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We demonstrate analytically and numerically the existence of geodesically complete singularities in
quintessence and scalar-tensor quintessence models with scalar field potential of the form VðϕÞ ∼ jϕjn with
0 < n < 1. In the case of quintessence, the singularity which occurs at ϕ ¼ 0, involves divergence of the
third time derivative of the scale factor [Generalized Sudden Future Singularity (GSFS)], and of the second
derivative of the scalar field. In the case of scalar-tensor quintessence with the same potential and with a
linear minimal coupling (FðϕÞ ¼ 1 − λϕ), the singularity is stronger and involves divergence of the second
derivative of the scale factor [Sudden Future Singularity (SFS)]. We show that the scale factor close to the
singularity is of the form aðtÞ ¼ as þ bðts − tÞ þ cðts − tÞ2 þ dðts − tÞq where as, b; c; d are constants
which are obtained from the dynamical equations and ts is the time of the singularity. In the case of
quintessence we find q ¼ nþ 2 (i.e. 2 < q < 3), while for the case of scalar-tensor quintessence we have a
stronger singularity with q ¼ nþ 1 (1 < q < 2). We verify these analytical results numerically and extend
them to the case where a perfect fluid, with a constant equation of state w ¼ p

ρ, is present. We find that the

strength of the singularity (value of q) remains unaffected by the presence of a perfect fluid. The linear and
quadratic terms in ðts − tÞ that appear in the expansion of the scale factor around ts are subdominant for the
diverging derivatives close to the singularity, but can play an important role in the estimation of the Hubble
parameter. Using the analytically derived relations between these terms, we derive relations involving the
Hubble parameter close to the singularity, which may be used as observational signatures of such
singularities in this class of models. For quintessence with matter fluid, we find that close to the singularity
_H ¼ 3

2
Ω0mð1þ zsÞ3 − 3H2. These terms should be taken into account when searching for future or past

time such singularities, in cosmological data.

DOI: 10.1103/PhysRevD.96.084024

I. INTRODUCTION

The fact that the Universe has entered a phase of
accelerating expansion (ä > 0) [1,2] has created new
possibilities in the context of the study of exotic physics
on cosmological scales. Cosmological observations of Type
Ia supernova [3], which were later supported by the cosmic
microwave background (CMB) [4] and the large scale
structure observations [5,6], are consistent with the exist-
ence of a cosmological constant (ΛCDM model) [7] as the
possible cause of this mysterious phenomenon. Despite the
simplicity of ΛCDM and its consistency with most cos-
mological observations [3] the required value of the
cosmological constant needs to be fine-tuned in compari-
son with microphysical expectations. This problem has lead
to the consideration of models alternative to ΛCDM. Such
models include modifications of GR [8,9], scalar field dark
energy (quintessence) [10,11], physically motivated forms
of fluids e.g. Chaplygin gas [12,13] etc.

Some of these dark energy models predict the existence
of exotic cosmological singularities, involving diver-
gences of the scalar spacetime curvature and/or its deriv-
atives. These singularities can be either geodesically
complete [14–17] (geodesics continue beyond the singu-
larity and the Universe may remain in existence) or geo-
desically incomplete [18,19] (geodesics do not continue
beyond the singularity and the Universe ends at the
classical level). They appear in various physical theories
such as superstrings [20], scalar field quintessence with
negative potentials [21], modified gravities and others
[17,22,23]. Violation of the cosmological principle
(isotropy-homogeneity) by some cosmological models
(e.g. modified gravity [24], quantum effects [25]), has
been shown to eliminate or weaken both geodesically
complete and incomplete singularities [26–45].
Geodesically incomplete singularities include the Big

Bang [46], the Big Rip [47,48] where the scale factor
diverges at a finite time due to infinite repulsive forces of
phantom dark energy, the Little Rip [49] and the Pseudo
Rip [50] singularities where the scale factor diverges at a
infinite time and the Big Crunch [16,17,21,51–53] where
the scale factor vanishes due to the strong attractive gravity
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of future involved dark energy, as e.g. in quintessence
models with negative potential.
Geodesically complete singularities include SFS (Sudden

Future Singularity) [22], Big-Brake singularity [54] (a
subclass of the SFS singularities, characterized by a full stop
of the expansion with finite scale factor, vanishing energy
density and diverging deceleration and pressure), FSF
(Finite Scale Factor) [55,56], BS (Big-Separation) and the
w-singularity [57,58]. In these singularities, the cosmic scale
factor remains finite but a scale factor’s derivative diverges at
a finite time. The singular nature of these “singularities”
amounts to the divergence of scalar quantities involving the
Riemann tensor and the Ricci scalar R ¼ 6ðäa þ _a2

a2 þ k
a2Þ, for

the FRW metric, where aðtÞ is the cosmic scale factor [59].
Despite the divergence of the Ricci scalar, the geodesics are
well defined at the time of the singularity. The Tipler and
Krolak [60,61] integrals of the Riemann tensor components
along the geodesics are indicators of the strength of these
singularities and remain finite in most cases. The Tipler
integral [60] is defined as

Z
τ

0

dτ0
Z

τ0

0

dτ00jRi
0j0ðτ00Þj; ð1:1Þ

while the Krolak integral [61] is defined as

Z
τ

0

dτ0jRi
0j0ðτ0Þj; ð1:2Þ

where τ is the affine parameter along the geodesic andRi
0j0 is

the Riemann tensor. The components of the Riemann tensor
are expressed in a frame that is parallel transported along the
geodesics. If the scale factor’s first derivative is finite at the
singularity, both integrals are finite (even if the second
derivative of the scale factor diverges), since the Riemann
tensor components involve up to second order derivatives of
the scale factor. If, however, the first derivative of the finite
scale factor diverges, then it is easy to see from the above
integrals that only the Tipler integral is finite at the
singularity, while the Krolak integral diverges. This implies
an infinite impulse on the geodesics, which dissociate all
bound systems at the time of the singularity [15,62]. The
singularities that lead to the divergence of the above integrals
are defined as strong singularities [63,64].
It is interesting to connect these singularities with the

properties of the cosmic energy-momentum tensor. In FRW
spacetime with metric

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
;

