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In this paper we study a numerical implementation for the initial boundary value formulation for the
generalized conformal field equations. We propose a formulation which is well suited for the study of the
long-time behavior of perturbed exact solutions such as a Schwarzschild or even a Kerr black hole. We
describe the derivation of the implemented equations which we give in terms of the space-spinor formalism.
We discuss the conformal Gauss gauge, and a slight generalization thereof which seems to be particularly
useful in the presence of boundaries. We discuss the structure of the equations at the boundary and propose
a method for imposing boundary conditions which allow the correct number of degrees of freedom to
be freely specified while still preserving the constraints. We show that this implementation yields a
numerically well-posed system by testing it on a simple case of gravitational perturbations of Minkowski
space-time and subsequently with gravitational perturbations of Schwarzschild space-time.
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I. INTRODUCTION

In the 1960s Penrose introduced the idea of studying the
asymptotic properties of a space-time from the perspective
of its conformal (light cone) structure [1–3]. The idea is to
conformally embed the physical space-time in question into
a conformally related space-time, usually called the con-
formal space-time, where its image becomes an open
submanifold. The boundary of this submanifold in the
conformal space-time is referred to as the conformal
boundary, (denoted I), and represents the points at infinity
of the physical space-time. A very nice property of this
picture is that from the point of view of the conformal
space-time, the conformal boundary, and hence the asymp-
totic structure of the physical space-time, can be inves-
tigated using local differential geometry.
Although Penrose constructed the conformal completion

of many known space-times the question as to whether there
exist large classes of space-times which admit a conformal
completion was not resolved over a long period of time. Over
theyears Friedrich hasworked on this question bydeveloping
the conformal field equations, which are the mathematical
extension of the Einstein equations to the conformal mani-
fold. The generalized conformal field equations (GCFE) are
the latest form of these equations, andwere first written down
in 1995 in the important work [4]. It was only after the
surprising result by Corvino and Schoen [5,6] on the con-
struction of initial data which agreewith exact Schwarzschild

or Kerr data outside a compact region that the question of
existence raised above couldbeanswered in the affirmative by
Chruściel and Delay [7].
With the advent of gravitational wave detectors and, even

more so, after the successful detection of (so far) three
gravitational wave events [8–10], the calculation of asymp-
totic quantities has become a major task for the numerical
relativity community. After all, the waveforms used by the
detectors as templates to match to observational data are
strictly defined only on part of the conformal boundary.
In the numerical relativity community it is standard

practice to calculate the waveforms in the so-called “wave-
zone”, where the space-time is almost flat and where a
decent approximation can be made, and not on the
conformal boundary itself (with the exception of, for
example, characteristic extraction [11]). The Cauchy-
perturbative approach and extrapolation method are among
the standard ways of calculating the waveforms in the
wave-zone (see [12] and the references within for a
comprehensive review of these methods). These rely on
solving the full nonlinear Einstein equations in the portion
of the space-time that has the most dynamics (for example
inside a box surrounding a binary black hole system)
generally using the BSSN formulation [13,14], the gener-
alized harmonic formalism [15] or the Z4 formalulations
[16,17]. These approaches usually solve the Einstein
equations in the physical space-time in the form of an
initial value problem (IVP) or an initial boundary value
problem (IBVP) with a timelike outer boundary that
approaches future timelike infinity.
The main difference between the conformal field equa-

tions over the standard approaches is that they grant access
to the entire conformal boundary, while the other methods
remain in the physical space-time or, in some cases, extend
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to a finite portion of null infinity. With the standard
approaches it is principally impossible to explore the global
structure of a space-time completely since one is always
confined to a finite portion of the physical space-time.
Thus, one could not, for example, study the behavior of
fields across spacelike infinity using Friedrich’s cylinder
interpretation [18] (see the summary V for more applica-
tions). Yet, even with its advantages, there have been
comparatively few investigations into the conformal field
equation’s potential for numerically studying global prop-
erties of asymptotically simple space-times, perhaps due to
their apparent size and complexity.
An early version of these equations—nowadays referred

to as the metric conformal field equations—was studied in
several papers in [19–22] and in [23–27]. It could be
demonstrated that the conformal approach does indeed
deliver on its promise: one could evolve the global space-
time within a finite computational time on a finite grid and
determine the gravitational waveforms with high accuracy.
However the downside of this particular formulation was
that the conformal factor is an unknown in the system,
being evolved alongside other quantities, and hence the
location of the conformal boundary is not known a priori,
even though it was possible to devise suitable “I-freezing”
gauges.
The only numerical implementations of the generalized

conformal field equations to date are due to Zenginoğlu
[28,29] who reproduced the Schwarzschild and Kerr space-
times in spherical and axisymmetric symmetry, and by
Beyer [30–33] who considered the associated initial value
problem (IVP) for investigating spatially compact space-
times with a positive cosmological constant λ.
In this paper we want to study a numerical implementa-

tion of the GCFE in the context of an initial boundary value
problem. We consider this approach for several reasons.
Any numerical formulation of an evolution problem is
based on a finite computational domain so, quite generally,
some sort of conditions will have to be imposed on its
boundary. Even when the mathematically underlying prob-
lem does not need any boundary conditions—this will be
the case when the problem is based on spatially compact
manifolds or when the boundary is a total characteristic

such as when considering the finite initial boundary value
problem at spacelike infinity [18]—the finite size of the
computational domain will lead to a numerical IBVP in
the sense that the boundary points will need special
consideration.
Our approach complements the more traditional hyper-

boloidal initial value problem pursued in the context of
the metric conformal field equations and the finite initial
boundary value problem just mentioned. The hyperboloidal
IVP is based on spacelike hypersurfaces which extend to
null-infinity. Initial data are provided by solving the
constraint equations associated with the conformal field
equations. By construction the hyperboloidal IVP is semi-
global in its nature in the sense that its solution covers the
global future of the space-time but only a part of its past,
see Fig. 1.
The finite IBVP at spacelike infinity is based on

asymptotically Euclidean hypersurfaces which extend out
to spacelike infinity represented as a cylinder (see [34–38]
for some studies of this approach in very simplified
situations). Initial data are obtained by solving the con-
formal constraint equations and the solution is global
covering the entire past and future of the space-time
evolving from the initial data, see Fig. 1.
Our present approach was chosen for its very physical

simplicity: we specify the initial data of a known solution
exactly and perturb it by incoming radiation. More pre-
cisely, we specify initial data on a spacelike hypersurface
with boundary which is not assumed to extend to infinity.
Therefore, we need to specify boundary conditions in order
to make the problem well-posed. If the problem is indeed
well-posed (and in this paper we argue that it is at least
numerically well-posed) then this setup allows us to study
perturbations of an exact solution in a clear physical way.
We choose initial data corresponding to the exact solution
and specify the perturbation by boundary conditions. In this
way we disentangle the object of the disturbance from the
cause of the disturbance. Thus, we avoid the solution of
the constraint equations which is known to introduce
uncontrolled radiative degrees of freedom. Instead, we
can specify in a very controlled way the incoming degrees
of freedom on the timelike boundary. The solution obtained

FIG. 1. Schematic diagrams showing the different setups used in the context of the conformal field equations for the λ ¼ 0 case. The
black solid lines are null-infinity and the time-like cylinder at spacelike infinity in case (b). The dotted horizontal line indicates an
asymptotically Euclidean hypersurface and the shaded region is the computational domain with the thick part of the boundary indicating
where (physical) data are given, initial data in all cases and boundary data in (c).
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in this way is time-global, i.e. global in time but not in
space in the sense that there is a region near spacelike
infinity which is not covered by the evolution of the initial
data, see Fig. 1.
The GCFE can also be used to evolve asymptotically

anti-de Sitter like space-times which naturally leads to an
IBVP with boundary conditions to be specified on the
conformal boundary [4]. Finally, an IBVP is advantageous
for studying perturbations of an exact solution as we will do
here: the initial conditions are provided by the exact
solution and the perturbation is injected from the boundary.
Proceeding in this way avoids the necessity to solve the
constraint equation for perturbed initial conditions. Hence
the main focus of this work is to conduct the first numerical
investigations into the viability of a well-posed IBVP
framework for the GCFE where the constraints stay
satisfied on at least the numerical level.
The structure of this paper is as follows: In Sec. II we

summarize the derivation of the GCFE and introduce the
conformal Gauss gauge. We describe how we impose
Newman and Penrose’s ð-calculus [39–42] to obtain proper
spin-weighted equations and end the section with our
derivation of the GCFE in the space-spinor formalism.
In Sec. III the field equation for the gravitational spinor is
analyzed and a numerical procedure for imposing con-
straint preserving boundary conditions is presented. We
then test our system numerically using as applications: the
IBVP for gravitational perturbations of Minkowski space-
time in Sec. IVA and the IBVP for gravitational perturba-
tions of Schwarzschild space-time in Sec. IV B. The paper
concludes in Sec. V with a brief summary and discussion of
future applications.
We use the conventions of Penrose and Rindler [42,43]

throughout. In particular, we use the metric signature
ðþ;−;−;−Þ and define associated with any torsion-free
connection∇: the Riemann tensor ½∇a;∇b�αc ¼ −Rabc

dαd,
the Ricci tensor Rab ≔ Racb

c, the Ricci scalar R ≔ Ra
a and

the Schouten tensor as Pab ≔ − 1
4
R½ab� − 1

2
ðRðabÞ − 1

6
RgabÞ,

where R½ab� ¼ 0 if the connection is Levi-Civita. Then the
vacuum Einstein field equations take the form Rab ¼ λgab
with cosmological constant λ. We will use the convention
of denoting quantities associated to the physical metric ~gab
with a ~ and use bold Latin indices to denote frame indices
eai . Transvections of space-spinors with the spin-frame
fo; ιg are written as α0 ≔ αAoA and α1 ≔ αAι

A. If a space-
spinor is symmetric in a certain number of indices, then we
label their components as the number of contractions with ι.
For example if KAB ¼ KðABÞ then its components are
denoted by K0, K1 and K2.

II. THE ANALYTICAL BACKGROUND

In this section we provide a brief derivation of the
GCFE and the conformal Gauss gauge, a particularly
useful set of gauge conditions for coordinates, tetrads and

conformal factor. We discuss our imposition of the
ð-calculus and then use the space-spinor formalism to
split the GCFE into evolution and constraint equation.
Finally, we discuss the subsidiary system which governs
the violation of the constraints. For a more detailed
derivation see for example [44].

