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I. INTRODUCTION

General relativity has no propagating degree of freedom
in three dimensions. This shortcoming is remedied by
complementing the Einstein-Hilbert action by the Chern-
Simons term leading to a parity-violating, topologically
massive gravity (TMG) [1–3]. More recently, a new
massive gravity (NMG) model involving a particular
combination of quadratic curvature terms leading to a
second order trace has been introduced by Bergshoeff et al.
[4]. The NMG model is parity preserving and has only a
massive spin-2 particle propagating in flat background with
∓ 2 helicity modes of equal masses. Furthermore, NMG is
unitary at the tree level [5].
In this paper, a new family of gravitational wave

solutions to the general massive gravity [6] extended by
a cosmological parameter (CGMG) is presented. The
CGMG model is governed by the Lagrangian 3-form
density

LCGMG ¼
�
σR − 2λm2 þ 1

m2

�
RabRab −

3

8
R2

��
� 1

þ 1

μ

�
ωa

b ∧ dωb
a þ

2

3
ωa

b ∧ ωb
c ∧ ωc

a

�
; ð1Þ

where m and μ are the mass parameters that appear as
coupling constants in the quadratic curvature and Lorentz
Chern-Simons parts of the Lagrangian. m2λ is a cosmo-
logical parameter, and the constant σ is introduced to
register the sign of the mass term of a free spin-2 field. The
remaining notation is fully introduced in the section below.
The divergence-free gravitational wave solutions to

TMG that belong to the Kundt family have been thoroughly
discussed in [7,8], classifying all known solutions in just
three families.
The gravitational wave solutions to three-dimensional

gravitational models have been studied recently from
various perspectives [9]. Ahmedov and Aliev [10–12]
introduced a particularly convenient technique to generate

the Petrov-Segre type-N solutions to NMG from the TMG
solutions. Ayòn-Beato et al. studied the anti–de Sitter (Ads)-
wave solutions to NMG [13]. More recently, Gürses et al.
[14–17] also studied solutions to general three-dimensional
gravitational models in an exhaustive manner.
The paper is organized as follows. The required geo-

metrical techniques are developed from scratch using the
algebra of differential forms [18,19] in the following
section. The CGMG field equations that follow from (1)
are presented in Sec. III. The linearized form of the field
equations is also briefly discussed at the end of Sec. III. The
metric ansatz along with some of its geometric properties
have been introduced in Sec. IV. In the subsequent sections,
the differential equation for the profile function is derived
after giving the curvature expressions of the ansatz.

II. GEOMETRICAL PRELIMINARY

The geometrical setting for the seminull coframe basis
with varying conventions has been introduced previously
[20–23] in the literature. The notation and most of the
conventions used below follow those of Aliev and Nutku
introduced in a spinor formulation of TMG.
In what follows, a seminull coframe fθag ¼ fk; l; mg for

a ¼ 0, 1, 2 is made use of throughout. The Hodge dual of
unity defines the volume form, �1 ¼ k ∧ l ∧ m, as the
exterior product of basis 1-forms. In terms of the seminull
coframe basis, the metric takes the form

g ¼ −k ⊗ l − l ⊗ kþm ⊗ m: ð2Þ

The indices are raised/lowered by ηab of the seminull
coframe. The definition of the invariant volume 3-form
and the metric coefficients −η01 ¼ −η10 ¼ η22 ¼ 1 relative
to the seminull coframe are sufficient to define the Hodge
dual of an arbitrary form. To define the Hodge dual on an
arbitrary form it suffices to have the Hodge duals

�k ¼ k ∧ m; �l ¼ −l ∧ m; �m ¼ k ∧ l: ð3Þ

PHYSICAL REVIEW D 96, 084028 (2017)

2470-0010=2017=96(8)=084028(8) 084028-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.084028
https://doi.org/10.1103/PhysRevD.96.084028
https://doi.org/10.1103/PhysRevD.96.084028
https://doi.org/10.1103/PhysRevD.96.084028


iX is the operator denoting a contraction of a p-form with a
vector field X. The set of frame fields feag for a ¼ 0, 1, 2,
which are metric dual to the basis coframe 1-forms, is
usually denoted as

e0¼−~l≡−Δ; e1¼−~k≡−D; e2¼ ~m≡δ: ð4Þ

The isomorphism indicated by a ~over a 1-form field giving
the associated vector field amounts to the raising of a
covariant index by means of the inverse metric. In what
follows, a contraction with respect to a basis frame field ea
is abbreviated as ia.
In terms of the frame fields, the exterior derivative can be

