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In this work we focus on a novel completion of the well-known Brans-Dicke theory that introduces an
interaction between the dark energy and dark matter sectors, known as complete Brans-Dicke (CBD)
theory. We obtain viable cosmological accelerating solutions that fit supernovae observations with great
precision without any scalar potential VðϕÞ. We use these solutions to explore the impact of the CBD
theory on the large scale structure by studying the dynamics of its linear perturbations. We observe a
growing behavior of the lensing potential Φþ at late-times, while the growth rate is actually suppressed
relatively to ΛCDM, which allows the CBD theory to provide a competitive fit to current RSD
measurements of fσ8. However, we also observe that the theory exhibits a pathological change of sign
in the effective gravitational constant concerning the perturbations on subhorizon scales that could pose a
challenge to its validity.
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I. INTRODUCTION

Two decades after the discovery of the late-times
accelerated expansion of our Universe [1,2], compre-
hending the physical nature behind the effect stands as
one of the more important challenges in modern physics. In
the standard model of cosmology, the Λ cold dark matter
(ΛCDM) model, a negative-pressure cosmological constant
Λ makes the majority of the energy density in the present
cosmos and accelerates its expansion within the framework
of Einstein’s general relativity (GR). In the concordance
model, Λ is attributed to a vacuum energy, but its observed
value is inexplicably small to theory (for a review on Λ
see [3]).
Hence, modified theories of gravity (MGT) were intro-

duced to explain our Universe’s accelerated expansion as
an alternative to ΛCDM. Scalar-tensor gravity theories are
widely studied as alternatives to general relativity and
can play a significant role in the description of the early or
late-times cosmic evolution. However, presently, it is not
clear that scalar-tensor theories, such as Brans-Dicke (BD)
[4], Galileon theory [5], fðRÞ models [6], and many others
embedded within the Horndeski formalism [7] can provide
self-accelerating solutions compatible with cosmological
observations [8], and hence be genuine alternatives to
Λ or dark energy (DE) (for a review on MGT and DE
see [9–11]).
In BD gravity in particular, the scalar field forms the

dark energy or can play a role in the early Universe

history, but also controls the evolution of the gravitational
constant. However, it is well known that in standard BD
theory self-accelerating solutions are not compatible with
Solar-System constraints [12,13] or even the latest cosmic
microwave background (CMB) results [14,15], as these
require a negative, order-unity Brans-Dicke parameter ωBD
[16,17]. In order to avoid this issue one either adds a self-
interacting potential [18–20] or considers a field or time-
dependent ωBD [21], but even then the problem is not
completely solved. Additionally, nonminimal couplings to
matter have been considered in Refs. [22–25].
Most of the cosmological models consider that the

evolution of dark matter and dark energy occur separately.
This means that the matter Lagrangian is added minimally
to the action. In Ref. [26] it was argued that there are
observational evidences which indicate a dark matter-dark
energy interaction and violation of the equivalence princi-
ple between baryons and dark matter. There is a rising
activity in cosmology in the study of such interacting
models (e.g. [27,28]) which can also help to the solution of
the coincidence problem [29,30]. Usually, such interactions
are chosen arbitrarily and do not arise by any physical
theory. In the context of BD gravity an energy exchange
model with a modified wave equation for the scalar field
was considered in Ref. [31] (for other approaches with
modified equations of motion see [32–35]).
In this work, we focus on a novel extension of the BD

theory introduced in Ref. [36], where the simple wave
equation of the scalar field was preserved, while the
standard conservation of matter was relaxed. Analyzing
exhaustively the Bianchi identities, three completions of
Brans-Dicke gravity were found to be the only theories
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which are unambiguously determined from consistency.
Here, we will focus on the first of these theories that we will
call for brevity as complete Brans-Dicke theory (CBD).
This theory has an extra parameter ν that naturally appears
as an integration constant, which controls the energy
exchange between the dark energy and matter sectors,
and when set to zero allows one to recover the standard
Brans-Dicke field equations. Although BD gravity was
initially formulated in terms of an action solely based on
dimensional arguments with the matter Lagrangian being
minimally coupled, CBD theory was derived at the level of
the equations of motion. The reason is that in the presence
of interactions between the matter Lagrangian and the
scalar field, there is an infinite number of actions that can be
constructed which recover the standard BD action in the
absence of interactions.
A discussion on the action of CBD theory was given in