A. The general conformal field equations

Here we give a brief derivation of the GCFE, beginning
with some mathematical preliminaries. The most important
part of the GCFE is obtained from the Bianchi identities
for the physical and the conformal metric together with
Einstein’s field equation which we take to be vacuum here,
but admitting a nonvanishing cosmological constant λ.
From these we obtain equations for the rescaled Weyl
tensor and the Schouten (or, equivalently, the Ricci tensor)
for a conformal Weyl connection. We write these equations
in terms of a tetrad and obtain the equations for the tetrad
components as well as the connection coefficients from
Cartan’s structure equations as usual.
We start with a vacuum space-time ð ~M; ~gÞ where ~g is a

solution to the Einstein field equation with cosmological
constant λ

~Rab ¼ λ~gab;

with ~Rab denoting the Ricci tensor of ~g.
Let gab ¼ Θ2 ~gab be a conformally related metric with

conformal factorΘ. We denote by∇a and ~∇a the Levi-Civita
connections of gab and ~gab respectively. Furthermore, let ∇̂a
be a Weyl connection, i.e. a connection which is torsion free
and compatible with the conformal class of gab but not
necessarily compatible with any metric in the conformal
class. Then, there exist smooth 1-forms fa and ba such that

∇̂a ~gbc ¼ −2ba ~gbc; ð1Þ

∇̂agbc ¼ −2fagbc: ð2Þ

It follows immediately that the 1-forms are related via

fa ¼ ba − Θ−1∇aΘ: ð3Þ

For reasons that will become apparent later, we also define
another 1-form as

ha ≔ Θba ¼ fa þ∇aΘ: ð4Þ

Any two covariant derivative operators differ by a (2,1)-
tensor. For the difference between ∇̂a and∇a we denote this
tensor by fabc. Acting on covectors yields

ð∇̂a −∇aÞωb ¼ −fabcωc; ð5Þ
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from which it can be shown that

ð∇̂a −∇aÞvc ¼ fabcvb; ð6Þ

where fabc is given by

fabc ¼ δcafb þ δcbfa − gabgcdfd:

We now introduce arbitrary coordinates xμ and
frame field eaa, which is orthonormal with respect to the
conformal metric gab and we define ηab ≔ gabeaaebb ¼
diagðþ1;−1;−1;−1Þ. We then have (with the obvious
notation ∇̂a ¼ eaa∇a)

cμa ≔ eaðxμÞ ¼ ∇̂axμ; ∇̂aeb ¼ Γ̂ab
cec:

By writing (2) in the basis ðeaÞa¼0∶3 and contracting with
ebbe

c
c, we find

fa ¼
1

4
Γ̂ab

b:

We are now in a position to write down the field
equations. The first two are Cartan’s two structure equa-
tions [45], where the torsion-free equation is given by

½∇̂a; ∇̂b�xμ ¼ 0;

and the curvature equation is given by

½∇̂a; ∇̂b�edc ¼ R̂abc
decc:

Contracting these equations with eaaebb and using the
decomposition of the Riemann tensor in terms of the
Schouten and Weyl tensors (note that the Schouten tensor
is not necessarily symmetric for a general Weyl connection)

R̂abc
d ¼ 2ðδd½aP̂b�c − δdcP̂½ab� − gc½aP̂b�dÞ þ Cabc

d;

yields the two equations

eaðcμbÞ − ebðcμaÞ ¼ Γ̂ab
ccμc − Γ̂ba

ccμc; ð7Þ

eaðΓ̂bc
dÞ − ebðΓ̂ac

dÞ ¼ Γ̂ab
eΓ̂ec

d − Γ̂ba
eΓ̂ec

d − Γ̂bc
eΓ̂ae

d

þ Γ̂ac
eΓ̂be

d þ Cabc
d − 2ηc½aP̂b�d

þ 2δ½adP̂b�c − 2P̂½ab�δcd: ð8Þ

The next equation comes from the Bianchi identity for
the vacuum metric ~gab,

~∇½e ~Rab�c
d ¼ ~∇½eCab�cd ¼ 0:

Rewriting this in terms of the conformal connection and
gravitational tensor Kabc

d ≔ Θ−1Cabc
d gives the simple

equation

∇eKabc
e ¼ 0: ð9Þ

Written in terms of the Weyl connection, we find

∇̂eKabc
e ¼ feKabc

e:

The final equation is obtained from the Bianchi identity for
the Weyl connection

∇̂½eR̂ab�cd ¼ 0;

which, after a bit of work using (9), gives

∇̂aP̂bc − ∇̂bP̂ac ¼ ð∇̂eΘþ ΘfeÞKabc
e ¼ heKabc

e: ð10Þ

Then the full set of conformal field equations expressed
with a Weyl connection is given by (7), (8), (9) and (10),
where in (8) Cabc

d is replaced by ΘKabc
d.

These equations are invariant under several transforma-
tions. Since they are obtained from geometric differential
equations they are invariant under arbitrary coordinate
and tetrad transformations. However, they are also invariant
under the simultaneous rescalings Θ ↦ Θϕ and
gab ↦ ϕ2gab with some arbitrary scalar field ϕ and under
the change of Weyl connection ∇̂a which amounts to
the choice of a 1-form ba. Thus, we will have to fix the
freedom in these transformations in order to get determined
systems. This means that we need to fix coordinates, the
tetrad field, the conformal factor Θ and the 1-form ba or,
with Θ fixed, of ha.
A particularly useful gauge is the conformal Gauss

gauge (CGG) which is obtained from the conformal
structure itself and which we discuss next.

B. The conformal Gauss gauge

The conformal Gauss gauge is fixed solely from the
conformal structure of the space-time, making use of the
associated conformal geodesics. These are curves governed
by the equations

ub∇bua ¼ −2ðhbubÞua þ ðgcducudÞgabhb;

ub∇bha ¼ ðhbubÞha −
1

2
gabubðgcdhchdÞ − ubPba;

for the tangent vector to the curves ua and a smooth 1-form
ha along them. Here, ∇a is any covariant derivative
compatible with the conformal class ½~gab� and Pab is its
corresponding Schouten tensor. The metric gab is any
representative of the conformal class. Note, that the
covariant derivative is not necessarily compatible with this

BEYER, FRAUENDIENER, STEVENS, and WHALE PHYSICAL REVIEW D 96, 084020 (2017)

084020-4



metric. The equations are covariant under the change of
Weyl connection in the following sense: let us suppose that
we have a solution fua; hag of the conformal geodesic
equations above. Let fa be any smooth 1-form then
fua; ha − fag is a solution of the conformal geodesic
equation with ∇a replaced by another Weyl connection
∇̂a which is defined by

∇̂agbc ¼ ∇agbc − 2fagbc:

We can now introduce the CGG according to the following
procedure: we pick an initial spacelike hypersurface ~Σ0 in
the physical vacuum space-time ð ~M; ~gÞ. Then we can write
the conformal geodesic equation in terms of the physical
metric ~gab and its associated Levi-Civita derivative ~∇a.
Note, that the Schouten tensor in these equations will
reduce to a term proportional to λua. We now select initial
data for these equations on ~Σ0. We denote quantities which
are defined only on ~Σ0 by an underline. On ~Σ0, we choose a
conformal factor Θ, a 1-form ba, coordinates ðx1; x2; x3Þ,
and a frame ea which is orthonormal with respect to the
conformal metric g

ab
¼ Θ2 ~g

ab
and such that e0 is normal to

~Σ0. Then we put ua ≔ ea0 and use ðua; baÞ as the initial data
for the conformal geodesic equations. Their solutions
ðua; haÞ provide a unique time-like conformal geodesic
through each point of ~Σ0 at least near ~Σ0. Provided the
initial data are sufficiently smooth, this congruence is
smooth and caustic free in a local neighborhood U ⊂ ~M
of ~Σ0. Thus, at each point in U we have a 1-form ha. We
denote this 1-form by ba and use it in place of fa to define a
Weyl connection ∇̂a as shown above. Thus, the 1-form ba
mediates between ∇̂a and the physical connection ~∇a.
Written with respect to the new Weyl connection, the
conformal geodesic equations simplify to

ub∇̂bua ¼ 0; ð11aÞ

uaP̂ab ¼ 0: ð11bÞ

We can now use this congruence of timelike curves to
define on U the parameter s as the (time) coordinate x0 and
the coordinates ðx1; x2; x3Þ by the requirement that they be
constant along the curves and agree with ðx1; x2; x3Þ on ~Σ0.
A tetrad field ea is defined on U by parallel transport of the
chosen frame on ~Σ0 using the Weyl connection ∇̂a. Thus,
each frame vector satisfies the equation

0 ¼ ∇̂uecc ¼ ua ~∇aecc þ ðbaeacÞub þ ðbauaÞebc
− ð~gabuaebcÞ~gecbe: ð12Þ

We point out here that there is an additional freedom in the
transport of the frame along the congruence. Instead of

parallel transport we can rotate the spatial legs of the frame
in an arbitrary way without affecting the geometry. This
amounts to imposing the slightly more general equation

∇̂uecc ¼ ωb
cecb; for c ¼ 1; 2; 3 ð13Þ

where ωb
c is an infinitesimal spatial rotation, i.e. it is

characterized by ωbc ¼ −ωcb and ω0b ¼ 0. It can be
arbitrarily prescribed and we will use this freedom partially
below.
The tetrad field defines a metric gab which is necessarily

conformal to the physical metric ~gab with a conformal
factor Θ given by the equation

gðea; ebÞ ¼ ηab ¼ Θ2 ~gðea; ebÞ:

Note, that these equations imply in particular that
Θ−2 ¼ ~gðu; uÞ from which we find using (2) and (11a)

_Θ ¼ ðbeueÞΘ; ð14Þ

where we used the overdot to denote the derivative along
ua. This equation can be used to propagate the conformal
factor. Using this and the conformal geodesic equations,
we could also find a propagation equation for the 1-form ha
that appears in the GCFE, thus fixing the gauge completely.
However, a closer look at these equations reveals a
surprising consequence: when looking at successive deriv-
atives of the conformal factor one finds

Θ
:::
¼ 0:

Thus, Θ is given as a quadratic polynomial in s. Its
derivatives can be expressed in terms of the scalars

Z ¼ Θbaua ¼ _Θ; H ¼ Θ−1
�
~gabbabb −

1

3
λ

�
¼ 2Θ̈;

and with these we obtain an explicit formula for the
conformal factor, namely

ΘðsÞ ¼ Θþ Zsþ 1

4
Hs2 ð15Þ

in terms of initial data defined on ~Σ0.
Furthermore, the conformal geodesic equation and the

fact that the frame is transported along the curve using (13)
yield an equation for the frame components of the 1-form
ba. With vanishing infinitesimal rotation ωb

c and written
with respect to the physical geometry it becomes

d
ds

bc ¼ −ðuabaÞbc þ
1

2
ΘH ~gabuaebc:
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Since ua ¼ ea0 and with (14) we can obtain an equation for
the frame components of the 1-form ha ¼ Θba appearing
in the GCFE

d
ds

hc ¼
1

2
Hη0c:

Noting that _H ¼ 2Θ
:::
¼ 0, we find the remarkable result that

h0ðsÞ ¼
1

2
Hsþ h0; hcðsÞ ¼ hc; c ¼ 1; 2; 3: ð16Þ

When the more general frame transport equation (13) with
nonvanishingω is imposed, then the equation for the spatial
components of ha changes into

d
ds

hc ¼ ωb
chb c ¼ 1; 2; 3: ð17Þ

Then, the equation cannot be solved explicitly anymore, but
must be added as an evolution equation to the system.
In summary then, the conformal Gauss gauge is char-

acterized by
(1) the coordinate conditions

∇̂uxμ ¼ δμ0;

(2) the frame conditions ua ¼ ea0 and

∇̂ueb ¼ ωc
bec;

(3) the explicit form (15) for the conformal factor and
(4) the conditions for the conformal connection ex-

pressed either in the explicit form (16) or the
transport equation (17) for ha and the condition
on the Schouten tensor (11b) which when expanded
in the frame becomes

P̂0a ¼ 0:

Let us point out a particular property of this gauge. The fact
that the frame is parallel along the curves implies that, in
general, it will not be aligned with the hypersurfaces
defined by constant s. This implies that the expansion of
the tetrad vectors with respect to the coordinate basis will
include a component along ∂s and that the causal character
of these hypersurfaces may change during the evolution.

