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The Horndeski Lagrangian brings together all possible interactions between gravity and a scalar field
that yield second-order field equations in four-dimensional spacetime. As originally proposed, it only
addresses phenomenology without torsion, which is a non-Riemannian feature of geometry. Since torsion
can potentially affect interesting phenomena such as gravitational waves and early universe inflation, in this
paper we allow torsion to exist and propagate within the Horndeski framework. To achieve this goal, we
cast the Horndeski Lagrangian in Cartan’s first-order formalism and introduce wave operators designed
to act covariantly on p-form fields that carry Lorentz indices. We find that nonminimal couplings and
second-order derivatives of the scalar field in the Lagrangian are indeed generic sources of torsion. Metric
perturbations couple to the background torsion, and new torsional modes appear. These may be detected via
gravitational waves but not through Yang-Mills gauge bosons.
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I. INTRODUCTION

Recently, there has been a surge of interest in
Horndeski’s theory [1–5], which is the most general
four-dimensional scalar-tensor theory of gravity, without
torsion, that has second-order field equations.
Torsion, however, can have dramatic effects in the very

early universe [6], which is precisely one regime where
scalar fields are thought to be relevant.
In the Einstein-Cartan-Sciama-Kibble (ECSK) theory

[7], torsion is generated by fermions and affects
only fermions. Its effects are in general very weak, since
torsional terms are proportional to ψ4 and hence important
only when there is a large fermion density
(see Sec. 8.4 of Ref. [8], and see Ref. [9]). Torsional
effects of this magnitude will likely go undetected in any
foreseeable particle physics experiment. They may be
detectable in cosmological scenarios [10] and in theories
that go beyond ECSK in four dimensions (see, e.g.,
Refs. [11–24]).

Standard model bosons, on the other hand, do not
generate and are not affected by torsion.1

Most strikingly, torsion is a nonpropagating field. In
vacuum, the ECSK theory gives zero torsion, so there can
be no torsional modes for gravitational waves.
The kind of nonminimal couplings between gravity and a

scalar field that appear in Horndeski’s theory can modify
the conclusions drawn from the ECSK theory. Several
authors (see, e.g., Refs. [15,17,18,21]) have studied the
consequences of including in the action a term that is the
product of a scalar field and the Euler four-form density,

L ¼ ϕϵabcdRab ∧ Rcd; ð1Þ

where Rab stands for the Lorentz curvature two-form. Here
they find a twofold surprise: contrary to expectations, the
term in Eq. (1) produces nontrivial dynamics (in stark
contrast with the uncoupled Euler density) with torsion
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1This holds true when Yang-Mills bosons are described
mathematically by connections on principal bundles,
meaning, in particular, that the field strength reads Fμν ¼∂μAν − ∂νAμ þ 1

2
½Aμ; Aν�, not Fμν ¼ ∇μAν −∇νAμ þ 1

2
½Aμ; Aν�,

which differs from the former when torsion is present. Both points
of view have been studied in the literature. Some examples of the
first can be found in Refs. [7,25–27]. Some examples of the second
point of view, coupling YM bosons and torsion, can be found in
Refs. [28–30]. In this paper we deal with only the first approach.
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(which normally requires fermionic fields). This term also
appears naturally in several contexts (see Refs. [31–35]).
In this paper, we study Horndeski’s theory with torsion,

i.e., a theory whose relation to the original Horndeski theory
is the same as that of the ECSK theory to general relativity.
Our main result can be stated as follows: Nonminimal

couplings between gravity and a scalar field generically
produce torsion. This nontrivial torsion can be thought of as
an effective dark matter, which may in principle be detected
via gravitational waves but not through Yang-Mills (YM)
gauge bosons.
Since torsion is a non-Riemannian feature of geometry,

we find it convenient to work with Cartan’s differential
geometry formalism. In Sec. II we set up some useful
definitions to deal with the Horndeski Lagrangian in the
first-order formalism. We write down the Horndeski
Lagrangian in its most general form and deduce its field
equations from the variations with respect to the indepen-
dent fields: the vierbein ea, the spin connection ωab, and
the scalar field ϕ. An interesting analysis regarding the
phenomenology between some nonminimal couplings and
torsion components can be found in Ref. [36]. The main
difference between Sec. II of the current work and Ref. [36]
is that in the current article we consider the full Horndeski
Lagrangian, and in Ref. [36] they explore the idea of torsion
as dark energy in cosmological models.
Before plunging into an in-depth analysis of first-order

perturbation theory, in Sec. III we pause for a moment in
order to study which torsion-aware wave operators are the
most appropriate to act on our fields, which are in general
differential forms that carry Lorentz indices. In this mostly
mathematical section we provide a generalized version of
the Weitzenböck identity that relates torsion-aware versions
of the Laplace-Beltrami and the Laplace–de Rham oper-
ators, which may have an interest of its own.
In Sec. IV we establish the first-order perturbation theory

for a theory of gravity, in its first-order formalism guise,
and a scalar field, and we apply it to the most interesting
bits of the Horndeski Lagrangian—namely, those that can
lead to gravitational waves. This perturbation theory is
nontrivial because, to the best of our knowledge, up until
now it has been unclear how to separate the metric from the
torsional degrees of freedom in the first-order perturbation
of the spin connection on backgrounds with curvature and
torsion. For flat backgrounds, linearized gravity in first-
order formalism can be found in Ref. [37]. The separation
that we achieve in Eqs. (73) and (74) is novel and, while it
serves as a useful step in establishing our main result—
nonminimal couplings lead to nontrivial torsion that
“hitches a ride” on gravitational waves—it may also find
applications elsewhere.
For the sake of simplicity, in this paper we restrict

ourselves to generalizing Horndeski’s theory to allow for
nonzero torsion, without ever going beyond second-order
field equations. There exist, however, healthy theories that

manage to evade the Ostrogradski instability while includ-
ing higher-order derivatives (see, e.g., Refs. [38–40]). The
addition of torsion to this kind of theories remains an open
problem.

II. FIRST ORDER FORMALISM
FOR HORNDESKI’S THEORY

In this section we analyze the general behavior of the
Horndeski Lagrangian without imposing the torsionless
condition. The result found in Ref. [21] for the Gauss-
Bonnett term coupled to a scalar field [cf. Eq. (1)] proves to
be a general feature, and nonminimal couplings with a
scalar field are shown to be sources of torsion.

