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A detailed perturbative construction of globally regular, asymptotically anti—de Sitter (AdS) time-
periodic solutions of Einstein’s equations with a negative cosmological constant (AdS geons) is presented.
Starting with the most general superposition of the / = 2 even parity (scalar) eigenmodes of AdS at linear
order, it is shown that at the fifth order in perturbation theory one obtains five one-parameter geon families,
two of which have a helical Killing vector, one with axial symmetry, and two others without continuous
symmetries. The details and some subtle aspects of the perturbative expansions are also presented.
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I. INTRODUCTION

The gravitational dynamics of asymptotically anti—de
Sitter (AAdS) space-times has attracted considerable inter-
est in the past few years, stimulated to a large extent by the
AdS/CFT correspondence. In the seminal paper [1], the
time evolution of a free, massless scalar field coupled to
Einstein’s gravity has been investigated in three spatial
dimensions in AAdS space-times, with the result that from
a large class of smooth initial data black holes form,
indicating that AAdS is unstable against black hole for-
mation. The instability uncovered by Ref. [1] manifests
itself by the concentration of more and more energy in the
same spatial region, where the mechanism is usually
referred to as weak turbulence. A considerable amount
of work has followed (see, e.g., the reviews [2-5]), and by
now there is little doubt that AAdS space-times exhibit
weakly turbulent-type instabilities leading to black hole
formation for a large class of initial data. Asymptotically
AdS space-times possess a peculiar causality structure; they
are not globally hyperbolic: i.e., there is no Cauchy
hypersurface in them. Therefore it is not sufficient to
specify the initial data on a spacelike hypersurface to
determine the time evolution in AAdS space-times.
Because of the presence of timelike conformal boundaries
of AAdS space-times at (null and spatial) infinity, suitable
boundary conditions have to be imposed on the fields.

It is important to note that the peculiarities of AAdS
space-times also allow for the existence of various spatially
localized (“particlelike”) objects of finite mass in various
field theories. The boundary conditions induced by the
negative cosmological constant make possible the existence
of a much larger class of particlelike solutions than in
asymptotically Minkowskian or de Sitter space-times.

The central objects of interest of the present paper are
spatially localized, time-periodic solutions of Einstein’s
equations in AAdS space-times, referred to as AdS breath-
ers. In non-AAdS space-times breather-type solutions exist
only under very special circumstances, since in most field
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theories breather-type initial data would evolve in general
to some radiating object (oscillons, oscillatons) because of
the presence of a continuous spectrum. Spherically sym-
metric AdS breathers occur in scalar theories, and it is
important that some of them actually appear to be stable
against collapsing to a black hole [6-16]. The existence of
such stable breathers indicate the presence of stability
islands in asymptotically AdS space-times, likely forming
sets of nonzero measure initial data [17]. The existence of
known AdS breathers is intimately related to the existence
of normalizable Fourier eigenmodes of the wave operator in
AdS space-times for special values of the frequency (this
phenomenon is absent in the asymptotically Minkowski or
the deSitter case). A standard way to start the perturbative
(or numerical) construction of AdS breathers is to deform
such normalizable AdS eigenmodes nonlinearly in order to
construct solutions of the full theory.

The central aim of the present paper is to present a
detailed perturbative construction of AdS gravitational
breathers in Einstein’s gravity with a negative cosmological
constant. Gravitational AdS breathers are referred to in the
literature as “AdS geons,” nomenclature we shall also use in
the following. In contradistinction to spherically symmetric
breathers, gravitational AdS geons have fewer symmetries,
and therefore are more difficult to construct. The first
example of an AdS geon with a helical Killing vector has
been constructed in perturbation theory in Ref. [18] and
subsequent analytical and numerical works have consid-
erably enlarged our knowledge on AdS geons and on their
stability [17,19-22]. The trustworthiness of the perturbative
geon construction has been greatly enhanced by the
numerical results of Refs. [21,22], leaving little doubt as
to the existence of helically symmetric AdS geons, being
globally regular solutions of Einstein’s equations. Besides
these helically symmetric geons possessing angular
momentum, J # 0, strong hints of the existence of axially
symmetric geons with J =0 have been produced by
perturbation theory in Ref. [23]. Such nonrotating geon
solutions may seem somewhat counterintuitive, as they
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consist just of gravitational waves and one would expect
that rotation is necessary to counteract gravitational
attraction.

In this paper we carry out a complete analysis of AdS
geons corresponding to the superposition of the simplest
scalar perturbations with [ =2 at linear order with fre-
quency @ = 3. Starting with the most general superposition
at linear order (depending on ten parameters) we show that
to fifth order in perturbation this reduces to five (inequi-
valent) one-parameter geon families. It turns out that one
really has to push the perturbative approach to fifth order to
establish the result, since at third order there is still a two-
parameter family of geons satisfying the consistency
conditions, which splits to two one-parameter families at
fifth order. We carry out a full fledged fifth order compu-
tation whereby we recover and improve upon the known
helically symmetric and axially symmetric geon families.
We have tried to include all necessary technical details in
Appendixes A—-G to make our work more useful and
reproducible, including some subtle but essential points
in order to be able to solve the fifth order consistency
conditions. It is important that we have discovered two new
geon families with zero angular momentum, which have no
obvious continuous symmetries. We present the most
important physical properties of the geon families we have
found, consisting of the relations between their frequencies,
masses, and angular momenta.

The paper is organized in the following way. In Sec. 11
we present the basic formalism for the nonlinear perturba-
tive expansion of time-periodic asymptotically AdS geon
solutions. The specification of the conformal boundary
conditions, together with the associated conserved quan-
tities, is presented in Appendix A. The globally regular
localized linear order solutions are discussed in Sec. III.
The used scalar- and vector-type real spherical harmonic
functions and their properties are detailed in Appendix B.
In Sec. IV we introduce the class of geon solutions
considered in this paper, namely those that reduce to a
combination of the @w = 3 frequency linear modes in the
small amplitude limit. The effect of spatial rotations on the

=2 modes is detailed in Appendix C. In Sec. V we
present the most important points of the nonlinear pertur-
bation formalism on AdS space-time. The definition of the
perturbative quantities are motivated by the Kodama-
Ishibashi-Seto gauge invariant formalism, which is dis-
cussed in Appendix D. All spherical harmonic components
of the metric perturbations are generated by scalar functions
that satisfy second order inhomogeneous wave equations.
The method of the introduction of these generating func-
tions, and the calculation of the metric from them, is
presented for vector- and scalar-type perturbations in
Appendixes E and F, respectively. Time-periodic solutions
of the scalar wave equations are constructed in
Appendix G. The role of the arising resonance conditions
and of the appearing free parameters that correspond to
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amplitudes of regular homogeneous solutions is explained
in Sec. V. In Sec. VI the previously introduced @ = 3
solutions are considered, and it is shown that there are five
one-parameter families that satisfy the fifth order consis-
tency conditions. Section VII contains the fifth order
expansion results for these five families of solutions, listing
the relations between the frequencies, masses, and angular
momentums. There is also a conclusions section at the end
of the main part of the manuscript.

II. EXPANSION OF ANTI-DE SITTER GEONS

We consider (3 4 1)-dimensional vacuum Einstein equa-
tions, G, + Ag,, = 0, where the cosmological constant A
is negative, and it is related to the length scale L by

3
L?=—-=, 1
N (1)
We look for solutions of Einstein’s equations perturba-
tively, assuming that the solution depends on a small
parameter, ¢, in terms of which the metric tensor can be
expanded in power series as

- k
G =D g, (2)
k=0

The tensor gf,lf,) represents kth order nonlinear perturbations

of the background spacetime g,(g). For our calculations we

use coordinates x* = (1,x,0,¢) and set the zeroth order

term g,(,[i) to the anti-de Sitter metric in the form

(=d#? + dx? + sin>xdQ?), (3)

where dQ? = d6? + sin® 8d¢? is the standard metric on the
2-sphere. The naturally defined radius function is

r = Ltanx. (4)

Schwarzschild-type coordinates can be obtained by using r
as a radial coordinate and introducing a rescaled time
coordinate 7 = Lt. The physical time coordinate is 7,
because it agrees with the proper time of the AdS back-
ground at the center.

We choose an ¢ independent conformal factor

COS X

Q== (5)

It follows from (3) that the conformally transformed metric
obtained from the background solution, gf,‘? = ng,(fi), is
regular at the surface x = z/2. This three-dimensional
timelike hypersurface corresponds to conformal infinity

and is denoted by Z. A natural approach would be to require
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the boundary condition lim,_, /(€ g,(,li)) =0forallk > 1,

which would ensure that for the whole one-parameter
family the conformally transformed metric, g,, = ngm,,
would remain unchanged on 7Z; hence regular and, con-
sequently, each solution in the family would be asymp-
totically anti—de Sitter. We give a more detailed description
of the requirements that asymptotically AdS space-times
have to satisfy in Appendix A. With this simple choice of
boundary conditions the time coordinate  would remain the
natural time coordinate that agrees asymptotically with the
AdS time coordinate. To distinguish from the time coor-
dinate that we will use throughout the paper, we denote this
t by 1. For the determination of the oscillation frequencies
measured by distant observers, the Schwarzschild-type
time coordinate 7 = L7 has to be used.

The @ physical frequency of the geon solutions changes
as their amplitude increases, so it is generally e dependent.
To make the expansion calculations technically much
simpler we use a time coordinate ¢ such that with respect
to this ¢ the coordinate frequency w of the geons remains
constant. This can be achieved by requiring the boundary
conditions

lim(Q2g) = 4. (6)
x—5
lim(Q2gw)) =0 foru#t or v#s,  (7)
x—%

where v, are constants, independent of the angular coor-
dinates. Because of the e » —e symmetry of the system, v,
are nonzero only for even k. Since v, are assumed to be
constants, the limit of nggf) is zero for all spherical
harmonic components, except for the [ = 0, m = 0 spheri-
cally symmetric part. Then the asymptotic behavior of the

g;; metric component is & dependent,
0
lim(Q?%g,) = —v, =1 kyp. 8
xl_r}%( ) v v +k§::1£ Vk (8)

It follows that the asymptotically AdS time coordinate is
1 = t/v. The physical frequency @ has to be calculated
with respect to a time coordinate that asymptotically agrees
with the Schwarzschild time coordinate 7 = L7 = tL\/Z,
and the relation between the two frequencies is

()

Lo

The requirements (6) and (7) on the asymptotic form of
the metric perturbations ensure that the resulting metric g,
will be asymptotically AdS. As it is described in more
detail in Appendix A, this follows from the fact that the
metric generated at asymptotic infinity remains essentially

(Z):

©)
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the same as that of the AdS metric; in particular, it remains
conformally flat.

III. LINEAR ORDER GEONS

The study of perturbations of spherically symmetric
space-times was initiated by the seminal paper of
Regge and Wheeler [24], taking the (3 + 1)-dimensional
Schwarzschild space-time as the background. They have
shown that odd parity (also called axial) perturbations are
governed by a scalar function that satisfies a wave equation.
It was demonstrated later by Zerilli [25,26] that even parity
(polar) perturbations are also generated by a single scalar
function. Gauge invariant variables were first applied by
Moncrief [27], and later by Gerlach and Sengupta [28-30]
for general four-dimensional spherically symmetric space-
times. Arbitrary dimensional anti—de Sitter background was
first considered by Mukohyama [31]. A gauge invariant
formalism for general (77 + 71)-dimensional spherically
symmetric background space-times, where 7 is the dimen-
sion of the symmetry spheres, was worked out in detail by
Kodama, Ishibashi, and Seto [32]. When m =2, for
arbitrary 71, a generalization of the Regge-Wheeler scalar
exists. The generalization of the Zerilli function for the
m = 2 case was presented by Kodama and Ishibashi in
[33]. When the dimension of the symmetry spheres is
greater than two, in addition to even and odd parity
perturbations there is a third type of perturbation. Since
this can be expanded in terms of tensor spherical harmonic
functions, it is called tensor-type perturbation. Tensor-type
perturbations were considered first for cosmological prob-
lems, since the symmetry sphere of the background is
three dimensional in that case [34,35]. We follow this more
general terminology in this paper, calling even parity
(polar) perturbations as scalar-type and odd parity (axial)
perturbations as vector-type. A detailed description of the
linear perturbation formalism of anti—de Sitter space-time is
given by Ishibashi and Wald in [36], which was a very
important reference during our work.

General solutions of the (3 + 1)-dimensional linearized
Einstein equations around the AdS background (3) can be
uniquely decomposed into the sum of scalar- and vector-
type perturbations. Both types of perturbations are further
decomposed into spherical harmonic classes indexed by the
integers /, and m with —/ < m < [. Perturbations with / = 0
or 1 are pure gauge modes at linear order, so we do not
consider them at this stage; i.e., we shall assume [ > 2.
Classes of perturbations belonging to different /, m, and to
scalar and vector types decouple in the linear equations,
because of the rotational invariance of the background
and the operators. For the linear case, in each class, the
asymptotically AdS centrally regular perturbations are
explicitly known [36]. They are linear combinations of
time periodic solutions labeled by a non-negative integer n.
The time phase of the solutions is arbitrary, which we
take into account by allowing two contributions with
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independent amplitudes, one with cosine and the other with
sine time dependence.

Regular scalar-type perturbations exist only for
frequencies
a)grsl) =141+ 2n, (10)
and they are generated by the functions
P01 = ) €05 (@}, )p . (1
iy = iy in (), 1)l (12)

where pgs) are functions of x, and agi(;) are arbitrary

constant amplitudes for each choice of [, m, n, and

o = (sorc). The explicit expression for PE? is given by

(G11) in Appendix G, where the nonlinear formalism is

discussed in detail. In this section the important points are

the time dependence of ®°°)

Imn
dent constants agi‘;). For fixed [, n, and ¢ there are 2/ + 1

independent modes for each m in the range |m| < I, and
the generated perturbations differ only in their angular
behavior.

Regular vector-type perturbations exist only for frequen-
cies

and the number of indepen-

o) =1+2+2n (13)

and are generated by the functions

o) = aj’) cos (it 1) piy . (14)
@) = af sin (w)) 1)p!Y (15)

where pg,‘l/ ) are given in (G14). The integer n gives the

number of radial nodes (zero crossings) of the generating
functions.

Each dbgfl‘;) function, where X = (Sor V), generates a
part of the g,(,L) linear metric perturbation that belongs to
the /, m scalar or vector spherical harmonic class. The
general scalar or vector [, m class perturbation is the linear
combination of these for all n > 0. The details of the

differential map that gives the metric tensor components

from the scalars QEZ‘;) are given in Appendix E for vector-
and Appendix F for scalar-type perturbations, where the
formalism for general order in ¢ is discussed in detail. The

important point here is that all the amplitude constants
aﬁ? can be chosen independently, and all the contribu-
tions give time-periodic perturbations with integer
frequencies. Any combination of these will be periodic
at least with frequency w = 1. This shows that if we
consider the formalism only to first order, we have an

infinite-parameter family of linear geon solutions.
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However, only a small part of these solutions will
correspond to truly periodic solutions of the nonlinear
system. In fact, in all cases that we have studied, only
single-parameter families survive the consistency condi-
tions that arise at higher order in the expansion formalism.