C. Imposing the ð-calculus

The GCFE will allow us to evolve data from the initial
surface up to and beyond null-infinity. This is a hypersur-
face which is timelike, null or spacelike depending on the
cosmological constant, but it is always topologically of the
form R × S2. This property suggests to set up numerical
methods which are adapted to this spherical topology.

However, this is not straightforward since the sphere cannot
be covered by a single coordinate chart. Numerically, this
leads to the so-called pole problem, the fact that the usual
polar coordinates become singular on the poles. Another
aspect of this problem appears when one uses a frame
formalism, since there are no globally defined frames on
the sphere.
These problems have been tackled by several researchers

using interpolation between two charts [46], the cubed
sphere [47], pseudospectral methods [48] and the eth-
calculus [49]. To our knowledge there is no finite element
treatment of the sphere. Here, we elaborate on the
ð-calculus which we have implemented in our code.
This has already been discussed extensively in previous
papers [50,51] so we will keep the exposition here
reasonably short.
The ð-calculus can be regarded as a generalization of

spectral methods on the circle S1 based on Fourier series
to the sphere S2. It is based on harmonic analysis on S3

and transferred to S2 using the so-called Hopf fibration
S3 → S2. In the context of general relativity it was first
discussed by Newman and Penrose [39], see also
[40,52,53]. There are two essential points: the first is the
fact that components of tensors of different rank on S2 can
be expanded in terms of a complete system of “functions”
on the sphere, called the spin-weighted spherical harmonics
sYlm. And the second point is that the covariant derivative
in the direction of a certain complex vector is diagonal
when written with respect to the sYlm.
To briefly discuss the fundamentals of the ð-formalism

we consider the unit sphere S2 with its metric q which
we take to be negative definite here in order to agree with
our conventions for the space-time metric. At each point of
S2 we can introduce an orthonormal frame or, equivalently,
a complex tangent vector M with the properties
qðM;MÞ ¼ 0 and qðM;MÞ ¼ −1. Obviously, this vector
is not uniquely defined but only up to a phase trans-
formation

M ↦ eiαM; ð18Þ

which corresponds to a frame rotation with the angle α.
It is well known that the sphere does not admit a globally

defined frame field, hence no globally defined vectorM. To
reach every point on S2 one needs to patch several charts
with frames defined on them together in order to cover
the entire sphere. On a point in the overlap region between
two charts the frames respectively, the complex vectors
from the two patches differ by a rotation, respectively a
phase transformation of the form (18). Components of
tensor fields on S2 transform under a well-defined way
under this change of frame on the overlaps. As an example
consider a 1-form v. Its contraction hv;Mi with M trans-
forms under (18) according to hv;Mi ¼ eiαhv;Mi.
Components of higher rank tensors transform in similar
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characteristic ways under frame rotations. This leads to the
notion of a spin-weighted “function” with spin-weight s on
S2, i.e. a quantity η which transforms as η ↦ eiαsη under
(18). Such a quantity can be regarded as globally defined
on S2 since it essentially incorporates the collection of a
component of a globally defined tensor field with respect to
different charts [54].
A spin-s quantity η can be represented as a series

η ¼
X∞
l¼jsj

Xl

m¼−l
ηlmsYlm ð19Þ

where the sYlm are the spin-weighted spherical harmonics,
a generalization of the well-known spherical harmonics
Ylm ¼ 0Ylm (see [42] for more details).
With spin-weighted quantities being globally defined their

derivatives should share this property. The usual coordinate
derivatives or directional derivatives along frame vectors do

not achieve this. Instead one uses the connection ∇q
associated with the metric q to define covariant derivatives
along M to obtain well-defined spin-weighted quantities.
This leads to the definition of the ð-operator: suppose
η ¼ TðM;…;MÞ is a spin-weighted quantity obtained from
a tensor T by evaluation on k copies ofM and l copies ofM
so that η has spin-weight s ¼ k − l. Then

ðη ¼ ∇q MTðM;…;MÞ: ð20Þ

In similar way, the ð0-operator is defined

ð0η ¼ ∇q MTðM;…;MÞ: ð21Þ

Thus, ð raises the spin-weight by one, while ð0 lowers it by
one. It follows from these expressions that the action of ð and
ð0 on a spin-s quantity η can be alternatively expressed by

ðη ¼ MðηÞ − sᾱη; ð0η ¼ MðηÞ þ sαη; ð22Þ

where α is the single (complex) connection coefficient of ∇q
defined in terms of the commutator ½M;M� ¼ αM − ᾱM.
The action of these operators on the spin-weighted

spherical harmonics is particularly simple

ðsYlm ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − sÞðlþ sþ 1Þ

p
sþ1Ylm;

ð0sYlm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ sÞðl − sþ 1Þ

p
s−1Ylm: ð23Þ

It is this property which makes these operators useful for
numerical purposes: to compute their action on any spin-
weighted quantity η ¼ P

l;mηlmsYlm is just a matter of
multiplying the coefficients by the appropriate numbers and
replacing sYlm with s�1Ylm.

To set up the framework for the ð-calculus we need to
make a few assumptions. As discussed in Sec. II B,
imposing the CGG fixes coordinates and tetrad in the
space-time M leaving us only the freedom to fix them on
the initial hypersurface Σ0. We use this freedom to postulate
that the initial hypersurface Σ0 is foliated by a family of
2-surfaces with spherical topology, so that it has topology
R × S2. We choose a radial coordinate ρ on Σ0 labeling the
spherical leaves of this foliation. The remaining two
coordinates label points on the spheres.
On each sphere Sρ ⊂ Σ0 we introduce a (fiducial) negative

definite unit-sphere metric q ¼ −ðdθ2 þ sin2 θdϕ2Þ. This
also introduces coordinates θ and ϕ which can be interpreted
as the usual polar coordinates on each Sρ. We assume that θ
and ϕ are smooth on Σ0 (except for the usual problems at
the poles of the spheres). On each sphere Sρ we can also
introduce a complex null-vector M as before.
The coordinates ðρ; θ;ϕÞ are constant along the con-

formal geodesics so that every event in the region of M
covered by the conformal Gauss gauge is characterized
by coordinates ðs; ρ; θ;ϕÞ with s the parameter along the
conformal geodesics. Thus, each event lies on a unique
sphere Ss;ρ defined by constant s and ρ, carrying a negative
definite unit-sphere metric q and a complex vector M.
We also need to pick a triad ðe1; e2; e3Þ on Σ0. We can

arrange this to be adapted to the foliation in the sense that at
every point e2 and e3 are tangent to the sphere Sρ through
that point. Then e1 is necessarily perpendicular to Sρ. We
can further arrange that m ≔ 1ffiffi

2
p ðe2 − ie3Þ is proportional

to M on Σ0. The ambiguity in the choice of M is the same
as the ambiguity in the choice of an adapted triad, namely a
phase transformation, respectively a frame rotation leaving
e1 fixed.
As described in Sec. II B, the conformal Gauss gauge

provides a space-time frame ðe0; e1; e2; e3Þ onM which it is
orthonormal with respect to the conformal metric g. When
the GCFE are referred to this frame they turn into equations
for components with respect to the frame in terms of
directional derivatives along the frame vector fields. The
gauge conditions imply that the frame vectors can be
written in terms of coordinate derivatives or, since ∂θ

and ∂ϕ are intrinsic to the spheres Ss;ρ, in terms of ∂s, ∂ρ,
M, and M.
Since M is Lie dragged along the conformal geodesics

while the frame (and hencem) is parallel with respect to the
conformal connection, the vectors M and m will in general
differ at events past Σ0. It is not even clear that m will
remain tangent to the spheres Ss;ρ. This discrepancy raises
an issue: we take components with respect to the space-
time frame ðe0; e1; e2; e3Þ but we use the derivative
operators defined with respect to the fiducial M and M.
In order to consistently use the ð and ð0 operator as defined
above in terms of M and its complex conjugate we have to
make sure that the components taken with the space-time
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frame nevertheless are properly spin-weighted when M is
transformed according to (18).
This is indeed the case as the following argument shows.

We first note that both frame transports have the property
that a frame rotated by an angle α is transported into a frame
rotated by the same angle. Thus, a phase transformation of
M by an angle α at an event Ps with coordinates ðs; ρ; θ;ϕÞ
corresponds to a phase transformation of M by α at the
point P0 with coordinates ð0; ρ; θ;ϕÞ on Σ0, and hence to
the same phase transformation of m at P0, which via
parallel transport corresponds to a phase transformation by
α for m at Ps. In this way, the phase transformations of M
and m are tied together at every event and, therefore, the
components taken with respect to space-time frame are
properly spin-weighted under changes of M, and we may
apply the ð-formalism to them. The same argument applies
to the “steered transport” described in Sec. II B under
certain circumstances that we will describe next.
In order to simplify the boundary treatment and the

analysis on I we steer the spatial part of the tetrad using the
free infinitesimal rotation in such a way that it is adapted at
every point in M to the sphere through that point: we want
e2 and e3 to remain tangent to the sphere. This implies that
e2ðρÞ ¼ 0 ¼ e3ðρÞ must be satisfied throughout the evo-
lution. Taking a time derivative of e2ðρÞ along the vector u
and using the frame transport equation (13) yields

d
ds

ðe2ðρÞÞ ¼ uðe2ðρÞÞ
¼ ½u; e2�ðρÞ þ e2ðuðρÞÞ
¼ ∇̂ue2ðρÞ − ∇̂e2uðρÞ
¼ ω1

2e1ðρÞ þ ω3
2e3ðρÞ − Γ̂02

1e1ðρÞ
− Γ̂02

2e2ðρÞ − Γ̂02
3e3ðρÞ

and, similarly, for e3ðρÞ. If e2ðρÞ ¼ e3ðρÞ ¼ 0 everywhere,
then a part of the infinitesimal rotation is necessarily
determined by

ω1
2 ¼ Γ̂02

1; ω1
3 ¼ Γ̂03

1: ð24Þ

On the other hand, if these conditions hold, then the
equations derived above form a homogeneous linear system
for e2ðρÞ and e3ðρÞ and hence these functions vanish
everywhere if they vanish initially. Note, that these gauge
conditions still do not fix the frame completely since ω2

3

remains undetermined, i.e. we are still free to arbitrarily
rotate e2 and e3 in the tangent plane to the spheres. As a
consequence the relationship between the complex vectors
m and M is fixed in exactly the same way as in the case
without steering on the initial surface Σ0 and the application
of the ð-formalism is consistent.