ð1:3Þ

and we assume the standard Einstein-Hilbert action

S ¼
Z �

1

16πG
Rþ LðfluidÞ

� ffiffiffiffiffiffi
−g

p
d4x: ð1:4Þ

The Friedmann equations obtained by variation of the
above action connect the density and pressure with the
cosmic scale factor aðtÞ:

ρðtÞ ¼ 3

8πG

�
_a2

a2
þ k
a2

�
ð1:5Þ

pðtÞ ¼ −
1

8πG

�
2
ä
a
þ _a2

a2
þ k
a2

�
; ð1:6Þ

where the density and pressure are connected by the
continuity equation:

_ρðtÞ ¼ −3
_a
a
½ρðtÞ þ pðtÞ�: ð1:7Þ

In what follows we set 8πG ¼ c ¼ 1 and assume spatial
flatness (k ¼ 0), in agreement with observational results
and the WMAP [65].
The divergence of the scale factor and/or its derivatives

leads to divergence of scalar quantities like the Ricci scalar
thus to different types of singularities or “cosmological
milestones” [59]. However geodesics do not necessarily
end at these singularities and if the scale factor remains
finite they are extended beyond these events [23] even
though a diverging impulse may lead to dissociation of all
bound systems in the Universe at the time ts of these
events [62].
Thus singularities can be classified [66] according to the

behavior of the scale factor aðtÞ, and/or its derivatives at the
time ts of the event or equivalently [according to
Eqs. (1.5)–(1.6)] and the energy density and pressure of
the content of the universe at the time ts. A classification of
such singularities and their properties is shown in Table I.
A particularly interesting type of singularity is the

Sudden Future Singularity [22], which involves violation
of the dominant energy condition ρ ≥ jpj, and divergence
of the cosmic pressure of the Ricci Scalar and of the second
time derivative of the cosmic scale factor. The scale factor
can be parametrized as

aðtÞ ¼
�
t
ts

�
m
ðas − 1Þ þ 1 −

�
1 −

t
ts

�
q
; ð1:8Þ

wherem; q; ts are constants to be determined, as is the scale
factor at the time ts and 1 < q < 2. The idea of such a finite
time singularity and the above asymptotic form of aðtÞ was
first introduced in [67],where it was used to show that closed
FRW universes satisfying the strong energy condition
ρþ 3p ≥ 0, do not always recollapse. An interesting feature
of such singularities includes the possibility for a quasi-
isotropic solution which is part of the general solution of the
Einstein equations, and approaches a late-time sudden
singularity where the density, expansion rate, and metric
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remain finite. This solution has no equation of state and is
characterized by nine independent arbitrary spatial functions
[68]. In addition to (1.8) there are other similar parametri-
zations of the scale factor for sudden future singularities,
which are also applicable for Big Bang, Big Rip, sudden
future, finite scale factor and w-singularities [69,70].
For the range 1 < q < 2, Eq. (1.8) indicates that a; _a

and ρ remain finite at ts. However, from Eqs. (1.6)–(1.7) it
follows that p; _ρ and ä become infinite. Thus, when the first
derivative of the scale factor is finite at the singularity, but the
second derivative diverges (SFS singularity [22]), the energy
density is finite but the pressure diverges. SFS singularities
(p → þ∞; ̈a → −∞) violate only the dominant energy
condition (DEC: ρ ≥ jpj while it respects all other energy
conditions [null energy condition (NEC): ρþ p ≥ 0], weak
energy condition (WEC): ρ ≥ 0; ρþ p ≥ 0, strong energy
condition (SEC): ρþ 3p ≥ 0).
Geodesically complete singularities where the scale

factor behaves like Eq. (1.8), are obtained in various
physical models such as, anti-Chaplygin gas [71,72], loop
quantum gravity [45], tachyonic models [35–37,54], brane
models [32,73,74] etc. Such singularities however have not
been studied in detail in the context of the simplest dark
energy models of quintessence and scalar-tensor quintes-
sence (see however [75,76] for a qualitative analysis in the
case of inflation).
A singularity of the GSFS type (see Table I), involving

a divergence of the third derivative of the scale factor,
occurs generically in quintessence models with potential of
the form

VðϕÞ ¼ Ajϕjn; A > 0; ð1:9Þ
with 0 < n < 1 and A a constant parameter. In Ref. [75], it
was shown through a qualitative analysis, that the power
law scalar potential leads to singularities at any scale factor
derivative order larger than three, depending on the value of
the power n. In particular, for k < n < kþ 1, with k > 0,
the ðkþ 2Þth derivative of the scale factor diverges at the
singularity. Quintessence models with the potential (1.9)

constitute the simplest extension of ΛCDM with geodesi-
cally complete cosmic singularities that occur at the time ts
when the scalar field becomes zero (ϕ ¼ 0).
In the present study we extend the analysis of [75,76] in

the following directions:
(1) We verify the existence of the GSFS both numerically

and analytically, using a proper generalized expansion
ansatz for the scale factor and the scalar field close to
the singularity. This generalized ansatz includes linear
and quadratic terms, that dominate close to the
singularity and cannot be ignored when estimating
the Hubble parameter and the scalar field energy
density. Thus, they are important when deriving the
observational signatures of such singularities.

(2) We derive analytical expressions for the power
(strength) of the singularity in terms of the power
n of the scalar field potential.

(3) We extend the analysis to the case of scalar-tensor
quintessence with the same scalar field potential and
derive both analytically and numerically the power
of the singularity in terms of the power n of the
scalar field potential.

The structure of this paper is the following: In Sec. II we
focus on the quintessence model of Eq. (1.9), and we
investigate the strength of the GSFS both analytically and
numerically. In Sec. III we extend the analysis to the case of
scalar-tensor quintessence and investigate the modification
of the strength of the singularity both analytically (using a
proper expansion ansatz) and numerically, by explicitly
solving the dynamical cosmological equations. Finally, in
Sec. IV we summarize our results and discuss possible
extensions of the present analysis.