A natural first task is to consider cases when only one
of the constants al?n’; is nonzero. This approach was
followed in [18,19,21,23], concentrating on helically or
axially symmetric solutions. It was shown in these papers
that only some exceptional single linear modes survive to
higher orders. However, as it was pointed out in
[20,37,38], modes with identical frequency should be
combined even at linear order. For the cases investigated
in these papers, the same frequency linear combinations
have been observed to give as many one-parameter
families of nonlinear solutions as the multiplicity of
the given frequency. In [22] three one-parameter families
of helically symmetric AdS geon solutions were pre-
sented. To first order in the expansion each of them
reduces to a nontrivial linear combination of three modes,
a vector mode, a scalar mode with one radial node, and a
scalar mode without radial nodes, all three with fre-
quency @ = 5.

IV. LOWEST FREQUENCY GEONS

One of the main aims of the present paper is to present
the complete classification of those geon families that in the
small amplitude limit oscillate only with the lowest
possible frequency. It follows from (10) that in the linear
order, the expansion of these solutions includes only scalar
modes with / =2 and n = 0, and the frequency is @ = 3.
As (13) shows, the frequency of the vector modes is at least
o = 4, so for these types of solutions vector modes can be
generated only at higher orders in the € expansion. For the
linear scalar modes there are five integer values in the —2 <
m < 2 interval, and since for all of these the time depend-

ence can be sine or cosine, altogether there are ten freely

specifiable constants, aéf:g. We consider two solutions

equivalent if one can be transformed into the other by
spatial rotations and by a constant time shift. A general
spatial rotation can be specified by three Euler angles a, 3,

and y. One can expect to be able to make zero three

coefficients from the ten numbers ag:g by appropriate

choice of the Euler angles. We use the rotational freedom to

setalie) = o)) = i), = 0, keeping only the m = 2 and

s
m =0 components nonzero from the constants aémcg

corresponding to the cosine time dependence. It is shown
in Appendix C that this can always be achieved. The five
coefficients ag,f()) with the sine time dependence can be
arbitrary at this stage, so we still have seven parameters.
Further restrictions on the parameters, from the nonlinear
nature of the problem, will only come at &3 and &> orders in
the small-amplitude expansion procedure.
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V. HIGHER ORDER EXPANSION IN GENERAL

We do not attempt here to work out a general formalism
to write down explicit expressions for the € order compo-
nents of the Einstein equations. See, for example, [37]
for such results. Nonlinear perturbations of Einstein equa-
tions can be efficiently calculated to very high orders by
some algebraic manipulation software, such as MAPLE,
Mathematica, or SageMath. If the covariant components of
the metric are known up to the order K,

K
k
9w = Z fkg;(w), (16)
k=0

then the contravariant components of the metric can be
calculated by the chosen algebraic manipulation program
and can be expanded up to order K in €. After this step, one
only has to do multiplications and differentiations to
compute the components of Christoffel symbols, the
Riemann curvature tensor, and the Einstein equations
G,, +Ag,, = 0. In each case when one has to multiply
two expressions, in order to save memory and time, it is
reasonable to calculate separately the e¥ components of the
product for k < K from the coefficients of the two terms, in
order to ensure that higher than K order components are
never calculated and stored. Although it is relatively easy to
calculate the high order components of the Einstein
equations by computer algebra, it is not possible to solve
them without understanding their structure. At each order k
the equations contain linear terms in the unknown variables
gﬂ(tl;), which we discuss in the following paragraphs and in
Appendixes E and F in detail, and also contain nonlinear
source terms determined by lower order perturbations,
which we obtain by computer algebra.

We 2 +2 decompose the background AdS metric
according to its spherical symmetry [28,32],

ds3 = ap(y)dy*dy” + r*(y)dQ?, (17)

where y* = (y', y?) are the coordinates in the time-radius
plane (constant angles), and dQ? = y; jdzi dz/ represents the
metric of the unit 2-sphere S?. On the time-radius plane
the two-dimensional metric induced by the AdS metric
is denoted by §,,, and the corresponding derivative

A

operator by V, We use standard spherical coordinates
7 =(2%,7*) = (6, ¢), and on the time-radius plane we use
coordinates y* = (t, x).

Scalar functions on the two-dimensional sphere can be
expanded in terms of real scalar spherical harmonics S,,,,,
where [ and m are integers satisfying / > 0 and |m| < I. The
definition of the S;, we use is given in Appendix B.
One-form fields and symmetric tensors can be uniquely
decomposed into scalar-type and vector-type parts. The
vector-type parts can be decomposed in terms of the vector
spherical harmonics V,,);. A detailed description of the
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decomposition procedure and its practical application is
given at the end of Appendix B.

Higher order perturbations of four-dimensional AdS
space-time can be expanded as sums of scalar- and
vector-type perturbations. At order e, perturbations in
different classes (scalar and vector) and with different /
and m are only coupled to each other through nonlinear
source terms, which are completely determined by lower
than k order perturbations. We give a concise description of
the nonlinear gauge-invariant perturbation formalism in
Appendix D. Since we are working with a concrete natural
gauge choice at each order in the formalism, the deep
understanding of the gauge invariant formalism is not
necessary for the actual calculations.

At each order in the & expansion one can make a
gauge choice and proceed order by order with the
perturbation formalism. We choose a gauge in which
the metric perturbation variables are very closely related
to the Kodama-Ishibashi-Seto gauge-invariant variables
[32]. This choice corresponds to the Regge-Wheeler
gauge in the literature. Scalar- and vector-type perturba-
tions must be treated separately. Perturbations with
spherical harmonic index /=0 and [ =1 also require
special treatment.

We proceed order by order with the perturbation for-
malism. We consider * order perturbations, assuming that
all the lower order perturbations are already calculated and
fixed. If the construction is ready up to £=! order, then we
can calculate the nonlinear source terms in the &* order
Einstein equations by some algebraic manipulation soft-
ware and decompose the source terms into (1, m) scalar and
vector harmonic components using the procedure described
in Appendix B. There will be only a finite number of
nonzero source term components at each order. We can
solve each scalar and vector (/,m) component equation
separately for the &* order perturbation quantities. In most
cases, but not always, it is enough to consider only those
components that have a nonzero nonlinear source term and
take the trivial zero solution for the others. The calcula-
tions, especially the necessary integrations in the x variable,
are becoming more and more involved technically as the
order of the expansion increases, but in many cases they
can be managed up to order £° by an algebraic manipulation
software.

The formalism for vector-type components is somewhat
simpler than that of the scalar-type. Because of the com-
plicated technical details, vector-type perturbations are
discussed in Appendix E and scalar-type perturbations in
Appendix F. The equations determining the kth order
perturbation of the metric for the spherical harmonic index
[ =0or! =1 can always be solved directly, for both scalar
and vector types, as it is demonstrated in Appendixes E and
F. If there are no source terms arising from lower than k
orders, then in the [ < 1 case only the trivial zero solution
remains.
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When [ > 2, for each choice of (/,m), the vector-type
perturbation of the metric tensor is generated by a scalar
function @y, and similarly, class (I, m) scalar-type pertur-
bations are generated by another scalar ®g. To make
notation shorter, the indices [ and m are dropped from
@y and @g. As it is shown in Appendixes E and F, both
of these functions satisfy a differential equation having
the form

P 0*® I(1+1) o)
- - ()] =0. 18
orr  0x*  sin?x sin? x (18)

This equation is the master equation describing all [ > 2
scalar- and vector-type e* order perturbations. Since we are
interested in geon configurations, we are looking for time-
periodic solutions of (18). The boundary conditions at
infinity are different in the vector and scalar cases.

The homogeneous part of (18) is the same in all cases,
but the inhomogeneous source term ®(©)/sin®x arising
from lower order perturbations is generally different for
each vector or scalar (/, m) component. The actual form of
@) is obtained by an algebraic manipulation software in
each case. Generally, the source term is the sum of a finite
number of time-periodic (or static) terms,

o) = Z [P cos(@yt) + pi sin(wyt)],  (19)

a=1

where w,, are non-negative integers, and the functions péog),

for 6 = c or s, depend only on the radial coordinate x. The
natural way to solve Eq. (18) is to solve the inhomogeneous
equation separately for each individual term in (19), and
then to add to the sum of these the general time-periodic
solution of the homogeneous equation. This means that we
have to solve ordinary differential equations for a function
p depending on x having the form

dp 1(I+1) 5 p0

— — pt+o,p+—
dx?  sin’x P sinZx

=0.  (20)

The frequency of each particular solution is given by the
frequency of the corresponding source term, so in that case
, = 0, and p' is one of 209 or pi) 1f one is looking
for the solution of the homogeneous problem, then
=0, and @ » 1s yet undetermined. The detailed
description of the solution procedure of (20) is presented
in Appendix G. The solution for the generating function has
the form

[0

ﬁmax
@ = [py cos(wyt) + py sin(wpr)].  (21)
p=1

where p(”) come from various solutions p of (20), and the

frequencies wy include all w, from (19) and some of the
resonant frequencies of the homogeneous equation.
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For a given (I, m) vector- or scalar-type component let us
find the particular solution corresponding to the part of the
source term in (18) with frequency w,,. It follows from the
results in Appendix G that there are two cases to consider,
resonant or nonresonant. The source term frequency @, is

resonant if for some non-negative integer value of # it is
()

In

equal to @

to a)gr‘; J=14+2+2n in the vector-type case. For any

nonresonant source term a unique centrally regular asymp-
totically AdS time-periodic particular solution of the master
equation can always be obtained. (However, some integrals
in x may be extremely hard to perform.)

For a resonant source term centrally regular asymptoti-
cally AdS time-periodic solutions exist only if the follow-
ing crucial consistency condition holds:

= [+ 1 4+ 2n in the scalar-type case, or equal

z 0)
/zp}pQ dx =0, (22)
o S x
where p(¥) is the radial part of the source term, and p is the

regular asymptotically AdS solution of the homogeneous

problem, denoted by pgf) or pg,‘: Jin Appendix G. To satisfy

the consistency condition (22) one often has to include
certain homogeneous solutions of the lower order pertur-
bation equations whose amplitudes will then be determined
(and be different from zero) by (22).

Source terms with resonant frequencies will not only
provide relations between the yet unspecified constants but
also provide new constants. For these resonant frequencies
the homogeneous equation has a solution that is behaving
well both at the center and at infinity, and we can add this
solution with an unspecified amplitude ¢, to the particular
solutions. If the source term is nonzero, there is no reason to
prefer the value ¢, = 0. What we observe at the actual
calculations, is that each resonant source term at order &f
provides a new constant, and at order £t we get con-
straints that restrict their values.

The regular time-periodic general solution of the homo-
geneous part of Eq. (18) contains infinitely many unspeci-
fied constants, exactly the same way as the linear problem
discussed in Sec. III. For each non-negative integer n there
are solutions with the frequency given by (10) or (13), and
the amplitude of each of them is arbitrary. At each order in &
only one of these new constants can be canceled by the
ambiguity in how the various states (or their corresponding
initial data) are labeled by the parameter . We have only
one freedom in determining the frequency change at each
order in the expansion. We do not consider quasiperiodic
solutions having modes with unrelated frequencies in this
paper. The inclusion of the other constants generally
correspond to physically different solutions. In the majority
of cases they correspond to initial data that lead to non-
time-periodic evolution. In our procedure, when consider-
ing time-periodic solutions only, the value of these
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constants will be restricted by consistency conditions
at 2 orders higher in e. It is clearly impossible to treat
too many unspecified constants even with the most
modern algebraic manipulation software. A reasonable
simplifying assumption is to set to zero the amplitude of
all homogeneous modes for which there is no inhomo-
geneous source term in (18) with the same frequency.
Surprisingly, it turns out that we will have to make a few
exceptions to this rule. At & order some modes give
consistency conditions that can be solved only if we allow
the same modes to appear with some nonzero amplitude
already at € order, even if at that order there are still no
source terms with their frequency.

VI. HIGHER ORDER EXPANSION OF THE
LOWEST FREQUENCY GEONS

Let us now return to the geon configurations considered
in Sec. IV, which in the small amplitude limit only have the

@ = 3 frequency components. For the time being we keep

all ten freely specifiable constants agfg, which determine

these solutions to linear order (here ¢ = c¢ or s, and

|m| <2). To ease notation we denote them simply by

a. = a'>® from now on
om = Ay .

A. Second order

Proceeding to second order in &, the nonlinear source
terms will have scalar-type components with [ =0, 2, 4,
and vector-type components with [ = 1, 3, with all possible
|m| < I'belonging to these. The vector components are time
independent, but in the scalar components, besides the
static part, there are terms with cos(67) and sin(67) time
dependence. Since @ = 6 cannot be written as [ + 1 4 2n
for [ =0, 2, 4, it is not a resonant frequency, and so there
are no consistency conditions to satisfy at second order in &.
We do not either introduce at this level any new constants
that would give the amplitude of homogeneous solutions,
because they are not motivated by the presence of corre-
sponding source terms. At the / = m = 0 component a new
unspecified constant, v,, must be introduced, according to
(6), (F42), and (F43). Later, when its value will be known, it
will determine the second order change of the oscillation
frequency of the geon. Having the metric perturbation to
second order, one can already calculate the leading order
behavior of the mass and the angular momentum by the
method described at the end of Appendix A,

135 2
= E 23
512L3 Z cm + asm ( )
45
Jx = 25612 € (\/gamac—l - \/gacoas—l + 20
T a0 — a0 — acZ“s—l)’ (24)
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Jy 256L2 € (facoasl \/§asﬂacl — 02051
+ Ao 102 + A1 A — Ay )1 (25)
45
Jz = Wg (—2(16_26{52 — OO T O+ 2“62“3—2) .

(26)
B. Third order

At &3 order there are scalar source terms with [ = 0, 2, 4,
6 and vector source terms with /=1, 3, 5, with time
dependence cos(37), sin(3¢), cos(9z), and sin(9z). The
o = 9 frequency is resonant, but the consistency conditions
(22) belonging to these terms are identically satisfied. The
@ = 3 frequency is resonant only for the [ =2 scalar
modes, and for each value of m = -2,—-1, 0, 1, 2 we get
two consistency conditions, one from the cos(37) and
another from the sin(3¢) source term. Denoting these ten
conditions by C,,,, each of them contains one term that is a
constant times L*v,a,,,, with the same ¢ and m as in their
name C,,, and about 20 other terms, which are third order
homogeneous in the ten variables «,,,. Because of their
length we do not present the detailed form of these
conditions here.