The conditions (24) have a small flow-on effect on the
frame and tetrad equations in the GCFE system, but not on
the tensorial equations for the Schouten and Weyl tensors.
At each point inM we can expand the frame vectors ec in

the coordinate basis ð∂s; ∂ρ; ∂θ; ∂ϕÞ or equivalently, in
terms of M and M in the form

e0 ¼ ∂s;

e1 ¼ c01∂s þ c11∂ρ þ c1Mþ c̄1M;

e2 ¼ c02∂s þ c12∂ρ þ c2Mþ c̄2M;

e3 ¼ c03∂s þ c13∂ρ þ c3Mþ c̄3M;

When we assume the frame to be transported using steer-
ing, then the coefficients c12 and c13 vanish identically.
The preparation of the GCFE as given in (7)–(10) now

proceeds in a straightforward way. Expand the equation
with respect to the frame ðe0; e1; e2; e3Þ, replace the
directional derivatives along the frame vectors by the
coordinate derivatives ∂s, ∂ρ and the derivatives along
M and finally replace the latter by the appropriate ð
operators. This procedure yields a system of equations
which is properly spin-weighted.
In our code we represent the spin-s quantities η as grid

functions on the sphere sampled at points ðθi;ϕkÞ and
we use

M ¼ 1ffiffiffi
2

p
�
∂θ −

i
sin θ

∂ϕ

�
:

Then the connection coefficient α in (22) becomes

α ¼ cot θffiffiffi
2

p :

The code alternates between representing η as a grid
function or a truncated series (19) with s and ρ dependent
coefficients ηlm. The series representation is used to
compute the derivatives along the sphere using (23), while
the grid representation is used to perform algebraic oper-
ations such as multiplication etc. These issues are explained
in much more detail in [50,51,55].

D. The GCFE in the space-spinor formalism

In this section we present the full GCFE in the space-
spinor formalism [56]. There are two reasons for this: first,
the space-spinor formalism allows us to easily perform
the time-space split of the equations into constraints and
evolution equations by simply computing irreducible parts
of the resulting spinor equations. Second, the formalism
deals with complex quantities which means that the number
of the actual equations after taking components is reduced
compared to the tensorial equations by almost half. This
leads to less numerical complexity and therefore ultimately
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also to lower round-off error (even though we have not
checked that). Furthermore, it is easier to deal with
symmetric trace-free quantities such as the electric and
magnetic parts of the rescaled Weyl tensor because the
trace-free condition is automatically satisfied in a spinor
version compared to the tensorial version. Even though this
means more algebraic work we feel that this is worthwhile.
The space-spinor formalism is briefly summarized in the
Appendix A.
The idea is to express the covariant derivative operator

∇̂a in terms of ∇a, the Levi-Civita operator of the
conformal metric gab and the mediating 1-form fa (see
(5), then split them into evolution and constraint equations
by decomposing the resulting equations. Once this is done
the CGG is imposed and we obtain a complete system of
evolution and constraint equations. We will not present the
full derivations here (see [57] for a full account), instead we
give a brief summary.
The standard procedure is
(i) Replace ∇̂’s with ∇’s using the transformation laws

(5) and (6),
(ii) convert the tensor fields to space-spinor fields
(iii) convert ∇a into ∂ and ∂AB as described in

Appendix A,
(iv) decompose the equations into irreducible pieces

to obtain evolution and constraint equations.
We apply this procedure to the field equations (8) and (9)
for P̂ab and Kabc

d. In doing so we will also change our
notation slightly: the Schouten tensor P̂ab related to the
Weyl connection is the only Schouten tensor appearing in
the equations, so in order to avoid confusion with complex
conjugation of space-spinors we will drop the hat. Thus,
from now on Pab will denote the Schouten tensor for the
Weyl connection.
To illustrate the procedure, we show how to treat the

equation for Kabc
d. We first define ψABCD ¼ Θ−1ΨABCD as

the only irreducible piece of Kabcd in the spinor formalism.
Skipping the first step as (9) is already in terms of the
conformal connection, we convert tensor to spinor indices
and then convert primed to unprimed indices. Splitting the
covariant derivative into D and DAB derivatives and
expressing these in terms of ∂ and ∂AB yields the equation

−
1

2
∂ψABCD − KðAEψBCDÞE þ ∂D

EψABCE

þ 3

2
KD

EðAFψBCÞEF þ 1

2
KD

E
E
FψABCF ¼ 0:

This equation is symmetric in ABC. Taking the totally
symmetric part gives an evolution equation for ψABCD

∂ψABCD − 2∂ðAEψBCDÞE

¼ −2KðAEψBCDÞE þ 3KðAEB
FψCDÞEF − KEðAEFψBCDÞF;

while the antisymmetric part gives us a constraint

∂CDψABCD ¼ −KCE
E
DψABCD − KCDEðAψBÞCDE:

Up to this point the choice of ta was irrelevant. However,
to derive the gauge-related equations from the remaining
equations (7) and (8), we must fix the time-like vector ta

and derive the spinor form of the CGG equations. We fix ta

to be proportional to the tangent vector ua of the curves.
Then the spin-frame ðoA; ιAÞ corresponding to the tetrad
must satisfy the usual normalization condition oAιA ¼ 1
and we impose the condition tAA0 ¼ oAoA0 þ ιAιA0 . Then we
have

ôA ¼ ιA; ι̂A ¼ −oA;

and the transport equations (12) or (13) for the frame imply
equations for the spin frame. We will explicitly discuss here
the equations for the pure CGG without frame rotations,
the other case being very similar. Thus, the spin frame must
satisfy the equation ta∇̂aoB ¼ 0 (and its complex con-
jugate). We define the components of the frame vectors in
terms of the coordinate basis by

cμ ≔ ∂xμ; cμAB ≔ ∂ABxμ:

Since both ta and the timelike frame vector are parallel to
ua we have

ua ¼ ea0 ¼
1ffiffiffi
2

p ta:

The gauge conditions then imply

cμ ¼
ffiffiffi
2

p
δμ0:

Furthermore, we define the spinor fields

γA ≔ ∂oA ⇒ γ̂A ¼ ∂ιA;
γABC ≔ ∂ABoC ⇒ γ̂ABC ¼ −∂ABιC:

They satisfy the relations

γCι
C ¼ γ̂CoC; γABCι

C ¼ −γ̂ABCoC:

These spinor fields encode part of the connection coef-
ficients Γ̂ab

c, the other pieces being contained in KAB,
KABCD and fAB.
The tetrad is parallel along the conformal geodesics

so that we have ua∇̂agbc ¼ 0 from which we conclude
together with Eq. (2) that

ta∇agbc ¼ −2tAA0
fAA0gbc ¼ 0 ⇒ fAB ¼ fBA:
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Furthermore,

0 ¼ ta∇̂aoC

¼ ta∇aoC − tAA
0
fCA0oA ¼ ∂oC þ 1

2
KC

BoB − fCAoA:

This and the analogous equation for ιC yield the equations

γC þ 1

2
ðKC

B − 2fCBÞoB ¼ 0;

γ̂C þ 1

2
ðKC

B − 2fCBÞιB ¼ 0;

which imply

KAB ¼ 2fAB; γC ¼ 0: ð25Þ

The last consequence of the gauge conditions involves the
Schouten spinor of the Weyl connection, which we denote
in the space-spinor formalism as PABCD ≔ tBA

0
tDB0

PAA0CB0

(again note, that we dropped the hat here to avoid confusion
with complex conjugation as mentioned above). This
spinor field satisfies the reality condition

P̂ABCD ¼ PBADC;

and the gauge condition (11) implies

tAA
0
PAA0BB0 ¼ 0 ⇒ PABCD ¼ PBACD:

This concludes the translation of the CGG to the space
spinor formalism. We can now proceed to translate the
tensorial equations to spinorial form following the pro-
cedure outlined above. Incorporating the gauge conditions
we arrive at a fully determined system for the unknowns

ðcμAB; γABC; KABCD; fAB; PABCD;ψABCDÞ ð26Þ

in which Θ and the components of hAB are considered
known since they are determined a priori from initial data
by the Eqs. (15) and (16).
The evolution equations are

∂c0AB ¼ −
ffiffiffi
2

p
fAB − KAB

CDc0CD; ð27aÞ

∂ciAB ¼ −KAB
CDciCD; i ¼ 1; 2; 3: ð27bÞ

∂KABCD ¼ −KAB
EFKEFCD − 2PABðCDÞ þ ΘψABCD

þ Θψ̂ABCD; ð27cÞ

∂γABC ¼ −KAB
EFγEFC − oðAKBÞCDEfDE þ

1

2
oCKABEFfEF

þ KABEðCfDÞEoD þ 1

2
PABE

EoC þ εCðAPBÞDE
EoD

−
1

2
ΘψABCDoD þ 1

2
Θψ̂ABCDoD; ð27dÞ

∂fAB ¼ −KABEFfEF þ PABC
C; ð27eÞ

∂PABCD ¼ −KABEFPEF
CD þ ψABCEhED − ψ̂ABDEhCE;

ð27fÞ

∂ψABCD ¼ 2∂ðAEψBCDÞE − 2KðAEψBCDÞE
þ 3KðAEB

FψCDÞEF − KEðAEFψBCDÞF: ð27gÞ

The constraint equations express the vanishing of the
following “zero quantities”

0 ¼ Z0
AB ≔ ∂CðAc0BÞC þ 1ffiffiffi

2
p KðACBÞC; ð28aÞ

0 ¼ Zi
AB ≔ ∂CðAciBÞC; i ¼ 1; 2; 3: ð28bÞ

0 ¼ JABC ≔ −∂ðAEγBÞEC þ 1

4
fABfCDoD þ 1

2
KðAEjCj

DKBÞEFDoF −
1

8
ðPACðBDÞ þ PBCðADÞÞoD −

1

8
ðPADðBCÞ þ PBDðACÞÞoD

þ 1

4
ðPA

D
BD þ PB

D
ADÞoC þ 1

8
ðPA

DðCDÞoB þ PB
DðCDÞoAÞ −

1

8
ðεACPB

EðDEÞ þ εBCPA
EðDEÞÞoD

−
1

2
oD∂DðAfBÞC þ 1

2
oðA∂BÞEfCE; ð28cÞ

0 ¼ ZABCD ≔ −∂ðAEKBÞECD −
1

2
fCDKðAEBÞE −

1

2
fCðAKBÞEDE −

1

2
εCðAfEFKBÞDEF

−
1

2
εDðAfEFKBÞECF þ 1

2
εCðAPBÞDE

E þ 1

2
εDðAPBÞCEE þ 1

2
ΘψABCD −

1

2
Θψ̂ABCD; ð28dÞ
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0 ¼ TAB ≔ ∂ðAEfBÞE þ 1

2
PðAEBÞE −

1

2
PEðAEBÞ; ð28eÞ

0 ¼ UABCD

≔ −∂ðAEPBÞECD −
1

2
fCEPðAEBÞD −

1

2
fDFPðAEjCjBÞ

−
1

2
ðfDðAPBÞECE þ fCðAPBÞEEDÞ þ

1

2
PðAEjCj

FKBÞEDF

−
1

2
PðAEF jDjKBÞECF þ 1

2
ψABCEhED þ 1

2
ψ̂ABDEhCE;

ð28fÞ

0 ¼ GAB ≔ ∂CDψABCD þ KCE
E
DψABCD þ KCDEðAψBÞCDE:

ð28gÞ

In order to impose the ð-calculus on our system, we replace
the expansion ∂AB ¼ cμAB∂μ with

∂AB ¼ c0AB∂s þ c1AB∂ρ −
�
1

R
ιAιB þ 2XoðAιBÞ þ YoAoB

�
M

þ
�
1

R
oAoB − 2X̄oðAιBÞ þ ȲιAιB

�
M;

where X and Y are complex functions while R can be
chosen to be real as a consequence of the remaining gauge
freedom on the spheres. This is essentially a repackaging of
the quantities c2AB and c3AB. It is now a straightforward but
tedious procedure to replace the derivatives alongM and its
complex conjugate in terms of ð and ð0 using (22), which
ultimately yields properly spin-weighted equations for the
spinor components of the fields. The equations for the new
functions R, X and Y come as evolution equations

∂tR ¼ 1ffiffiffi
2

p RK02 þ
ffiffiffi
2

p
R2XK01 þ

1ffiffiffi
2

p R2YK00; ð29aÞ

∂tX ¼ 1ffiffiffi
2

p
R
K12 þ

ffiffiffi
2

p
XK11 þ

1ffiffiffi
2

p YK10; ð29bÞ

∂tY ¼ −
1ffiffiffi
2

p
R
K22 −

ffiffiffi
2

p
RXK21 −

1ffiffiffi
2

p YK20; ð29cÞ

and constraint equations

K02 − K20 þ 2RðXK01 þ X̄K21Þ þ RðYK00 − ȲK22Þ ¼ 0;

ð30aÞ

�
c12 þ

1

2
RYc10

�
∂rX þ 1

2
RYc12∂rX̄ þ c11∂rY −

3

2
ffiffiffi
2

p YðX −
1

2
ffiffiffi
2

p RY2ðX̄ þ 1ffiffiffi
2

p XðY

þ
�

1ffiffiffiffiffiffi
2R

p þ 1

2
ffiffiffi
2

p RYȲ

�
ð0X þ 1

2
ffiffiffi
2

p Yð0X̄ þ 1ffiffiffi
2

p X̄ð0Y þ algebraic terms ¼ 0; ð30bÞ

2

R
c11∂rR − Rc10R∂rX þ Rc12∂rX̄ þ

ffiffiffi
2

p

R
XðRþ 1ffiffiffi

2
p ðX −

1ffiffiffi
2

p RYðX̄ þ
ffiffiffi
2

p

R
X̄ð0R

−
1ffiffiffi
2

p RȲð0X þ 1ffiffiffi
2

p ð0X̄ þ algebraic terms ¼ 0; ð30cÞ

where the “algebraic terms” are quite lengthy containing
components of KABCD, the spin-weighted components of
γABC and the frame components.
The new proper spin-weighted system then comprises of

the evolution equations, constraint equations and explicit
expressions for Θ and ha given in (27), (28) (15) and (16)
but now the equations for c2AB and c3AB are replaced by
equations for R, X and Y given in (29) and (30).
As a partial justification for the correctness of the final

system, we expressed the Minkowski and anti-de Sitter
space-times analytically in the CGG adapted to spherical
symmetry. The unknowns of the system were then com-
puted from these solutions and were shown to satisfy both
the evolution and constraint equations identically.

E. The subsidiary system

The constraint equations derived from the GCFE propa-
gate on an analytical level, as shown by Friedrich [4], in
the sense that the “zero-quantities” themselves satisfy a
semilinear homogeneous symmetric hyperbolic system of
PDE. For the initial value problem this implies that if these
quantities vanish initially then they vanish everywhere due
to the uniqueness of solutions. Constraint propagation at
the numerical level is another story entirely. Clearly,
the violation of the constraints, i.e. nonvanishing “zero-
quantities” are governed by this propagation system.
Therefore, it is important to understand the properties of
this system since it has implications on the stability and
hence on the well-posedness of the evolution.
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We have derived the subsidiary system for all the
constraints in our formulation. This is a straightforward
but awkward process that we will not elaborate here.
Instead, we list only the propagation equation for the
constraints arising from the system for the rescaled Weyl
spinor since this is the only one needed in the sequel.

∂GAB ¼ ∂ðACGBÞC −
3

2
KðACGBÞC þ 1

2
~KðA

CGBÞC

þ 1

2
GCD ~KABCD −

4

3
~KGAB − TCDψABCD

−
1

2
ZðACDEψBÞCDE − 2ZECD

EψABCD: ð31Þ

Here, ~KABCD, ~KAB and ~K are the irreducible parts of
KABCD. The complete subsidiary system can be found in
Appendix B.

III. THE IBVP FRAMEWORK

We now suppose, and will assume for the rest of the
document, that the CGG has the coordinate system
fs; ρ; θ;ϕg. This is to make the distinction between the
coordinates used in the CGG gauge and other frequently
used coordinates such as t and r, which we reserve for exact
solutions such as the Schwarzschild space-time.

A. Maximally dissipative boundary conditions

We choose the spatial extent of the computational
domain to be defined by ρ ∈ ½ρ0; ρ1� ≕ I resulting in the
cylindrical domain I × S2. Due to our choice of coordi-
nates, the boundary of the domain is given by the equations
ρ ¼ ρ0 on the left boundary and ρ ¼ ρ1 on the right
boundary, defining two hypersurfaces which (at least for
some time) are timelike. Inspection of the evolution
equations (27) and (29) shows that the only equation
which needs boundary conditions is the evolution equa-
tion (27g) for ψABCD. All other equations propagate along
the boundary.
It is well known that the field equation for the gravita-

tional spinor admits a symmetric hyperbolic system of
PDEs (see for example [58,59]). The equation (27g) is
already in symmetric hyperbolic form. This is best verified
by checking that the symbol of the equation is Hermitian.
For any pair ðp; pABÞ of a positive real number p and real
symmetric spinor pAB consider the sesquilinear form on
totally symmetric spinors of rank 4 defined by

hχ;ψi ¼ χ̂ABCDpψABCD − 2χ̂ABCDpA
EψBCDE:

It is obtained by replacing the derivative operators in the
principal part of (27g) by p and pAB, respectively. Now it is
easy to see that this form is Hermitian, i.e. that

hχ;ψi ¼ hψ ; χi

for any choice of ðp; pABÞ and positive definite for
pAB ¼ 0. Therefore, the system (27g) is symmetric
hyperbolic.
To impose boundary conditions it is useful to first

analyse the characteristics of the system near the bounda-
ries. We choose the right boundary here, the left being
treated analogously. We are interested in the characteristics
that cross the time-like hypersurface defined by ρ ¼ ρ2.
Since the system is symmetric hyperbolic, at each point P
of the boundary there is a family of characteristic cones
with vertex P opening toward the past along which the
field propagates with characteristic speeds. We want to
find the intersection of these cones with the 2-dimensional
plane spanned by ∂s and ∂ρ. These will be lines with slopes
given by the characteristic speeds λ. They are obtained
from a generalized eigen-value problem which arises from
the principal part of (27g) by inserting the ansatz
ψABCD ¼ XABCDeiðρ−λsÞ. Then the characteristic speeds λ
are obtained as those values for which the algebraic system�

λffiffiffi
2

p δðAE − λc0ðA
E þ c1ðA

E

�
XBCDÞE ¼ 0

has nontrivial solutions. Define the spinor TAB ¼ 1
2
TεAB þ

SAB with T ¼ ffiffiffi
2

p
λ and SAB ¼ c1AB − λc0AB. Near the initial

hypersurface we can write SAB ¼ sαðAβBÞ in terms of its
principal null spinors with αAβA ¼ 1. Then we find that the
system has nontrivial solutions only if

2T þ ð2 − kÞs ¼ 0; with k ¼ 0;…; 4

and we find the resulting speeds

λ0;4 ¼
−f01 þ signðk − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf01Þ2 − f11ð1þ f00Þ

p
1þ f00

;

λ1;3 ¼
−f01 þ signðk − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf01Þ2 − f11ð4þ f00Þ

p
4þ f00

;

λ2 ¼ 0: ð32Þ

Here, we have defined fij ¼ ciABc
jAB where fii < 0. The

corresponding solutions Xk
ABCD are simply the totally

symmetric outer products of the principal spinors αA and
βA with k giving the number of βA in the product. Thus,
X1
ABCD ¼ αðAαBαCβDÞ etc. It is not difficult to see that the

lines defined by λ0 and λ4 correspond to the intersection
of the light-cone with the plane spanned by ∂s and ∂ρ,
while λ1 and λ3 correspond to a timelike cone inside the
light-cone. Thus, the components X0

ABCD and X4
ABCD

propagate with the speed of light.
We decompose the spinor ψABCD with respect to the

spin-frame ðαA; βAÞ, writing ψABCD ¼ P
4
k¼0 ~ψkXk

ABCD.
Since λk < 0 for k ¼ 0, 1, the corresponding components
~ψk propagate toward decreasing ρ while ~ψ3 and ~ψ4 travel
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towards increasing ρ. The component ~ψ2 propagates along
the boundary. Thus, on the right boundary we need to
provide boundary conditions for ~ψ0 and ~ψ4.
A very general class of boundary conditions are the

maximally dissipative boundary conditions, which express
the incoming components in terms of the outgoing ones and
freely specifiable functions on the boundary. In our case on
the right boundary we write�

~ψ0

~ψ1

�
¼

�
q0
q1

�
þH

�
~ψ3

~ψ4

�
; ð33Þ

where the qi are free boundary data andH is a 2 × 2matrix
defined on the boundary satisfying

H�H ≤ I2; ð34Þ

where I2 is the identity matrix. The matrix H encodes the
reflective properties of the boundary and the inequality
ensures that the reflected “energy” does not exceed the
energy hitting the boundary. We will use the simplest case
H ¼ 0, which corresponds to the boundary being com-
pletely transparent to the outgoing modes.
In order to implement these conditions we need to run

through the following procedure at every point on the
boundary: determine the principal null directions of the
spinor SAB, compute the characteristic speeds, project out
the outgoing characteristic modes from ψABCD, use the
boundary condition to compute the ingoing characteristic
modes, and then reassemble the spinor ψABCD on the
boundary. This yields a system of the form

qk ¼
X4
l¼0

Ml
kψ l; k ¼ 0; 1: ð35Þ

Here, M is a 2 × 5-matrix made up from the components
of the spin-frame transformation between ðoA; ιAÞ and
ðαA; βAÞ. Then, imposing the boundary conditions means
solving this system for ψ0 and ψ1, regarding the other
components as given with free functions qk.
Note, that the expressions for λ0 and λ4 become singular

when 1þ f00 ¼ 0. Since gðds; dsÞ ¼ gss ¼ 1þ f00 this
will happen, when the hypersurface s ¼ const becomes
null at the boundary. Due to our choice of gauge we cannot
prevent this from happening. However when the frame
components c0AB vanish for all time, as discussed in
Sec. IVA, we are in a similar situation to the Friedrich-
Nagy gauge [60] where the spatial frame vector normal to
the boundary remains normal for all time. We will have
more to say about these issues later.
The characteristics for this particular choice of evolution

system are simple, there will only ever be two ingoing
modes to provide boundary conditions for. However in
general, this will not be the case. Adding combinations of
the constraints (28) to the evolution equations will alter

their characteristics, and hence the number of ingoing
modes. The characteristic speeds are functions of the frame
components, and hence the number of ingoing modes may
change over time.