written as

d ¼ −kΔ − lDþmδ ð5Þ

acting on the scalars.
Relative to a seminull coframe, there are three indepen-

dent Levi-Civita connection 1-forms ωa
b, namely, ω0

0, ω0
2

and ω1
2 and as a consequence of the metricity property,

one has ω0
0 ¼ −ω1

1, ω0
2 ¼ ω2

1 and ω2
1 ¼ ω0

2. In terms
of the three independent Levi-Civita connection forms, the
Cartan’s first structure equations

dθa þ ωa
b ∧ θb ¼ 0 ð6Þ

for a ¼ 0, 1, 2 read explicitly

dkþ ω0
0 ∧ kþ ω0

2 ∧ m ¼ 0; ð7Þ

dl − ω0
0 ∧ kþ ω1

2 ∧ m ¼ 0; ð8Þ

dmþ ω1
2 ∧ kþ ω0

2 ∧ l ¼ 0; ð9Þ

where the numerical tensorial indices exclusively refer to
the seminull coframe. In terms of the corresponding
curvature 2-forms, the Cartan’s second structure equations

Ωa
b ¼ dωa

b þ ωa
c ∧ ωc

b; ð10Þ

for a ¼ 0, 1, 2 read

Ω0
0 ¼ dω0

0 þ ω0
2 ∧ ω1

2; ð11Þ

Ω0
2 ¼ dω0

2 þ ω0
0 ∧ ω0

2; ð12Þ

Ω1
2 ¼ dω1

2 − ω0
0 ∧ ω1

2: ð13Þ

The Ricci 1-forms Ra ¼ Rabθ
b can be defined in terms

of the contraction Ra ¼ ibΩb
a. Accordingly, the scalar

curvature can be expressed as R ¼ iaRa. In three dimen-
sions, the Einstein 1-forms Ga ≡Gabθ

b can be defined by
the relation �Ga ¼ − 1

2
Ωbc � ðθa ∧ θb ∧ θcÞ, which also

leads to Ga
b ¼ 1

4
δacdbmnR

mn
cd in terms of the Riemann tensor

Rmn
cd with Ωa

b ¼ 1
2
Ra

bcdθ
b ∧ θd and the generalized

Kronecker delta. In the present formalism, one has the
convenient relations

�G0 ¼ −Ω0
2; �G1 ¼ Ω1

2; �G2 ¼ Ω0
0; ð14Þ

between the Einstein and the curvature forms.
The Cotton 2-forms Ca ¼ 1

2
Ca

bcθ
b ∧ θc can be defined

as the covariant exterior derivative of the Schouten 1-forms
Ya ¼ Ra − 1

4
Rθa as Ca ≡DYa ¼ dYa þ ωa

b ∧ Yb and,
relative to the seminull coframe these equations explicitly
read

C0 ¼ dY0 þ ω0
0 ∧ Y0 þ ω0

2 ∧ Y2; ð15Þ

C1 ¼ dY1 − ω0
0 ∧ Y1 þ ω1

2 ∧ Y2; ð16Þ

C2 ¼ dY2 þ ω1
2 ∧ Y0 þ ω0

2 ∧ Y1: ð17Þ

Because the Cotton 2-forms Ca can be derived from
the Chern-Simons Lagrangian density 3-form by a
coframe variational derivative, they are covariantly constant
2-forms. In three dimensions the Weyl 2-form is not
defined and the conformal flatness requires the vanishing
of Cotton 2-forms in three dimensions.
The geometrical formulas developed above are in

sufficient generality and allow one to cast any three-
dimensional theory into a seminull coframe in terms of
differential forms. For example, Eqs. (14) together with
Eqs. (15)–(17) can be used to write out the TMG equations
using the spinorial components given in scalar form in,
e.g., Ref. [21], along with the appropriate changes in the
conventions above.
Finally, note that in the present notation, the Cotton-York

tensor Cab relative to an orthonormal/seminull coframe
can be related to the Cotton 2-forms defined above by the
formula

Cab ≡ ia � Cb ¼ �ðDYb ∧ θaÞ: ð18Þ

Using Eq. (18), one can derive the tensorial expression

Cab ¼ ϵacd∇c

�
Rb

d −
1

4
δbdR

�
; ð19Þ

where ϵacd is the completely antisymmetric permuation
symbol in three dimensions and ∇c stands for the covariant
derivative in the expression.

III. FIELD EQUATIONS IN THE DIFFERENTIAL
FORMS LANGUAGE

In order to make use of the null coframe formalism
briefly developed in the previous section, it is essential to
formulate the CGMG field equations in terms of differential
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forms. For this purpose, the metric field equations obtained
by the coframe variational derivative can conveniently be
expressed in terms of the 1-forms Ea ¼ Eabθ

b. Explicitly,
the fourth order field equations can be written as a 2-form
equation in the form [24] �Ea ≡ − 1