A. Preliminaries

Let us begin with some definitions.
We shall take spacetime to be a four-dimensional smooth

manifold M with signature ð−þþþÞ. Greek indices
μ; ν;… ¼ 0, 1, 2, 3 are used for tensor components in
the coordinate basis, while lowercase Latin indices
a; b;… ¼ 0, 1, 2, 3 are used for the Lorentz (orthonormal)
basis. The components of the change-of-basis matrix, eaμ,
help us define the one-form vierbein as ea ¼ eaμdxμ. The
spacetime metric gμν can be written as

ds2 ¼ gμνdxμ ⊗ dxν ¼ ηabea ⊗ eb; ð2Þ

whence gμν ¼ ηabeaμebν. The space of all p-forms defined
on M is denoted as ΩpðMÞ.
It proves useful to define an operator Σa1���aq that maps

p-forms into (p − q)-forms,

Σa1���aq∶ ΩpðMÞ → Ωp−qðMÞ; ð3Þ
and is defined by its action on a p-form α as

Σa1���aqα ¼ −ð−1Þpðp−qÞ � ðea1 ∧ � � � ∧ eaq ∧ �αÞ: ð4Þ
Here, � stands for the Hodge dual, which maps p-forms
into (4 − p)-forms, �∶ ΩpðMÞ → Ω4−pðMÞ.
When q ¼ 1, we find

Σaα ¼ − � ðea ∧ �αÞ: ð5Þ
This case is particularly interesting, since Σa behaves as an
exterior derivative: (i) it satisfies Leibniz’s rule,

Σaðα ∧ βÞ ¼ Σaα ∧ β þ ð−1Þpα ∧ Σaβ; ð6Þ
and (ii) is nilpotent,

ΣaΣa ¼ 0: ð7Þ

A key difference between Σa and d is that, while d
increases the degree of a differential form by one, Σa
decreases it by the same amount.
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In order to write the Horndeski Lagrangian in first-order
formalism (and not impose the torsionless condition from
the beginning.2), we will describe the geometry by means
of the vierbein one-form ea, the one-form spin connection
ωab, and the scalar field ϕ. The spin connection and the
vierbein represent independent degrees of freedom, and
torsion and Lorentz curvature two-forms are given by

Ta ¼ Dea ¼ dea þ ωa
b ∧ eb; ð8Þ

Rab ¼ dωab þ ωa
c ∧ ωcb: ð9Þ

A small circle above a quantity will be used to denote the
“torsionless version” of that quantity. For instance, the spin
connection can always be split as

ωab ¼ ω̊ab þ κab; ð10Þ

where ω̊ab stands for the usual torsion-free one-form spin
connection derived from the vierbein, and κab is the one-
form contorsion. In the same way, the Lorentz curvature
two-form can be expressed as

Rab ¼ R̊ab þ D̊κab þ κac ∧ κcb; ð11Þ

where R̊ab is the torsion-independent two-form Riemann
curvature, R̊ab ¼ dω̊ab þ ω̊a

c ∧ ω̊cb, and D̊ stands for the
exterior covariant derivative with respect to the torsion-free
connection ω̊ab.
In order to deal with the scalar field ϕ and its derivatives

in this first-order formalism context, it proves useful to
define the zero-form

Za ¼ Σadϕ ð12Þ

and the one-forms

πa ¼ DZa; ð13Þ

θa ¼ Zadϕ: ð14Þ

Intuitively, one can think of Za as the derivative of ϕ in
the direction specified by the a-index, while πa and θa

represent ∂2ϕ and ð∂ϕÞ2, respectively.

B. The Horndeski Lagrangian

Using the Σa operator and its properties, it is straightfor-
ward to work with the Horndeski Lagrangian in the first-
order formalism. For instance, the “Fab Four” Lagrangians
from Ref. [2] can be rewritten as the four-forms

LJ ¼
1

2
VJðϕÞϵabcdRab ∧ ec ∧ θd; ð15Þ

LP ¼ 1

2
VPðϕÞϵabcdRab ∧ θc ∧ πd; ð16Þ

LG ¼ 1

2
VGðϕÞϵabcdRab ∧ ec ∧ ed; ð17Þ

LR ¼ 1

2
VRðϕÞϵabcdRab ∧ Rcd: ð18Þ

The Ringo and George cases are straightforward to trans-
late from tensor language into differential forms, while the
John and Paul cases prove more interesting. In particular,
for the Paul case it is much more comfortable to work with
θa and πa instead of the Riemann double-dual.
The same is true for the full Horndeski Lagrangian. In

terms of the variables we have defined, the Horndeski
Lagrangian four-form reads

LHðϕ; e;ωÞ ¼ ϵabcd

�
2κ1Rab ∧ ec ∧ πd þ 2

3

∂κ1
∂X πa ∧ πb ∧ πc ∧ ed þ 2κ3Rab ∧ ec ∧ θd þ 2

∂κ3
∂X θa ∧ πb ∧ πc ∧ ed

þ ðF þ 2WÞRab ∧ ec ∧ ed þ ∂F
∂X πa ∧ πb ∧ ec ∧ ed þ κ8θ

a ∧ πb ∧ ec ∧ ed

−
�∂ðF þ 2WÞ

∂ϕ − Xκ8

�
πa ∧ eb ∧ ec ∧ ed þ κ9

1

4!
ea ∧ eb ∧ ec ∧ ed

�
; ð19Þ

where the arbitrary functions (i ¼ 1, 3, 8, 9)

κi ¼ κiðϕ; XÞ; ð20Þ

F ¼ Fðϕ; XÞ; ð21Þ

W ¼ WðϕÞ ð22Þ

must satisfy the constraint

Cðϕ; XÞ ¼ ∂F
∂X − 2

�
κ3 þ 2X

∂κ3
∂X −

∂κ1
∂ϕ

�
¼ 0; ð23Þ

with
2The torsionless Horndeski theory has already been studied in

the language of differential forms; see Ref. [41].
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X ¼ −
1

2
ZaZa: ð24Þ

It is interesting to notice that the Hodge �-operator
appears in the Horndeski Lagrangian exclusively through
the Σa operator. This operator allows us to cast the full
Horndeski Lagrangian in an effective Lovelock-like mold
[42,43], with the Lorentz one-forms πa and θa playing a
role similar to that of the vierbein, ea.
Equation (19) gives the full Horndeski Lagrangian in

Cartan’s first-order formalism. The Horndeski theorem [1]
states that, when torsion vanishes, this is the most general
scalar-tensor Lagrangian that gives rise to second-order
equations for the metric. When torsion is allowed to exist,
however, Horndeski’s theorem is no longer valid. Indeed,
it is quite easy to come up with new terms, explicitly
involving torsion, that do not spoil the second-order nature

of the field equations. For the sake of simplicity, in this
article we will concern ourselves solely with the Horndeski
Lagrangian as shown in Eq. (19). The generalization of the
Horndeski theorem for the case of nonvanishing torsion,
i.e., the answer to the question “What is the most general
Lagrangian that leads to second-order field equations for
the metric on a spacetime with torsion?” remains an open
problem and will be considered elsewhere.