B. Constraint preserving boundary conditions

In the previous section we employed maximally dis-
sipative boundary conditions to obtain a stable evolution
system, however this did not take into account the propa-
gation of the constraint system. As the constraint equations
coming from the field equation for ψABCD are PDEs, if
they are violated on the boundary these violations may
propagate into the interior. As one can see in the subsidiary
system given in Sec. II E, many of the constraint propa-
gation equations in the subsidiary system are written in
terms of the gravitational spinor’s constraints. Thus if
they are violated, they will cause other constraints to be
violated too.
At each boundary, the maximal dissipative boundary

formalism yields two degrees of freedom for the boundary
data for our evolution system. We, however, expect only
one physical degree of freedom. This is most likely the
ingoing mode traveling on the light-cone, i.e. ~ψ0 or ~ψ4

depending on the boundary. The discrepancy in the number
of degrees of freedom is related to the violation of the
constraints and we will use the additional ingoing mode to
kill ingoing constraint violating modes. In order to define
the required constraint preserving boundary conditions for
our evolution system, we need to analyze the subsidiary
system.
The principal part of the subsidiary equation for the

gravitational spinor constraint GAB (B4c) is

∂GAB ¼ ∂CðAGBÞC: ð36Þ

This system is again symmetric hyperbolic and we can go
through the same analysis as we did on the ψABCD evolution
system in the previous section. We find that there are three
characteristic modes propagating with three different char-
acteristic speeds. The remarkable fact is that these three
speeds agree with the characteristic speeds λ1, λ2 and λ3 of
the ψABCD system, see (32). Furthermore, the characteristic
modes are again given in terms of the principal null spinors
αA and βA, being proportional to αAαB, αðAβBÞ, and βAβB,
respectively. Thus, the constraints propagate on character-
istics which agree with the timelike characteristics of the
Weyl system. In order to kill the ingoing constraint
violating mode on the right boundary we need to ensure
that the ingoing component proportional to αAαB vanishes
on the boundary.
The problem is then to find a way to prescribe boundary

data for the ψABCD system on the boundary which gives
interesting behaviour as well as having no ingoing mode in
the subsidiary system. Since the physically relevant quan-
tities at the boundary are ψ0 resp. ψ4 one may ask whether
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it is possible to leave their prescription free, while fixing the
remaining freedom in choosing ψ1 resp. ψ3 in such a way
that the ingoing mode of the subsidiary system is zero. This
is in fact possible, and is the main result of the paper.
Our proposed resolution on the right boundary (the left is

analogous) for the case of ψ0, ψ1 ingoing, ψ3, ψ4 outgoing
and ψ2 propagating along the boundary is to derive an
ordinary differential equation (ODE) for the free datum q1
as follows:

(i) Regard ψ0 as a free function, i.e. the boundary data
q0 is a free spin-2 function.

(ii) Take a time derivative of the boundary equations (35)
for ψ0 and ψ1 and replace all the time derivatives
with their evolution equations. This will result in two
equations containing the terms ∂sq1, ∂ρψ0 and ∂ρψ1.

(iii) Solve these equations simultaneously for ∂ρψ0

and ∂ρψ1.
(iv) Now consider the single equation which requires the

vanishing of the ingoing constraint violating mode.
This equation also involves ∂ρψ0 and ∂ρψ1. Replace
them with the expressions from the previous step.

(v) Finally, solve this equation for ∂sq1.
The resulting equation is free of ∂ρψ0 and ∂ρψ1 and gives
us an ODE for q1 on the boundary. Thus, evolving this
equation along the boundary yields q2 which is used as the
additional “unphysical” degree of freedom for the evolution
that should kill the ingoing mode from the subsidiary
system.
The final remark here is how to extend this approach to

incorporate the changing propagation directions of the
ψABCD components if another evolution system was chosen
with different characteristics. We note that there is a
relationship between the characteristics of the evolution
system and the subsidiary system, see for example [61].
This relationship is that there are always n − 1 ingoing
modes for the subsidiary system and n ingoing modes for
the evolution system. Hence there is always a degree of
freedom to choose ingoing gravitational radiation for
example, while just the right number of ingoing modes
remaining to kill those of the subsidiary system.
At this point it might be useful to take count of the

degrees of freedom in the system. As in every covariant
geometric system of equations we have the usual gauge
freedom of the choice of coordinates and basis of the
tangent vectors. Since we formulate our equations in a
conformally covariant way we have further gauge freedom,
namely the choice of a conformal factor and of the
conformal Weyl connection. All these choices have to be
fixed in order to get a well-posed evolution system. In our
approach they are all satisfied by imposing the Gauss gauge
and choosing appropriate initial data for coordinates, frame,
conformal factor and Weyl 1-form. Given our choice of
evolution system, this reduces the freedom to two complex
functions on each boundary, describing the incoming
modes. However, as discussed above, one of these

functions is determined by the requirement that the ingoing
constraint violating mode should vanish. This leaves us
with exactly one free function on each boundary, the
ingoing spin-2 component of the gravitational field. This
is a complex-valued function of spin-weight �2, so it
encodes exactly the two polarization degrees of freedom in
a gravitational wave. Note that when a different evolution
system is chosen, the relationship between the evolution
and subsidiary systems described in the previous paragraph
ensures that there is still only ever one complex valued
degree of freedom on each boundary.

IV. NUMERICS

The aim of this section is to formulate a numerical
implementation of the IBVP for the GCFE system and
apply it in a variety of situations. The idea is to choose an
initial spacelike hypersurface and prescribe on it data for the
unknowns (26) so that the constraints (28) are satisfied. Then
we evolve the initial data using the evolution equations (27)
using boundary conditions (where applicable) according to
process proposed in the previous section so the constraints
remain satisfied during the evolution.
We must first discretize the continuous version of the

equations in order to evolve the system on the computer using
various numerical methods. We will discretize our system
using the method of lines. In full generality, we need to
discretize three spatial dimensions, two of which are tangent
to unit 2-spheres [62] while the third dimension is transverse
to them. The action of the spherical operators ð, ð0 can be
approximated using pseudospectral methods using the algo-
rithmgiven in [55]. The radial direction is approximatedusing
a straightforward fourth-order finite difference method with
the summation-by-parts property as described in [63].
Discretizing in this way yields a semi-discrete system of
ODEs in time, which we solve using a standard fourth-
order explicit Runge-Kutta scheme. In order to impose
stable boundary conditions, we utilize the simultaneous-
approximation-term (SAT) method that is described in [64].
Before carrying out a numerical investigation into the

validity of this scheme, we first tested the system and
numerical methods by solving several IVP’s for the Kottler
space-time. This was done using different values and signs
of the cosmological constant and by using the setup detailed
in Sec. IV B. As these space-times are spherically symmet-
ric, we found that our evolution and subsidiary systems
reduced to ODEs in time, hence boundary conditions were
not required. We discovered that we could reproduce the
conformal structure of Schwarzschild, Schwarzschild-de
Sitter (for the case of distinct cosmological and event
horizons) and Schwarzschild-anti-de Sitter space-times
and the constraints were shown to propagate.
We also conducted noise tests for the evolution system to

test for numerical stability by checking that high frequency
perturbations did not trigger nonlinear growth. To this end
we followed the apples with apples robustness test [65] by
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using randomly perturbed Minkowskian initial and boun-
dary data. We ran multiple simulations in axisymmetry
using ρ and θ resolutions of 200 and 32 respectively with a
time step of 0.0025 for 2000 iterations. We calculated a
“global” l2-norm on each time slice by summing the
squares of each variable on each point, dividing by the
number of points and then taking the square root. As can be
seen in Fig. 2 this did not grow substantially over time, and
for all practical purposes is negligible. This gives a good
indication of numerical stability.

A. The IBVP for nonlinear gravitational
perturbations of Minkowski space-time

The next test concerns the boundary implementation.
In particular, we need to check to what extent the method
we discussed in Sec. III B actually kills ingoing constraint
violating modes. We choose Minkowski initial data and
imposing appropriate boundary conditions to shoot in
gravitational waves, represented by ψ0 and ψ4 (propagating
in the ρ-direction from right to left and left to right
respectively). The boundary conditions are chosen to be
axisymmetric, i.e. independent of ϕ. The conformal Gauss
gauge preserves the ϕ-independence throughout the
evolution. Hence we have a 2þ 1 problem.
We will consider the physical representation of a part of

Minkowski space-time with metric

g ¼ dt2 − dρ2 − ρ2ðdθ2 þ sin2 θdϕ2Þ

and ρ ∈ ½ρ1; ρ2� for some values ρ1 < ρ2 and then perturb it
with incoming gravitational waves. To choose the gauge
conditions we take the conformal factor and the 1-form ha
from the exact Minkowski space-time and impose them
also in the perturbed space-time. Since we look at the
physical representation of the Minkowski metric we have
Θ ¼ 1 and ha ¼ 0. These are also the initial conditions for
Θ and ha. This choice says that the gauge is adapted to

metric time-like geodesics and it has the consequence the
frame components c0AB vanish for all time, which can be
seen from the evolution equations. Therefore, there is no ∂s
contribution from the expansion of ∂AB during the evolu-
tion, so that the spatial frame vectors will stay tangent to
the s ¼ constant hypersurfaces.
The initial metric is

h ¼ −dρ2 − ρ2ðdθ2 þ sin2 θdϕ2Þ;

and with the choice of initial triad as indicated in
Sec. II C we find the only nonvanishing system compo-
nents to be

R ¼ ρ; c11 ¼
1ffiffiffi
2

p ; γ20 ¼ γ̂01 ¼ −
1ffiffiffi
2

p
ρ
:

The characteristic speeds of the components of ψABCD
used in the evolution are given by

−
ffiffiffi
2

p
c11; −

c11ffiffiffi
2

p ; 0;
c11ffiffiffi
2

p ;
ffiffiffi
2

p
c11;

for ψ0;…;ψ4 respectively.
We discretize the spatial directions by choosing equi-

distant points in the 2-dimensional interval ½0.25; 1.25�×
½0; π�. As boundary conditions, we shoot in a gravitational
quadrupole (l ¼ 2) wave from each boundary by choosing
the free data q0 for ψ0 on the right boundary and q4 for ψ4

on the left boundary as

q0ðs; θÞ ¼
8<
: 2

ffiffiffiffi
2π
15

q
2Y20ðθÞsin8ð4πsÞ; s ≤ 1

4

0 s > 1
4

;

q4ðs; θÞ ¼
8<
: 2

ffiffiffiffi
2π
15

q
2Y20ðθÞsin8ð4πsÞ; s ≤ 1

4

0 s > 1
4

;

with the spin-weighted spherical harmonic 2Y20ðθÞ ∝
sin2 θ when written in the usual polar coordinates. We
adopt our boundary treatment outlined in Sec. III which
fixes the boundary conditions for ψ1 on the right
boundary and ψ3 on the left boundary. Hence we have
fixed all the free data on the boundaries. We evolve up
until s ¼ 1 with a θ-resolution of 32, ρ-resolutions of
f25; 50; 100; 200; 400g and use time-steps of 0.5Δρ.
We find that this θ-resolution is enough to represent all
the functions in our system on the spheres s ¼ constant,
ρ ¼ constant at machine precision.
First we look at the case without employing the sub-

sidiary-mode-killing boundary treatment, to confirm that
constraint violating modes are indeed propagated in from
the boundary. We use the maximally dissipative boundary
conditions but choose the free data (i.e. the “q”) for ψ1 on