2
δLCGMG=δθa ¼ 0 with

the explicit expression

�Ea ¼ σ � Ga þm2λ � θa þ 1

μ
Ca −

1

m2
ðD � Ca þ �Ta½Ω�Þ

ð20Þ

where the quadratic-curvature part �Ta½Ω� ¼ Tab½Ω� � θb
reads

�Ta½Ω�≡Ωbc ∧ ia �
�
θb ∧

�
Rc −

3

8
Rθc

��

−
1

2

�
RbcRbc −

3

8
R2

�
� θa: ð21Þ

The Cotton 2-forms are traceless, iaCa ¼ 0, and the
fourth order terms above, D � Ca, do not contribute to the
trace of the metric field equations as a consequence of
the relation θa∧D�Ca¼D� iaCa¼0. The second order
trace is an important feature of the NMG Lagrangian that
eliminates the propagating spin-0 modes of the NMG
model linearized around Minkowski background (for
λ ¼ 0). Similarly, it is also well known that because Ca

satisfies θa ∧ Ca ¼ 0, there is no third order contribution
to the trace arising from the TMG part either. Moreover,
the trace of the �Ta½Ω� gives back the quadratic curvature
part of the CGMG Lagrangian,

θa ∧ �Ta½Ω� ¼ −
1

2

�
RabRab −

3

8
R2

�
� 1; ð22Þ

unlike the case in four dimensions where the corresponding
trace expression for �Ta½Ω� vanishes identically.
The field equations given by Eq. (20) for the CGMG

model are valid relative to both an orthonormal coframe
[24,25] as well as to the seminull coframe to be defined in
the preliminary section above.
As an illustration of the expediency of the differential

forms language, let us briefly discuss the linearization of
the field equations (20) as a 2-form equation around the
Minkowski background [26]. By using the field equa-
tions (20) with λ ¼ 0 and ignoring the Cotton part
temporarily for the sake of simplicity of the argument,
the linearization of the NMG equations can readily be
written as a 2-form equation in the Minkowski spacetime as

d⋆Ca
L − σm2⋆Ga

L ¼ 0; ð23Þ

with RL ¼ 0 identically. Note that the linearized
equations (23) are readily obtained by the formal

changes in (20). The label L refers to the tensor-valued
forms and tensor components linearized around the
Minkowski spacetime. For example, Ga

L ≡ ðGa
bÞLdxb,

Ca
L ≡ 1

2
ðCa

bcÞLdxb ∧ dxc ¼ dðYaÞL for the Einstein and
the Cotton forms, respectively. Likewise, ⋆ is the Hodge
dual in the Minkowski spacetime. With the help of the
linearized Bianchi identity, ðD � GaÞL ¼ d⋆Ga

L ¼ 0, the
linearized 2-form equation, namely, Eq. (23), can be
rewritten in the familiar component form as

ð□þ σm2ÞRab
L ¼ 0; ð24Þ

which is an equation for a massive spin-2 field propagating
in three dimensions [6]. (Here □≡ ημν∂μ∂ν in the flat
background.) With RL ¼ 0, the linearized Bianchi identity
emulates the subsidiary condition ∂aRa

Lb¼0 on the massive
spin-2 field. By construction, for the pp-wave metric
defined on Minkowski background, Eq. (23) is equal to
the exact equations ð�EaÞL ¼ Ea

Lb⋆dxb up to a term having
second order linear in the derivatives of the metric
coefficients, provided that the background metric is chosen
appropriately.
Similarly, for σ ¼ −1 and λ ¼ 0, the linearized CGMG

equations can be written as a 2-form equation as

ð⋆d −mþÞð⋆dþm−ÞRa
L ¼ 0 ð25Þ

with the masses m∓ defined in terms of the mass param-
eters of CGMG as

1

μ
¼ 1

mþ
−

1

m−
and m2 ¼ mþm−: ð26Þ

The approximate expression (25) is a 2-form equation
concisely exhibiting the claim that “TMG is square root of
NMG” at the linearized level. (25) is uplifted to the level of
the exact field equations (20) in [11] as a solution-
generating technique for the NMG model in connection
with the solutions of TMG. In the case of CGMG, such a
relation can be obtained by the mere rearrangement of the
terms in 1-form Ea, which is defined in (20) as

�
�D �D −

m2

μ
�Dþ σm2

�
La ¼ τa ð27Þ

with the 1-form τa c defined as

τa ≡ �
�
θa ∧ θb ∧

�
Rc −

3

8
Rθc

��
�Ωbc

þ 1

2

��
RbcRbc −

3

8
R2

�
þ 2m4λ −

σ

2
m2R

�
θa: ð28Þ

In the same spirit as in the original formulation [11], which
can be obtained as μ → ∞, it seems to be appropriate to
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write the CGMG equations in a tensorial “Klein-Gordon”-
type equation in terms of the Schouten 1-form in the
formulation above.