Ref. [37], where it was shown that, for a matter Lagrangian
that vanishes on shell (such as pressureless dust, for
example), the theory can not be recast as a minimally
coupled scalar-tensor theory in either the Einstein or Jordan
frame. Hence, it should be able to produce interesting
phenomenology that cannot be associated to standard
Brans-Dicke gravity. Furthermore, and more importantly,
the complete BD theory is capable of providing self-
accelerating solutions for negative values of this new
constant in the absence of a scalar field potential [38].
However, these solutions have not yet been fully explored.
Therefore, in this work, we set out to study the impact

these solutions can have on the large scale structure of the
Universe by analyzing the dynamics of their linear pertur-
bations. Presently, there is an effort to obtain constraints on
modified theories of gravity on larger scales that are
competitive with those we have on Solar-System scales,
with a surge of surveys in the next decade that will improve
our knowledge of the Universe on cosmological scales,
such as the Dark Energy Survey (DES) [39], the extended
Baryon Oscillation Spectroscopic Survey (eBOSS) [40]
and the Euclid survey [41] (for a review on cosmological
tests of gravity see [42]). Hence, it is of paramount
importance to understand how a particular theory modifies
the observable Universe.
This paper is organized as follows: in Sec. II we

introduce the complete Brans-Dicke theory and its field
equations, and also extend its background solutions pre-
sented in Ref. [38] to high redshifts. Then, in Sec. III we
derive the full set of perturbed equations of motion and
present them in the Newtonian and synchronous gauges. In
Sec. IV we present the dynamical first-order differential
equations for the lensing potential, Φþ, and the slip
between the Newtonian potentials, χ, that we numerically
evolve to study the dynamics of the linear perturbations.
We then derive the subhorizon approximation for the
Newtonian potentials in Sec. V, and compute the evolution
of the growth rate fσ8 in Sec. VI, concluding in Sec. VII.

II. COSMOLOGY IN THE COMPLETE
BRANS-DICKE THEORY

We consider the complete Brans-Dicke theory presented
in [36] and described by the following equations

Gμ
ν ¼

8π

ϕ
ðTμ

ν þ T μ
νÞ ð2:1Þ

Tμ
ν ¼

ϕ

2λðνþ 8πϕ2Þ2 f2½ð1þ λÞνþ 4πð2 − 3λÞϕ2�ϕ;μϕ;ν

− ½ð1þ 2λÞνþ 4πð2 − 3λÞϕ2�δμνϕ;ρϕ;ρg

þ ϕ2

νþ 8πϕ2
ðϕ;μ

;ν − δμν□ϕÞ ð2:2Þ

□ϕ ¼ 4πλT ð2:3Þ

T μ
ν;μ ¼

ν

ϕðνþ 8πϕ2Þ T
μ
νϕ;μ: ð2:4Þ

Compared to the standard Brans-Dicke theory, the new
characteristic of these equations is the appearance of the
parameter ν, with dimensions mass to the fourth, which
enters the gravitational field equations. And, at the same
time, it violates the exact conservation of the matter energy-
momentum tensor T μ

ν in Eq. (2.4). The parameter λ ≠ 0 is
related to the standard Brans-Dicke parameter ωBD ¼ 2−3λ

2λ .
The system (2.1)–(2.4) reduces for ν ¼ 0 to the Brans-
Dicke equations of motion (in units where the velocity of
light is set to unit)