II. SUDDEN FUTURE SINGULARITIES
IN QUINTESSENCE MODELS

A. Evolution without perfect fluid

Setting 8πG ¼ 1, the most general action, involving
gravity, nonminimally coupled with a scalar field ϕ, and a
perfect fluid is

TABLE I. Classification and properties of cosmological singularities. The singularities discussed in the present
analysis are indicated in italics.

Name tsing aðtsÞ ρðtsÞ pðtsÞ _pðtsÞ wðtsÞ T K Geodesically

Big Bang (BB) 0 0 ∞ ∞ ∞ finite strong strong incomplete
Big Rip (BR) ts ∞ ∞ ∞ ∞ finite strong strong incomplete
Big Crunch (BC) ts 0 ∞ ∞ ∞ finite strong strong incomplete
Little Rip (LR) ∞ ∞ ∞ ∞ ∞ finite strong strong incomplete
Pseudo Rip (PR) ∞ ∞ finite finite finite finite weak weak incomplete
Sudden future (SFS) ts as ρs ∞ ∞ finite weak weak complete
Big Brake (BBS) ts as 0 ∞ ∞ finite weak weak complete
Finite sudden future (FSF) ts as ∞ ∞ ∞ finite weak strong complete
Generalized sudden future (GSFS) ts as ps ps ∞ finite weak strong complete
Big separation (BS) ts as 0 0 ∞ ∞ weak weak complete
w-singularity (w) ts as 0 0 0 ∞ weak weak complete
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S ¼
Z �

1

2
FðϕÞRþ 1

2
gμνϕ;μϕ;ν −VðϕÞ þLðfluidÞ

� ffiffiffiffiffiffi
−g

p
d4x:

ð2:1Þ

In the special case where FðϕÞ ¼ 1 and in the absence of
a perfect fluid, the action (2.1) reduces to the simple case of
quintessence models without a perfect fluid

S ¼
Z �

1

2
Rþ 1

2
gμνϕ;μϕ;ν − VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x: ð2:2Þ

The energy density and pressure of the scalar field ϕ,
may be written as

ρϕ ¼ 1

2
_ϕ2 þ VðϕÞ and pϕ ¼ 1

2
_ϕ2 − VðϕÞ: ð2:3Þ

Variation of the action (2.2) assuming a power law
potential (1.9) leads to the dynamical equations

3H2 ¼ 1

2
_ϕ2 þ VðϕÞ ð2:4Þ

ϕ̈ ¼ −3H _ϕ − Anjϕjn−1ΘðϕÞ ð2:5Þ

2 _H ¼ − _ϕ2; ð2:6Þ

where H ¼ _a
a is the Hubble parameter, 0 < n < 1 and

ΘðϕÞ ¼
�
1 ϕ > 0

−1 ϕ < 0
: ð2:7Þ

This class of quintessence models has been studied
extensively focusing mostly on the cosmological effects
and the dark energy properties that emerge due to the
expected oscillations of the scalar field around the mini-
mum of its potential [77–81]. In the present analysis
we focus instead on the properties of the cosmological
singularity that is induced as the scalar field vanishes
periodically during its oscillations. For simplicity, we
consider only the first time ts when the scalar field vanishes
during its dynamical oscillations. Notice that the disconti-
nuity of Eq. (2.5) is mild for 0 < n < 1 and is integrated
out in the solution leading to no issues with instabilities or
divergences.
The dynamical evolution of the scalar field due to the

potential shown in Fig. 1 may be qualitatively described as
follows [76]:
From Eqs. (2.4) and (2.6), it follows that when t → ts

(ϕ → 0) H; _H remain finite and so does _ϕ. But in Eq. (2.5)
there is a divergence of the term ϕn−1 for 0 < n < 1 and
thus ϕ̈ → ∞ as ϕ → 0. Ḧ also diverges at this point due to
the divergence of ϕ̈, as follows by differentiating Eq. (2.6).
This implies that the third derivative of the scale factor

diverges, and a GSFS occurs at this point (i.e. as, ρs, ps
remain finite but _p → ∞). Thus, the constraints on the
power exponents q, r of the diverging terms in the
expansion of the scale factor (∼ðts − tÞq) and of the scalar
field (∼ðts − tÞr) are 2 < q < 3 and 1 < r < 2 respectively
[see Eqs. (2.10)–(2.11) below]. It has been shown in [82]
that by choosing q to lie in the intervals ðN;N þ 1Þ for
N ≥ 2, where N ∈ Zþ, a finite-time singularity occurs in
which

dNþ1a
dtNþ1

→ ∞; ð2:8Þ

while

dsa
dts

→ 0; for s ≤ N ∈ Zþ: ð2:9Þ

It may be shown that this allows for pressure singularities
which are associated with divergence of higher time
derivatives of the scale factor (divergence of the fourth-
order derivative of the scale factor [82] when p → ∞),
in Friedmann solutions of higher-order gravity ½fðRÞ�
theories [83].
In what follows we extend the above qualitative analysis

to a quantitative level. In particular, we use a new ansatz for
the scale factor and the scalar field, containing linear and
quadratic terms of ðts − tÞ. These terms play an important
role since they dominate in the first and second derivative
of the scale factor as the singularity is approached.
Thus, the new ansatz for the scale factor which general-

izes (1.8), by introducing linear and quadratic terms in
ðts − tÞ is of the form

aðtÞ ¼ as þ bðts − tÞ þ cðts − tÞ2 þ dðts − tÞq; ð2:10Þ

where b, c, d are real constants to be determined, and
2 < q < 3 so that a

…
diverges at the GSFS. In [68], it has

been shown that an asymptotic series for a general solution

φ

φ

FIG. 1. Exponential scalar field potential VðϕÞ ¼ Ajϕjn.
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of the Einstein equations, can be constructed near a sudden
singularity. In our parametrization (2.10), we keep only the
terms that can play an important role close to the
singularity.
The corresponding expansion of the scalar field ϕðtÞ

close to singularity is of the form

ϕðtÞ ¼ fðts − tÞ þ hðts − tÞr; ð2:11Þ
where f, h, are real constants to be determined, and
1 < r < 2 so that ϕ̈ diverges at the singularity.
Substituting Eqs. (2.10) and (2.11) in Eq. (2.5), we get

the equation of the dominant terms

A1ðts − tÞr−2 ¼ A2ðts − tÞn−1; ð2:12Þ
where the A1, A2, denote constants, which may be
expressed in terms of f, h and the constant A (see
Appendix). Clearly, both the left and right-hand side of
Eq. (2.12) diverge at the singularity for 1 < r < 2 and
0 < n < 1. Equating the power laws of divergent terms we
obtain

r ¼ nþ 1: ð2:13Þ
Similarly, differentiation of Eq. (2.6) with respect to t gives
2Ḧ ¼ −2 _ϕ ϕ̈, from which we obtain an equation for the
dominant terms using Eqs. (2.10) and (2.11)