IV. THE METRIC ANSATZ

In terms of the local coordinates fxαg ¼ fu; v; yg, where
u, v are real and null, and y is a spatial coordinate, the
metric ansatz to be considered explicitly reads

g ¼ −2dudv − 2Hðu; yÞdu2 þ dy2

½1þ Λ
4
ð−2uvþ y2Þ�2 ; ð29Þ

in a form conformal to the pp-wave metric. The parameter
Λ, which determines the geometry of the background
metric, admits arbitrary values and for Λ ¼ 0 the pp-wave
metric is recovered. For the construction of the new
solutions, it is essential to have the profile function of
the particular form Hðu; yÞ ¼ δðuÞhðyÞ involving a Dirac
delta distribution function.
A seminull coframe basis that one can adopt is of the

form

k¼P−1du; l¼P−1ðdvþHduÞ; m¼P−1dy; ð30Þ

where P ¼ 1þ Λ
4
ð−2uvþ y2Þ and thereby the ansatz (29)

takes the desired form (2). The frame fields associated to
the above coframe can be constructed by making use of
the metric duals of the coframe 1-forms defined in (30)
above which explicitly read

~l¼−Pð∂u−H∂vÞ; ~k¼−P∂v; ~m¼P∂y: ð31Þ

The null vector field associated to the basis 1-form k is
defined by ~k≡ kα∂α with kα ≡ gαβkβ and ~k satisfies the
geodesic equation of the form ∇~kk ¼ Λ

2
uk so that it is not

affinely parametrized.
In three dimensions, the optical scalars for a null

geodesic vector field are defined in such a way that it
differs from its four-dimensional counterpart. For the null
geodesics, the shear and twist cannot be defined because
the vector space k⊥=k, that is the vector space defined as the
orthogonal complement of the vector field k quotiened by k
itself, is one dimensional and is spanned by m [27]. Thus,
the only optical scalar that can be defined on the vector
space k⊥=k for a null geodesic vector field in the three-
dimensional case is the divergence [28]. The particular
metric ansatz (29) belongs to the Kundt family of metrics
[7,8] defined by a divergence-free, null geodesic vector
field in the general form for Λ ≠ 0.
In four dimensions, Siklos [29] has shown that the only

gravitational waves conformal to the pp waves are the AdS
waves corresponding to the negative values of Λ. On the
other hand, the impulsive wave case was later shown by
Podolský and Griffiths [29–31] to be an exception to
the Siklos’ result. In three dimensions, the metric of the

form (29) with Λ > 0 furnishes a new example for the
general result obtained by Ahmedov and Aliev [10]
asserting that all Petrov-Segre type-N solutions to the
NMG belong to the Kundt family of metrics.

V. THE CURVATURE FORMS

Once the exterior derivatives of the basis 1-forms are
calculated, the structure equations (7)–(9) can be solved for
the connection 1-forms to obtain

ω0
0 ¼

Λ
2
ðvk − ulÞ; ω0

2 ¼
Λ
2
ð−ykþ umÞ; ð32Þ

ω1
2 ¼

Λ
2
ð−ylþ vmÞ þ PH0k; ð33Þ

where a prime denotes a derivative with respect to the
coordinate y.
Consequently, by inserting the connection expressions

into the second structure equations (11)–(13), one finds

Ω0
0 ¼ −Λk ∧ l; Ω0

2 ¼ Λk ∧ m; ð34Þ

Ω1
2 ¼ −Φðu; yÞk ∧ mþ Λl ∧ m; ð35Þ

where the function Φðu; yÞ introduced above has the form

Φðu; yÞ ¼ PðPH00 − P0H0Þ þ Λ
2
PH: ð36Þ

Relative to a coordinate basis defined by the components
with, for example, k ¼ kαdxα, the traceless Ricci tensor
Sab ¼ Rab − 1

3
ηabR has the canonical form Sαβ ¼ Φkαkβ.

Although for H ¼ 0 and Λ ≠ 0 the background metric is of
type O, for Λ ¼ 0 the metric ansatz (29) is Petrov-Segre
type N [7], which can be inferred simply by examining the
following expressions for the Ricci 1-forms:

R0 ¼ 2Λk; R1 ¼ −Φkþ 2Λl; R2 ¼ 2Λm: ð37Þ

It follows from these expressions that the scalar curvature
R ¼ 6Λ and that Φ can also be expressed in the form
Φ ¼ lαlβRαβ.
The Cotton 2-forms can be calculated as

C0 ¼ 0 ¼ C2; C1 ¼ ðPΦ0 − P0ΦÞ � k; ð38Þ

by using Ca ¼ DYa and also taking the important relation
uΦðu; yÞ ∝ uδðuÞ≡ 0 into account.
These results allow one to write the TMG equations,

μ−1Ca þ �Ga ¼ 0, explicitly in the form

ðPΦ0 − P0ΦÞ þ μΦ ¼ 0: ð39Þ
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The expressions for the Cotton 2-forms are then used to
calculate that the fourth-order terms in the CGMG equa-
tions and the only nonvanishing component turns out to be