Gμ
ν ¼

8π

ϕ
ðTμ

ν þ T μ
νÞ ð2:5Þ

Tμ
ν ¼

2 − 3λ

16πλϕ

�
ϕ;μϕ;ν −

1

2
δμνϕ

;ρϕ;ρ

�
þ 1

8π
ðϕ;μ

;ν − δμν□ϕÞ

ð2:6Þ

□ϕ ¼ 4πλT ð2:7Þ

T μ
ν;μ ¼ 0; ð2:8Þ

which is described by the action

SBD ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωBD

ϕ
gμνϕ;μϕ;ν

�

þ
Z

d4x
ffiffiffiffiffiffi
−g

p
Lm; ð2:9Þ

where Lmðgκλ;ΨÞ is the matter Lagrangian depending on
some extra fieldsΨ. The system of equations (2.1) and (2.4)
will be analyzed for both a cosmological background and
for its perturbations.
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For the theory (2.1)–(2.4), a statistically spatially homo-
geneous and isotropic universe with Friedmann-Robertson-
Walker (FRW) metric has been studied in [38]. Here, we
consider the spatially flat case with background metric

ds̄2 ¼ −a2dτ2 þ a2ðτÞδijdxidxj; ð2:10Þ

where τ is the conformal time and we will denote with an
overdot the derivative with respect to τ. The modified
Friedmann equations, the dynamical Brans-Dicke scalar
field equation and the energy-momentum conservation
equation are given by

H2 ¼ 8π

3φ
ρa2 −

8πφ

νþ 8πφ2
H _φþ 4π

3λ

νþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 _φ2

ð2:11Þ

2 _HþH2 ¼ −
8π

φ

�
pa2 þ φ

2λ

ð1þ 2λÞνþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 _φ2

þ φ2

νþ 8πφ2
ðH _φþ φ̈Þ

�
ð2:12Þ

φ̈þ 2H _φþ 4πλð3p − ρÞa2 ¼ 0 ð2:13Þ

_ρþ 3Hðρþ pÞ ¼ ν

φðνþ 8πφ2Þ ρ _φ; ð2:14Þ

with H≡ _a
a ¼ aH the conformal Hubble factor, where

H ¼ 1
a
da
dt is the Hubble parameter (dt ¼ adτ). The back-

ground scalar field is denoted by φðτÞ, while in the next
section where perturbations will be introduced, the total
perturbed field will be ϕ ¼ φþ δϕ, with δϕ representing
the perturbation. Equation (2.14) can be integrated into a
simple expression for the evolution of the matter energy
density as a function of time

ρ ¼ ρ�
a3ð1þwÞ

φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2

p
j ; ð2:15Þ

where ρ� > 0 is an integration constant and it is assumed
that φ > 0.
We can write the Friedmann equations (2.11) and (2.12)

in a more familiar form

H2 ¼ 8πa2

3φ
ðρþ ρDEÞ ð2:16Þ

2 _HþH2 ¼ −
8πa2

φ
ðpþ pDEÞ; ð2:17Þ

where we have defined the effective dark energy and
effective dark pressure as

ρDEa2 ≡ −
3φ2

νþ 8πφ2
H _φþ φ

2λ

νþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 _φ2

ð2:18Þ

pDEa2 ≡ φ

2λ

ð1þ 2λÞνþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 _φ2

þ φ2

νþ 8πφ2
ðH _φþ φ̈Þ: ð2:19Þ

Then, according to (2.16), the density parameters are
defined as

Ωm ¼ 8πρa2

3φH2
; ΩDE ¼ 8πρDEa2

3φH2
: ð2:20Þ

In Ref. [38], the numerical background solutions were
obtained integrating the Friedmann and the scalar field
equations backwards in time, from a present-day value of
the scale factor normalized to 1, i.e. a0 ¼ 1. Hence, the
value of the integration constant ρ� was set so that Ωm

today, Ω0
m, would be equal to a fixed value close to 0.30.

Then, the units were chosen so that the initial value of the
scalar field, φ0, was fixed to be 1. The present-day value of
the scalar field velocity _φ0 and the parameters λ, ν were
constrained so that Ω0

DE has the value 1 −Ω0
m and also

that the value of the effective dark energy equation of state
wDE ¼ pDE=ρDE was close to −1 today, with matter
domination at earlier times. Using this “backward”method,
the solutions obtained provided self-acceleration at the
present for different values of ν and λ. However, the
stability of the solutions obtained with this method toward
very high redshifts is not guaranteed, which we have
numerically checked.
In this work, we are interested in obtaining the evolution

of linear perturbations from deep within matter domination.
We attempt to perform a forward numerical evolution
from a high redshift zi ≫ 1, so the initial conditions are
set at zi ¼ 1000. We choose to use the logarithmic variable
N ¼ ln a as the integration variable, thus its initial value is
Ni ¼ −6.91 (while today we still have a0 ¼ 1). The system
of equations (2.11), (2.12), and (2.13), after using
Eq. (2.15), is written equivalently as