C. Field equations

In order to derive the field equations in the first-order
paradigm, we treat ωab, ea, and ϕ as independent degrees
of freedom.3

Explicitly performing the variation with respect to the
spin connection yields the three-form equation Eab ¼ 0,
where

Eab¼−ϵabcdTc ∧ ½κ1πdþ κ3θ
dþðFþ2WÞed�

þ ϵabcdec ∧
�
dκ1 ∧ πdþ κ1Rd

eZeþdκ3 ∧ θd− κ3dϕ∧ πdþ1

2
dðFþ2WÞ∧ ed

�

−
1

2
ðZaϵbcde−ZbϵacdeÞ

�
κ1Rcdþπc ∧

�∂κ1
∂X πdþ2

∂κ3
∂X θdþ∂F

∂Xed
�
þ1

2

�
κ8θ

c−
� ∂
∂ϕðFþ2WÞ−Xκ8

�
ec
�
∧ ed

�
∧ ee:

ð25Þ

The field equations obtained from variation with respect to the vierbein and the scalar field, on the other
hand, read

Ea ¼ Ea þ ΣbðSb þ T b þ UbÞZa ¼ 0; ð26Þ

E ¼ Eþ Z − dΣbðSb þ T b þ UbÞ ¼ 0; ð27Þ

where

Ed ¼ ϵabcd

�
2κ1Rab ∧ πc þ 2

3

∂κ1
∂X πa ∧ πb ∧ πc þ 2κ3Rab ∧ θc þ 2

∂κ3
∂X θa ∧ πb ∧ πc þ 2ðF þ 2WÞRab ∧ ec

þ 2
∂F
∂X πa ∧ πb ∧ ec þ 2κ8θ

a ∧ πb ∧ ec þ 1

3!
κ9ea ∧ eb ∧ ec − 3

� ∂
∂ϕ ðF þ 2WÞ − Xκ8

�
πa ∧ eb ∧ ec

�
; ð28Þ

E¼ ϵabcd

�
2

�∂κ1
∂ϕ − κ3

�
Rab ∧ ec ∧ πdþ 2

�
1

3

∂2κ1
∂ϕ∂X−

∂κ3
∂X

�
πa ∧ πb ∧ πc ∧ edþ 2

∂κ3
∂ϕ Rab ∧ ec ∧ θd

þ 2
∂2κ3
∂ϕ∂X θa ∧ πb ∧ πc ∧ edþ

�∂F
∂ϕþ 2

∂W
∂ϕ

�
Rab ∧ ec ∧ edþ

� ∂2F
∂ϕ∂X− κ8

�
πa ∧ πb ∧ ec ∧ edþ ∂κ8

∂ϕ θa ∧ πb ∧ ec ∧ ed

−
�∂2ðFþ 2WÞ

∂ϕ2
−X

∂κ8
∂ϕ

�
πa ∧ eb ∧ ec ∧ edþ 1

4!

∂κ9
∂ϕ ea ∧ eb ∧ ec ∧ ed

�
; ð29Þ

3Note that Za depends on ea and the derivatives of ϕ through the Σa operator. This dependence must be taken into account when
performing the variations with respect to ea and ϕ.
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Z ¼
�
2dκ3 ∧ Rab þ 2d

∂κ3
∂X ∧ πa ∧ πb þ dκ8 ∧ πa ∧ eb

þDπa ∧
�
4
∂κ3
∂X πb þ κ8eb

��
∧ ecZd

þ 2ϵabcd

�
κ3Rab þ ∂κ3

∂X πa ∧ πb þ κ8π
a ∧ eb

�
∧ TcZd;

ð30Þ

and the common 4-form variables Sa, T a, and Ua are
given by

Sd ¼ 2ϵabcd

�
Dπa ∧ eb ∧

�
2
∂κ1
∂X πc þ 2

∂κ3
∂X θc þ ∂F

∂Xec
�

þ πa ∧ eb ∧ dX ∧
�∂2κ1
∂X2

πc þ 2
∂2κ3
∂X2

θc þ ∂2F
∂X2

ec
�

þ 1

2
ea ∧ eb ∧ dX ∧

�
θc

∂κ8
∂X − ec

∂
∂X

�∂F
∂ϕ−Xκ8

���
;

ð31Þ

T d ¼ 2ϵabcd

�
κ1Rab þ ∂κ1

∂X πa ∧ πb þ 2
∂κ3
∂X πa ∧ θb

þ 2
∂F
∂X πa ∧ eb þ 1

2
κ8ea ∧ θb

−
3

2

� ∂
∂ϕ ðF þ 2WÞ − Xκ8

�
ea ∧ eb

�
∧ Tc; ð32Þ

Ue ¼ ϵabcd

�
−Rab ∧ ec ∧

�
Cd

eþ 2
∂κ1
∂X δgdefZgπ

f

�

− πa ∧ πb ∧ ec ∧
�
C̄d

eþ
2

3

∂2κ1
∂X2

πdZe

�

þ πa ∧ eb ∧ ec ∧Md
eþ ea ∧ eb ∧ ec ∧Kd

e

�
: ð33Þ

In Eq. (33), Ca
b, C̄a

b, Ka
b, and Ma

b are one-forms
defined as

Ca
b¼ 2dϕ

�∂κ3
∂X ZaZb−

�
κ3−

∂κ1
∂ϕ

�
δab

�
þeaZb

∂F
∂X; ð34Þ

C̄a
b ¼ 2dϕ

�∂2κ3
∂X2

ZaZb −
�
3
∂κ3
∂X −

∂2κ1
∂ϕ∂X

�
δab

�
þ eaZb

∂2F
∂X2

;

ð35Þ

Ka
b¼

� ∂2

∂ϕ2
ðFþ2WÞ−X

∂κ8
∂ϕ

�
dϕδab−

1

4!
eaZb

∂κ9
∂X ; ð36Þ

Ma
b ¼

�
2

�
κ8 −

∂2F
∂ϕ∂X

�
δab −

∂κ8
∂X ZaZb

�
dϕ

þ eaZb
∂
∂X

�∂F
∂ϕ − Xκ8

�
: ð37Þ

The one-forms Ca
b and C̄a

b satisfy the properties

ΣbCa
b ¼ ZaC; ð38Þ

ΣbC̄a
b ¼ Za ∂C

∂X ; ð39Þ

where Cðϕ; XÞ ¼ 0 is the Horndeski constraint (23).
Here it is important to observe that in the terms Z and