D � C1 ¼ ½PðPΦ0 − P0ΦÞ0 − P0ðPΦ0 − P0ΦÞ� � k ð40Þ

by making use of the formula

D � C1 ¼ d � C1 − ω0
0 ∧ �C1 þ ω1

2 ∧ �C2: ð41Þ

Finally, one can show that the �Ta½Ω� has the explicit
form

�T0½Ω� ¼ −
Λ2

4
� k; ð42Þ

�T1½Ω� ¼ Λ
4
Φ � k − Λ2

4
� l; ð43Þ

�T2½Ω� ¼ −
Λ2

4
�m; ð44Þ

and, consequently, the diagonal components E0
0 ¼ E1

1 ¼
E2

2 yield an algebraic equation for Λ,

1

4
Λ2 − σm2Λþm4λ ¼ 0; ð45Þ

relating the mass and cosmological constant parameters of
the CGMG model to the background curvature parameter.
As is the case for general quadratic curvature models in

arbitrary dimensions, for H ¼ 0, the conformal 2-forms Ca

vanish identically and the decoupled equation (45) deter-
mines the maximally symmetric vacua for the NMGmodel,
which implies that the NMGmodel admits dS, AdS and flat
vacuum solutions,

Λ∓ ¼ 2m2
�
σ ∓ ffiffiffiffiffiffiffiffiffiffi

1 − λ
p �

: ð46Þ

Note, however, that �T1½Ω� also contributes a term which is
linear in Φ to the �E1

0 component as well.

VI. THE EQUATION FOR THE
PROFILE FUNCTION

By combining the results of the calculations in the
previous section, the fourth order linear differential equa-
tion for the profile function obtained from E1

0 ¼ 0 can be
written in a factorized form as

ðD −mþÞðDþm−Þ
�
p4

�
1

p
d
dy

�
2

þ Λp
2

�
h ¼ 0: ð47Þ

In the profile equation, the mass parametersm∓ are defined
in Eq. (26). D stands for the differential operator

D≡ p2
d
dy

1

p
ð48Þ

with

p≡ 1þ Λ
4
y2; ð49Þ

and Λ parameter assumes the values determined by
Eq. (46).
Moreover, the mass parameters m∓ in Eq. (47), which

are defined previously for flat background in (26), are now
defined by the relations of the form

mþ −m− ¼ m2

μ
; mþm− ¼ σm2 þ Λ

4
ð50Þ

for a general curved background for the CGMG model.
Equation (47) for the profile function is to be compared

with the general Klein-Gordon form of the field equations
given in (20). Furthermore, note that (47) has also formal
resemblance to the linearized form of CGMG field equa-
tions (25) with the exterior derivative replaced by the
differential operator (48). For the flat background, the
differential operator D reduces to a derivative with respect
to the coordinate y.
The differential operators D −mþ and Dþm− com-

mute and the general solution of the second order equation

ðD −mþÞðDþm−ÞΦ ¼ 0 ð51Þ

can be written in the formΦ ¼ Φþ þΦ− with the functions
Φ∓ being solutions to the equations

ðD −mþÞΦþ ¼ 0; ðDþm−ÞΦ− ¼ 0: ð52Þ

One readily finds that

Φþ ¼ Cþpð1þmþÞ; Φ− ¼ C−pð1−m−Þ; ð53Þ

where C∓ are integration constants. Consequently, the
fourth order equation for the profile function (47) reduces
to a second order inhomogeneous equation of the form

ph00 þ Λ
2
ð−yh0 þ hÞ ¼ Cþpmþ þ C−p−m− ð54Þ

with the function pðyÞ defined as in (49).
Note that the term on the left-hand side in (54) is the

Einstein tensor G1
0 in three dimensions [cf., Eqs. (14) and

(35)] up to an overall factor p. Therefore, the factorization
introduced in (47) eventually leads to an equation for
the profile function of an impulsive gravitational wave in
Einstein gravity in three spacetime dimensions with an
effective source term arising from the higher order terms in
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the CGMG model. In other words, the gravitational wave
ansatz (29) reduces the general CGMG field equations in
(20) to those of three-dimensional Einstein field equations
with an effective source term depending on the mass
parameters m∓ in the CGMG model defined in (50) as
well as the background curvature parameter Λ determined
by Eq. (46). Consequently, the particular solution hpðyÞ of
the reduced equation (54) is of interest for the impulsive
wave solutions of CGMG theory and hpðyÞ can be written
as a superposition of two particular solutions Φ∓ðyÞ.
The solution to the homogeneous equation for the

differential equation (54) around the origin can be found
as follows. Because y ¼ 0 is an ordinary point of the
differential equation, the analytical solution assumes the
form of an infinite series h ¼ P∞

k¼0 cky
k. By inserting

the series expression into the homogeneous equation, one
finds that the coefficients satisfy the following recurrence
relation,