4π

3λ

νþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 φ02 −
8πφ

νþ 8πφ2
φ0

þ 8πρ�e−N

3H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2j

p − 1 ¼ 0 ð2:21Þ

2

H
H0 þ 4π

λ

ð1þ 2λÞνþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 φ02

þ 8πφ

νþ 8πφ2

�
4πλρ�φe−N

H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2j

p − φ0
�
þ 1 ¼ 0 ð2:22Þ
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φ00 þ
�
2þH0

H

�
φ0 −

4πλρ�φe−N

H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2j

p ¼ 0; ð2:23Þ

where a prime denotes a derivative with respect to N. The
system (2.21)–(2.23) contains the integration constant ρ�
and the parameters λ, ν that have to be specified. It is a
consistent system since equation (2.21) is the constraint.
The analysis of this system can be made in two ways. In the
first one, the quantity e−NH−2 is replaced from (2.21) into
(2.22) and (2.23), and then, an autonomous second-order
differential equation for φ arises. When this equation is
solved for φðNÞ, then HðNÞ is found algebraically from
(2.21). In this method we need at the initial time Ni the two
initial conditions φi;φ0

i. In the second way, Eqs. (2.21) and
(2.22) are viewed as a system of two first-order differential
equations for φ, H. Now, we need at the initial time Ni
the two initial values φi;Hi [of course, φ0

i can be found
from (2.21)].
From the physical point of view the evolution should

be such that at early times the contribution of the effective
dark energy density is negligible, i.e. ΩDE ≪ 1. As seen
from (2.18), the simplest condition in order for this to be
achieved is to choose jφ0

ij ≪ 1, and the standard GR
behaviour is recovered at early times. This implies from
equation (2.21) the value of ρ� in terms of the initial values
φi; Hi, i.e. ρ� ¼ ð3=8πÞa3iH2

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2

i j
p

. Therefore,
there are not three independent integration constants, but
only two. In ΛCDM there are two integration constants,
namelyHi, ρ�, while the condition of negligible initial dark
energy is automatically satisfied, since at zi the matter term
is 109 times larger than the cosmological constant term,
therefore the two initial data are set at present in agreement
with the values H0, Ω0

m.
Then, we fix the free parameters λ and ν. From (2.18) we

need to set λ such that λ≳ jφ0
ij in order to keepΩDE ≪ 1. In

this work, we choose λ ¼ 1. In Ref. [38], it was shown
that the condition νþ 8πφ2 < 0 is successful in order to
have accelerating solutions today. Although acceleration
also appeared in some cases where the above quantity is
positive, here we will assume the negative sign and set ν to
a high negative value of −100. Therefore, a solution should
be restricted to the branch with φ < φ∞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijνj=ð8πÞp

,
otherwise poles would appear in the equations, e.g. in
Eq. (2.15) for the energy density. One word about the units
is needed at this point. Since φ−1 plays the role of varying
gravitational constant G, the scalar field φ has dimensions
of mass squared. Therefore, dimensionless quantities φ̂; ν̂
can be defined as φ̂ ¼ GNφ and ν̂ ¼ G2

Nν, where GN is
Newton’s constant. Then, in all the previous equations we
should replace φ by φ̂, ν by ν̂, and all ρ�, ρ, p, ρDE, pDE
should be multiplied by GN. In this sense, in the numerical
analysis, when we say that ν is −100, we strictly mean that
ν̂ is −100, while an order one value of φ basically means of
φ̂. Moreover, it should be noted that the parameter ν can be

totally absorbed in the system (2.21)–(2.23) when the
rescaling φ → φ=

ffiffiffiffiffijνjp
, ρ� → ρ�=

ffiffiffiffiffijνjp
is performed.