We remind the reader that we consider two solutions
equivalent if they can be transformed into each other by a
spatial rotation and a time shift. To solve the conditions and
to classify the solutions, it is advantageous to employ the
Euler rotation described in Sec. IV and in Appendix C to
make a.y = a,_; = a._, = 0. The ten consistency condi-
tions become somewhat shorter after this, but they are still
cumbersome. It helps if we consider four cases separately,
depending on which of a,, and a, is zero.

For the first case we consider a,, = a,o = 0. In this case
only the a,,, components can be nonzero. Obviously, by a
time translation we can make all a,, = 0 and make a,
equal to the previous values of a,,. We can also make more
coefficients nonzero, setting a.,,/as,, as the same value for
all m with nonzero a,,. We do not consider these as
different solutions. For this first case all ten conditions give
the same relation,

1221

i, T T a T tal tah). (27)

Uy =
which determines the second order change in the oscillation
frequency. The absence of further conditions shows that
to third order in ¢ all linear solutions with «a,,, = 0 and
arbitrary a,, can be extended to valid nonlinear solutions.
From (24)—(26) it can be seen that all components of the
angular momentum are vanishing. Since all a,,, are zero,
we still have freedom to make an Euler rotation to set
a1 = a,_1 = a,_p = 0, which shows that we actually have
a two-parameter family. Rather surprisingly, as we will
show later, when we proceed to fifth order in the &
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expansion, the consistency conditions will restrict this
prospective two-parameter family into two one-parameter
families, an axisymmetric one with o, =0 and a non-
symmetric one with a,y = 0.

As the second case, we consider solutions with ., = 0
but a.qy # 0. In this case we can make an additional rotation
to set, for example, a;; = 0. Apart from special cases of the
previously found two-parameter solution there is only one
new solution in this case, which in its simplest form has
only two nonzero amplitudes among «,,,, and these two
have to agree, a.y = a,, SO it is a one-parameter family,
which we call Solution C, since it will be considered in
detail in Sec. VII C. With a time shift of —z/6 and rotation
z/2 around the z axis we can transform it to a form where
the two nonzero coefficients are o,y = a,,. To our knowl-
edge, this solution has not been presented in the literature
yet. From (26) and (25) it follows that the angular
momentum is zero, so it is a nonrotating solution. We will
see that it can be extended to higher order in the &
expansion formalism. It would be important to show the
existence of this family of solutions by direct numerical
search, although this is not an easy task since it does not
have any killing vector, so one has to consider the full
(3 4 1)-dimensional problem numerically. Solution C, at
least for small amplitudes, oscillates between an axially
symmetric state with S,; angular dependence and a non-
symmetric state with S,, dependence, with a frequency
close to w = 3.

As the third case, we consider solutions with a,, # 0 but
a0 = 0. In this class there are two new one-parameter
families of solutions, and both are rotating solutions with
one helical Killing vector. The first solution has only two
equal nonzero components, a., = @,_,. There is only one
nonzero angular momentum, J,, so the configuration is
rotating around the z axis. Since all metric components
depend on ¢ and ¢ through trigonometric functions of
integer multiples of 3¢ — 2¢, the solution is rotating with
angular frequency w/m = 3/2 with respect to the coor-
dinate ¢. This is the helically symmetric solution studied in
detail in [18,21] and in [22], by both analytic and numerical
methods. We will refer to it as Solution E in the following.
More details about it will be given in Sec. VIIE.

The second new one-parameter family of solutions in the
third case corresponds to a helically symmetric solution
with m = 1. However, since we have transformed away
a._; and a,;, initially we find it in a nontrivial form. The
solution has a,_, = ay,y = a,, = 0, and the remaining three
constants are related by a,,/v2 = a,_; = a,;. Calculating
the angular momentum components, it turns out that J, = 0

|

PHYSICAL REVIEW D 96, 084027 (2017)

and J, = J, nonvanishing. Making an Euler rotation with
a="Trn/4, p=n/2, and y =z, we rotate the angular
momentum into the direction of the z axis, and we obtain
the solution in its simplest form, where the only nonzero
components are a,.; = a,_;. After this rotation, only the J,
angular momentum component is nonzero. This solution
was included in the tables presented in [19,23] as a likely
geon solution, and its expansion up to fourth order was also
performed in [23]; however, no numerical study has been
carried out to construct it. We refer to this family of
solutions as Solution D in this paper. It will be discussed in
Sec. VIID. We will also show later that the consistency
conditions can be satisfied at order &, which strongly
supports the claim that it is a true nonlinear one-parameter
family. The t and ¢ dependence of the metric is through
trigonometric functions of multiples of 37— ¢, so the
solution is rotating with angular frequency w/m = 3.

In the fourth case, when both a,, and a,, are nonzero,
somewhat surprisingly, there are no new solutions, only
various rotated and time-shifted versions of those presented
before. So performing the analysis to € order, we are left
with three one-parameter families of solutions and with a
fourth family that still has two independent parameters at
this order.

C. Prospective two-parameter family

For the family of solutions that still appears to have two
parameters at third order we choose a representation when
only the two independent constants a., and a,, can be
nonzero from the ten parameters «a,,. We have proved
earlier that all consistency conditions at third order in € can
be satisfied in this case. However, at each resonant
component, when a consistency condition may arise, we
also have the freedom to add an arbitrary constant times the
homogeneous solution to the generating function ®. At
order €°, we denote by ¢, the new constant belonging to
the scalar-type / = 2, m = 0 component, generated by the
@ = 3 frequency source term. Similarly, there is another
constant, denoted by c¢,, from the / = 2, m = 2 component.
There are other constants that are necessary to introduce at
the other & components, but they will not modify the
analysis that follows. There will be no consistency con-
ditions to satisfy at fourth order in &; however, one has to
introduce a new constant v,, giving the £* order frequency
change, in the / = m = 0 component. At fifth order two
consistency conditions will be important to us, the first
from the [ =2, m = 0, = 3 scalar-type component and
the second from the [ =2, m = 2, @ = 3 component,

a0 { 1836843008 L3 [1221(coazg + Craer) — 1792L3 7w
— 6615722(1116206877a, + 234547649402 a2, + 1078519297a,)
+ 16(4588209459927a%, + 9521613484590a%,02, + 44731446050150%,)} = 0, (28)
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2 {1836843008L3 (1221 (coar,g + C2a,5) — 179213714
— 661572(1172738247a%, + 2157038594202, + 11350506670*,)
+ 16(47608067422950%, + 894628921003002a2, + 4645741887383a,)} = 0. (29)

Multiplying the first equation by a,,, multiplying the
second one by a,, and subtracting, we obtain the following
constraint for the two amplitudes:

acOaCZ(a%O - 3“?2)(30550 - a%Z) =0. (30)

At least one of the four factors must vanish here.

If a,y =0, then we have a one-parameter family of
nonrotating solutions that only has the [ = m = 2 compo-
nent at the linear order. It is different from the helically
symmetric rotating Solution E, which in addition to [ =
m = 2 also has a time shifted / = —m = 2 component. This
new solution, which we call Solution B, will be discussed
in Sec. VII B. It has no continuous symmetries described by
a Killing vector, so in order to construct it numerically one
will need a (3 + 1)-dimensional code. To our knowledge,
this solution has not been published in other papers yet.
Since the spherical harmonic S,, can be rotated into S,; by
an Euler rotation with @« = /4, f = z/2, and y = 0, this
solution can also be interpreted as the nonlinear generali-
zation of the [ = 2, m = 1 linear mode. It is also different
from the helically rotating m = 1 family (Solution D)
because it does not have an / = 2, m = —1 component.

If a,, =0, then we have an axisymmetric nonrotating
solution, which has already been reported in the tables in
[19,23] as a likely geon solution. However, it was only
calculated up to third order in &, and no numerical study
has been reported for its construction. We refer to this
family as Solution A in the following. It will be discussed in
Sec. VII A in detail.

The third possibility in (30) is %, = 3a2,. The case
a,0 = —\V/3a,, can be transformed into the other case,
satisfying a,o = v/3a,,, with a rotation around the z axis
with angle @ = z/2. A linear solution satisfying a., =
V3a, =a can be rotated by Euler angles a = /2,
p=n/2, and y = n/2 to a solution for which the only
nonzero component is ., = 2@, so it is equivalent to the
previously studied Solution B.

The fourth possibility in (30) is 3a2, = a2,. Here also,
by a z/2 rotation around the axis z, we can transform the
case v3a. = —a,, into /3a,y = a,,. Then a configura-
tion with v/3a,.y = a,, = @ can be rotated by Euler angles
a=unr, p=n/2, and y = 0 to a solution that has the only
component a., = —2a, so it is equivalent to the axially
symmetric Solution A. We note that the signature of any
single a,,, can be made opposite by a shift in the time
coordinate 7.

VII. FIVE FAMILIES

We have seen up to now that there are exactly five one-
parameter families of solutions that have only @ =3
frequency components in their small amplitude limit. In
this section we present some more details about the
expansion of these solutions up to fifth order in . Up to
this order the function v defined in (8) can be written as
v=1+1,6> +1ue*. Using (9), the expansion of the
physical frequency of the geon is

3
&):Z(1+w262+a)4e4), (31)
where
1 3 1
a)2:—§y2, (1)4:§IJ%—EIJ4. (32)

We write the expansion of the total mass and the angular
momentum components as

M
f = M26'2 + M4€4, (33)

7.

L—l2 = Jne* + Jue,
For each concrete configuration the coefficients of M and J;
can be calculated by the methods described in Appendix A,
using some algebraic manipulation software. Up to second
order in M Eq. (33) can be inverted as

i=x,y, 2z (34)

1 M M,M?

2 _ _— 7 _ a4t
My L M3L*

€ (35)
From the physical frequency @ we can define a variable &
that is second order small in € by setting

3
p=—(1-2%), 36
5=7(1-8) (36)
with inverse relation &2 = 1 — L@/3. The expansion of this
new variable is
82 = —w,e? — wye*, (37)
where @, and w, are the same as in (31). This can be
inverted to the given order to yield

I
e (38)
(0] (253

er =
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The variable & is useful when giving physical character-
istics of solutions, such as mass and angular momentum,
since it is a quantity that is independent of the reparamet-
rization freedom present in the variable e. The parameter &
has only a physical meaning yet to linear order. We can
freely make the change ¢ — &(e) = & + 036> + 058> + - - -,
where o3 and o5 are arbitrary constants.

We can expand the mass in terms of the reparametriza-
tion invariant & parameter as

M . N

Z = Mzg'z + M4g'4. (39)
Substituting (38) and (32) into (33) we can express the new
type of coefficients in terms of the previous ones,

M2 = —Mz, (40)
[P)
N 3 4 4
Uy 1/2 IJZ

Equation (39) can be inverted as

1 M MM
B= i (42)
My L ML

It is also useful to write the expansion of the physical
frequency by using the mass as a small parameter,

T 1+aé M+A -
w = (1)2L (1)4L2 .

- 43)

Substituting (42) into (36), we can see that the coefficients
@; can be expressed in terms of the M ;1n (39) in a simple
way,

1 R M,
-, Dy = .
M, NS

A

Wy =

(44)

We can also expand the angular momentum components
in terms of the mass,

(45)

Substituting (35) into (34) we can get the first two
coefficients in terms of the original coefficients in the &
expansion,
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To get the J;4 coefficients directly, one should proceed to
sixth order in the € expansion. However, there is an indirect
method by using the first law of geon dynamics [18],

dj

o (49)

S

where m is the spherical harmonic index of the linear seed,
and J is the total angular momentum. At present, this law is
only a conjecture for the asymptotically AdS case, but the
sketch of a proof is presented in [21]. We assume that the
geon is rotated into a state satisfying J, = J,, = 0, such that
J =J,. Since @ is known to second order in M in (43),
assuming the validity of relation (48) allows us to calculate
one more term in (45), without actually calculating the &
expansion up to sixth order. Calculating the expansion of
1/@ from (43), and substituting into (48), we obtain

‘?12 :gv (49)
N m
Ju= —ng, (50)
~ m N N
26 :g(a’%—%)- (51)

For the two helically symmetric rotating geon configura-
tions discussed in this paper we can easily check that the
two methods give identical values for J > and J 4. For
helically symmetric geons with / = m = 2, i.e., Solution E
in this paper, the validity of the conjectured first law of
geon dynamics has been established to O(J?) in Ref. [22].
This makes us confident enough to use Eq. (48) also for the
other helically symmetric family, i.e., Solution D in the
present paper.

A. Axially symmetric (I,m)=(2,0) solution

We begin with the simplest family, the axisymmetric
Solution A from Sec. VIC, since this has the smallest
number of spherical harmonic components in the expan-
sion. Even at high orders it only contains m = 0 compo-
nents, no vector-type modes are generated, and there are no
terms with sin(w?) time dependence. At linear order the
solution is generated by the scalar mode [ =2, m =0,
which has the time dependence cos(3¢). We take this mode
with amplitude a%o = a9 = a. At second order in ¢ there
are [ =0, 2, 4 source terms with static or cos(67) time
dependence. Since these terms are not resonant, the
centrally and asymptotically well behaving generating
function and metric can be constructed to &> order. At
the / = m = 0 component a new parameter, v,, is intro-
duced, according to (6), (F42), and (F43), which deter-
mines the second order change in the oscillation frequency
of the geon.
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At third order there are [ = 0, 2, 4, 6 source terms with
cos(37) and cos(97) time dependence. The cos(97) terms
are resonant, but the consistency conditions are identically
satisfied. Since the frequency @ = 9 is the triple of the basic
frequency, the vanishing of these terms is analogous to the
nonexistence of (+ + +) terms in the expansion of spheri-
cally symmetric self-gravitating scalar fields with A < 0 in
[39]. It would be instructive to prove a similar statement for
the nonspherical vacuum system studied in this paper. The
cos(3¢) term is resonant only for / =2 and gives the
consistency condition

1221 o?

= 2
3584 7L* (52)

L9
At each resonant source component with some [, m, and ,
there is a non-negative integer n such that w = [/ + 1 + 2n,
and we can introduce a new unspecified constant ¢, that
corresponds to the amplitude ¢, of the homogeneous
regular solution p; that we can add freely to the inhomo-
geneous solution according to (G18). For scalar-type

perturbations p; is given by pgf) in (G11), and for the

vector type it is given by pg,‘: ) in (G14). For the axially
symmetric solution the introduction of the constants c,s,
Ca09> Cang> and cgpe are motivated by the appearance of
source terms at third order. Rather surprisingly, we also
have to introduce a new constant cggg, corresponding to the
homogeneous solution pé}?, even if there is no inhomo-
geneous term at &> order with [ = 8. However, at order &
there will be a consistency condition (coupled to other
conditions) with [ =8, n =0, and w = 9, which can be
solved only if cgy is nonzero.