ckþ2 ¼ −
Λ
4

ðk − 1Þðk − 2Þ
ðkþ 1Þðkþ 2Þ ck; ð55Þ

which is valid for k ≥ 0. Consequently, both the odd and
even power series in the general solution truncate and the
independent homogeneous solutions, denoted by h1ðyÞ and
h2ðyÞ, take the form

h1ðyÞ ¼ y; h2ðyÞ ¼ 1 −
Λ
4
y2; ð56Þ

respectively.
The particular solution can be obtained by using the

homogeneous solutions to construct the corresponding
Green’s function (see, for example, [32]). Explicitly, the
particular solution can be expressed in terms of the Green’s
function as an integral of the form

hpðyÞ ¼
Z

y
Gðy; ξÞp−3ðξÞ½ΦþðξÞ þΦ−ðξÞ�dξ; ð57Þ

where ξ is a continuous parameter on the y axis.
The Green’s function can be decomposed into singular

and homogeneous parts as

Gðy; ξÞ ¼ Gsðy; ξÞ þGhðy; ξÞ; ð58Þ

where the homogeneous part is a linear superposition of the
homogeneous solutions that satisfy some given boundary
conditions on the general solution.
In terms of the set of homogeneous solutions, the

singular part of the Green’s function can be written as

Gsðy; ξÞ ¼
h1ðξÞh2ðyÞ − h1ðyÞh2ðξÞ
p−1ðξÞW½h1ðξÞ; h2ðξÞ�

θðy − ξÞ; ð59Þ

where θ stands for the unit step function, and W½h1; h2�
is the Wronskian. In accordance with these definitions,
Gsðy; ξÞ satisfies the equation

�
d
dy

1

p
d
dy

þ Λ
2p2

�
Gsðy; ξÞ ¼ δðy − ξÞ: ð60Þ

The differential operator on the left-hand side in (60) is a
Hermitian operator which can be obtained from the differ-
ential equation in (54) by multiplying it with p−2.
By using the explicit expressions for the homogeneous

solutions, one can show that Gsðy; ξÞ takes the form

Gsðy; ξÞ ¼
�
1þ Λ

4
ξ2

1 − 3Λ
4
ξ2

��
1 −

Λ
4
yξ

�
ðy − ξÞθðy − ξÞ: ð61Þ

The linear superposition of the solutions in (56) and (57)
constitutes the most general solution for the profile function
hðyÞ in the neighbourhood of the point y ¼ 0 in closed
form for the impulsive gravitational waves in CGMG
theory.
Finally, we note that in finding an explicit expression for

a solution to Eq. (54), the cases Λ > 0 and Λ < 0 are to be
handled separately. For example, in the case Λ < 0, the
points y ¼ �1 are regular singular points of the corre-
sponding equation, and therefore the validity for the general
solution discussed above is limited to the range jyj < 1.

VII. CONCLUDING COMMENTS

It is worth emphasizing that the construction of the new
solutions depends crucially on the assumption that the
profile function has a Dirac-delta function distribution
factor and it does not work otherwise. The general solution
to the reduced equation (54) does not belong to the
universal class of solutions presented in [10] obtained
by the analytical continuation of the parameters of the
TMG/NMG model.
Ahmedov and Aliev [11] showed that all Petrov-Segre

type-D and N solutions of TMG can be mapped to the
solutions of NMG by rewriting the NMG and TMG field
equations in terms of a covariant differential operator,
denoted by =D in the original notation. With the application
of the covariant operator =D to TMG equations, one ends up
with NMG field equations under certain assumption on the
traceless Ricci tensor. In this exact sense, the TMG field
equations can be considered as a square root of NMG field
equations. In this regard, the above reduction of the CGMG
field equations to a three-dimensional Einstein field equa-
tions (54) and a constraint equation (46) for the particular
case of the impulsive metric ansatz is an interesting
result for the CGMG theory that deserves further scrutiny
from a broader point of view, possibly by considering
a whole family of metrics belonging to a particular Petrov-
Segre type.
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The impulsive gravitational waves with null particle
sources in four spacetime dimensions have previously been
studied by Podolský and Griffiths [30] extending the well-
known work of Aichelburg and Sexl [33] to dS and AdS
backgrounds. In a more recent work [34], introducing
impulsive gravitational waves generated by null particles in
three spacetime dimensions [35], it has been shown that the
local causality and unitarity (the absence of ghosts and
tachyons at the linearized level) are not in conflict in flat
and AdS backgrounds for massive gravity models.
Penrose [36] constructed impulsive waves by a geo-

metrical method which is known as Penrose’s cut and
paste method [37]. The cut and paste method is later
extended to the impulsive waves to include an arbitrary
cosmological constant by Podolský and Griffiths [30,31].
In a similar vein, the present work constructs impulsive

wave solutions in higher curvature massive models in
three dimensions.
Although the pp-wave ansatz linearizes the CGMG

equations in a maximally symmetric curved background
for Λ ≠ 0, the resulting field equations are not as simple as
they are for the flat Minkowski background spacetime. By
construction, the interpretation of the massive spin-2 field
by the NMG model crucially depends on the flat back-
ground although the vacuum field equations admit dS/AdS
solutions as well. On the other hand, it is well known that in
a constant curvature background massive spin-2 has fewer
degrees of freedom then that of the usual massive spin-2
case [38–42]. Moreover, the subsidiary conditions, which
are essential to have a consistent, free, massive spin-2 field
interpretation, would differ from those that follow from
linearization around dS or AdS backgrounds.