T a torsion appears explicitly as a result of nonminimal
couplings. Torsional degrees of freedom are also contained
inside the Lorentz curvature through the contorsion one-
form, as shown in Eq. (11).
As the quickest glance at Eqs. (25)–(37) will show, the

full Horndeski theory is extremely complicated. Actually, it
may be more accurate to think of it as a family of theories,
each one defined by a choice of the arbitrary functions
κi, F, and W. There are, however, several general obser-
vations to be made.
First, using the properties of the Σa operator it is

straightforward to derive the field equations obtained
from the independent variations of ea and ωab, without
imposing the torsionless condition. Trying to achieve the
same feat in the standard Palatini tensor formalism would
have been impractical, to say the least.
Second, the field equations directly show that torsion

arises, in general, from every nonminimal coupling with the
scalar field, and from the terms depending on πa ¼ DΣadϕ.
For instance, see the term T a in Eqs. (26) and (27), and the
first term of Eq. (25).
In order to recover the standard torsionless dynamics,

one cannot simply impose Ta ¼ 0 on the equations of
motion. This happens because, in the general setting, the
dynamics of ϕ and the torsion become fully intertwined,
generically leading to Ta ∼ ∂ϕ. Therefore, imposing
Ta ¼ 0 in these cases will lead to ϕ ¼ const, freezing
the dynamics of the scalar field. The important point here is
that the standard torsionless case corresponds to a con-
straint on the more general Cartan geometry framework.
This problem seems to have been known for a long time;
see, e.g., Ref. [44], or Sec. 1.7.1 of Ref. [45]. The solution
for it can be written in a very practical way in terms of the
Σa operator. First, we have to include the torsionless
condition via a two-form Lagrange multiplier with a
Lorentz index, Λa,

LH → L̄H ¼ LH þ Λa ∧ Ta; ð40Þ

whence we get the new equations of motion
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Ēa ¼ Ea − DΛa ¼ 0; ð41Þ

Ē ¼ E ¼ 0; ð42Þ

Ēab ¼ Eab −
1

2
ðΛa ∧ eb − Λb ∧ eaÞ ¼ 0; ð43Þ

Ta ¼ 0: ð44Þ

Using the Σa operator, it is possible to solve Ēab ¼ 0 forΛa.
We find

Λa ¼ 2ΣbEab þ 1

2
ea ∧ ΣbcEbc: ð45Þ

Therefore, the standard field equations for the torsionless
Horndeski theory are recovered in this setting as

Ea − 2DΣbEab þ 1

2
ea ∧ dΣbcEbcjTa¼0 ¼ 0; ð46Þ

EjTa¼0 ¼ 0: ð47Þ

This behavior is in stark contrast with the standard
Einstein-Cartan case with minimally coupled fields. In this
case, Ta ¼ 0 is an equation of motion in vacuum, and
therefore it is unnecessary to use a Lagrange multiplier. In
fact, in this case only fermionic fields can be a source of
nonpropagating torsion (see, e.g., Sec. 8.4 of Ref. [8]).
Known results for the torsionless Horndeski theory

encompass from cosmological models to black hole sol-
utions. In the torsional Horndeski setting here presented,
such solutions might persist [15,17] if one uplifts them in a
consistent manner. This means, in particular, that the
Riemann curvature and the scalar field should be the same
as in the torsionless theory. Torsion, however, must be
present if the scalar field is nontrivial, and this will
generically imply that the Lorentz curvature shall differ
from the Riemann curvature [46,47]. Because of the
complexity of Horndeski’s theory, it seems unlikely that
one can make a general statement as to whether this
uplifting can always be done, or which conditions must
be fulfilled for it to succeed.

III. WAVE OPERATORS, TORSION,
AND THE WEITZENBÖCK IDENTITY

Our goal in this section is to define a wave operator that
can act on differential forms that carry Lorentz indices,
such as the vierbein, ea. We need this operator because our
treatment of gravitational waves relies on perturbations
of the vierbein and the spin connection, ωab, which are
the natural independent degrees of freedom for a spacetime
with torsion.

Let Φ be a scalar (i.e., without Lorentz indices) p-form,

Φ ¼ 1

p!
Φμ1���μpdx

μ1 ∧ � � � ∧ dxμp : ð48Þ

There are at least two wave operators that can conceivably
act on Φ. The Laplace–de Rham operator,

□dR ¼ d†dþ dd†; ð49Þ

is defined as the anticommutator of the exterior derivative
and the exterior coderivative, d† ¼ �d� [for dimensions
other than four or signatures other than ð−þþþÞ, the
definition of d† must be modified with a judiciously chosen
sign]. This operator satisfies the Weitzenböck identity

□dRΦ ¼ □BΦþ ΣaðR̊a
b ∧ ΣbΦÞ; ð50Þ

where□B ¼ −∇̊μ∇̊μ is the usual Laplace-Beltrami operator

built from the torsion-free covariant derivative ∇̊μ. While
unconventional, writing the Weitzenböck identity as in
Eq. (50) proves to be useful for our purposes and is
equivalent to more common approaches. In other words,
the Weitzenböck identity states that the difference between
the twowave operators acting onΦ is related to the curvature
of the manifold and does not involve derivatives of Φ.
By definition, the Laplace-Beltrami operator carries no

information about torsion. Since it is the Riemann curvature
two-form, R̊ab, that appears in the second term on the right-
hand side of Eq. (50), this means that Eq. (50) has no
information at all about torsion, even when torsion is
present in spacetime. This is consistent with the fact that

TABLE I. Many different derivatives are defined in this section.
This table collects all definitions and some of their most
important properties.