Since jφ0
ij ≪ 1, in the first period of evolution it is

φ ≈ φi, thus in equation (2.11) the derivatives of φ can be
omitted and we obtain H2 ≈ a3iH

2
i a

−3, which is the
behaviour of Einstein gravity in matter era. Instead of
having the unknown dimensionful initial value Hi in the
above expression of H2, as well as in ρ�, we prefer to
normalize Hi to the central value Ĥ0 ¼ 67.8 km=s=Mpc
coming from the latest Planck data, and parametrize Hi
in terms of the dimensionless quantity Ω̂m as follows:
a3iH

2
i ¼ Ĥ2

0Ω̂m. Therefore, it is H2 ≈ Ĥ2
0Ω̂ma−3 initially,

and ρ� ¼ ð3=8πÞĤ2
0Ω̂m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2

i j
p

. The quantity Ω̂m can
be interpreted as a fictitious value of the density parameter
Ωm corresponding to the energy density ρ�.
It is obvious that since the initial data are set at an early

epoch, the evolution of the equations does not assure that the
evolved theoretical today valuesHða ¼ 1Þ,Ωmða ¼ 1Þwill
coincidewith the actual today valuesH0,Ω0

m. Of course, the
values H0, Ω0

m are known from observations not precisely,
but with a small uncertainty. The value ofΩ0

m is close to 0.30
according to the most recent constraints [43]. Therefore,
Hða ¼ 1Þ,Ωmða ¼ 1Þ should be close to the values Ĥ0, 0.3
respectively, still within local observable bounds. As a
result, the two integration constants Ω̂m;φi, which deter-
mine thewhole evolution, cannot be chosen arbitrarily, but
should provide consistent values ofHða ¼ 1Þ,Ωmða ¼ 1Þ.
In the following we will succeed in such an agreement
between these theoretical and observed values by fixing
appropriately the initial conditions. Actually, we will be
more precise than that and provide a very good fit to low-
redshift supernovae data. As for the density parameter, it
arises that at all times it is Ωm¼ Ĥ2

0Ω̂m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ8πφ2

i j
p

=
ðe3NH2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ8πφ2j

p
Þ. Initially,Ωi

m ¼ 1, thus the condition
for ρ� is found as above. Today,

Ωmða ¼ 1Þ ¼ Ω̂m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jνþ 8πφ2

i j
jνþ 8πφ2

0j

s
Ĥ2

0

H2ða ¼ 1Þ ; ð2:24Þ

where we denote by φ0 the value of φða ¼ 1Þ resulting
from the numerical evolution, since there is no observa-
tional constraint on the present value of the scalar field to
distinguish between φ0 and φða ¼ 1Þ. Although φ−1 is
interpreted as the varying gravitational constant G, this
does not mean that φ0 equals G−1

N . It is actually expected
that φ0 is of the order of G−1

N , but the precise numerical
value is an issue of the initial conditions appropriate
to explain the current state of the Universe determined
by H0, Ω0

m. According to (2.24), successful Ω̂m, φi should
provide that Hða ¼ 1Þ is approximately equal to Ĥ0, and
also that φ0 agrees with the value provided by (2.24) with
Ωmða ¼ 1Þ close to 0.3. Thus, it is not an easy task to find
such Ω̂m, φi.
Since we have assumed that νþ 8πφ2 < 0, it will be

verified numerically that the scalar field grows in time (it is
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actually expected that G decreases with time), thus
φ0 > φi. Since Hða ¼ 1Þ, Ωmða ¼ 1Þ must be close to
Ĥ0, 0.3, it arises from (2.24) that Ω̂m < 0.3. This will
implicate a larger separation between the cosmological
evolutions predicted by the complete Brans-Dicke
theory and ΛCDM at early-times than at late-times. We
have implemented a Brent algorithm that searches for
the right φi in order to yield the desired Ωmða ¼ 1Þ for
a chosen Ω̂m. The latter was fine-tuned to produce a
value of Hða ¼ 1Þ that is compatible with current
observations. In the figures shown in this section we have
used Ω̂m ¼ 0.17 and φi ¼ 0.029, thus φ0 ¼ 1.773 and
Hi ¼ Ĥ0

ffiffiffiffiffiffiffi
Ω̂m

p
ð1þ ziÞ3=2 ¼ 13058Ĥ0. The function aðτÞ

can be found numerically from the numerical solu-
tion HðNÞ.
Another equivalent system of differential equations can

be presented which eliminates the initial condition Ω̂m and
at the same time it only needs to conform with a consistent
value of Ωmða ¼ 1Þ, thus it facilitates the search for
appropriate initial conditions. A rewriting of Eqs. (2.21)
and (2.22) gives a system for the evolution of φ and Ωm as