At fourth order in e there will be [ =0, 2, 4, 6, 8, 10
source terms with @ = 0, 6, 12 frequencies. Since these are
nonresonant, the centrally regular asymptotically AdS
perturbation can be calculated to this order. The constant
v, describing the fourth order frequency change is intro-
duced at the / = m = 0 component. Having the metric up
to fourth order in &, we can calculate the first two nonzero
coefficients in the expansion (33) of the total mass M,
yielding

135a?
=5 53)
1 24 257 4
35 «a 3(588007° — 570653) « (54)

47 5613 203 1027604487 L8

The expression for the coefficient M, involves the yet
unknown constant c,3, but it is independent of the
others.

At & order there are source terms with [ = 0, 2, 4, 6, 8,
10, 12 and @ = 3, 9, 15. The cos(15¢) terms are resonant,
but they do not give consistency conditions. The resonance
conditions belonging to the cos(9¢) terms at [ =2, 4, 6, 8
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give four linear equations that can be solved for the
unspecified constants that were introduced at third order:

90140387102134562514971674773 o3
Cog9 = —,
209 T 011426422177977512667270721536 L3

(55)

_29367541304034979607272354161 /50’
€409 = T32141513861235945417044200960 7L5
(56)

34780824174291627596546643291

Co09 = —

609 10174896567315167797112403473920
o \/5\/13053

L’

_100400488602602669643900951
809 = T 0333879326179467293942284778200
y V5V17a?

L’

: (57)

(58)

We see here that it was really necessary to introduce the
constant Cg09-

Because of the @ = [+ 1+ 2n condition, among the
cos(31) source terms only the one with / = 2 is resonant at
fifth order and gives the consistency condition

18368430087L5(17927L3v, — 1221acyy;)
= 27(2718938939216 — 27347068486572)a*,  (59)

which is the only restriction that involves v4 and ¢,(3. The
reason that only a combination of these two constants gets
determined is that we have not yet uniquely fixed how we
parametrize the solutions in our one-parameter family by
the variable &. For a nonrotating family of solutions there
are two natural ways to fix the parametrization, by con-
necting it either to the mass or to the oscillation frequency
of the geon. The approach followed in [23] to fix the
reparametrization freedom is to set M, and all higher mass
coefficients at zero, making the mass proportional to £2. An
alternative way is to set w4 and all higher coefficients zero
in the expansion of @ in (31).

The expansion parameters of the mass in terms of the &
parameter in (39) can be calculated using (40), (41), and the
consistency condition (59),

. 630r
M, = ——=~4.8629,
2= 07 8629 (60)

P 277(14768644259257 — 14604436416496)
4 617019996736
~ —3.8999. (61)

Since both the mass and the parameter & are independent
of the parametrization choice for &, these coefficients are
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TABLE 1.
of solutions.

Numerical values of @, and @, for the five families

Solution @, on

A —0.20564 —0.033913
B —0.20564 0.034657
C —0.12311 -0.12077
D -0.16112 —0.0024852
E -0.27514 0.16970

independent of the constants c,p; and v4. Although future
higher order results and numerical analysis may change the
picture, (60) and (61) indicate that the mass is likely to
reach a maximum near the amplitude ¢ = 0.79, correspond-
ing to frequency @ = 1.13/L, and mass value M = 1.51L.
Higher amplitude states, where an increase in central
amplitude corresponds to a total mass decrease, are
expected to be unstable, which is a generic behavior for
various astrophysical objects. This type of instability has
been observed in [13] for spherically symmetric self-
gravitating scalar breathers with A < 0.

Using (44) we can calculate the expansion coefficients of
the frequency & in terms of M in (43),

407
Dy = — 62
2= T 630 (62)
| 14768644259257% — 14604436416496

8475667200072

The value of @, was already given in [23], but no fourth
order results were presented there for this family of
solutions. The numerical values of these constants are
presented in Table I.

B. Nonrotating (I,m)=(2,2) solution

The second one-parameter family of solutions we con-
sider is the one that reduces to a single / = m = 2 mode to
the linear order. This was named Solution B in Sec. VIC.
Since it does not include a time-shifted / = —m = 2 mode,
it is a nonrotating configuration. This can also be confirmed
by calculating the angular momentum, which turns out to
be zero. The solution does not have any continuous
symmetries that correspond to a Killing vector field; in
particular, it is not axially or helically symmetric. The
existence of this type of AdS geon solution has not been
reported in the literature before. We take the [ =m =2
mode with amplitude aggo = ., = a. At second order in ¢
there are only scalar-type source terms with (I, m) = (0,0),
(2,0), (4,0), and (4,4), with static or cos(6¢) time depend-
ence. There are no resonant terms and the centrally regular
asymptotically AdS solution can be calculated.

At & order there are scalar-type source terms with
(I,m) =(2,2), (4,2), (6,2), and (6,6), with cos(37) and
cos(9¢) time dependence. There are also (I, m) = (3, -2)
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vector-type source terms with sin(37) and sin(9¢) depend-
ence. The (I, m) = (2,2) resonance condition with @ = 3
yields the value for v, given in (52). All other resonance
conditions are identically satisfied at this order. The
resonant terms make necessary the introduction of the
constants denoted by c¢,,,, describing the amplitudes of
the freely specifiable homogeneous solutions, of scalar-
type €23, €229, €429, C629, Ceso and of vector-type c3_n.
However, it turns out that the fifth-order resonance con-
ditions will be solvable only if one introduces five more
constants at third order, which are not motivated by any
resonant source terms, scalar-type cgyg, Cgg9, and vector-
type Cs 29, €729, and ¢7_go. It will turn out at order & that
none of these 11 constants are zero. According to our
experience with several families of solutions, it appears to
be a general principle that even if there are no source terms
at & order for some values of (I, m, ), it is necessary to
allow a homogeneous solution with an unspecified ampli-
tude for this mode at & order if there are resonance
conditions at &° order with these (I, m, ) values.

At fourth order in ¢ there are only nonresonant source
terms with [ <10, m <8, and with @ =0, 6, 12. The
equations for the &* order metric perturbations can be
solved. The expansion coefficient M, in (33) is again given
by (53), which is expected because of the identical factors
in front of the parameters in (23). Rather surprisingly, the
expansion coefficient M, also turns out to be exactly the
same as that of the axisymmetric solution presented in (54).
This is probably related to the fact that both of these one-
parameter families of solutions originate from the conjec-
tural two-parameter family discussed in Sec. VIC. That
family was valid only to third order in ¢, and because of the
consistency conditions at & order, only two one-parameter
families survived from it.

At fifth order in & the (I, m,®) = (2,2,3) resonance
condition yields

18368430087L5 (17927L3v, — 1221acyy3)
= (74331870198128 — 75083601622057%)a*.  (64)

There are ten more consistency conditions belonging to
@ = 9 resonance terms, which can be solved uniquely for
the ten remaining cy,, constants. Because of the large
number of digits appearing in the rational numbers we do
not present their detailed values here.

The expansion parameter M, of the mass in terms of the
small parameter & in (39) is the same as in (60), but M,
turns out to be different, because of the difference between
the right-hand sides of the consistency conditions (59) and
(64),

P 7(404985978542257% — 398922377441872)
T 617019996736
~3.985. (65)
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Surprisingly, even the signature of 41, is the opposite, so in
this case we have no indication for a maximum in the mass.
This picture may change at higher orders in the expansion,
and numerical analysis would be necessary to decide
whether a maximal mass exists for this family of solutions.
The coefficients @; in the expansion (43) of the frequency in
terms of the mass can be calculated by the general formulas
(44), and their numerical values are given in Table I.

C. Solution oscillating between (I.m)=(2,2)
and (2,0) states

We continue with Solution C from Sec. VI B. This one-
parameter family of solutions has two components in the
linear order in &, one (I,m) = (2,2) component with
cos(37) time dependence, and another (2,0) component
with sin(37) dependence. The two modes must have equal
amplitudes but opposite time phases, @35, = a, = a and
a5y = a0 = a. Similar to the previous family, this is also a
nonrotating solution with zero angular momentum and no
continuous symmetries, and it has not been reported in the
literature before. This is the technically most complicated
family among the five solutions considered in this paper,
when considering the number of components and the length
of the expressions.

At second order in ¢ there are (I,m) = (0,0), (2,0),
(4,0), (4,2), and (4.,4) scalar-type source terms with @ = 0
or 6 frequency, and one static vector-type term with [ = 3,
m = —2. At & order there are scalar-type source terms
belongingto [ = 0,2,4,6 and m = 0,2,4, 6 with® = 3,9.
There are also vector-type source terms with / = 3, 5 and
m = =2,—4. The (I,m,w) = (2,0,3) and (2,2,3) compo-
nents give the same consistency condition,

731 o?

T 1792 7L% (66)

%)

All other consistency conditions are trivially satisfied.
Because of the presence of homogeneous solutions, the
following nine c,,,, constants have to be introduced: c,(3,
2235 €4095 €449> €609 €629 €649, Ce69> AN €3 99. To be able to
solve the fifth order conditions, one also has to introduce
five more constants: cggg, Cg49, €839, C7_29, and c7_gg. All of
these will take a nonzero value from the fifth order
consistency conditions.

The equations for the &* order metric perturbations can
be solved. The expansion coefficients of the total mass M in
terms of ¢ in (33) turn out to be

135 o?
iy 67
27 256L% (67)
135 a (e + )+729(39200712 — 385767) o*
=——(c c —.
MY T A 513802247 L8
(68)
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The value of M, here is the double of that in (53), since we
have now included two modes with amplitude o at first
order in &.

At fifth order in & there will be two conditions coming
from the (I,m,w)=(2,0,3) and (2,2,3) source terms.
These are equivalent to

€203 = €223 (69)

73473720327L° (8967 L3v, — T3 1acy3)
= (491118296077952 — 492270412444657%)a*. (70)

There will be 20 more nontrivial consistency conditions
coming from various @ = 9 source terms. It turns out that
these constraints are not linearly independent, since they
can be uniquely solved for the remaining 12 ¢;,,,9 constants.

The expansion coefficients of the mass in terms of the
parameter £ in (39) can be calculated using (40) and (41),

(. _ 18907

— ~8.1226, 71
2 73] (71)

i _ 27m(260296835303925 — 2590848003556096)
‘7 28599479507456
~ —64.719. (72)

This indicates that the mass is likely to reach a maximum
near the amplitude & = 0.25, corresponding to frequency
@ = 2.8/L, and mass value M = 0.25L. The coefficients
@; in expansion (43) of the frequency in terms of M/L can
be calculated by general formulas (44), and they are given
in Table I.

D. Helically symmetric (I,m)=(2, £ 1) solution

The next solution we consider in detail is Solution D
from Sec. VIB. It is a one-parameter family of helically
symmetric configurations, which in the small amplitude
limit reduces to the linear combination of two components,
an [ =2, m = 1 mode with cos(3¢) time dependence and
an [ =2, m = —1 mode with sin(3¢) time dependence. The
nonzero amplitudes are a5, = a,; =a and a5° |, =a,_| =a.
Since the two modes must have identical amplitudes, the
order metric perturbation components are proportional to
cos(3t — ¢) or sin(37 — ¢). Even at higher orders, the ¢ and
¢ dependence will only be through trigonometric functions
of integer multiples of 37 — ¢, so the solution is rotating
with angular velocity 3 with respect to the time coordinate
t. This solution was already reported in [19,23] as a
possible geon configuration, where a third order analysis
in € was performed for it. Here we show that the fifth order
consistency conditions can also be satisfied, which makes it
extremely likely that it corresponds to an actual solution of
the nonlinear equations, and we present higher order results
for its frequency, mass, and angular momentum.
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At each order in ¢, and for arbitrary /, if we have a mode
with some given m value, then because of the helical
symmetry, this mode can only have a special time depend-
ence. If m >0, then the time dependence must be
cos(3mt), and if m < 0, then sin(—3mr). In particular,
m = 0 modes must be static. Because of this, we do not
explicitly state the frequency of the various modes in the
following. Furthermore, the amplitudes of the m and —m
modes will always be identical.

If at some resonant source term corresponding to (I, m)
we add the homogeneous solution with amplitude c;,,, then
the helical symmetry is preserved only if at the (I, —m)
component we add the corresponding homogeneous sol-
ution with the same amplitude. If we would introduce
independent c,;_,, constants for the —m mode, then the
consistency conditions at fifth order would imply that
Cl—m = C1» ensuring the helical symmetry of the full
nonlinear solution. The resonant source terms at &> order
motivate the introduction of the following amplitude
constants: ¢y, €43, Ce3 coming from scalar-type terms,
and ¢33 coming from a vector-type term. The resonance
conditions at & order can be solved only if one introduces
three more constants giving the amplitudes of homo-
geneous solutions not motivated by any source terms,
scalar-type cg3 and vector-type cs3, €73.

At &* order there are scalar-type source terms with [ = 0,
2,4,6,8, 10 and m = 0,42, +4, as well as vector-type
oneswith/ =1,3,5,7,9 and m = 0, &2, +4. There are no
conditions, and the equations can be solved for the metric
perturbation. The value of the coefficient M, in the
expansion (33) of the mass is the same as in (67). The
next coefficient is

135 a

135(84007° — 83201) a*
MRRTIYARC

18350087 L8

(73)

Only the angular momentum component J, is nonzero, and
its expansion coefficients in (34) are

45 o?
= 4
I 256 L4’ (74)
45 a 15(252007% — 246733) o 5)
=——cC —.
@283 18350087 L8

At & order there are scalar terms with [ = 2, 4, 6, 8, 10,
12 and m = +1,£3,+£5,47, and there are vector-type
ones with /[ =1,3,5,7,9, 11 and m = £1,+3,4+5, £7.
The (I,m) = (2, 1) condition takes the form

57401344713 (1927L3v, — 205ac,,)
= 3(361971753894 — 365989807757>)a*. (76)
The m = 3 scalar and vector resonance conditions for

[=3,4,5, 6,7, 8 uniquely determine the six c;; constants,
and there are no more nontrivial restrictions at fifth order.
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According to (39), (40), and (41), the expansion coef-
ficients of the mass in terms of the parameter & are

.8l
M, = 4—1” ~ 6.2066, (77)

o 7297(388972767757 — 383950851034)
4 193171778800
~ —0.59418. (78)

This would indicate that the mass is likely to reach a
maximum near the amplitude & = 2.3 with mass value
M = 16.2L. This high value of & = 2.3 would correspond
to a negative @ frequency, so we need higher order analysis
and numerical calculations to provide information about the
existence and possible value of the mass maximum. The
coefficients @; in the expansion (43) of the frequency in
terms of M/L can be calculated by the general formulas
(44), and their rounded values are included in Table L.

Only the z component of the angular momentum is
nonzero, and its expansion coefficients in terms of the mass
in (45) are

N 1
‘]22 — g, (79)
N 41
4= 386 (80)
o 3460269166106 — 3500754909752
I 9 09757 1)

6 1655025372007>

The coefficients sz and jz4 can be obtained by direct
calculation from the metric either using (46) and (47) or
using the conjectured first law of geon dynamics by (49)
and (50), leading to the same results. Since we have not
calculated the metric up to sixth order for this geon family,
the value of J .6 was only calculated using the first law
by (51).