A0
1ðts − tÞq−3 ¼ A0

1ðts − tÞr−2; ð2:14Þ
where the A0

1;A0
2 are constants, which may be expressed

in terms of d, f, h (see Appendix). The left and the right-
hand side of Eq. (2.14) diverge, and therefore, equating the
power laws of diverging terms we obtain

q ¼ rþ 1: ð2:15Þ
Thus, using (2.13) and (2.15) we find the exponent q in

terms of n as

q ¼ nþ 2: ð2:16Þ
Equations (2.13) and (2.16) are consistent with the

qualitatively expected range of r, q, for 0 < n < 1.
Substituting the expressions (2.10), (2.11), (1.9) for

aðtÞ;ϕðtÞ and VðϕÞ in the dynamical Eqs. (2.4) and
(2.6), it is straightforward to calculate the relations between
the coefficients c, d, f, h. The form of the relations between
the evaluated expansion coefficients, is shown in the
Appendix, and has been verified by numerical solution
of the dynamical equations.
The additional linear and quadratic terms in ðts − tÞ, in

the expression of the scale factor (2.10), play an important
role in the estimation of the Hubble parameter and its
derivative as the singularity is approached.
The relations between these coefficients can lead to

relations between the Hubble parameter and its derivative

close to the singularity, which in turn correspond to
observational predictions that may be used to identify
the presence of these singularities in angular diameter of
luminosity distance data. For example, the coefficients b
and c are related as [see Appendix Eq. (A2)],

c ¼ −
b2

as
: ð2:17Þ

Using this relation, it is easy to show that at the time of
the singularity ts we have

_H ¼ −3H2: ð2:18Þ

Equation (2.18) is identical to the corresponding
equation describing a stiff matter fluid with ρ ¼ p.
The solution of Eq. (2.18) expressed in terms of redshift

z, is applicable at the singularity redshift zs and may be
written as

HðzsÞ ¼ ð1þ zsÞ3. ð2:19Þ

This result constitutes an observationally testable predic-
tion of this class of models, which can be used to search for
such singularities in our past light cone.

B. Numerical analysis

It is straightforward to verify numerically the derived
power law dependence of the scale factor and scalar field as
the singularity is approached. We thus solve the rescaled,
with the present day Hubble parameter H0 (setting
H ¼ H̄H0, t ¼ t̄=H0, V ¼ V̄H2

0), coupled system of the
cosmological dynamical equations for the scale factor and
for the scalar field (2.5) and (2.6). We assume initial
conditions at early times (t ≪ t0) when the scalar field is
assumed frozen at ϕðtiÞ ¼ ϕi and _ϕðtiÞ ¼ 0 due to cosmic
friction [84,85]. At that time the initial conditions for the
scale factor are well approximated by

aðtiÞ ¼ exp

� ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3

r
ti

�
; ð2:20Þ

_aðtiÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3

r �
exp

ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3

r
ti

�
: ð2:21Þ

Taking the logarithm of the numerical solution correspond-
ing to the third derivative of the scale factor (2.10) and to
the second derivative of the scalar field (2.11), we obtain
Fig. 2 and Fig. 3, which show these logarithms as functions
of ts − t close to the singularity (continuous lines). On these
lines we superpose the corresponding analytic expansions
[Eqs. (2.10) and (2.11), dashed lines] which, close to the
singularity, may be written as
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log½ja…j� ¼ log½jdjqðq − 1Þðq − 2Þ� þ ðq − 3Þ log½ðts − tÞ�
ð2:22Þ

and

log½jϕ̈j� ¼ log½jhjrðr − 1Þ� þ ðr − 2Þ log½ðts − tÞ�: ð2:23Þ

In the plots of Eqs. (2.22)–(2.23) (dashed lines) we have
used the predicted values of the exponents [Eqs. (2.13)
and (2.16)] and the analytically predicted values for the
coefficients d and h shown in the Appendix. We underline
the good agreement in the slopes of the analytically
predicted curves and the corresponding numerical results,
which confirm the validity of the power law ansatz (2.10)
and (2.11), and the values of the corresponding exponents
(2.13) and (2.16).
We have also verified this agreement by obtaining the

best fit slopes of the numerical solutions of Fig. 2 and Fig. 3

deriving the numerically predicted values of the exponents
q and r. These numerical best fit values, along with the
corresponding analytical predictions, are shown in Table II
for n ¼ 0.5 and n ¼ 0.7, indicating good agreement
between the analytical and numerical values of the
exponents.
In Fig. 4 and Fig. 5 we show the time evolution

(numerical and analytical) of the scale factor and the
scalar field respectively. The two curves, for each n, are
consistent close to each singularity. In Fig. 6 and Fig. 7 we
demonstrate numerically the divergence of the third deriva-
tive of the scale factor and of the second derivative of the
scalar field. The divergence occurs at the time of the
singularity when the scalar field vanishes i.e. ϕ ¼ 0.

C. Evolution with a perfect fluid

In the presence of a perfect fluid, the action of the
theory is obtained from the generalized action (2.1) with
FðϕÞ ¼ 1 as

S ¼
Z �

1

2
Rþ 1

2
gμνϕ;μϕ;ν − VðϕÞ þ LðfluidÞ

� ffiffiffiffiffiffi
−g

p
d4x:

ð2:24Þ

FIG. 2. Numerical verification of the q-exponent for n ¼ 0.5
and n ¼ 0.7. The orange dashed line, denotes the analytical,
while the blue line denotes the numerical solution. As expected
the slopes for each n are identical.