Symbol Definition
Change in
form degree Key property

d dxμ∂μ þ1 d2 ¼ 0

D dþ ω þ1

D̊ dþ ω̊ þ1

d† �d� −1
D† �D� −1
D̊† �D̊� −1
Σa − � ðea ∧ � −1 ΣaΣa ¼ 0

D‡ −ΣaDΣa −1
D̊‡ −ΣaD̊Σa −1 D̊‡ ¼ D̊†

Da ΣaDþ DΣa 0
D̊a ΣaD̊þ D̊Σa 0 D̊a ¼ eμa∇̊μ

□dR d†dþ dd† 0
□B −∇̊μ∇̊μ

0

▪dR DD‡ þ D‡D 0
▪B −DaDa 0
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the Laplace–de Rham operator is defined without any
reference to torsion.
An example of the usefulness of this construction is

provided by classical electromagnetism on a curved space-
time. Let A be the electromagnetic potential one-form and
F ¼ dA its associated field strength two-form. Maxwell
equations in vacuum can be written as

d†F ¼ d†dA ¼ 0: ð51Þ
Choosing the Lorenz gauge, d†A ¼ 0, we can use Eq. (50)
to find

□BAþ ΣaR̊
a
bΣbA ¼ 0; ð52Þ

or, in standard tensor language,

−∇̊λ∇̊λAμ þ R̊μνAν ¼ 0; ð53Þ
where R̊μν is the standard torsionless Ricci tensor. It is
interesting to notice that this result holds even when the
background geometry has nonvanishing torsion. The
electromagnetic field only interacts with the torsionless
sector of the geometry. The same happens with all YM
gauge bosons: they can interact only with the torsionless
sector of the geometry.4

Extending the de Rham definition of the wave operator
for the case of a p-form with m free Lorentz indices,
such as

Ψa1���am ¼ 1

p!
Ψa1���am

μ1���μpdx
μ1 ∧ � � � ∧ dxμp ; ð54Þ

is nontrivial when the geometry has nonvanishing torsion.
As a first step, one may be inclined to define the de Rham
Lorentz-covariant coderivative as D† ¼ �D�, in perfect
analogy with d† ¼ �d�. We find, however, that a more
useful definition is

D‡ ¼ −ΣaDΣa: ð55Þ
This is equivalent to the first definition when torsion is
zero,

�D̊� ¼ −ΣaD̊Σa; ð56Þ
but not in general. What makes definition (55) useful is
that the wave operator built from it satisfies a generalized
version of the Weitzenböck identity (50).
Let us define the generalized Laplace–de Rham

operator as

▪dR ¼ DD‡ þ D‡D: ð57Þ
It is possible to prove that ▪dR satisfies the following
generalized Weitzenböck identity:

▪dRΦa1���am ¼ ▪BΦa1���am þ ΣcD2ΣcΦa1���am

¼ ▪BΦa1���am þ ΣcðRc
bΣbΦa1���am

þ Ra1
bΣcΦba2���am þ � � �

þ Ram
bΣcΦa1���am−1bÞ: ð58Þ

In Eq. (58) we have introduced the generalized Laplace-
Beltrami operator

▪B ¼ −DaDa; ð59Þ

where

Da ¼ ΣaDþ DΣa: ð60Þ
In the torsionless case, the operator D̊a ¼ ΣaD̊þ D̊Σa

can be shown to satisfy D̊a ¼ eaμ∇̊μ, meaning that it
matches the usual torsionless covariant derivative

∇̊ ¼ ∂ þ Γ̊, and the standard Weitzenböck identity (50)
is recovered.
Some useful properties satisfied by Da are

Daðα ∧ βÞ ¼ Daα ∧ β þ α ∧ Daβ; ð61Þ

½Σa;Db� ¼ −ðΣabTcÞΣc; ð62Þ

½Da;Db� ¼ D2Σab þ ΣabD2 þ ΣaD2Σb − ΣbD2Σa

− ðDΣabTcÞ ∧ Σc − ðΣabTcÞDc; ð63Þ

where α is a p-form and β is a q-form. In particular,
Eq. (61) implies that Da obeys Leibniz’s rule without any
correcting signs.
From the above discussion, it seems clear that in order to

have waves interacting with torsion, it is necessary for the
field to have free Lorentz indices. This is precisely the case
of gravitational waves in the Horndeski case, as we shall
see in the next section.

IV. GRAVITATIONAL WAVES
AND TORSIONAL MODES

A. Linear perturbations for a theory of gravity
in the first-order formalism

Let us consider a background geometry described by ēa,
ω̄ab, and ϕ̄. Linear perturbations5 around this background
are described by

4See footnote 1.

5It is very important to remember that in order to study cases of
astrophysical interest, it is necessary to go to at least second order
in the perturbations of curvature. In the current article we are not
interested in modeling a particular phenomena, but just studying
how gravitational waves could interact with torsion at first order.
Detailed calculations to second order for particular astrophysical
situations will be presented elsewhere.
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ēa → ea ¼ ēa þ 1

2
ha; ð64Þ

ω̄ab → ωab ¼ ω̄ab þ uab; ð65Þ

ϕ̄ → ϕ ¼ ϕ̄þ φ; ð66Þ

where we have introduced the one-forms ha ¼ habēb and
uab ¼ uabcēc, and the zero-form φ.
The linear perturbation of the metric reads

g ¼ ηabea ⊗ eb

¼ ηab

�
ēa þ 1

2
hacēc

�
⊗

�
ēb þ 1

2
hbdēd

�
;

¼ ηabēa ⊗ ēb þ 1

2
ðhab þ hbaÞēa ⊗ ēb;

¼ ðḡμν þ hþμνÞdxμ ⊗ dxν; ð67Þ

where

h�ab ¼
1

2
ðhab � hbaÞ ð68Þ

are the symmetric and antisymmetric parts of hab. The
standard theory of gravitational waves is formulated just
in terms of hþμν, because it is possible to show that the
antisymmetric part, h−ab, amounts to nothing more than an
infinitesimal local Lorentz transformation. Since the
Horndeski Lagrangian (19) is locally Lorentz invariant,
it is possible to gauge away that piece and to keep only the
symmetric part. Therefore, from now on we will just
assume that hab is symmetric, i.e., hba ¼ hab.
In standard general relativity, the perturbation in the

geometry is described in terms of hμν alone, since the
perturbation in the connection depends on the hμν through
the torsionless condition. When considering nonvanishing
torsion, the vierbein and the spin connection correspond to
independent degrees of freedom. Therefore, the perturba-
tion one-forms ha and uab must be independent, too. Here
we show that it is always possible to split the linear
perturbation one-form uab in two pieces, one carrying all
the dependency on ha and one completely independent
from it (and associated, of course, with linear perturbations
in the torsion).
Let us begin by writing down the two-form torsion as