FIG. 2. A single noise test using randomly perturbed Min-
kowski initial and boundary data, where the curve represents the
“global” l2-norm of the system variables over time.
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the right and ψ3 on the left to be zero. Looking at the system
variables on the slices s ¼ constant, θ ¼ π

2
in Fig. 3 we see

that they converge everywhere with increasing resolution at
the correct order of four. This means that the IBVP for the
evolution system alone is well-posed. However, the con-
straint does not converge to zero everywhere. The constraint
violating modes should propagate in a timelike manner i.e.
with less than the speed of light and this is clearly the case:
with each snapshot the region where the constraint converges
to zero becomes smaller while near the boundaries the
constraint mode seems to converge to a non-zero limit. This
indicates that the constraint is not satisfied.
Next, we test the boundary treatment which supposedly

kills the incoming constraint violating mode. In Fig. 4 we
display the same constraint as in Fig. 3 except with our
constraint preserving boundary conditions. One can see
that there is no longer a constraint violation propagating
inward from the boundary and the constraints converge
across the entire grid at the correct order. Analogous plots
are seen in all the other constraints and also for different
choices of θ ¼ constant. Although this was a very simple
case, the premise of our boundary treatment method has
been verified.

B. The IBVP for nonlinear gravitational perturbations
of Schwarzschild space-time

In the previous section we used simple initial data and
fixed the gauge freedom appropriately so that we could test
our framework for the simple case of c0ABðs; ρ; θÞ ¼ 0, i.e.
the spatial frame vectors remain tangential to the s ¼
constant hyper-surfaces, in analogy to the Friedrich-Nagy
gauge. However, this is a very special case and we want to
explore the more general case of the nonvanishing c0AB as
well. We choose Schwarzschild space-time in isotropic
coordinates as the test case and solve the associated IBVP
with axi-symmetric boundary conditions as in the previous
section. The IBVP setup is shown in Fig. 5.
It has been shown by Friedrich [66] that there exists a

specific choice of initial data for the CGG that globally
covers the Schwarzschild-Kruskal space-time smoothly
and without degeneracy. This involves writing the
Schwarzschild metric in isotropic coordinates and choosing
appropriate initial data for the conformal geodesics. In this
section we present how we (following [66]) set up the
GCFE system to investigate null and timelike infinity of
Schwarzschild space-time. We then numerically evolve the

FIG. 3. A sequence of convergence tests at s ¼ constant, θ ¼ π
2
for a component of the ψABCD constraint GAB with increasing ρ-

resolution for the case of two gravitational waves with Minkowski initial data using boundary conditions that do not kill subsidiary
modes. Here error refers to the difference between the constraint and zero. As we expected, the constraint does not converge to zero
everywhere.
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resulting initial data and see how the system behaves near
the conformal boundary and the singularity.
The Schwarzschild metric written in isotropic coordi-

nates is

~g ¼
�
1 − m

2ρ

1þ m
2ρ

�
2

dt2 −
�
1þ m

2ρ

�
4

× ½dρ2 þ ρ2ðdθ2 þ sin2θdϕ2Þ�: ð37Þ

We now take the hypersurface t ¼ 0 as our initial hypersur-
face Σ0 and compute the corresponding initial data induced
on it by the Schwarzschild metric. We also need to choose
initial dataH, Z andΘ so that we can compute the 1-form ha
and conformal factor Θ. Friedrich makes the choice

Θ ¼ 1

r2
¼ ρ2

ðρþ m
2
Þ4 ;

which does not compactify the initial surface in the ρ
direction. Next, the 1-form is fixed initially by setting
f
a
¼ 0 so that ha ¼ ∇aΘ. This also determines H and we

choose Z ¼ 0 to fix the remaining freedom. Using (15) and
(16), this gives the explicit expression for Θ as

Θ ¼ ρ2

ðρþ m
2
Þ4 − s2

�
ρ − m

2

ρþ m
2

�
2

; ð38Þ

and ha, whose spinor representation wewrite in decomposed
form as hAB þ 1

2
εABh

h0 ¼ h2 ¼ 0; h1 ¼ −
ffiffiffi
2

p
ρ

ρ − m
2

ðρþ m
2
Þ3 ;

h ¼ −2
ffiffiffi
2

p
s

�
ρ − m

2

ρþ m
2

�
2

: ð39Þ

FIG. 4. A sequence of convergence tests at s ¼ constant, θ ¼ π
2
for a component of the ψABCD constraint GAB with increasing

ρ-resolution for the case of two gravitational waves with Minkowski initial data using boundary conditions that kill subsidiary modes.
Here error refers to the difference between the constraint and zero. The constraint now converges to zero.

FIG. 5. Schematic setup of the IBVP for Schwarzschild space-
time perturbed by a gravitational wave. The location of the
computational domain is indicated by the shaded area inside the
Kruskal extension. The initial hypersurface is a finite piece of
the T ¼ 0 hypersurface starting at the cross-over. It reaches up to
the singularity and to null-infinity. This picture is perturbed by
pumping in a gravitational wave from the outer (right) boundary.
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The final step is to prescribe the extrinsic curvature KABCD
which vanishes initially since the initial hypersurface is time-
symmetric.
From the initial metric chosen as (37) evaluated at t ¼ 0,

expressions for Θ (38), hAB (39) and KABCD ¼ 0 we find
the remaining nonvanishing initial data to be

R ¼ ρ

ðρþ m
2
Þ2 ; c11 ¼

ðρþ m
2
Þ2ffiffiffi

2
p ;

γ20 ¼ γ̂01 ¼
ðρþ m

2
Þðρ − m

2
Þffiffiffi

2
p

ρ
;

P101 ¼ P110 ¼
mðρþ m

2
Þ2

ρ
; ψ2 ¼ −

mðρþ m
2
Þ6

ρ3
:

A convenient function to know during the evolution is the
original Schwarzschild radius rðs; ρÞ. In spherical sym-
metry the radius of the 2-spheres in the GCFE system is R
and hence we can relate it the Schwarzschild radius by

rðs; ρÞ ¼ R
Θ
:

This is very useful as it will tell us where the event horizon
is located and if or when we end up at the curvature

singularity. This is exactly true in spherical symmetry, i.e.
for the unperturbed space-time but it will also be approx-
imately correct in the perturbed case.
We choose m ¼ 0.5 and choose the spatial extent of

the computational domain as the 2-dimensional interval
½0.25; 1.25� × ½0; π� as in the previous section. Finally, we
need to specify boundary conditions. The left boundary
starts at the cross-over surface at ρ ¼ m=2 ¼ 1

4
. The

Kruskal extension has a reflection isometry ρ ↦ m2=4ρ
which fixes the hyper-surface ρ ¼ m=2. We impose this
reflection symmetry as boundary condition on the left
boundary. This implies the following conditions for the
ingoing components of the rescaled Weyl spinor

ψ3ðs; 0.25; θÞ ¼ −ψ̄1ðs; 0.25; θÞ;
ψ4ðs; 0.25; θÞ ¼ ψ̄0ðs; 0.25; θÞ:

There will be no constraint violation propagating in from
the inner boundary as we have not violated the constraints
there, it will remain as Schwarzschild space-time until the
gravitational wave coming in from the right boundary
reaches it, which does not happen in our simulations.
On the right boundary we implement our constraint

preserving boundary treatment. This is done by first
choosing the free wave profile q0 for ψ0 to be

FIG. 6. A sequence of convergence tests for a component of the ψABCD constraint GAB with nonconstraint-preserving boundary
conditions imposed computed on s ¼ constant, θ ¼ π

2
slices with increasing ρ-resolution. Here error refers to the difference between the

constraint and zero. As expected, the constraint does not converge to zero on the entire domain.
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q0ðs; θÞ ¼
8<
: 4a

ffiffiffiffi
2π
15

q
2Y20ðθÞsin8ð4πsÞ s ≤ 1

4

0 s > 1
4

;

where a is a fixed constant representing the amplitude of
the wave. The other ingoing mode is ψ1. Its boundary value
is determined to kill the ingoing constraint violating mode
via our resolution.
Now we have all that is needed to start evolving the

system. We note that we use a θ-resolution of 64 so that
even at late times of the simulation our fields are well
represented in the spin-weighted spherical harmonic basis.
We use ρ-resolutions of f25; 50; 100; 200; 400g which
gives us ample data to check the propagation of the
constraints. We evolve up to s ¼ 1.22 which incorporates
Iþ into the simulation, which is reached on the right
boundary at around s ¼ 0.83. Simulations are also per-
formed without our boundary treatment where the appro-
priate qi, i ≠ 0 are set to zero. This will allow us to contrast
the before and after of our boundary treatment and
emphasize the problem that we resolve.
It is worth noting that we could change the boundary

treatment when the right boundary has passed beyond Iþ.
As the constraint violating modes are timelike, they can
never propagate through Iþ from outside and hence there is

no need to kill them any longer. However, while this is true
analytically we must be cautious with this kind of argument
since the numerical propagation of constraint violation can
be faster. This is a purely numerical artefact which will
shrink as the ρ-resolution is increased.
We first present a convergence plot for the case of the

simple, but nonconstraint-preserving, choice of setting the
free boundary data (except q0) to zero. Figure 6 displays
the convergence plots for a component of the ψABCD
constraint GAB at s ¼ constant, θ ¼ π

2
slices. One clearly

sees that there is a mode propagating in from the right
boundary that stops the constraints from converging to
machine precision. This happens not just to this constraint,
but to all in the constraints in our system.
Now we contrast these plots to the analogous ones

that implement our boundary treatment, shown in Fig. 7.
Immediately one sees that these convergence plots are
exceedingly better than the previous ones. We get con-
vergence toward machine precision at the correct order and
in the process have moved the constraints around 1 × 108

closer to this. Looking at other constraints in the system we
see that the problem has been overcome in all of them and
this is seen to be the case for different choices of θ.
Thus we have shown that without our boundary treat-

ment, constraint violating modes of the subsidiary system

FIG. 7. A sequence of convergence tests for a component of the ψABCD constraintGAB with constraint-preserving boundary conditions
imposed computed on s ¼ constant, θ ¼ π

2
slices with increasing ρ-resolution. Here error refers to the difference between the constraint

and zero. As we expected, the constraint now converges to zero everywhere.
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propagate into the computational domain and prevent the
constraints from converging to zero. In the constraint
violating case we see again that the evolution system is
well-posed since the constraint violation converges to
nonzero value. Thus the most general case of our boundary
treatment has been shown to be numerically viable.
To end this section, it is interesting to see how the

“approximate” Schwarzschild radius r ¼ R=Θ in the per-
turbed case differs to that of the unperturbed case, see
Fig. 8. One can see that there is in fact a deviation that gets
larger as the simulation progresses. This deviation is large
enough to be discerned by the eye alone, which tells us that
the location of the event horizon in the perturbed case may
have actually moved a significant distance. These plots also
showcase the anisotropic nature of the gravitational radi-
ation, with spheres being stretched in one direction and
squeezed in the other. This can be deduced by noticing the
“perturbed” Schwarzschild radius is larger or smaller than
the corresponding unperturbed one, depending on which
part of the sphere is considered.