FIG. 3. Same as Fig. 2 for the r-exponent.

TABLE II. Numerical and analytical values of the power
exponents r, q. Clearly, there is consistency between numerical
results and analytical expectations.

Numerical Analytical

n r q r ¼ nþ 1 q ¼ nþ 2

0.5 1.5� 0.0003 2.51� 0.0007 1.5 2.5
0.7 1.7� 0.002 2.71� 0.004 1.7 2.7

FIG. 4. Plot of numerical (dashed) and analytical (line) time
evolution of the scale factor, for n ¼ 0.7, 0.8, 0.9. The two
solutions for each n are consistent close to each singularity.
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The corresponding dynamical equations are

3H2 ¼ 3Ω0;m

a3
þ 1

2
_ϕ2 þ VðϕÞ ð2:25Þ

ϕ̈ ¼ −3H _ϕ − Anjϕjn−1ΘðϕÞ ð2:26Þ

2 _H ¼ −
3Ω0;m

a3
− _ϕ2; ð2:27Þ

with ρm ¼ ρ0m
a3 ¼ 3Ω0;m

a3 and Ω0;m ¼ 0.3. The scale factor
(2.10), in the presence of a perfect fluid is now assumed to
be of the form

aðtÞ ¼ 1þ ðas − 1Þ
�
t
ts

�
m
þ bðts − tÞ

þ cðts − tÞ2 þ dðts − tÞq; ð2:28Þ

where m ¼ 2
3ð1þwÞ and w the state parameter. As in the case

of the previous section, from the dynamical equa-
tions (2.25), (2.27), H; _H; _ϕ still remain finite. Also in
Eq. (2.26) there is a divergence of the term ϕn−1 for
0 < n < 1 and ϕ̈ → ∞ as ϕ → 0. The third derivative of
the scale factor a

���
also diverges due to the divergence of Ḧ

(differentiation of Eq. (2.6)). Thus, the constraints for q, r
are the same as in the absence of the fluid (Sec. II A), i.e.
2 < q < 3 and 1 < r < 2 respectively.
Following the steps of Sec. II A, we rediscover the same

values for the exponents i.e. Eqs. (2.13) and (2.16) which
imply similar behavior close to the singularity.
The relations among the expansion coefficients c, d, f, h,

are shown in the Appendix, and have been verified by
numerical solution of the dynamical equations, as in the
absence of the fluid (see Appendix). For ρ0m ¼ 0 all
coefficients reduce to those of the no fluid case.
An interesting result arises from the derivation of the

relation between the coefficients b, c. The relation between
b, c in the presence of a fluid is of the form [see Appendix
Eq. (A10)],

c ¼ ρ0;m
4a2s

−
1

2
ðas − 1Þmðm − 1Þ − ½ðas − 1Þm − b�2

as
;

ð2:29Þ

Thus, we obtain

_H ¼ 3Ω0;m

2a3s
− 3H2: ð2:30Þ

Solving Eq. (2.30), we obtain the Hubble parameterH as
a function of the singularity redshift zs as

FIG. 5. Numerical (dashed line) and analytical (continuous
line) time evolution of the scalar field, for n ¼ 0.7, 0.8, 0.9. The
two solutions for each n are consistent close to each singularity.

FIG. 6. Numerical solutions of the third time derivative of the
scale factor for n ¼ 0.7, 0.8, 0.9. Notice the divergence at the
time of the singularity when the scalar field vanishes (ts ¼ 8.4 for
n ¼ 0.7, ts ¼ 7.46 for n ¼ 0.8, ts ¼ 6.73 for n ¼ 0.9).

FIG. 7. Numerical solutions of the second time derivative of the
scalar field for n ¼ 0.7, 0.8, 0.9. Notice the divergence at the time
of the singularity when the scalar field vanishes (ts ¼ 8.4 for
n ¼ 0.7, ts ¼ 7.46 for n ¼ 0.8, ts ¼ 6.73 for n ¼ 0.9).
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H2ðzsÞ ¼ Ω0;mð1þ zsÞ3½1 − ð1þ zsÞ3� þ ð1þ zsÞ6;
ð2:31Þ

(see proof in Appendix). Clearly Eq. (2.30) reduces
to Eq. (2.19) for ρ0;m ¼ 0. This result may be used as
observational signature of such singularities in this class of
models.

III. SUDDEN FUTURE SINGULARITIES
IN SCALAR-TENSOR QUINTESSENCE

MODELS

A. Evolution without a perfect fluid

We now consider now scalar-tensor quintessence models
without the presence of a perfect fluid. The action of the
theory is the generalized action (2.1), where LðfluidÞ is
ignored. Therefore, it has the form

S ¼
Z �

1

2
FðϕÞRþ 1

2
gμνϕ;μϕ;ν − VðϕÞ

� ffiffiffiffiffiffi
−g

p
d4x: ð3:1Þ

We assume a nonminimal coupling linear in the
scalar field FðϕÞ ¼ 1 − λϕ even though our results about
the type of the singularity in this class of models is
unaffected by the particular choice of the nonminimal
coupling. The dynamical equations are of the form

3FH2 ¼
_ϕ2

2
þ V − 3H _F ð3:2Þ

ϕ̈þ 3H _ϕ − 3Fϕ

�
ä
a
þH2

�
þ Anjϕjðn−1ÞΘðϕÞ ¼ 0 ð3:3Þ

−2F
�
ä
a
−H2

�
¼ _ϕ2 þ F̈ −H _F; ð3:4Þ

where Fϕ ¼ d
dϕF. From Eq. (3.2), it is clear that H; _ϕ; F; _F

all remain finite when ϕ → 0 (t → ts). However, in
Eq. (3.3) there is a divergence of the term Vϕ for
0<n<1 and ϕ̈ → ∞ as ϕ → 0. This means that F̈ → ∞
because of the generation of the second derivative of ϕ
that leads to a divergence of ä in Eq. (3.4). The effective
dark energy density and pressure take the form [17,86]