[1] S. Deser, R. Jackiw, and S. Templeton, Phys. Rev. Lett. 48,
975 (1982).

[2] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys. (N.Y.)
140, 372 (1982).

[3] S. Deser and R. Jackiw, Ann. Phys. (N.Y.) 185, 406(E)
(1988).

[4] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Phys. Rev.
D 79, 124042 (2009).

[5] I. Güllü and B. Tekin, Phys. Rev. D 80, 064033 (2009); M.
Nakasone and I. Oda, Prog. Theor. Phys. 121, 1389 (2009).

[6] E. A. Bergshoeff, O. Hohm, and P. K. Townsend, Phys. Rev.
Lett. 102, 201301 (2009).

[7] D. D. K. Chow, C. N. Pope, and E. Sezgin, Classical
Quantum Gravity 27, 105001 (2010).

[8] D. D. K. Chow, C. N. Pope, and E. Sezgin, Classical
Quantum Gravity 27, 105002 (2010).

[9] A. Macìas and A. Camacho, Gen. Relativ. Gravit. 37, 759
(2005).

[10] H. Ahmedov and A. N. Aliev, Phys. Lett. B 694, 143 (2010).
[11] H. Ahmedov and A. N. Aliev, Phys. Rev. Lett. 106, 021301

(2011).
[12] H. Ahmedov and A. N. Aliev, Phys. Rev. D 83, 084032

(2011).
[13] E. Ayòn-Beato, G. Giribet, and M. Hassaïne, J. High Energy

Phys. 05 (2009) 029.
[14] M. Gürses, T. Ç. Şişman, and B. Tekin, Phys. Rev. D 86,

024001 (2012).
[15] M. Gürses, T. Ç. Şişman, and B. Tekin, Phys. Rev. D 89,

024009 (2014).
[16] M. Gürses, T. Ç. Şişman, and B. Tekin, Phys. Rev. D 90,

124005 (2014).
[17] M. Gürses, T. Ç. Şişman, and B. Tekin, Phys. Rev. D 92,

084016 (2015).
[18] T. Dereli and R.W. Tucker, Classical Quantum Gravity 5,

951 (1988).
[19] Y.-N. Obukhov, Phys. Rev. D 68, 124015 (2003).

[20] G. S. Hall, T. Morgan, and Z. Perjés, Gen. Relativ. Gravit.
19, 1137 (1987).

[21] A. N. Aliev and Y. Nutku, Classical Quantum Gravity 12,
2913 (1995).

[22] G. S. Hall and S. Capocci, J. Math. Phys. (N.Y.) 40, 1466
(1999).

[23] R. Milson and L. Wylleman, Classical Quantum Gravity 30,
095004 (2013).

[24] A. Baykal and Ö. Delice, Classical Quantum Gravity 28,
015014 (2011).

[25] A. Baykal, Gen. Relativ. Gravit. 44, 1993 (2012).
[26] A. Baykal and T. Dereli, Eur. Phys. J. Plus 132, 52

(2017).
[27] B. O’Neill, The Geometry of Kerr Black Holes (A. K.

Peters, Ltd. Wellesley, MA, 1985), p. 327.
[28] P. Nurowski and A. Taghavi-Chabert, Classical Quantum

Gravity 32, 115009 (2015).
[29] S. T. C. Siklos, in Galaxies Axisymmetric Systems and

Relativivity, edited by M. A. H. MacCallum (Cambridge
University Press, Cambridge, 1985), p. 247.

[30] J. Podolský and J. B. Griffiths, Phys. Rev. D 56, 4756
(1997).

[31] J. Podolský and J. B. Griffiths, Phys. Lett. A 261, 1
(1999).

[32] P. Dennery and A. Krzywicki, Mathematics for Physicists
(Dover Publishing, Inc., Mineola, New York, 1996), p. 277.

[33] P. C. Aichelburg and R. Sexl, Gen. Relativ. Gravit. 2, 303
(1971).

[34] J. D. Edelstein, G. Giribet, C. Gòmez, E. Kilicarslan, M.
Leoni, and B. Tekin, Phys. Rev. D 95, 104016 (2017).