V. SUMMARY

In this paper we discussed a numerical implementation
of the GCFE in the space-spinor formalism. Subsequently
the manifold topology was restricted to be of the form
M2 × S2 so that the ð-calculus could be utilized. The
resulting system was checked for correctness by an analytic
comparison to exact solutions as well as a range of
numerical tests.
Most of the evolution equations in the system are

ODEs in the sense that they involve only the time derivative
∂s with the notable exception of the subsystem for the
gravitational spinor ψABCD, which is symmetric hyperbolic.
We discussed the characteristics of both that system and
the part of the subsidiary system concerned with the

propagation of its constraints. Using maximally dissipative
boundary conditions we proposed a practical way of
imposing boundary conditions which are physically rea-
sonable in the sense that there is one freely specifiable
degree of freedom and no incoming constraint violating
modes. This was found to be numerically stable in several
different settings, indicating that the IBVP for this formu-
lation of the conformal Einstein equations is well posed.
This newly developed framework will give us the

ability to investigate a range of problems that involve
the global structure and global properties of space-times. In
a forthcoming paper we will report on studies of the
characteristic ringing behaviour of the Schwarzschild
space-time under gravitational perturbations and discuss
the global issues of wave signal readout on Iþ and the
mass-loss due to gravitational radiation. After this problem,
the most obvious next step to take is to generalize this setup
to the Kerr space-time. As it is still not clear whether this
space-time is stable under general perturbations, we
could investigate this question from a global perspective.
Investigating this problem does not require any fundamen-
tal changes to the setup for the Schwarzschild space-time,
only a new initial data set is needed.
There is also the possibility of investigating the con-

ditions required on an asymptotically flat initial data set so
that the resulting vacuum solution has a regular null
infinity. Friedrich [67] has restricted the problem to how
initial data is chosen on the blowup of the point i0 to a
2-sphere. He has conjectured that the necessary condition
for a regular null infinity is that the initial data near null
infinity are those induced by asymptotically conformally
stationary space-times. This still remains as just a con-
jecture and hence it would be intriguing to probe this
question numerically by evolving sets of initial data that
do and do not satisfy the necessary conditions of the
conjecture. There have already been numerical studies of

FIG. 8. Two contour plots of the Schwarzschild radius r in both the perturbed and unperturbed space-times. The curves closest to the
bottom left are the r ¼ 1 curves (the event horizon in the unperturbed space-time). The outermost curves are curves very close to r ¼ 0
(left) and Iþ (right). Note that in the unperturbed case we can get further than the perturbed case due to the system consisting only of
ODEs, whence approaching r ¼ 0 does not destroy the simulation.
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linearly perturbed space-times which incorporate spacelike
infinity, see for example [34,37,38], while in [35,36] we
have studied simpler systems which show similar behaviors
near spacelike infinity.
Another open problemwithin the scope of this approach is

that of the stability of anti-de Sitter space-time. First brought
to attention by Bizoń and Rostworowski in 2012 [68], it was
found that the space-time is nonlinearly unstable under a
particular class of perturbations. Since then time-stable
periodic solutions have been discovered [69–71]. The main
issue to address in this context is the fact that a conformal
geodesic on the Einstein cylinder “stalls” in the sense that it
does only cover a finite interval of conformal time even for
an infinite range of its parameter. This means that we need to
implement a reparametrization in order to “reset” its param-
eter and to continue the evolution.
On the more mathematical side of things it would be

desirable to have a rigorous proof that our empirical
boundary treatment does in fact lead to a well-posed IBVP.
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APPENDIX A: THE SPACE-SPINOR FORMALISM

Due to its compact form, the calculus of space-spinors
[56] is a very enticing formalism in which to write the
GCFE. We will use definitions similar to that used in the
series of papers by Frauendiener [19–21] throughout.
First, we define a timelike vector field ta, normalized

with respect to the conformal metric g by tata ¼ 2.
Writing ta in terms of spinors, one immediately finds
the relationship

tAA0 tBA
0 ¼ tA0ðAtBÞA

0 þ 1

2
tCA0tCA

0
εAB ¼ εAB;

which justifies the choice of normalization constant. One
can now use this vector field as a map from the complex
spin-space S̄A

0
onto the spin-space SA, i.e. we can convert

primed indices to unprimed ones. This map is given by

αA0 ↦ tAA
0
αA0 ≕ αA:

For example, a spinor αa ¼ αAA0 can be mapped to αAB ≔
tBA

0
αAA0 . The result can be decomposed into two terms

αAB ¼ αðABÞ þ
1

2
εABαE

E; with αE
E ¼ αEA0 tEA

0
:

This shows us that the trace term corresponds to the part of
the spinor that has values in the direction of tAA

0
. Thus

finding irreducible decompositions of space-spinors is the
same as performing a 3þ 1 splitting. This is incredibly
useful for deriving evolution and constraint equations.
We also define a complex conjugation map on the

unprimed spin-space via

αA ↦ α̂A ≔ tAA
0
ᾱA0 :

This map has the property that for a spinor of rank n we
obtain

b̂αAB���D ¼ ð−1ÞnαAB���D:

We define a rank-2 spinor as real iff it is equal to the
negative of its complex conjugate, in accordance with the
reality of the SLð2;CÞ spinors. Since for any two real
rank-2 spinors αAB and βCD their outer product should also
be real, a rank-4 spinor is real if it is equal to its complex
conjugate.
We can now split the covariant derivative ∇ into spatial

and temporal parts using the mapping tBA
0∇AA0 and its

subsequent decomposition. This gives us two new deriva-
tive operators

D ¼ tAA
0∇AA0 ;

DAB ¼ tðAB
0∇BÞB0 ⇒ ∇AA0 ¼ 1

2
tAA0D − tBA0DAB:

Two fundamental spinor fields can now be defined as the
derivatives of ta with respect to these new derivative
operators. We have

KCD ≔ tDC0
DtCC0 ; KABCD ≔ tDC0

DABtCC0 :

Geometrically, the spinor field KAB corresponds to the
acceleration vector of ta while KABCD is related to the
geometry of the distribution defined by vectors Va that
satisfy Vata ¼ 0 and for a timelike vector field ta satisfying
the hypersurface orthogonal property, it corresponds to the
extrinsic curvature. They have the reality properties

K̂AB ¼ −KAB; K̂ABCD ¼ KABCD:

Note that these new derivatives operators are real in the
sense that they map real spinors to real spinors, but they do
not commute with our definition of complex conjugation,
i.e.

Dα̂C¼DðᾱA0 tCA0 Þ¼ tCA
0
DᾱA0 þ ᾱA0DtCA0 ¼ dDαCþ α̂AKC

A:
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A similar equation holds for KABCD. Hence we introduce
new derivative operators

∂αC ¼DαC −
1

2
KC

DαD; ∂ABαC ¼DABαC −
1

2
KABC

DαD;

adjusted to commute with complex conjugation. We now
have

∂ABα̂C ¼ − d∂ABαC; ∂α̂C ¼ d∂αC:
Note that the correction term KAB or KABCD corrects only
one index. So replacing the action of D or DAB on a rank-n
spinor with ∂ or ∂AB respectively, result in n correction
terms. For example,

∂αAB ¼ DαAB −
1

2
KA

CαCB −
1

2
KB

CαAC:

We will denote the spin-frame spinors by oA and ιA along
with their primed counterparts.

APPENDIX B: THE COMPLETE
SUBSIDIARY SYSTEM

It is convenient in the calculation of the subsidiary
equations to decompose the fields KABCD, PABCD and γABC
into irreducible pieces. The irreducible decompositions of
these fields can be written as

γABC ¼ ~γABC þ 2~γðAεBÞC; ðB1Þ

KABCD ¼ ~KABCD þ 1

2

�
εAðC ~KDÞB þ εBðC ~KDÞA

�
−
1

3
~KεAðCεDÞB; ðB2Þ

PABCD ¼ ~PABCD þ 1

2

�
εAðC ~P1DÞB þ εBðC ~P1DÞA

�
þ 1

2
εCD ~P2AB −

1

3
~PεAðCεDÞB; ðB3Þ

where the new spinor quantities are totally symmetric.
It is also useful to decompose the constraint UABCD ¼
~UABCD þ 1

2
~UABεCD, where ~UABCD ¼ ~UðABÞðCDÞ and

~UAB ¼ ~UðABÞ.
Applying the above procedure to the most general

form of the constraints (28) we find the subsidiary system
to be

∂Z0
AB ¼ −

1ffiffiffi
2

p TAB þ 1

4
C0CDZABCD; ðB4aÞ

∂Zi
AB ¼ 1

4
CiCDZABCD; ðB4bÞ

∂GAB ¼ ∂ðACGBÞC −
3

2
KðACGBÞC þ 1

2
~KðA

CGBÞC þ 1

2
GCD ~KABCD −

4

3
~KGAB − TCDψABCD

−
1

2
ZðACDEψBÞCDE − 2ZECD

EψABCD; ðB4cÞ

∂TAB ¼ TCD ~KABCD − ~KðA
CTBÞC −

2

3
~KTAB þ UAB þ 1

4
KCDZABCD; ðB4dÞ

∂ZABCD ¼ ΘεACðGBD − ĜBDÞ þ ΘεBDðGAC − ĜACÞ − 4UABCD − ~KZABCD þ ZABEðC ~KDÞ
E

− ~KðA
EZBÞECD þ ~KABEFZEF

CD − ~KCDEFZAB
EF; ðB4eÞ

∂JABC ¼ ~KDðAJBÞDC þ JDEC ~KABDE −
2

3
~KJABC þ 1

4
ΘoBðGAC þ ĜACÞ þ

1

2
~UABoC þ 1

4
ZABEFKC

FoE

þ ~γDZABCD −
1

2
~γCDEZAB

DE −
1

4
ΘεACðGBD þ ĜBDÞoD; ðB4fÞ

∂ ~UAB ¼ 1

2
hACðGBC − ĜBCÞ þ

1

2
hCBðGAC − ĜACÞ −

2

3
~K ~UAB − ~KðA

C ~UBÞC þ ~KABCD
~UCD þ 1

2
ZABCD

~PCD
2 ; ðB4gÞ

∂ ~UABCD ¼ −
1

2
hBðCGDÞA −

1

2
ĜAðChDÞB −

2

3
~K ~UABCD − ~KðA

EUBÞECD þ ~KABEFUEF
CD −

1

6
~PZABCD þ 1

2
ZABEðC ~P1DÞ

E

−
1

2
~PCDEFZAB

EF þ 1

2
εAðChEDÞGBE þ 1

2
εAðChDÞEĜBE: ðB4hÞ
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