ρDE ¼
_ϕ2

2
þ V − 3FH2 − 3H _F ð3:5Þ

pDE ¼
_ϕ2

2
− V − ð2 _H − 3H2ÞF þ F̈ þ 2H _F: ð3:6Þ

Thus ρDE remains finite in Eq. (3.5), while pDE → �∞ in
Eq. (3.6). Clearly, an SFS singularity (Table I, see also [87])
is expected to occur in scalar-tensor quintessence models,
as opposed to the GSFS singularity in the corresponding

quintessence models. This result will be verified quantita-
tively in what follows.
Using the ansatz (2.10) and (2.11) in the dynamical

Eq. (3.4) we find that the dominant terms close to the
singularity are

B1ðts − tÞq−2 ¼ B2ðts − tÞr−2; ð3:7Þ

where the B1, B2 are constants, which depend on the
coefficient d, h and the λ constant, and are shown in the
Appendix. It immediately follows from Eq. (3.7) that

q ¼ r: ð3:8Þ

Similarly, substituting the ansatz (2.10) and (2.11) in
Eq. (3.3) we find that the dominant terms close to the
singularity obey the equation

B0
1ðts − tÞr−2 ¼ B0

2ðts − tÞn−1; ð3:9Þ

where the B0
1;B0

2 are constants, which depend on the
coefficient f and the constants A, λ as shown in the
Appendix. Equating the exponents of the divergent terms
we find

r ¼ nþ 1; ð3:10Þ

which leads to

q ¼ nþ 1: ð3:11Þ

The results (3.10) and (3.11) are consistent with the
above qualitative discussion for the expected strength of the
singularity. Thus in the case of the scalar-tensor theory we
have a stronger singularity at ts, compared to the singularity
that occurs in quintessence models. This is a general result,
valid not only for the coupling constant of the form F ¼
1 − λϕ but also for other forms of FðϕÞ (e.g. F ∼ ϕr),
because the second derivative of F with respect to time, in
the dynamical equations, will always generate a second
derivative of ϕ with divergence, leading to a divergence
of ä.
Using Eqs. (3.2), (3.7), (3.8), (3.9), and (3.10), we

calculate relations among the coefficients c, d, f, h. The
form of these relations, is shown in the Appendix, and has
been verified by numerical solution of the dynamical
equations. Notice that all coefficients, except d, reduce
to those of Sec. II A for λ ¼ 0.1

1The coefficient d differs in scalar-quintessence since the
divergence occurs in the second, instead of the third derivative of
the scale factor.
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B. Numerical analysis

We now solve the rescaled coupled system of the
cosmological dynamical equations for the scale factor
and for the scalar field (3.3) and (3.4), using the present
day Hubble parameter H0 (setting H ¼ H̄H0, t ¼ t̄=H0,
V ¼ V̄H2

0). We assume initial conditions at early times
(t ≪ t0) when the scalar field is assumed frozen at ϕðtiÞ ¼
ϕi and _ϕðtiÞ ¼ 0 due to cosmic friction in the context of
thawing [84,85] scalar-tensor quintessence [88–90]. At that
time the initial conditions for the scale factor are

aðtiÞ ¼ exp

2
4

ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3Fi

s
ti

3
5; ð3:12Þ

_aðtiÞÞ ¼ exp

2
4

ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3Fi

s
ti

3
5

ffiffiffiffiffiffiffiffiffiffiffiffi
VðϕiÞ
3Fi

s
; ð3:13Þ

where Fi ¼ 1 − λϕi.
Taking the logarithm of the second derivative of the scale

factor (2.10) and of the scalar field (2.11), we obtain

log½jäj� ¼ log½jdjqðq − 1Þ� þ ðq − 2Þ log½ðts − tÞ� ð3:14Þ

and

log½jϕ̈j� ¼ log½jhjrðr − 1Þ� þ ðr − 2Þ log½ðts − tÞ� ð3:15Þ

The numerical verification of the validity of Eqs. (3.10)–
(3.11) has been performed similarly to the case of mini-
mally coupled quintessence. In Fig. 8 and Fig. 9 we show
the analytical and numerical solutions, for the logarithm of
the diverging terms of the scale factor and the scalar field
respectively, as t → ts from below. The log-plots of the

diverging terms of ä and ϕ̈ are straight lines, indicating a
power law behavior with best fit slopes as shown in
Table III, in good agreement with the analytical expansion
expectations [Eqs. (3.10)–(3.11)]. In Figs. 10 and 11 we
show the time evolution (numerical and analytical) of the
scale factor and the scalar field respectively. The two
curves, for each n, are consistent close to each singularity.
In Figs. 12 and 13 we demonstrate numerically the
divergence of the second derivative of the scale factor
and of the scalar field. As expected, the divergence occurs
at the time of the singularity when the scalar field vanishes.
Using Eqs. (3.14) and (3.15), it is straightforward to

obtain numerically the values of the parameters h of the
scalar field, as well as d of the scale factor, and compare
with their analytically obtained values shown in the
Appendix.

FIG. 8. Numerical verification of the q-exponent for n ¼ 0.5
and n ¼ 0.8. The orange dashed line, denotes the analytical,
while the blue line denotes the numerical solution. As expected
the slopes for each n are identical, while the small difference is
due to the coefficients.

FIG. 9. Numerical verification of the r-exponent for n ¼ 0.5
and n ¼ 0.8. The orange dashed line, denotes the analytical,
while the blue line denotes the numerical solution. As expected
the slopes for each n are identical, while the small difference is
due to the coefficients.

FIG. 10. Plot of numerical (dashed) and analytical (line) time
evolution of the scale factor, for n ¼ 0.7 (red), 0.8 (green), and
0.9 (blue). The two solutions for each n are consistent close to
each singularity.
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The quadratic term of ðts − tÞ, in the expression of the
scale factor (2.10), is now subdominant as the second
derivative of the scale factor diverges. The only additional
term of ðts − tÞ that can play an important role in the
estimation of the Hubble parameter, is the linear term.
Clearly, for the first derivative of (2.10), as t → ts from
below, the linear term dominates over all other terms, while
the quadratic term is subdominant in the second derivative
in the divergence of the q-term. Thus, in the case of the
scalar-tensor quintessence models H remain finite and
dominated by the term bðts − tÞ, while _H → ∞ as t → ts.