E. Helically symmetric (I,m)=(2, + 2) solution

The last solution among the five families that we
consider in detail is Solution E from Sec. VIB. Similar
to Solution D studied in the previous subsection, this is a
one-parameter family of helically symmetric configura-
tions, which in the small amplitude limit reduces to the
linear combination of two components, now an [ =2,
m = 2 mode with cos(37) time dependence, and an [ = 2,
m = =2 mode with sin(37) time dependence. The two
amplitudes must be identical, &35, = a., = a and a5* 5, =
a,_» = a. The € order metric perturbation components are
proportional to cos(37 — 2¢) or sin(37 — 2¢). At higher
orders the 7 and ¢ dependence will be only through
trigonometric functions of integer multiples of 37 —2¢,
so the solution is rotating with angular velocity 3/2 with
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respect to the time coordinate ¢. This is the most thoroughly
studied AdS geon solution in the literature, and it has been
investigated in detail in [18,21] and in [22], by both analytic
and numerical methods.

At each order, and for arbitrary [, if m > 0, then the time
dependence of the mode must be cos(3mz/2), and if
m < 0, then sin(—3mt/2). In particular, m =0 modes
must be static, and there are no modes with odd m in this
case. The amplitudes of the m and —m modes will always
be identical.

At second order in ¢ there are scalar-type source terms
with (I, m) = (0,0), (2,0), (4,0), (4, £4), and vector-type
terms with (1,0), (3,0). The unique centrally regular and
asymptotically AdS metric perturbation can be calculated.

At & order there are scalar-type source terms with
(I,m) = (2,42), (4,£2), (6,%2), (6,+6), and vector-
type terms with (3,+2), (5,42). The (I,m) = (2, £2)
components yield the resonance condition

4901 o?

=, 82
5376 zL* (82)

%)

All other conditions are trivially satisfied at this order. The
presence of source terms motivate the introduction of the
two scalar-type c;,, constants, ¢,, and cgg, corresponding to
the unspecified amplitudes of homogeneous solutions. The
fifth order consistency conditions can be solved only if a
scalar-type cgq and a vector-type c7¢ constant is also
introduced. Although this is the AdS geon solution that
has been studied to the most detail in the literature, the
necessity of these additional homogeneous solutions with
nonzero amplitudes has not been reported up to now.

At £* order there are scalar-type source terms with [ = 0,
2,4,6,8,10 and m = 0, £4, £8, and vector-type ones with
=1, 3,5, 7, 9 and m =0, +4,+8. There are no
conditions, and the equations can be solved for the metric
perturbation. The value of the coefficient M, in the
expansion (33) of the mass is again the same as in (67).
The next coefficient is

135a

27(15288007 — 15345433) o
=——c
* T 12837

513802247x L8
(83)

Only the angular momentum component J,, is nonzero, and
its expansion coefficients in (34) are

45 a7

D a 4
27128 L% (84)
45 o 3(45864007% — 45350159) o
Tu = 256901127 e (8

The coefficient J, is double that of the value for the m = 1
helical family, presented in (74).

PHYSICAL REVIEW D 96, 084027 (2017)

At & order there are scalar source terms with [/ = 0,
2, 4,6, 8, 10, 12 and m = +2, £6,£10, and there are
vector-type ones with [ =3, 5, 7, 9, 11 and
m = £2,46,+10. The (/,m) = (2,2) condition takes
the form

73473720327L5 (26887L3 1, — 4901 acy,)
= 15(324432451551360 — 329441172384177°)a*.
(86)
The (I,m) = (6,6), (8,6) scalar and (/,m) = (7,6) vector

resonance conditions determine the yet unspecified con-
stants

342951235065187003920120571
C =
6 ™ 1274223922034023348070582099200

V25V TV11/1368
x - , (87)
L
8354315114469291547881297 /3V11V/13a°
C == )
767 2275399860775041692983 1823200 xl?
(88)
3850991730510763011266813
Cgg = —
86 11604539289952712634214229832000
V25V 11131788
X 73 . (89)
T

The expansion coefficients of the mass in (39) in terms of
the parameter ¢ can be calculated using (40), (41), and the
fifth order constraint (86),

. 5670z
=——=3.634
2 ="gop 36345, (90)
P 7297(86931807883882572 — 8549162771834624)
4 8619064008828416
~8.1476. (91)

Since M, > 0 we cannot infer a mass maximum from these
values. The coefficients @; in the expansion (43) of the
frequency in terms of M /L can be calculated by (44). The
numerical values for @, and @, for the five families
discussed in this paper are given in Table I.

For this solution, only the z component of the angular
momentum is nonzero. The expansion coefficients of J in
terms of the mass in (45) are

[\

sz = gv (92)
. 4901
Jua = 170107 (93)

084027-15



GYULA FODOR and PETER FORGACS

jo_ 77065569309012736 — 782386270954942572
o 7414513666560007° '

(94)

The direct calculation by (46) and (47) gives the same result
for J -2 and J 4 as the first law of geon dynamics using (49)
and (50). Since the & expansion of this solution was
presented in this subsection only up to fifth order, the
above results allow the direct expansion of J, only up to
O(M?). The calculation of J_¢ from this information is only
possible by the first law method using (51). In Ref. [22],
however, a sixth order computation in € has already been
carried out to obtain the mass-angular momentum relation
to O(J?); cf. Eq. (20c) of that paper. That equation is
precisely the inverse of the angular momentum-mass
relation (45), up to third order in J or M, with the
coefficients given in (92)-(94). The direct computation
of Eq. (20c) of Ref. [22] made it possible to verify the
validity of the conjectured first law of geon dynamics,
Eq. (48), up to O(J?).

VIII. CONCLUSIONS

In the present paper we have given a detailed construc-
tion of five one-parameter families of asymptotically AdS
time-periodic vacuum geon solutions with @ =3, by
performing a fifth order perturbative analysis. We have
made an effort to provide all necessary technical details in
order to make the checking of the results relatively easy, as
well as to make our techniques available for other
researchers. AdS geon solutions have already been studied
in the literature, but many technical details have not been
published yet. Furthermore, up to now, only helically
rotating or axially symmetric geon solutions have been
found. By our high order perturbative method we have
shown the existence of two different one-parameter fam-
ilies of solutions that do not have any continuous sym-
metries. Surprisingly, they are not rotating, since all their
angular momentum components are zero. For the first time,
we have considered in detail the consistency conditions that
appear at fifth order in the expansion. We have shown that
they can be solved only if some nontrivial homogeneous
solutions are added at third order, which are not motivated
by the presence of any inhomogeneous terms at third order.

The most important result of our work is that the
presented five families are exactly the ones that reduce
to only @ = 3 frequency modes at linear order, and there
are no other such solutions. We have considered o = 3,
because it is the lowest possible frequency in this system.
One may be tempted to easily state that the number of these
families obviously agrees with the multiplicity of the [ = 2
modes, spanning —2 < m < 2. However, each of these
modes may have cos or sin time dependence, which
seemingly doubles the number of possible modes. On
the other hand, spatial rotation and time shift can make
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apparently different solutions identical. For example, the
[ =2, m =2 spherical harmonic mode can easily be
rotated to an [/ = 2, m = 1 state.

Our high order perturbative results not only establish the
existence of these families but also allow us to calculate
how their frequency, mass, and angular momentum depend
on each other. We have obtained expressions for these
dependencies that are valid to higher orders than earlier
results available in the literature. These relations will likely
be useful when later direct numerical searches will be
performed for these configurations, making it possible to
check the consistency of the two kinds of results. The next
big challenge will be the investigation of the stability of
these geon solutions by a numerical time-evolution code.
Numerical studies of nonspherically symmetric evolution
of scalar fields with AdS asymptotics has been reported
recently in Refs. [40,41]. An important open question about
AdS geons is whether all of the one-parameter families
presented in this paper are stable up to a state where they
reach a mass maximum.
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APPENDIX A: ASYMPTOTICS AND
CONSERVED QUANTITIES

For the treatment of asymptotically anti—de Sitter space-
times we use the definition based on Penrose’s conformal
treatment of infinity, which was first proposed for the
A < 0 case in [42] and was investigated in more detail in
[43—45]. Our manifold (M, g,,) can be asymptotically

AdS if there exist a manifold (M, g,,) with boundary 7

and a diffeomorphism from M onto M\I , such that
G = ©@%g,,. It is also required that 7 is topologically §* x
R and that Q =0 on Z, but its gradient is nonvanishing
there. Using the radial coordinate x, it is easy to see that our
one-parameter family of solutions represented by (2) with
the boundary conditions (6) and (7) clearly satisfies these
requirements. The manifold M belongs to the region
0<x<n/2, and 7 is the surface x = z/2. Choosing
the conformal factor as in (5), the conformally transformed
metric g, = Q? gy 1s regular at 7. The spacelike one-form
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n, = VﬂQ is orthogonal to 7 and has the norm
v #*n,n,=1/L on T.

In the case of four spacetime dimensions there is an
additional condition that asymptotically AdS space-times
have to satisfy. This condition has various equivalent forms.
The first form of the condition is to require that the induced
metric, 7,, = g, — LGﬂn,,, on the hypersurface 7 is
conformally flat. Since we have required the boundary
conditions (6) and (7), the induced metric on the timelike
surface corresponding to infinity in the (7, 8, ¢) coordinate
system is

L = diag(—v, 1,sin? 6), (A1)
where v is the € dependent constant defined in (8). Apart
from the rescaling of the time coordinate, this metric is the
same as for the exact AdS case, ensuring the asymptotically
AdS property of the investigated family of solutions.

A second equivalent way to state the conformal flatness
condition is to require that the conformal group of Z, with
respect to the metric induced on it, is the anti—de Sitter
group. A third equivalent possibility, in terms of four-
dimensional language, is to require the vanishing of the
magnetic part of the asymptotic Weyl curvature on Z.

Similar to the calculation of the curvature belonging to
the physical metric g, in the form (16) in Sec. V, we can
calculate the Weyl tensor C,,,, belonging to the conformal
metric g, by some algebraic manipulation software up to a

given order in ¢. The dual Weyl tensor *C’W,,, = m,(,,;C/,(,
can also be calculated, where €,,,; is the totally antisym-
metric tensor belonging to g,,. In four spacetime dimen-
sions, from the asymptotically AdS conditions it follows
that the Weyl tensor (and its dual) is vanishing on 7.
Consequently, one can define the leading order asymptotic
Weyl and dual Weyl tensors on Z by

1 s
Kyvpo = 13?5 Chvpo Kypo = -IQ Chspo-
The electric and the magnetic parts of the asymptotic Weyl
curvature on Z are defined as

Ew =L°K

upro’N7, B, = =L*K

pprol?

(A3)

Because of the antisymmetry of the Weyl tensor, &, n" =
B,,n* =0, so these are symmetric tensors in the timelike
hypersurface 7.

The vanishing of the magnetic part is equivalent to the
conformal flatness condition in the definition of asymp-
totically AdS space-times, assuming that Einstein’s equa-
tions hold [43,44]. Hence from our boundary conditions (6)
and (7) it necessarily follows that B,, = 0. We have also
checked this by direct calculation up to a certain order in €
for several concrete geon configurations.
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= 0, and without matter fields B"SW =

where f)ﬂ is the derivative operator belonging to y**, the
electric part can be used to define conserved quantities.
Asymptotic symmetries on the spacetime correspond to
conformal Killing fields & on Z. For every choice of & and

a 2-sphere cross section C of Z a conserved quantity is
defined in [43],

Since €,

L ~
= - H Y
Q- Sﬂjg Euéurds, (A4)

where dS is the volume element on C, and u" is the unit
normal to C, both with respect to the metric y,,. When there
are no matter fields, Q. is independent of the choice of the
hypersurface C, so it is absolutely conserved. The simplest
choice for C is to take a constant 7 section, and then
w = (1/4/v,0,0). Then the conserved charge can be
calculated as

Q= —o— dgb/ dﬁsm@—é’ Wl (AS)

To calculate the total mass M = Qg of the configuration,
we need to use the & conformal Killing vector on Z
corresponding to the timelike asymptotic Killing vector
that at large distances tends to the timelike Killing vector
d/di. This means that we have to use the conformal
Killing vector & = (1/(L+/v),0,0) for the mass cal-
culation, where the coordinates are (z,0,¢) now. To
calculate the J,, J,, and J, components of the angular
momentum, we choose the conformal Killing vectors as
& = (0,sin¢, cot@cos @), & = (0,—cosep,cotfsin),
and & = (0,0,—1), respectively. For the three Killing
vectors inducing the angular momentum components we
have included an extra —1 factor with respect to the usual
right-handed expressions, in order to obtain the expected
positive value for the angular momentum J, of a rotating
geon with cos(3¢ — ¢) time and angular dependence. There
are six other conformal Killing fields on Z, corresponding
to space translation and boost on AdS (see [43]), but
because of our method of calculating the / =0 and [ = 1
spherical harmonic scalar- and vector-type components, the
conserved quantities corresponding to them turn out to be
vanishing.

APPENDIX B: SPHERICAL HARMONIC
DECOMPOSITION

Complex spherical harmonics are convenient for linear
perturbations, but when going to higher order the use of real
harmonics makes it much easier to ensure that physical
quantities take real values. We use real scalar spherical
harmonics that are defined by
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(=1)™ 2L Py (cos 0) cos(mg) i m >0,
Sim = { 14/2ELP)(cos 0) if m=0, (B1)
(=1l 2L Pl (cos ) sin(|m] ) if m < 0,
where P, are Legendre polynomials, and P} are associated DID N gyyi + [1(1 4 1) = 1]V); = 0, (B7)

Legendre polynomials. The powers of —1 in the definition
are to cancel the Condon-Shortley phase included in the
definition of the associated Legendre polynomials. This
way we obtain expressions for S;,, with concrete / and m
without alternating signs. On the unit 2-sphere the spherical
harmonics satisfy the differential equation

D'D;S;, + (1 +1)S,, =0, (B2)
where D; is the derivative operator belonging to the
standard metric y;; on the sphere. The normalization
condition is

n 2n
/ do / dgpsin6S,S:,, = 00  (B3)
0 0

Using standard spherical coordinates (B2) can be written as

9’S,,,  cos@aS,, 1 0°S,, N
06>  sin@ 00  sin*6 O¢*

I(1+1)S,,, = 0.
(B4)

A scalar on the 2-sphere can be decomposed into spherical
harmonic components as

7 27 .
fZZf(;m)Slm, Sam) :A del d¢sin6S,,,f. (BS)
Lm

The function f may depend on the time and radial
coordinates. The 7,, T,, and T,  components of a
symmetric spacetime tensor 7, behave as scalars in this
respect.