Ta ¼ Dea. Its linear perturbation under Eqs. (64)–(66) is
given by

T̄a → Ta ¼ T̄a þ 1

2
D̄ha þ uab ∧ ēb;

¼ T̄a þ 1

2
˚̄Dha þ 1

2
κ̄ab ∧ hb þ uab ∧ ēb; ð69Þ

where ˚̄D denotes the exterior covariant derivative with
respect to the torsionless piece of the background spin
connection, ˚̄ωab.
On the other hand, torsion may also be written in terms

of the contorsion one-form, κab, as Ta ¼ κab ∧ eb. Its
linear perturbation reads

T̄a → Ta ¼ T̄a þ 1

2
κab ∧ hb þ qab ∧ ēb; ð70Þ

where qab stands for the linear perturbation in the con-
torsion, i.e., κ̄ab → κab ¼ κ̄ab þ qab.
Equations (69) and (70) may seem contradictory at first

sight, since one of them includes derivatives of ha and the
other does not. There is no contradiction, though; to see
this, one need only notice that uab must be of the form

uab ¼ ůab þ qab; ð71Þ

where

1

2
˚̄Dha þ ůab ∧ ēb ¼ 0: ð72Þ

Using Eqs. (71) and (72) in Eq. (69), the apparent contra-
diction is resolved.
In order to avoid an algebraic nightmare where both ˚̄D

and D̄ derivatives get mixed together, it is convenient to
define the new perturbation variables

Uab ¼ ůab −
1

2
½Σ̄aðκ̄bc ∧ hcÞ − Σ̄bðκ̄ac ∧ hcÞ�; ð73Þ

Vab ¼ qab þ
1

2
½Σ̄aðκ̄bc ∧ hcÞ − Σ̄bðκ̄ac ∧ hcÞ�: ð74Þ

These clearly satisfy

uab ¼ ůab þ qab ¼ Uab þ Vab: ð75Þ

Using the fact that torsion and contorsion are related by

κab ¼
1

2
ðΣaTb − ΣbTa þ ecΣabTcÞ; ð76Þ

one can show that Eq. (72) becomes

1

2
D̄ha þ Ua

b ∧ ēb þ 1

2
Σ̄aðhb ∧ T̄bÞ ¼ 0; ð77Þ

and that Eq. (70) becomes the torsion linear perturbation
equation

T̄a → Ta ¼ T̄a þ Va
b ∧ ēb −

1

2
Σ̄aðhb ∧ T̄bÞ: ð78Þ
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From Eq. (77), and after some algebra, it is possible to
get a closed expression for Uab,

Uab ¼ −
1

2
ðΣ̄aD̄hb − Σ̄bD̄haÞ: ð79Þ

The linear perturbation of the Lorentz curvature reads
simply

R̄ab → Rab ¼ R̄ab þ D̄ðUab þ VabÞ: ð80Þ
We have thus been able to split the Lorentz connection

perturbation, uab, in two parts, Uab and Vab, such that Uab

is completely determined by the vierbein perturbation [via
Eq. (79)], and the linear perturbation on the torsion depends
only on Vab [cf. Eq. (78)]. The Lorentz curvature pertur-
bation, on the other hand, depends on both parts of the
Lorentz connection perturbation, as shown in Eq. (80).
Finally, one can show that the scalar field “curvature”

Za ¼ Σadϕ becomes

Z̄a → Za ¼ Z̄a þ Σ̄adφ −
1

2
habZ̄b: ð81Þ

B. Gravitational waves and torsion
in Horndeski’s theory

As we have seen in Sec. II, nonminimal couplings and
second-order derivative terms in the Horndeski Lagrangian
are sources of torsion. In this general case, torsion
propagates through the “contorsional mode” Vab and the
background torsion T̄a interacts with the metric modes ha.
However, our intuition may lead us to believe that the
Einstein-Hilbert (EH) term can give rise only to the wave
equation and interactions of ha with the background
curvature, as in the standard torsionless case. That is not
the case. As we shall see, even the EH term gives rise to
both metrical modes interacting with the background
torsion and propagating torsional modes.
In order to see this, let us consider a Lagrangian in the

Horndeski family of the form

Lð4Þðe;ω;ϕÞ ¼ Lð4Þ
EH þ ðother termsÞ; ð82Þ

where these “other terms” are the ones giving rise to torsion
through nonminimal couplings and/or second-order deriv-
atives of ϕ. The EH four-form term is given by

Lð4Þ
EHðe;ωÞ ¼

1

4κ4
ϵabcdRab ∧ ec ∧ ed; ð83Þ

and therefore the field equations take the form

δeLð4Þðe;ω;ϕÞ ¼ δeL
ð4Þ
EH þ δeðother termsÞ ¼ 0; ð84Þ

δωLð4Þðe;ω;ϕÞ ¼ δωL
ð4Þ
EH þ δωðother termsÞ ¼ 0; ð85Þ

δϕLð4Þðe;ω;ϕÞ ¼ δϕðother termsÞ ¼ 0; ð86Þ

where

δeL
ð4Þ
EHðe;ωÞ ¼

1

2κ4
ϵabcdRab ∧ ec ∧ δed; ð87Þ

δωL
ð4Þ
EHðe;ωÞ ¼

1

2κ4
ϵabcdδω

ab ∧ Tc ∧ ed: ð88Þ

We consider now a background configuration ēa, ω̄ab, ϕ̄
satisfying the field equations (84)–(86) and linear pertur-
bations around it as in Eqs. (64)–(66). When doing this, the
result reads

Gþ 1

4κ4
ϵabcdR̄ab ∧ hc ∧ δed þ 1

2κ4
ϵabcdD̄Vab ∧ ēc ∧ δed

þ ðlinear perturbations of other termsÞ ¼ 0; ð89Þ

where the four-form G is given by

G ¼ 1

2κ4
ϵabcdD̄Uab ∧ ēc ∧ δed: ð90Þ

The G-term generates a gravitational wave described by the
generalized wave operator [cf. Eq. (57)] ▪dR ¼ D‡Dþ DD‡

coupled with torsion in a nontrivial way, in strong contrast
with the example of Eq. (52).
Using Eq. (79) in Eq. (90), we get

G ¼ −
1

4κ4
�̄fD̄aD̄ahd − D̄aD̄dha − ēcD̄cðΣ̄dD̄aha − D̄dhÞ

−
1

2
½Σ̄bðD̄aD̄ahb − D̄aD̄bhaÞ

−D̄bðΣ̄bD̄aha − D̄bhÞ�ēdg ∧ δed; ð91Þ

where �̄ stands for the Hodge dual under the background
metric structure associated with ēa, D̄a ¼ Σ̄aD̄þ D̄Σ̄a,
with the operator Σ̄a ¼ −�̄ðēa ∧ �̄, and h ¼ Σ̄aha (see
Table I for a summary of the different derivatives defined
in this paper).
Let ζ be a vector field. An infinitesimal Lie dragging