[35] S. Deser, J. McCarthy, and A. R. Steif, Nucl. Phys. B412,
305 (1994).

[36] R. Penrose, inGeneral Relativity, edited by L. O’Raifeartaigh
(Clarendon, Oxford, 1972), p. 101.

[37] J. B. Griffiths and J. Podolský, in Exact Spacetimes in
Einstein’s General Relativivity, Cambridge Monographs

IMPULSIVE GRAVITATIONAL WAVES IN GENERAL … PHYSICAL REVIEW D 96, 084028 (2017)

084028-7

https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1103/PhysRevLett.48.975
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1016/0003-4916(82)90164-6
https://doi.org/10.1016/0003-4916(88)90053-X
https://doi.org/10.1016/0003-4916(88)90053-X
https://doi.org/10.1103/PhysRevD.79.124042
https://doi.org/10.1103/PhysRevD.79.124042
https://doi.org/10.1103/PhysRevD.80.064033
https://doi.org/10.1143/PTP.121.1389
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1103/PhysRevLett.102.201301
https://doi.org/10.1088/0264-9381/27/10/105001
https://doi.org/10.1088/0264-9381/27/10/105001
https://doi.org/10.1088/0264-9381/27/10/105002
https://doi.org/10.1088/0264-9381/27/10/105002
https://doi.org/10.1007/s10714-005-0060-9
https://doi.org/10.1007/s10714-005-0060-9
https://doi.org/10.1016/j.physletb.2010.09.044
https://doi.org/10.1103/PhysRevLett.106.021301
https://doi.org/10.1103/PhysRevLett.106.021301
https://doi.org/10.1103/PhysRevD.83.084032
https://doi.org/10.1103/PhysRevD.83.084032
https://doi.org/10.1088/1126-6708/2009/05/029
https://doi.org/10.1088/1126-6708/2009/05/029
https://doi.org/10.1103/PhysRevD.86.024001
https://doi.org/10.1103/PhysRevD.86.024001
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.89.024009
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.90.124005
https://doi.org/10.1103/PhysRevD.92.084016
https://doi.org/10.1103/PhysRevD.92.084016
https://doi.org/10.1088/0264-9381/5/7/004
https://doi.org/10.1088/0264-9381/5/7/004
https://doi.org/10.1103/PhysRevD.68.124015
https://doi.org/10.1007/BF00759150
https://doi.org/10.1007/BF00759150
https://doi.org/10.1088/0264-9381/12/12/009
https://doi.org/10.1088/0264-9381/12/12/009
https://doi.org/10.1063/1.532815
https://doi.org/10.1063/1.532815
https://doi.org/10.1088/0264-9381/30/9/095004
https://doi.org/10.1088/0264-9381/30/9/095004
https://doi.org/10.1088/0264-9381/28/1/015014
https://doi.org/10.1088/0264-9381/28/1/015014
https://doi.org/10.1007/s10714-012-1377-9
https://doi.org/10.1140/epjp/i2017-11345-8
https://doi.org/10.1140/epjp/i2017-11345-8
https://doi.org/10.1088/0264-9381/32/11/115009
https://doi.org/10.1088/0264-9381/32/11/115009
https://doi.org/10.1103/PhysRevD.56.4756
https://doi.org/10.1103/PhysRevD.56.4756
https://doi.org/10.1016/S0375-9601(99)00524-1
https://doi.org/10.1016/S0375-9601(99)00524-1
https://doi.org/10.1007/BF00758149
https://doi.org/10.1007/BF00758149
https://doi.org/10.1103/PhysRevD.95.104016
https://doi.org/10.1016/0550-3213(94)90504-5
https://doi.org/10.1016/0550-3213(94)90504-5


on Mathematical Physics (Cambridge University Press,
Cambridge, 2009), p. 392.

[38] S. Deser and R. I. Nepomechie, Ann. Phys. (N.Y.) 154, 396
(1984).

[39] S. Deser and R. Steif, Classical Quantum Gravity 9, L153
(1992).

[40] B. Tekin, arXiv:0306178v2.
[41] S. Carlip, S. Deser, A. Waldron, and D. K. Wise, Phys. Lett.

B 666, 272 (2008).
[42] K. Hinterbichler, Rev. Mod. Phys. 84, 671 (2012).

AHMET BAYKAL and TEKIN DERELI PHYSICAL REVIEW D 96, 084028 (2017)

084028-8

https://doi.org/10.1016/0003-4916(84)90156-8
https://doi.org/10.1016/0003-4916(84)90156-8
https://doi.org/10.1088/0264-9381/9/11/001
https://doi.org/10.1088/0264-9381/9/11/001
http://arXiv.org/abs/0306178v2
https://doi.org/10.1016/j.physletb.2008.07.057
https://doi.org/10.1016/j.physletb.2008.07.057
https://doi.org/10.1103/RevModPhys.84.671