For two-dimensional spheres the vector harmonics V,,;
can be expressed in terms of the scalar harmonics as

=_1 ¢.DJ o
Viimy = D €;;D’S;,,, where ¢;; is the natural volume

element on the sphere, belonging to the metric y;;. Their
components in standard angular coordinates are

v 1 1 0S,,
-1 . 8Slm

vV = . B6
e = i 08 (BS)
Clearly, Di\/(,m)i = 0. Vector harmonics are only defined

for [ > 1. They satisfy the same differential equation as the
gradient of the scalar harmonics,

and they are normalized as

T 2r .
/ dé’/ d¢ sin GV(lm)i\/(m)’ = 60un- (B8)
0 0

A covariant vector v; satisfying D'v; = 0 can be decom-
posed as

T 2r .

vV = Z”(lm)\/(lm)i’ U(lm) :A dGA d¢ sinQ\/(lm),»v’.
Im

(B9)

If v; = (vg,v,) is a general covariant vector on the
2-sphere, then we can decompose it into its vector-type and
scalar-type parts as v; = V; + D;S, where D'V, = 0 (see
Proposition 2.1 of [36]). To decompose v;, the first thing to
do is to calculate the scalar D'v; = D'D;S and decompose
it using (BS5). During our concrete calculations, generally
there will be only a finite number of nonzero terms. Then
(B2) can be used to construct S by adding the (I, m)
components of D'D;S divided by —/(I + 1). After this, the
vector-type part V; = v; — D;S can be decomposed in
terms of vector harmonics using (B9). The (T, T,,;)
and the (T, T,,) component pairs of a symmetric tensor
T,, behave as covariant vectors in this respect.

The decomposition of a symmetric tensor 7';; on the 2-
sphere begins by calculating the trace 77"/, which is a
scalar and can be decomposed according to (BS5). Taking
the traceless part, J;; =T}; —T’,ﬁy,»j, we can define the
vector J; = D/J;; and the scalar J = D'J; (see Proposition
2.2 of [36]). The scalar J can be decomposed according to
(B5). Defining a scalar W that satisfies (D'D; + 2)W = 2J,
the function W can be constructed by adding the (I, m)
components of J divided by (1 —1)(I+ 2)/2. Defining
another function, S, by D'D;S = W, we can construct it
from the components of W, with division by —/(/ + 1). If
we construct the vector V; = J; — %DiW — D;S, it has no
scalar-type part, so it can be decomposed using (B9). Then
(D'D; + 1)V ; = 2V, defines the divergence-free vector V/;,
which can be calculated from the components of V;,
dividing them by (1 —)({ + 2)/2. In the end, the decom-
position of T';; can be written as

1
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where the first term is the vector-type part, and the rest are
scalar-types. On the 2-sphere there are no symmetric tensor
spherical harmonics [46].

This decomposition procedure of vector and tensors is
applied each time when calculating the (/,m) scalar and
vector components of the inhomogeneous source terms that
arise from lower order perturbations.

APPENDIX C: ROTATIONS OF SPHERICAL
HARMONICS

In this appendix we study the rotational properties of
[ = 2 scalar spherical harmonics. According to (B1),

1 /1
Sy :Z\/;sinzecos(Zd)), (C1)
1 /15
Sy =~/ —sin(20) cos ¢, (C2)
4V &
1 /5
Sy == \/:[l + 3cos(26)], (C3)
8V
1 /15
S,_1 = —1/—sin(20) sin ¢, (C4)
4V r
1 /15
Sy = 7 [—sin? @ sin(2¢). (C5)
m

We define a function by taking a general linear combination
of these,

2
F = Z amSQm,

m=-2

(Co)

and make a rotation with Euler angles a, 5, and y. We use
the convention that first a rotation with angle a is made
around the z axis, then a rotation f around the new x axis,
and finally a rotation y around the new z axis. The relation
between the coordinates on the unit sphere is 7 = cos 6,
x =sinfcos ¢, and y=sinfsing. We decompose the rotated
function in terms of the original spherical harmonics,

2
F: Z &mSZm'
m=-2

(C7)

The rotated spherical harmonic components can be written
as

a_y = Ay cos(2y) + A, sin(2y), (C8)
a_; = Ascosy + Ay siny, (C9)

— . B5
ay = _\/§ B; sm(Zﬁ) — By COS(2ﬁ) - ? s (CIO)
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a; = Aysiny — A, cosy, (C11)
a, = Ay sin(2y) — A, cos(2y), (C12)
where
A, = B, cosf + B, sinf3, (C13)
A, = Bssin(2f) — B4 cos(2f3) + Bs, (C14)
Az = 2B;cos(2p3) + 2B, sin(23), (C15)
Ay = By sinff — B, cos 3, (C16)
B| = a_, cos(2a) — a, sin(2a), (C17)
B, = a;cosa + a_; sina, (C18)
B; :%(a_lcosa—al sina), (C19)
B, — % (V3ap + @y c0s(2a) + a_y sin(2a)),  (C20)
Bs = % (V3ay — 3a, cos(2a) — 3a_y sin(2a)).  (C21)

We note that S,, can be rotated into S,; by an Euler
rotation with « = z/4, f = /2, and y = 0.

It is expected that by an Euler rotation one can make
three of the five a,, zero. However, this is not true for any
three of them. We prove the claim stated in Sec. IV, that it is
always possible to make a_, = a_; = a; = 0. It is obvi-
ously enough to prove that one can make a_; = a; = 0,
since after that it is easy to make a_, = 0 by a simple
rotation with some angle y around the z axis. It follows
from (C9) and (Cl11) that a_; = a; =0 if and only if
Ay =A;=0. From A; =0 it is possible to express
tan(2f), and A4, = 0 can be solved for tanf. Using the
identity tan(2$) = 2tan /(1 — tan? ) we get an equation
involving only a. Using the identity sin’*a = 2tana/
(1 + tan® ), this equation can be reduced to a third order
polynomial equation in tan a, which always has at least one
real root.

APPENDIX D: NONLINEAR GAUGE-INVARIANT
FORMALISM

The higher order generalization of the linear gauge-
invariant perturbation formalism of [32,33] was used in
[18,19,21,23] for the construction of AdS geon solutions.
In this appendix we give more details about the nonlinear
generalization of the Kodama-Ishibashi-Seto method. We
do not attempt to present a general formalism that is gauge
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invariant to several orders at the same time. Our aim here is
to clarify the transformation of the variables for a given
order gauge change and to motivate the choice of gauge and
the used variables in Appendix E and F and in the main part
of the manuscript. For the concrete calculation of geon
configurations we make a specific gauge choice at each
order, so a detailed gauge-invariant formalism is not crucial
for us.

At each order in the € expansion there is a gauge freedom
to choose what coordinate system we use. In the main part
of this paper, at zeroth order we use the metric form (3) with
coordinates # and x. Then we can make an &* order gauge
transformation for each k£ > 1 in increasing order.

Let us take an ¢ dependent coordinate transformation
from coordinates x* to x*. We assume that it is a kth order
transformation generated by a vector field &, and the
inverse transformation can be expanded as

x4 (%, €) = ¥ + kgt (%) + O(eF). (D1)

There should be an index (k) denoting the order on &, but

we drop it to simplify the formulas. In this case the kth
order metric perturbation in expansion (2) transforms as

G = g + Vi + VIO, (D2)

where V,SO) is the derivative operator belonging to the AdS

background metric g;(,?,).

1. Vector-type perturbation

Using the notation of [36], the components of & order
vector-type metric perturbations in the V(;,,); class can be
written as

® _ g

k v k v
YGab 95;:') = Hz(l )\/i’ g,(,) = 2H(T>D(i\/'

i)

(D3)

where from H'\", H<T”), and V; we have dropped the Im

indices, and from H” and H (Tv) the reference that they are
order k quantities. Here, as in (17), the indices a, b
correspond to coordinates in the time-radius plane,
y* = (t,x), and i, j correspond to coordinates in the
standard 2-sphere, on which the covariant derivative is
denoted by D,. General kth order vector perturbations can
be written as linear combinations of these terms for all

possible / and m. The functions ' and H'" depend only
on the coordinates y“. If / =1, then D;V;) =0, so V; is a

Killing vector field. Then ggjlf) =0,and H <Tb i not defined.

The most general vector-type gauge transformation that
keeps ggf) in the vector V) class is generated by a vector
& for which £, = 0 and & = £V, where £(*) is a scalar
function on the y“ plane. It can be checked easily that the
metric perturbation functions transform as

PHYSICAL REVIEW D 96, 084027 (2017)

Ve e
HY - HY -V, (5 : >
p

(D4)

HY > HY — 0 for 1> 2, (D5)
where @a is the derivative operator on the y* plane of the
AdS background metric.

For [ > 2 the function H (T”) is always defined, and the
combination

= (Do)

(v)
, ~ (H
Za = HSIU) - r2Va< r >
is independent of £(*), so it is gauge invariant. It is the
vector-type Kodama-Ishibashi gauge-invariant variable
[32]. A natural way to proceed with the actual calculations
for [ > 2 is to use the gauge freedom in (D5) to make

H(T") =0, in which case Z, = HY and gl(-Jl-‘) = 0. This
choice eliminates the highest angular derivatives from (D3)
and corresponds to the Regge-Wheeler gauge in the
literature [47].

For the [ = 1 case the only gauge-invariant quantity is

(v) (v)
~ (H ~ (H,
Zab:rzva<r—g>_r2vb< 2 >,

which has only one independent component. In the (¢, x)
coordinate system,

(D7)

OO
_om) om” 2

Zux ot Ox

D8
sin x cos x (D8)
2. Scalar-type perturbation

The components of &X order scalar-type metric pertur-
bations in the S,,, class can be written as

4 = B, o = HODS,
. E s (1+1)
g = HyyS + HY (DiDj t=——ry)S. (DY)

where the functions HEZ'Z), HY. HS), and H(T‘Y) depend
only on y“. We have dropped the Im indices and the
reference that we are at order k from the functions. The
general scalar perturbation is the linear combination of
these for all possible / and m. If [ =0, then D;S =0,

gg;) —0, and HY is not defined. If / = 0 or [ = 1, then

(DD, +w;/,-j)§ =0, in which cases H(TS> cannot be
defined.
The most general kth order coordinate transformations

that keep gffi) in the scalar S,,, class are generated by vector
fields & that have the components
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L=8&'s,  &=¢Ds, (D10)
where .»:Ef) and &6 depend on the coordinates y¢, and &) is
defined only for / > 1. The metric perturbation functions
transform as

HY) > HY) -v,8) -V,8. (D11)

HY = HY + 10+ ) -2,V g, (D12)

72

() e (EY
_ 2 for />1, (DI3)

HY = HY —269 for1>2.  (D14)

For the [ = 0 case we have to drop the /(I + 1)£) term
from (D12). In terms of the (¢, x) coordinates,

N N a <S) s
HY —>H§t>—2%+2tanx.§§>, (D15)
5 s ag(s) aé)(cS) s
ng) - ng) - a; - ot + 2tanx§£ ), (D16)
o8
HY) = HY 2% fomnxg?),  (D17)
Ox
HY = HY 111+ 1)&9 = 2tanxe”.  (D18)
L L X .

It is easy to check that for [ > 2 the scalar-type Kodama-
Ishibashi-Seto gauge-invariant variables

2 o L+ T1) 2 q

z=5|HY %H(T‘) +2r(V r)Xa], (D19)
’
) e - 1
Zop = H,(lb) + VX + VX, + Ez.aab’ (D20)
are gauge invariant [32], where X, is defined by

s 2 H(‘)

X, = —HY +%Vd <—§) (D21)
r

For our calculations we use the freedom (D13) to set H, &) =

0 by choosing .’;((f), and we use (D14) to set Hgf) =0 by
choosing &), In this gauge X, =0, and the Kodama-
Ishibashi gauge-invariant variables are simply

DT ON
Zab = H(<1Yb) +ﬁHgg)gab-

This choice is usually called Regge-Wheeler gauge in the
literature. In this gauge, the metric perturbation does not

(D22)
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()
ij

(n)

have g, components, and g

particular, gg;) =0.
If /] =0, then H,(f) and H (TS ) are not defined. A natural

choice is to use the freedom in (D18) to make H(Ls> =0

is proportional to y;;, in

by choosing 5,@ appropriately. We also make a choice for

£%) in (D16), which makes H') = 0. Even after this, we
have the freedom to make an additional gauge trans-
formation with

) Ji(1)

&= cosZ x’

(D23)

where f(¢) is an arbitrary function, because this leaves

H Ej) unchanged. Since this transformation is generated
by the vector with components £ = —f,(1)/L?* and
:§<S)" = 0, the residual freedom corresponds to the relabel-
ing of the constant time hypersurfaces.

APPENDIX E: VECTOR-TYPE
PERTURBATIONS

We consider & order class V(im)i vector-type per-

turbations of the metric tensor in the Regge-Wheeler
here the ot . <hi
gauge where the g;;° metric components are vanishing

(a, b=1,2and i, j =3, 4),

(k) _
Y=o (e

G =0. gy =HVi g
where HY depend only on the coordinates y* = (z, x).
We have dropped the /m indices from the functions, and
also the reference that we are at & order. The gauge
invariant formalism described in Appendix D shows that
one can always make this gauge choice. The method we
present here is based on the linear formalism presented
in [36].

1. Casel > 2

If [ > 2, the Kodama-Ishibashi gauge-invariant variables
Z, can be defined, and in our gauge

Z,=HY (E2)

[see Eq. (D6)]. For simplicity, in the Regge-Wheeler
gauge this equation can be considered as the definition
of Z,.

For perturbations of the form (El) the (a,b) com-
ponents of the & order Einstein equations are iden-
tically satisfied. All (i,j) components give the same
condition,

0z, 07,

o ox

(E3)
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where 7 is a source term arising from lower order
perturbations, which is assumed to be already known
and calculated. Let us denote the ¢ independent part
of the source term by 7. The time dependent part,
T,=T-—T,, generally has the ¢ dependence through
sin(wt) and cos(wt) terms where the frequency w is some
integer. The equation 3; 9 7, = T, can be integrated easily to
obtain the function Z,. The time independent part 7'y turns
out to be zero in most of the cases, but even if not, the
equation —£2Z, =T, can be solved for Z,. The general
solution of (E3) can be written in terms of an arbitrary
scalar function ¢y,

Zz—%‘i‘zp Zx_%+z

B T (E4)

It is a general principle that during our computations it is
practical to avoid calculating integrals in x, since perform-
ing integrals with respect to ¢ is generally much simpler
because of the simple trigonometric time dependence.

After making the substitution for Z,, it turns out that the
(a, i) components of the Einstein equations are not inde-
pendent. The (x, i) and (z,i) components of the Einstein
equations are equivalent to

OE, OE,

_ A — E
ot ’ Ox 0 (E5)

respectively, where

Ey =sin®x <82¢V

X

O0x? or?
—(1+2)(I= Dy + ).

