changes signature when a solution curve crosses the
lines P and H. Clocal diverges and goes to zero when the
solution curve intersects P and H, respectively.
To obtain Clocal for a general case with r− ≠ 0, the effect

of S− should also be taken into account. Equating Eq. (C3)
by using Eqs. (23), (24), (C1), (C2), (C4) and using
ð ∂S−∂Mþ

Þ
r�;M−

¼ ð ∂v−∂Mþ
Þ
r�
ð∂S−∂v−Þr−;u− , we get

Clocal ¼
2rþvþ
Tþfþ

1 −A
1þ f−2þ A

; A≡
ffiffiffiffiffi
r−
rþ

r
Aþ
A−

; ðC6Þ

where we use Eqs. (7), (8), (9), and

A� ≡ Aðu�; v�Þ;

Aðu; vÞ≡ v3=4

χ

f
ð2v − uÞ2ð1þ f2Þ

¼ v3=4χ
2v − u

F
F2 þG2

: ðC7Þ

Note that the function ð2v − uÞAðu; vÞ is a regular function
on the whole range of physical interest other than the point
R, where R corresponds to the asymptotic infinity r → ∞
of all solution curves. It vanishes on the lines P and v ¼ 0.
The function Aðu; vÞ is positive definite in the region with
u → −∞ and changes signature when a solution curve
crosses the lines P andH. In the limit r− → rþ, the value of
Clocal goes to zero as expected. When A → 0, the value of
Clocal is formally the same as that of the regular sphere
in Eq. (C5).
Given A, the function B can be determined by using the

explicit value of Clocal in Eq. (C6). Equation (B2) gives
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ffiffiffiffiffi
r−
rþ

r
f−B−

fþBþ
¼ ð2v− − u−ÞA−

ð2vþ − uþÞAþ
; ðC8Þ

where A� ≡ Aðu�; v�Þ is given in Eq. (C7). Bðu; vÞ must
be a local function of ðu; vÞ. Therefore, Eq. (C8) determines
Bðu; vÞ up to a proportionality constant which is a function
of ν only,

Bðu; vÞ ¼ αν

ffiffiffiffiffiffi
rH
r

r ð2v − uÞAðu; vÞ
fðu; vÞ ¼ αν

ffiffiffiffiffiffi
rH
r

r
v3=4χG
F2 þ G2

:

ðC9Þ

Here ν and r=rH ¼ eξ are implicitly dependent on u and v.
It goes to zero on H as expected in Eq. (A7). Bðu; vÞ
diverges onR. The proportionality constant αν can be fixed
by using Eq. (A7), after choosing ðuþ; vþÞ ¼ ðuH; vHÞ and
ðu−; v−Þ ¼ ðu; vÞ, to be

αν ¼ lim
r→rH

1

ð2v − uÞA ¼ 23=4

3

ð7ν − 4Þð1 − νÞ1=4
ν1=2

: ðC10Þ

Note that αν is negative definite because ν is restricted to
be 0 < ν ≤ νr < 4=7.
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