1 − £ζ generated by ζ on the background geometry corre-
sponds to

hab → h0ab ¼ hab − ðD̄aζb þ D̄bζaÞ þ ζcΣ̄cðΣ̄aT̄b þ Σ̄bT̄aÞ:
ð92Þ

Performing the standard change of variable ha → ~ha,

ha ¼ ~ha −
1

2
ēa ~h; ð93Þ
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where ~h is the trace of the new Lorentz vector one-form
variable ~ha, it is possible to prove that under (92), the
“divergence” D̄a

~ha ¼ ðΣ̄aD̄þ D̄Σ̄aÞ ~ha transforms as
D̄a

~ha → D̄a
~h0a, where D̄a

~h0a is given by

D̄a
~h0a ¼ ½− ˚̄Da

˚̄D
a
ζb þ D̄aΣ̄b

~ha − Σ̄ab
˚̄R
a
cζ

c

− Σ̄acT̄að ˚̄Dcζb þ ˚̄Dbζc − ηcb
˚̄Dpζ

pÞ
þΣ̄cbT̄aΣ̄c ~ha�ēb; ð94Þ

with ˚̄Da ¼ Σ̄a
˚̄Dþ ˚̄DΣ̄a. This means we can always choose

the “Lorenz gauge”

D̄a
~ha ¼ 0 ð95Þ

with a vector field ζ such that the right-hand side of Eq. (94)
vanishes.
Choosing this gauge and using Eqs. (62) and (63), it is

possible to recast Eq. (89) in terms of ~ha as

▪̄dR ~hd þ Σ̄adðR̄a
b ∧ ~hbÞ

−
�
Ad þ Bd þ

1

2
ēd½C − Σ̄cðAc þ BcÞ�

�

þ ϵabcd�̄ðR̄ab ∧ hc þ 2D̄Vab ∧ ēcÞ
þ ðlinear perturbations of other termsÞ ¼ 0; ð96Þ

where ▪̄dR ~hd is given by the generalized Weitzenböck
identity (58),

▪̄dR ~ha ¼ −D̄bD̄b
~ha þ Σ̄bðR̄b

cΣ̄c ~ha − R̄c
vΣ̄b ~hcÞ; ð97Þ

and Aa, Ba, and C are the torsional terms

Aa ¼ ðΣ̄caT̄bÞD̄b ~hc þ ~hbcD̄Σ̄caT̄b; ð98Þ

Ba ¼ ðΣ̄cT̄bÞΣ̄b½D̄að ~hēcÞ − D̄cð ~hēaÞ�

þ 1

2
f ~hD̄‡T̄a þ Σ̄b½D̄ð ~hΣ̄aT̄bÞ − T̄bΣ̄aD̄ ~h�g; ð99Þ

C ¼ D̄cð ~habΣ̄bcT̄aÞ þ ðΣ̄bcT̄aÞΣ̄aD̄c ~hb: ð100Þ

The equation for the propagation of linear pertur-
bations is found by replacing Eq. (96) in Eq. (89).
Doing so, we observe that in the context of non-
vanishing torsion:

(i) The metric wave ~hab couples to both the background
torsion and the background curvature.

(ii) The metric wave ~hab couples to an independent
propagating torsion wave mode, Vab.

(iii) Some of the coupling between ~hab and the back-
ground torsion occurs through the trace ~h. All this
dependence has been “packed” in the Lorentz-vector
one-form Ba, but the important point is that the
“traceless” variable ~hab no longer leads to equations
without the trace ~h.

C. Gravitational waves and generic terms
of the Horndeski Lagrangian

In Sec. IV B we showed that the EH term in the
Horndeski Lagrangian can produce gravitational waves
interacting with the background torsion and propagating
torsional modes. In this section we highlight those other
terms in the Horndeski family that can lead to similar
behavior.
Generic terms will couple ~ha, Vab, and φ with the

background curvature R̄ab and torsion T̄a, but only some
very specific terms will contribute with second-order
wavelike operators on the metric mode (∂2 ~ha terms), and
first-order operators acting on the torsional mode
(∂Vab terms).
For the sake of simplicity, let us focus on linear

perturbations of the vierbein and spin connection, leaving
the scalar field unchanged (i.e., φ ¼ 0). In this case, the
linear perturbations on ea, Rab, Ta, Za, θa, and πa (the
fundamental ingredients of the field equations) read

ēa → ea ¼ ēa þ 1

2
ha; ð101Þ

R̄ab →Rab ¼ R̄abþ D̄Vab−
1

2
D̄ðΣ̄aD̄hb− Σ̄bD̄haÞ; ð102Þ

T̄a → Ta ¼ T̄a þ Va
b ∧ ēb −

1

2
Σ̄aðhb ∧ T̄bÞ; ð103Þ

Z̄a → Za ¼ Z̄a −
1

2
habZ̄b; ð104Þ

θ̄a → θa ¼ θ̄a −
1

2
habθ̄b; ð105Þ

π̄a → πa ¼ π̄a −
1

2
habπ̄b ð106Þ

þ
�
Vab−

1

2
ðΣ̄aD̄hb− Σ̄bD̄ha−D̄habÞ

�
Z̄b:

ð107Þ

In the above equations, only the perturbation of the
Lorentz curvature includes second-order derivatives of ha

(through the operator D̄Σ̄aD̄) and first-order derivatives of
the torsional perturbation D̄Vab. Given that d2 ¼ 0, and that
the Hodge operator appears in the Lagrangian only through
Σa ¼ − � ea ∧ ð�, we find that in the equations of motion
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Eab ¼ 0 and Ea ¼ 0 [cf. Eqs. (25) and (26)], ∂2 ~ha and ∂Vab

can arise only from terms where the curvature is present.
In the Horndeski Lagrangian, this boils down to (i) terms

where the Lorentz curvature appears explicitly,

ðF þ 2WÞϵabcdRab ∧ ec ∧ ed; ð108Þ

κ3ϵabcdRab ∧ ec ∧ θd; ð109Þ

κ1ϵabcdRab ∧ ec ∧ πd; ð110Þ
and (ii) any terms having two or more πa’s,

∂κ1
∂X ϵabcdπ

a ∧ πb ∧ πc ∧ ed; ð111Þ

∂κ3
∂X ϵabcdθ

a ∧ πb ∧ πc ∧ ed; ð112Þ

∂F
∂X ϵabcdπ

a ∧ πb ∧ ec ∧ ed: ð113Þ

These three last terms produce curvature in the field
equations through the Bianchi identity, Dπa ¼ D2Za ¼
Ra

bZb. This can most easily be seen by considering the
dependence of Za ¼ Σadϕ on the vierbein and integrating
by parts [see, e.g., Eq. (31)].
As an example, let us consider the term