2
g ¢V) -2 tanxa¢v

(E6)

The function ¢E,0)
perturbations.

A concrete expression for ¢V can be obtained by
comparing the derivatives of (E6) to the actual form of
the field equations obtained by the algebraic manipulation
software. As the result of the comparison, we have to solve
two equations,

is determined by the lower order

0

¢\
R —
ot

=Ts Ox ©

(E7)

where 7', are given functions of ¢ and x, satisfying the

necessary integrability condition. The solution for (/bg)) can
be obtained in a straightforward way, but generally it
involves the calculation of an integral in x, which can be
hard to obtain in closed form at higher orders in the ¢
expansion. For example, at ¢ order, polylogarithm func-
tions tend to arise.

It is possible to avoid the calculation of integrals when
solving (E7), since generally the source terms are sums
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of a finite number of Fourier components with integer
frequencies,

kmwx

cos (kt) + TS )Sin(l_ct)), (ES8)

k:O

and we can search for the solution in a similar expansion
form,

(¢ cos(kr) + Y sin(kr)).  (E9)

If k > 0, then it is possible to solve the first equation of (E7)

algebraically for ¢\"* and ¢\"**. However, the k = 0
component of the first equation is satisfied identically, and
the second gives an expression for the x derivative of
.

. Luckily, it is not necessary to calculate the integral

to get the concrete form of (/;(VO’C”), since the calculation
of the gauge invariant variables Z, in (E4) only requires
the differentiated form of the zeroth Fourier component
of ¢y .

It follows from (E5) that E, is a constant. However, since
we can add a constant to ¢y, without changing Z, and Z, in
(E4), we can shift this constant to zero, setting Ey, = 0. We
define a rescaled scalar function by

dy = rdy, (E10)
where r = Ltanx. Then the E, =0 condition can be
written into the simple form

Poy POy I(i+1) @)
- — D =0, Ell
or? Ox? sin2x ¥ * sin? x (EL1)
where
o 1 0
o)) =gy (E12)

Equation (E11) is the master equation describing all / > 2
vector-type perturbations. We show in Appendix F that
[ > 2 scalar-type perturbations are described by an equation
having exactly the same form, although the boundary
conditions at infinity are different in the two cases.

We give a detailed description of how to solve the
inhomogeneous differential equation (E11) in Appendix G.
After the solution for @, with the appropriate boundary
condition is obtained in the way described there, then from
(E12) we get ¢y, and using (E4) we obtain Z,. According

to (E2) in our gauge Z, = Hgf), and the resulting class
V(im)i vector-type metric perturbation components can be
obtained by (E1).
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2. Casel=1

In this case the first step is to consider the value of

0" oH" L2
Ot Ox

Z, HY. (E13)

sin x cos x

which is the only nonzero component of the antisymmetric
Z,, gauge invariant quantity given in (D7). For simplicity,
(E13) may also be considered as the definition of Z,,.
It follows from the (x,¢) component of the Einstein
equations that the time derivative of Z,, is zero. The
(t,¢p) component gives a time-independent value for the
x derivative of Z,, = Z, sin>x. There are no further
restrictions from the remaining components of the field
equations. The expression for Z,. can be calculated by
integration, and the regularity of the corresponding metric
perturbation at the center can be ensured by setting Z,, = 0
at x = 0.

Defining A" = 720" and A" = r2H\", Eq. (E13)
can be written as

Za ORY 0B
2 ot Ox

(E14)

Here Z,, is already known, and apart from this equation

there are no restrictions on the metric variables H.”.

A particular time independent solution can be found by
(v)

setting Hy” = 0 and integrating from x = z/2 to obtain
7" = A" Then the general solution is
r(v) r(0v.0) af r(v) 8f
H,” =H —= Hy =, EIl5
! rot or’ Ox (E15)

where f is an arbitrary function of ¢ and x. The function f

corresponds to the gauge freedom £*)/r2 in (D4). If f

would depend on ¢ at x = 7/2, then H §”), and consequently

gf(];), would diverge as (7/2 — x)~2. This would correspond

to an asymptotically rotating coordinate system. When the
spherical harmonic index m is zero, the freedom in f
corresponds to a time and radius dependent rotation in the ¢
direction. In our calculations we make the natural gauge
choice f = 0. Then HE” = r2H§”*°) and H\") = 0, and the
metric perturbation is necessarily regular and asymptoti-
cally AdS.

APPENDIX F: SCALAR-TYPE PERTURBATIONS

We consider & order scalar-type perturbations in the
class belonging to the S,,, real spherical harmonics in the
Regge-Wheeler gauge, where the metric perturbation is in
the block diagonal form (a, b =1, 2 and i, j = 3, 4)

k)

k s k s
951) = HEZIBS’ gy =0, g,(] = H(L>7/ij§' (F1)

PHYSICAL REVIEW D 96, 084027 (2017)

Here the functions Hifb) and HS) depend only on the

coordinates y* = (¢, x), and y;; is the standard metric on the
2-sphere with coordinates 7' = (6, ¢). We have dropped
the /m indices from all these functions, and also the
reference that we are at €€ order. That we can make this
gauge choice follows from the considerations in
Appendix D. The formalism presented here is based on
the work in [36] on linear perturbations.

1. Casel > 2

If [>2, the Kodama-Ishibashi-Seto gauge-invariant
variables Z and Z,, can be defined [32], and in the
Regge-Wheeler gauge the metric variables can be
expressed as [see Eq. (D22)]

Y 1
HY = Zy—=Z00  (F2)

HY —
L—0p™ 2

Here §,;, is the metric induced on the time-radius plane
by the background AdS metric. For simplicity, in the
following considerations (F2) can be considered as the
definition of Z and Z,,.

The part of the angular components of the & order
Einstein’s equations that is not proportional to y;; gives
only one condition, Z = §*Z,, + Z, which in our coor-
dinate system can be written as

cos x _

Z= L2 (Zxx - Ztt) +Z, (F3)

where Z is an inhomogeneous source term depending on ¢
and x, fixed by the lower order perturbations.

After substituting Z from (F3), the (a, i) components of
the field equations are equivalent to

v, 20, -V ,Z¢. =8, (F4)

where S, is a known source term, depending on the
coordinates ¢ and x, arising from lower order perturbations,
and V,, is the derivative operator in the two-dimensional
time-radius plane of the AdS background. Our first task is
to find a particular solution Z,, = Z,, of (F4). Then the
general solution can be written as Z,;, = Z,;, + Z,,, Where

A

Z . 1s a solution of the homogeneous part of the equation,
v, 20, -V, Z¢. = 0. (F5)

The expression for Z,;, is not unique, and one may choose
any solution that is technically easy to obtain.

Using our coordinate system, the (z,0) and (f,¢)
components of the field equations are both equivalent to

0z, 0Z,  L?
Ox Ot cos?x

St (F6)
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and the (x,0) and (x,¢) components are

0Z, 0Z, - L?
ax at (Zxx le)_

S.. F7
cos?x " (F7)

Similar to the method used for (E3), Eq. (F6) can be
solved by decomposing S, into a time independent part S; ’,
and to the rest with periodically oscillating time depend-

ence, ng) =S, - Sfl). Then integrating

oz L2 <)
t

(0)
_ _ aZxx _ LZ S(Z)
Ox  cos’x '’ Ot cosZy

' (F8)

gives a particular solution. The general solution of (F6) can
be written as

0 0
th - % + th ’ Zxx - % + Zxx ) (F9)

where f is an arbitrary function of ¢ and x.
Substituting (F9) into (F7), and choosing

f1=—cotxZ,, (F10)
the x derivatives drop out, and we get

2’z

—atzn +Zy = fa (Fl 1)
where

Lsi

fa= gSX —tan? xZ (F12)
cos’ X

is a known function of ¢ and x. Equation (F11) can be
solved for Z,,, again without integrating in x,

Z,=f.cost+ fysint + sint/f2 cos tdt

- cost/f2 sin rdt, (F13)

where f,. and f are arbitrary functions of x. Choosing f
and f, appropriately, we get a particular solution Z,, = Z,,,
which has no terms with exactly cos? or sinf time
dependence. Substituting (F10) into (F9) we also get
particular solutions for the other components, Z,. = Z,,
and Z,, = Z,,.

According to Eq. (117) of [36], the general solution of
the homogeneous equation (F5) can be generated by a

function ¢y as
5 1
2o = (090 Ja )bs. (1)
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Using the (7, x) coordinates, this has the components

. Py ¢S Ps
Zu= or? —tan ox +cos x’ (F13)
5 s s
th = 910x —taan, (F16)
s Ogps @5
o2 tan.x Ox  cosix’ (F17)

When we already have both Z,, and Zah, the general
solution of the inhomogeneous equation (F4) can be
written as
Zab = Zah + Zuh‘ (F18)
The part proportional to y;; of the angular part of the field
equations can be checked to be satisfied at this stage.
In terms of a rescaled scalar function ¢¢ defined by
¢s = r®s, (F19)
the expressions for Za,, in (F15)-(F17) can be written into
the alternative form

. O*P fol]
Z, = Ltanx <8—[2S - tanxa—xs> , (F20)
N PPy Oy
Zy=1L (tanx Do + 7) (FZI)
) P D 1\ 00
Z. =1Lt Ll1+—— F22
= mxoe ( T oo x) Ox (F22)

The asymptotic behavior of the previously obtained
particular solution Z,;, is generally not yet ideal for our
purposes. The limit

Z, = L? lim (Q*Z,,) = —L? lim (Q*Z,,),

x—/2 x—/2 (F23)
where Q is the conformal factor defined in (5), is generally
a nonvanishing function of . These types of divergent
terms would make the treatment of asymptotically AdS
space-times more difficult, since they would affect the
metric induced on the conformal boundary. Luckily, we can
easily cancel these second-order divergent terms in Z,, by
redefining ¢y into ¢pg — Z; and absorbing the new terms
into Z,, in (F18). This way, the time dependent Z;/ cos> x
terms in (F15) and (F17) will exactly cancel the second-
order divergent terms in Z,;,. In the following we assume
that we have already achieved Z; = 0, which will also make
simpler the asymptotically AdS condition on the still
unknown function ¢g.

084027-24



ANTI-DE SITTER GEON FAMILIES

The function ¢g will be determined by the (a,b)
components of the Einstein equations. It can be checked
that similar to the first order homogeneous case considered
in [36], after substituting Z from (F3) and Z,, from (F18),
the (a,b) components are not independent. They can be
written in terms of a single scalar function Ej,

AU
<Vavb — ﬁgab>ES =0. (F24)

We note that the (¢, r) component of (F24) corresponds the
(x,x) component of Einstein’s equations, and vice versa.
The scalar function has the form

By =2 (979, =209, - ) g g0
(F25)

where ¢(SO> is a source term determined by lower order
perturbations. Using the (¢, x) coordinates,

s 8%ﬁ -
Ox? or ax
~ (1 +2) (1= )5+ ¢

Eg = sin x(
(F26)

Viewing (F24) as a differential equation for Eg, the
general solution is

Eg=c Ltanx + L (cycost+ c3sint), (F27)
CoS X

where ¢, ¢,, and c3 are arbitrary constants. If we change

the generating function as ¢ — s + g, Where g sat-

isfies the same differential equation as Eg in (F24), then Z

remains the same in (F18). The general form of ¢ in this

transformation is

¢s = ¢ Ltanx + L (¢ycost+ ¢3sint), (F28)
cosx

where ¢, ¢,, and ¢ are some other constants. Substituting
into (F26), we can see that this transformation generates the
same type of terms that we have in (F27), so by choosing
¢y, Co, and ¢5 appropriately, we can set c; = ¢, =c3 =0
in (F27), thereby making Eg = 0. Hence, the (a,b)
components of the Einstein equations are equivalent to
the single condition,

. Pos s g
sin x(a 5 o ) —2tanx—x

—(+2)(I = Vs + ¢ =0

(F29)

Unfortunately, it is not easy to obtain a concrete
expression for the scalar source term d;g in (F29) from
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the source terms of the (a,b) components of Einstein’s
equations. We have to solve inhomogeneous equations of
the form

1

~ 0
—E%Q%>=&m (F30)

(9.9,
where S, are known functions of ¢ and x, given by lower
order perturbation results. These equations can be obtained
by substituting (F25) into (F24) and comparing with the
(a, b) components of the Einstein equations. In component
form, we have to solve the following three equations

for ¢§0) :

82¢<0> 847(0) ¢(0)
8; ~lanx 8; * cozzx = Sin (F31)
82¢(0> a¢(0)
5 asx — tan x ai =S, (F32)
82¢(0) a¢(0) ¢(0)
[9x§ — tanx ai - CO§2X = Se (F33)

Generally, the source terms can be decomposed into a finite
number of Fourier components with integer frequencies,

mux

Sy = Z (8P cos(ke) + SSF sin(ke)),  (F34)

where S, (c.B) and S, (5£) are functions of x. We can search for
the solutlon of (F31) (F33) in a similar expansion form,

l_(max
oY =S (¢ cos(ke) + ¢ sin(ke)),  (F35)
k=0
where ¢SO ¥ and 4)(50""’7() depend only on x.

When k > 0 the coefficients can be obtained in a simple
algebraic way. In this case the cos(kt) and sin(kt) compo-

nents of both (F31) and (F32) contain an x derivative of

¢ SO oK) or ¢ SO $K) . Eliminating the derivative by taking linear

combinations of these two types of equations we obtain

linear algebraic equations for ¢ 50 <) and ¢ 50 *K)

be solved easily.

The k =0 case is different, since then the Fourier
component of (F32) is trivially zero. In this case (F31)
yields the differential equation

, which can

(0,¢,0) 1

D 0 0,¢,0 0,¢,0
Lt 2 e gpen L goeo,

- ; (F36)

where r = Ltanx, and (F33) is identically satisfied after
this. For higher orders in the ¢ expansion it may be difficult
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to calculate the integral in x to obtain CI)<SO’C’0). For example,

at &* order, polylogarithm functions tend to appear. Luckily,
it is not necessary to compute this integral, since the
calculation of the gauge invariant variables Z,, by (F18)
using (F20)—(F22) requires only the x derivative of the
zeroth Fourier mode of ®g = ¢g/r.

After the source term ¢(SO) in (F29) is already determined,
our last task in solving the & order (I, m) scalar perturba-
tion equations is to find the scalar function ¢g, which
corresponds to an asymptotically AdS configuration with a
regular center. Using the rescaled scalar function ®g =
¢g/r defined in (F19), Eq. (F29) can be written in the
simple form

Pdy  Pdg 1(I+1) oY
- - (o) S —0 F37
or? Ox? sin? x S+sin2x ’ (F37)
where
1
of =~ g{’ (F38)

Equation (F37) is the master equation describing all [ > 2
scalar-type perturbations.