C. Evolution with a perfect fluid

In the presence of a perfect fluid, the action is now the
generalized action (2.1). The scale factor and the scalar
field are of the form (2.28) and (2.11) respectively. The
dynamical equations in the presence of a relativistic fluid
become

3FH2 ¼ 3Ω0;m

a3
þ

_ϕ2

2
þ V − 3H _F ð3:16Þ

ϕ̈þ 3H _ϕ − 3Fϕ

�
ä
a
þH2

�
þ Vϕ ¼ 0 ð3:17Þ

−2F
�
ä
a
−H2

�
¼ 3Ω0;m

a3
þ _ϕ2 þ F̈ −H _F ð3:18Þ

The constraints for r, q as t → ts from below, are the
same as in the absence of the fluid i.e. 1 < r < 2 and
1 < q < 2, and following the steps of the Sec. III A we
obtain

q ¼ r; ð3:19Þ

r ¼ nþ 1; ð3:20Þ

and according to Eq. (3.19)

q ¼ nþ 1: ð3:21Þ

i.e. Eqs. (3.8), (3.10) and (3.11) respectively. Finally, the
form of the evaluated expansion coefficients c, d, f, h is
shown in the Appendix, and has been verified by numerical
solution of the dynamical equations (see Appendix). As
expected, for ρ0m ¼ 0, all coefficients reduce to the ones of
the no fluid case.

FIG. 11. Plot of numerical (dashed) and analytical (line) time
evolution of the scalar field, for n ¼ 0.7 (red), 0.8 (green), and 0.9
(blue). The two solutions for each n are consistent close to each
singularity.

FIG. 12. Numerical solutions of the second time derivative of
the scale factor for n ¼ 0.7, 0.8, 0.9. Notice the divergence at the
time of the singularity when the scalar field vanishes (ts ¼ 5.56
for n ¼ 0.7, ts ¼ 5.2 for n ¼ 0.8, ts ¼ 4.88 for n ¼ 0.9).

FIG. 13. Numerical solutions of the second time derivative of
the scalar field for n ¼ 0.7, 0.8, 0.9. Notice the divergence at the
time of the singularity when the scalar field vanishes (ts ¼ 5.56
for n ¼ 0.7, ts ¼ 5.2 for n ¼ 0.8, ts ¼ 4.88 for n ¼ 0.9).

TABLE III. Numerical and analytical values of the power-laws
r, q. Clearly, there is consistency between numerical results and
analytical expectations.

Numerical Analytical

n r q r ¼ nþ 1 q ¼ nþ 1

0.5 1.5� 0.0003 1.49� 0.0002 1.5 1.5
0.8 1.8� 0.03 1.8� 0.006 1.8 1.8
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IV. CONCLUSION-DISCUSSION

We have derived analytically and numerically the cos-
mological solution close to a future-time singularity for
both quintessence and scalar-tensor quintessence models.
For quintessence, we have shown that there is a divergence
of a

…
and a GSFS singularity occurs (as, ρs, ps remain finite

but _p → ∞), while in the case of scalar-tensor quintessence
models there is a divergence of a

…
and an SFS singularity

occurs (as, ρs remain finite but ps → ∞, _p → ∞).
Importing a perfect fluid in the dynamical equations, in
both cases, we have shown that this result is still valid in our
cosmological solution.
These are the simplest nonexotic physical models where

GSFS and SFS singularities naturally arise. In the case of
scalar-tensor quintessence models, there is a divergence of
the scalar curvature R ¼ 6ðäa þ _a2

a2Þ → ∞ because of the
divergence of the second derivative of the scale factor.
Thus, a stronger singularity occurs in this class of models.
Such divergence of the scalar curvature is not present in the
simple quintessence case.
We have also shown the important role of the additional

linear and quadratic terms of ts − t in the form of the
scale factor as t → ts. However, in the scalar-tensor case
the quadratic term becomes subdominant close to the
singularity.
We have derived explicitly the relations between the

coefficients of the linear, quadratic and diverging terms of
the scale factor and the scalar field. We have shown that all
coefficients of the fluid case (quintessence and scalar-
tensor quintessence), reduce to those of the no fluid case for
ρ0m ¼ 0, and all coefficients (except coefficient d) of the
scalar-tensor models reduce to those of the simple quintes-
sence, in the special case λ ¼ 0 i.e. F ¼ 1. Moreover, for
quintessence models, we derived relations of the Hubble
parameter, _H ¼ −3H2 (for the no fluid case) and _H ¼
3
2
Ω0;mð1þ zsÞ3 − 3H2 (for the fluid case), close to the

singularity. These relations may be used as observational
signatures of such singularities in this class of models.
Interesting extensions of the present analysis include the

study of the strength of these singularities in other modified
gravity models e.g. string-inspired gravity, Gauss-Bonnet
gravity etc. [8,42] and the search for signatures of such
singularities in cosmological luminosity distance and
angular diameter distance data.
Numerical Analysis: The MATHEMATICA file that led

to the production of the figures may be downloaded from
here Ref. [91].

APPENDIX: PROOFS OF EQUATIONS

1. Relations among the expansion coefficients

a. Quintessence without matter

Substituting the expressions (2.10), (2.11), (1.9) for
aðtÞ;ϕðtÞ and VðϕÞ in the dynamical Eqs. (2.4) and

(2.6), it is straightforward to obtain relations among the
expansion coefficients as

f ¼ b
as

ffiffiffi
6

p
ðA1Þ

c ¼ −
b2

as
: ðA2Þ

h ¼ −
Afn−1

nþ 1
ðA3Þ

d ¼ Ab
ffiffiffi
6

p
fn−1

ðnþ 1Þðnþ 2Þ : ðA4Þ

Also Eq. (2.12) may be written explicitly as

hrðr − 1Þðts − tÞr−2 ¼ −Anfn−1ðts − tÞn−1

Thus, the constants A1, A2 are

A1 ¼ hrðr − 1Þ ðA5Þ

A2 ¼ −Anfn−1 ðA6Þ

Similarly Eq. (2.14) may be written explicitly as

dqðq − 1Þðq − 2Þ
as

ðts − tÞq−3 ¼ −fhrðr − 1Þðts − tÞr−2:

Thus, the constants A0
1;A0

2 are of the form

A0
1 ¼

dqðq − 1Þðq − 2Þ
as

ðA7Þ

A0
2 ¼ −fhrðr − 1Þ: ðA8Þ

b. Quintessence with matter

As in the previous case from the dynamical equations
Eq. (2.25), (2.27) we find the corresponding expansion
coefficients

f ¼
�
6
ððas − 1Þm − bÞ2

a2s
− 2

ρ0;m
a3s

�
1=2

; ðA9Þ

c ¼ ρ0;m
4a2s

−
1

2
ðas − 1Þmðm − 1Þ − ½ðas − 1Þm − b�2

as
;

ðA10Þ

h ¼ −
Afn−1

nþ 1
ðA11Þ
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d¼ Afn−1

ðnþ1Þðnþ2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6½ðas−1Þm−b�2−2

ρ0;m
as

r
: ðA12Þ

For m ¼ ρ0m ¼ 0 all coefficients reduce to the previous
ones of the no fluid case as expected.

c. Scalar-tensor quintessence without matter

In this case the dynamical equations lead to the following
relations among the expansion coefficients

f ¼ −
3λb
as

�
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ð2þ 3λ2Þ

p
as

ðA13Þ

d ¼ 1

2
λash ðA14Þ

c ¼ −
b2

as
þ 5

4
λbf: ðA15Þ

h ¼ −
Afn−1

ðnþ 1Þð1þ 3
2
λ2Þ : ðA16Þ

We notice that all coefficients except d, reduce to those
of Sec. II A for λ ¼ 0. The reason that the coefficient d
differs in scalar-quintessence is because in this case the
divergence occurs in the second, instead of the third
derivative of the scale factor.
Equation (3.7) is written explicitly, keeping only the

dominant terms

2
dqðq − 1Þ

as
ðts − tÞq−2 ¼ λhrðr − 1Þðts − tÞr−2:

Thus, the constants B1, B2 are

B1 ¼ 2
dqðq − 1Þ

as
ðA17Þ

B2 ¼ λhrðr − 1Þ: ðA18Þ

Similarly, Eq. (3.9) is written explicitly, keeping only the
dominant terms

�
3

2
λ2 þ 1

�
rðr − 1Þðts − tÞr−2 ¼ −Anfn−1ðts − tÞn−1:

Thus, the constants B0
1;B0

2 are

B0
1 ¼

�
3

2
λ2 þ 1

�
rðr − 1Þ ðA19Þ

B0
2 ¼ −Anfn−1: ðA20Þ

d. Scalar-tensor quintessence with matter

As in the previous cases we use the relevant dynamical
equation which in this case is Eq. (3.16) to obtain the
relations among the expansion coefficients as

f ¼ 3λ

�
m −

bþm
as

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3asð2þ 3λ2Þðbþm −masÞ2 − 2ρ0;m

a3s

s
ðA21Þ

d ¼ 1

2
λash; ðA22Þ

c ¼ ρ0;m
4a2s

−
1

2
ðas − 1Þmðm − 1Þ

−
½ðas − 1Þm − b�2

as
−
5

4
λf½ðas − 1Þm − b�; ðA23Þ

h ¼ −
Afn−1

ðnþ 1Þð1þ 3
2
λ2Þ : ðA24Þ

Notice that for ρ0;m ¼ 0, all coefficients reduce to the
ones in the absence of the fluid. Comparing them with the
coefficients of quintessence models, we see that for λ ¼ 0
they reduce to them except for the coefficient d. This occurs
because d is the coefficient of the scale factor’s diverging
term. In quintessence models we have divergence of the
third derivative of the scale factor, while in scalar-tensor
models the second derivative of the scale factor diverges.

2. Proof of Eqs. (2.18) and (2.19)

The scale factor and its first and second derivative are

aðtÞ ¼ as þ bðts − tÞ þ cðts − tÞ2 þ dðts − tÞq; ðA25Þ

_a ¼ −b − 2cðts − tÞ − dqðts − tÞq−1; ðA26Þ

ä ¼ 2cþ dqðq − 1Þðts − tÞq−2: ðA27Þ

Close to the singularity Eqs. (2.10), (A26), and (A27)
become

aðtÞ ¼ as; ðA28Þ

_a ¼ −b; ðA29Þ

and

ä ¼ 2c ðA30Þ

respectively.
Substituting Eqs. (A28), (A29), and (A30) into the

Hubble parameter and its derivative we have
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H ¼ −
b
as

ðA31Þ

and

_H ¼ 2c
as

−
b2

a2s
: ðA32Þ

Substituting Eqs. (A31) and (A32) in Eq. (A2) we obtain

_H ¼ −3H2: ðA33Þ
In terms of the scale factor this equation becomes

aHa þ 3HðaÞ ¼ 0;

where Ha denotes derivative of H with respect to a. The
solution is

HðaÞ ¼ a−3

or, in terms of the redshift HðzÞ ¼ ð1þ zÞ3.

3. Proof of Eqs. (2.30) and (2.31)

H ¼ ðas − 1Þm − b
as

ðA34Þ

and

_H ¼ ðas − 1Þmðm − 1Þ þ 2c
as

−
½ðas − 1Þm − b�2

a2s
: ðA35Þ

Substituting Eqs. (A10) and (A34) in Eq. (A35) we find

_H ¼ 3Ω0;m

2a3s
− 3H2: ðA36Þ

This may be written as

aHðaÞHa þ 3H2ðaÞ − 3Ω0;m

2a3
¼ 0

with solution

H2ðaÞ ¼ Ω0;m

a3

�
1 −

1

a3

�
þ 1

a6
:

In terms of the singularity redshift zs this becomes

H2ðzzÞ ¼ Ω0;mð1þ zsÞ3½1 − ð1þ zsÞ3� þ ð1þ zsÞ6:
ðA37Þ
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