Lθ ¼
1

2
ϵabcdRab ∧ ec ∧ θd: ð114Þ

The variation of Lθ under an infinitesimal change in the
vierbein reads

δeLθ ¼
�
1

2
ϵabcdRab ∧ θc þ ΣaðGa ∧ θdÞ

�
∧ δed; ð115Þ

where the “Einstein tensor” three-form Gd is given by

Gd ¼
1

2
ϵabcdRab ∧ ec: ð116Þ

Under linear perturbations, δeLθ behaves as

δeLθ¼δēL̄θþ
�
Σ̄mðWm∧ θ̄dþ Ḡm∧ΥdÞþ

1

2
ϵabcdR̄ab∧ϒc

þ1

2
ϵabcdD̄

�
Vab−

1

2
ðΣ̄aD̄hb− Σ̄bD̄haÞ

�
∧ θ̄c

−
1

2
hmnΣ̄nðḠm∧ θ̄dÞ

�
∧δed; ð117Þ

where ϒa ¼ − 1
2
habθ̄b þ dϕ̄Σ̄adφþ Z̄adφ is the linear

perturbation of θa and Wa is just a shortcut for the
gravitational wave terms we have already seen in Eq. (96),

Wd ¼ −
1

4
ϵabcdD̄ðΣ̄aD̄hb − Σ̄bD̄haÞ ∧ ēc

þ 1

2
ϵabcd

�
1

2
R̄ab ∧ hc þ D̄Vab ∧ ēc

�

¼ 1

4
�̄½▪̄dR ~hd þ Σ̄adðR̄a

b ∧ ~hbÞ�

−
1

4
�̄
�
Ad þ Bd þ

1

2
ēd½C − Σ̄cðAc þ BcÞ�

�

þ 1

2
ϵabcd

�
1

2
R̄ab ∧ hc þ D̄Vab ∧ ēc

�
; ð118Þ

where Aa, Ba, and C are the torsion couplings defined in
Eqs. (98)–(100).
Similar expressions for the linear perturbations of terms

such as (109)–(113) can also be found.
Beyond the complicated algebra, the interesting point

is that, quite generally, every appearance of ∂2 ~ha terms is
related with couplings with torsion. In the context of the
Horndeski Lagrangian, the coupling between ∂2 ~ha terms
and torsion seems to be rather the rule than the exception.

V. CONCLUSIONS

When YM bosons are described by connections on fiber
bundles, their field strength is given by F ¼ dAþ 1

2
½A; A�,

regardless of the curvature and torsion of the spacetime
(basis) manifold. The YM Lagrangian, LYM¼−1

4
hF∧�Fi,

only has information about the connection A and the
background spacetime metric gμν needed to construct the
Hodge �-operator. Therefore, YM bosons will be sensitive
to the spacetime Riemann (metric) curvature but oblivious
to torsion. Of all Standard Model fields, torsion only
interacts, albeit very weakly, with fermions in the ECSK
theory. Since it is always possible to “pack” torsional terms
in an effective stress-energy tensor, it may seem tempting
to consider torsion as a dark matter candidate (see, e.g.,
Ref. [48]).
Adopting geometry as a solution to the dark matter

problem is an idea with a rich history (see, e.g., Ref. [49]).
There are, however, at least two potential weak points
worth considering:

(i) In the pure ECSK theory, torsion does not propagate
in vacuum and fermions are its only (very weak)
source. Therefore, in order to consider the idea
seriously it is necessary to look for more general
theories in d ¼ 4 and new torsion sources.

(ii) The same “darkness” of torsion (i.e., its lack of
interaction with YM fields) that makes the idea
attractive also makes it hard to falsify in any
foreseeable accelerator physics experiment. There-
fore it seems appropriate to find a torsion-sensitive
phenomenon outside of the Standard Model in order
to test the idea of torsion as dark matter.
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In this paper we have explored solutions to both of
these issues. Regarding the first point, in Sec. II we take
Horndeski’s theory and allow it to develop nonzero torsion
by recasting it in Cartan’s first-order formalism. The main
result of this exercise is that every nonminimal coupling of
the geometry with ϕ and every term in the Lagrangian with
second derivatives of ϕ are generic sources of torsion. This
was to be expected in the light of previous work, such as
Sec. 1.7.1 of Ref. [45] on the Brans-Dicke theory and
Ref. [21] on nonminimal coupling with the Gauss-Bonnett
term. The main novelty of Sec. II is the development of new
mathematical techniques based on the properties of the Σa

operator, making it accessible to work with the full
Horndeski Lagrangian in first-order formalism and without
imposing the torsionless condition.
In Sec. IV we explored the idea of using gravitational

waves as a probe for torsion, and in Sec. III we introduced
the necessary mathematical tools to address this problem.
In particular, in Sec. III we developed a generalization of
the Laplace–de Rham operator,□dR ¼ d†dþ dd†, to a new
operator ▪dR ¼ D‡Dþ DD‡ which acts covariantly on
p-forms with Lorentz indices, where D‡ ¼ −ΣaDΣa. In
Sec. IV we showed that any Horndeski Lagrangian that
includes the EH term will give rise to gravitational waves,
governed by the ▪dR operator, plus new interactions with
the background torsion.
The following is an incomplete list of the many problems

that remain open for future work:
(i) It is clear that the Horndeski theorem breaks down

in the case of nonvanishing torsion: there are many
new torsional terms which can be added to the
Lagrangian which give rise only to second-order
field equations. What is the most general Lagrangian
for this case remains as an open problem.

(ii) We have shown in Sec. IV that gravitational waves
interact with the background torsion, and a new
torsional mode appears. However, the phenomenol-
ogy of this interaction still remains to be modeled.
Even further, in any realistic astrophysical scenario it
is necessary to go up to second order in perturbations
(see, e.g., Ref. [50]).

(iii) It is not yet clear which, if any, of the Horndeski
family members generate suitable dark matter pro-
files. With sufficiently precise observations, one
may hope to use this information to select the most
appropriate Lagrangians, or at least rule out some of
them. The same is true regarding gravitational waves
propagation. Some ideas have been proposed about
this point in Ref. [51], but only for the torsionless
case.

(iv) The cosmological implications of Horndeski’s
theory have been studied only on particular cases
(see, e.g., Refs. [15,17,18,21]).
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