We give a detailed description of how to solve the
inhomogeneous differential equation (F37) in Appendix G.
After the solution for ®¢ with the appropriate boundary
condition is obtained by the method described there, then
from (F18) with (F20)-(F22) we obtain Z,;,, and by (F3)
we get Z. The resulting class S, scalar-type metric
perturbation components can be obtained by (F2) and (F1).

2. Case [=0
In this case the scalar spherical harmonic is constant,
S = Sypo = 1/(24/7). As it is shown in Appendix D, for the
[ = 0 scalar perturbations it is natural to make a gauge
choice in which ") = 0 and H') = 0 in (F1). The (¢, x)
components of the Einstein equations gives the condition

OH

=9 s
at 1x

(F39)

where S, is a function of 7 and x fixed by lower order

perturbations. Integrating in ¢, we get a solution H)(SC) =

H,(Cfgo), and we can write the general solution as

HY) = HSY + £ cotx, (F40)

where f| is a function of x. Substituting into the (z,7)
component of the Einstein equations we get an equation
determining the x derivative of f;. The center can be

regular only if HSS? has a finite limit at x = 0, which fixes
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the integration constant, so we have to integrate from

x =0, and we get a unique solution for f; and HEC‘;).

Substituting the calculated H)(C‘i) into the (x,x) compo-
nent of the field equations, we get an equation determining
the x derivative of

AY = HY cos? x. (F41)
Integrating from x = z/2, we get a solution [3151‘) = f{g’O)_
The general solution for H Sf) is
7r(s,0) -
g H
HY =202 (F42)

cos?x cos’x’

where © can be any function of 7. The 7/ cos’*x term

diverges to the same order as the gg)) component of the
background AdS metric and corresponds to a € order time
dependent relabeling of the ¢ coordinate, ¢ — #(¢). It is
actually the gauge freedom in (D23). Since we are studying
localized configurations, it would be unnatural to choose a
time coordinate in which the metric components are
asymptotically oscillating. Hence, we assume from now
on that 7 is a constant.

The resulting class Sy scalar-type metric perturbation

components can be obtained by (F1). Since now H§f> =

2\/7_195? ), it follows that the constant 7 is related to v,
defined in (6) by

D= -2rL%y. (F43)
Generally, we cannot set v, to zero, since we have assumed
that the oscillation frequency of our geon is an integer in
terms of the time coordinate 7, independently of the
amplitude parameter e. The constant v, will describe the
change of the physical frequency as the amplitude of
the geon increases.

If there are no source terms arising from the lower order &
expansion, which is certainly the case for the first order
linear perturbations, then the only centrally regular solution
in our gauge is HY —0and H Ef) = 1/ cos? x, which is still
a gauge mode.

APPENDIX G: TIME-PERIODIC SOLUTIONS
OF THE MASTER EQUATION

In this appendix we construct solutions of (20), which
generates the time-periodic solutions of the master
equation (18).

1. Solutions of the homogeneous master equation

For the first nontrivial order in the & expansion, i.e., for
k = 1, the source term ® is necessarily zero. Even at
higher orders there are no source terms for several choices
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of w,. Hence we consider the p© =0 case first, and we
solve the homogeneous part of Eq. (20),

Cp_1+1)

A sin’x @pp = 0. (G1)

2

Defining a new radial coordinate z = sin~ x, and a rescaled

function w by
p = wsin™! x = wz(+D/2, (G2)

(G1) can be transformed into a hypergeometric differential
equation,

d? d
z<1—z)d—;;+[c—(a+b+1)z}dl;—abw:o, (G3)
where the parameters are

1 1 3
a:5(1+1—wp), b:5(1+1+w,,), c—l+5
(G4)

A pair of fundamental solutions of the hypergeometric

differential equation (G3), which are numerically satisfac-

tory near the center z = 0, are (see Sec. 15.10 of [48])
wy =,F(a,b;c;z2),

wy,=z7""Fi(a—c+1,b—c+1;2—-¢;z). (G5)
Fundamental solutions close to infinity z = 1 are

wy =,Fi(a,b;a+b—c+1;1-2),

wy=(1=2)%"F(c—a,c—b;c—a-b+1;1-72).
(G6)

The corresponding solutions of (G1) can be written as

p3 = wssin/lx,

(G7)

p1 = wysinlx, P2 = wysin'Tlx,

pa = wysinlx,

Since the hypergeometric function ,F;(a,b;c;z)
smoothly tends to 1 at z = 0, because of the z1=¢ factor,
the solution p, always diverges as x~/ and corresponds to a
perturbation that is singular at the center, for both the scalar
and vector cases. The solution p; always gives a regular
center. The exponent in w, is ¢ —a —b = 1/2, and con-
sequently p, tends to zero as cosx at infinity x = z/2,
while p; tends to 1 there.

The transformation formula [48]

['(c)l(c—a—-b)

" I'(c)l(a+b—-c)
I(c—a)l(c—b) °

T(a)0(b)

wy  (GB)

wp =
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can be used to write the centrally regular solution in terms
of the fundamental solutions at infinity. Which solution
generates asymptotically AdS metric perturbations at infin-
ity depends on whether we consider scalar- or vector-type
perturbations. The allowed frequencies will be different in
the two cases.

In general, the function p can be expanded at infinity as

(G9)

where p\/) are constants. For p = p3 the expansion only
contains terms with even power, and p = p, only contains
terms with odd j.

2. Scalar-type linear perturbations

For scalar-type first order linear perturbations with [ > 2
substituting (G9) and (21) into (F20)—(F22), it follows that
the metric perturbation components will not have terms
proportional to p(*) that diverge as cos~2 x. This shows that
P9 can be arbitrary. However, if p(!) is nonzero, there will
be terms diverging as cos™2 x both in Z,, and in Z,, so the
metric perturbation components would not satisfy our
boundary conditions (6) and (7). It is possible to show
that in this case the corresponding metric is really not
asymptotically AdS, by checking that the metric induced at
infinity is not conformally flat. Alternatively, one can show
that if p!) # 0, the magnetic part of the asymptotic Weyl
curvature 3, is nonzero, so the metric is not asymptoti-
cally AdS. We discuss in more detail the conditions that
asymptotically AdS space-times have to satisfy in
Appendix A.

For the solution p = p, necessarily p'") #0, so the
corresponding metric is not asymptotically AdS. There is
no such problem with the p; solution. The perturbed metric
can be asymptotically anti—de Sitter and, simultaneously,
have a regular center, only if p, is proportional to p;. From
the transformation formula (G8) it follows that this is
possible only if either a or b is a nonpositive integer. This

means that asymptotically AdS scalar perturbations with a

regular center only exist for frequencies Ef) given

by (10). In this case a = —n is an integer, the hyper-
geometric series closes at finite order, and it can be
expressed in terms of Jacobi polynomials

=w

n! c—1,b—c—n
2F1(—n,b;c;z)=@P,(1 )(1—21),

where Pochhammer’s symbol is (c¢), =T'(c +n)/T'(c).
Substituting this into p;, the asymptotically AdS centrally

regular solution of (G1) for the frequency 0’55)

(G10)

is

1 n!
pﬁ) = —sintlx

L (1+3),

PV (cos(2x)).  (G11)
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For the n = 0 case w; = 1, and the solution is simply

) _ 1.
I

P —Zsin X. (G12)

It follows that the regular asymptotically AdS scalar-type
solutions of the homogeneous part of (F37) with the given
frequency can be written as in (11) and (12).

3. Vector-type linear perturbations

For [ > 2 vector-type linear perturbations, it follows
from (G9) and (21) that the expansion of ¢y = r®y,
starts as

- (0 =(0
¢V: p()+1‘7(1)+ 1—7(2)_£ f_x N
%—x 3 2

x Lcos(w,t),

(G13)

or a similar expression with cos(w, ) replaced by sin(w,?).
Using (E4) it follows that if p(© # 0, then Z, diverges as
cos 2 x, and from (E2) and (El) it can be seen that the
metric perturbation components gﬁ," ) also diverge as
cos™2 x, so the metric is not asymptotically AdS.

The solution p = p; has a nonzero p¥), so it cannot
belong to an asymptotically AdS metric perturbation. The
metric can be asymptotically anti—de Sitter with a regular
center only if p; is proportional to p,. Since by (G8) this is
possible only if ¢ —a or ¢ — b is a nonpositive integer, it
follows that regular vector-type perturbations only exist for
frequencies given in (13). In this case ¢ — b = —n, and the
series in wy closes at finite order. Using (G8), (G10), and
the symmetry property P’ >(—z) = (—1)”P§,ﬂ ’a)(z), the
regular asymptotically AdS solution of (G1) turns out to be

1 ! 11
V) = 7 sin’*! x cos x T 1 9, Pyﬂ’;)(cos(Zx)). (G14)
The n = 0 solution is
pf(‘)/) = Zsin”1 X COS X. (G15)

The regular asymptotically AdS vector generating function
that solves the homogeneous part of (E11) with the given
frequency is given in (14) and (15).

4. Solutions of the inhomogeneous master equation

Let us consider two linearly independent solutions of the
homogeneous equation (Gl). For the first solution
we take the previously defined p;, which is always regular
at the center. We denote the yet unspecified second solution
by p;, and we assume that it corresponds to an asymp-
totically AdS linear metric perturbation (scalar or vector
type). Then the regular asymptotically AdS solution of the
inhomogeneous equation (20) can be obtained as

PHYSICAL REVIEW D 96, 084027 (2017)
0)

* pyp'
= dx_
p pl/g W sin? x

where the Wronskian is

X plp(o)

b -
o Wsin®x

dx, (G16)

dpy _

dpy
1 dx .

W =
P Phdx

(G17)
Since there is no first derivative term in (20), by Abel’s
differential equation identity it follows that the Wronskian
of any two solutions of the homogeneous equation is a
constant. This constant is not zero if and only if the two
solutions are linearly independent. In the solution (G16),
the singularity of p, at the center is compensated by the
choice of x = 0 as the lower limit in the second integral.
Similarly, the choice of z/2 as the lower limit of the first
integral is to compensate for the behavior of p; at infinity.

For scalar-type perturbations the asymptotically AdS
solution is obtained by setting p, = p3, while for vector
perturbations we have to choose p, = ps. The above
argument, that (G16) gives indeed the asymptotically
AdS metric, takes into account only the contribution from
the &' order homogeneous terms. However, in each con-
crete case it is easy to check that the inhomogeneous terms
do not give any terms in the metric perturbation compo-

nents g,(/;) that diverge as cos™2 x, so our boundary con-

ditions (6) and (7) are satisfied, and the generated metric is
really asymptotically AdS.

In certain resonant cases, the solutions p; and p, chosen
in the above way are not linearly independent. In these
cases p; is already behaving well both at the center and at
infinity. This happens exactly when the frequency w,, of
the source term agrees with the resonant frequencies given
by (10) or (13) belonging to the actual value of [ for
some non-negative integer n. In these resonant cases the
only available second solution is p, = p,, which is
singular both at x =0 and at x = z/2. One solution of
the inhomogeneous equation can still be calculated by
(G16). However, the singularity of p, = p, both at the
center and at infinity can only be compensated in the
second term of (G16) if we require the condition (22) given
in the main text. The factor W is dropped from the
denominator since it is a nonzero constant.

Equation (22) is a very important consistency condition
on the source term p© in the resonant cases. If this
conditions fails to hold, then there are no time-periodic
centrally regular asymptotically AdS perturbations of
the system. Even if this condition fails, then there are
centrally regular asymptotically AdS perturbations, but they
must be secularly growing with time dependence of the type
tcos(w),t) or tsin(w,t). However, that type of time depend-
ence is excluded by the formalism applied in this paper, since
we are only working with periodic solutions now.

For the resonant case the lower limit in the first integral
of (G16) can be left arbitrary, since p, is behaving well at
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infinity. This corresponds to the freedom of adding the
homogeneous solution p; multiplied by an arbitrary con-
stant. In these resonant cases the centrally regular asymp-
totically AdS solutions of the inhomogeneous equation are

x Pzp(o) x P1P(0>
= ————dx — ———dx+c¢ ,
p pl/% W sin® x P2 o Wsin®x pP1

(G18)

where ¢, is an arbitrary constant, and we have to require
(22). In many cases, the condition (22) can be used to fix
the value of some other constant Cps which had to be
introduced earlier at a lower order in the & expansion.

5. Static mode of scalar perturbations

The general method in the previous subsection can also
be applied to the zero frequency part of the source function

¢go), when @, = 0 in (20). However, in this case there is a
computationally less involved method to obtain the corre-
sponding metric perturbation. We have noted in connection
to (F36) that for the zero frequency case it is easy to obtain
the x derivative of the source function p®, but it can be
difficult to perform the integral to get the actual form of
p©). Luckily, for the static part of the metric perturbation
we only need the derivative of the function p, which can be
seen from (F20)—(F22). If w, = 0, then we can multiply
(20) by sin” x, and after taking the derivative we can write
the equation into the form

ap_ - o _
o2 Tsintx PTOPP Y g 0. (G19)
where
dp©
p:sinxa, '(O):sinx%, 5 =1 (G20)

This equation can be solved by the method described in
Sec. G 4, with the only difference that now the asymptoti-
cally AdS solutions belong to p, for scalar-type perturba-
tions. After getting the solution for p, the metric
perturbations can be calculated using (F20)-(F22), without
calculating p.
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6. Static mode of vector perturbations

The time-independent part of vector-type perturbations
can also be calculated by the methods described in Sec. G
4. However, it is also possible to proceed without comput-
ing the integral that is necessary to obtain the function
¢§9~C,0) in the expansion (E9). We have to solve the static
part of the equation Ey, = 0, where Ey, is given by (E6). We
substitute ¢, = ¢ and ¢§9) = ¢, where ¢ and ¢ =
gbg) ) are functions of only x,
sinzx@ - 2tanxd—q —(+2)(I-1)g+4¢?9 =0

dx? dx ’

(G21)

Taking the derivative of the equation and introducing

_dgq I
=1 0 =—=_ G22
=9 1 r (G22)
we obtain
d’g _sin’xdg 2
in2 S 4 _pMNXCD 2 L (4 0)(1-1)g
X2 " “cosxdx  cosix ! (14 2)( )a
+ g% =o. (G23)

We know the source term g(©, and to get the metric
perturbation by (E4) we only need g. This equation can be
solved in a similar way as we have solved (20). The four
fundamental solutions ¢, for @ = 1, 2, 3, 4 can be given by
Gy = Wy sint™! x cosx, with w, given in (G5) and (G6),
where now

b=-+2,

> (G24)

l 3
= — 1 = -~ .
a 2+ , c l+2

The inhomogeneous solution for g can be obtained as in
(G16), with the replacements p — g, p*) = 39, p; - ¢,
and p, — g3. When g is known, it determines the x
derivative of the static part of ¢y, and the metric perturba-
tion variables can be calculated by (E4), (E2), and (E1).
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