4π

3λ

νþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 φ02 −
8πφ

νþ 8πφ2
φ0 þ Ωm − 1 ¼ 0

ð2:25Þ

Ω0
m

Ωm
−
4π

λ

ð1þ 2λÞνþ 4πð2 − 3λÞφ2

ðνþ 8πφ2Þ2 φ02

−
4πφ

νþ 8πφ2
ð3λφΩm − 4φ0Þ ¼ 0: ð2:26Þ

Initially it is Ωi
m ¼ 1 and only the initial condition φi is

free. Moreover, this system does not need to match the

value Hða ¼ 1Þ, but only that of Ωmða ¼ 1Þ. Therefore,
scanning the parameter φi to provide Ωmða ¼ 1Þ ¼ 0.30 is
relatively easier, and the same values of φi, φ0 are found as
above. From the numerical solutions φðNÞ, ΩmðNÞ, a
suitable Ω̂m is selected as before that provides algebraically
the function HðNÞ which possesses sufficient fitting to
the supernovae.
In Fig. 1 we plot the background evolution predicted

by CBD according to the explanations of the previous
paragraphs. In Fig. 1(a) we have the Hubble parameter
as a function of the scale factor, compared against the
evolution predicted by the standard model, ΛCDM. As
expected, we have a larger separation between both
cosmologies at earlier times. Today, we have a less
than 10% difference between both models, with the
present-day value of H predicted by the CBD equal
to Hða ¼ 1Þ ¼ 73.4 km=s=Mpc, compatible with local
measurements of the Hubble parameter [44–46].
Then, in Fig. 1(b) we plot ΩmðaÞ and ΩDEðaÞ. We see

that our model provides a stable matter dominated phase
that is gradually overtaken by the effective dark energy
component close to the present, yielding Ω0

m ¼ 0.30 and
Ω0

DE ¼ 0.7. We also note that the flatness of the Universe
is guaranteed as we have numerically checked to have
Ωm þ ΩDE ¼ 1 throughout the cosmological evolution.
The viability of our model is further corroborated by the

evolution of the deceleration parameter q ¼ −1 − 1
H2

dH
dt ¼

− _H
H2 in Fig. 1(b), where we clearly observe the transition

from a decelerating to an accelerating dark energy domi-
nated Universe close to the present-day. We have also
checked that the model asymptotically tends to the value
φ∞ without crossing it, therefore avoiding any singularity
on the Hubble parameter and its derivatives. As φ
approaches φ∞, the first term on the right hand side of

(a) (b)

FIG. 1. We plot the background evolution predicted by the complete Brans-Dicke for the following choice of parameters: λ ¼ 1,
ν ¼ −100, Ω̂m ¼ 0.17 and φi ¼ 0.029. In (a) we have the evolution of the Hubble parameter againstΛCDM; in (b) we plot the evolution
of Ωm and ΩDE, together with the deceleration parameter q and the effective dark energy equation of state wDE.
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Eq. (2.18), which is positive, becomes enhanced and
dominates the negative second term, ensuring a posi-
tive ΩDE.
Still in Fig. 1(b), we also have the evolution of the

effective dark energy equation of state, wDE, where we see
that our solution predicts a phantom behavior today by
having wDE;0 < −1. For completeness, we also comment
on the early-time behavior of wDE, where we note that the
effective equation of state tends toward increasingly larger
negative values. This is a consequence of the way we have
set our initial conditions. Equation (2.18) shows that ρDE
will tend toward negligibly smaller values at early-times the
closer we set φ0

i to zero, leading to larger negative values
in wDE. This has, however, no discernible impact in the
background evolution, we predict, as ΩDE is also negligible
at the epoch we set the initial conditions.
Lastly, in Fig. 2, we compare our model to data from

the Union 2.1 compilation of 580 Type Ia supernova [47],
from which we adopt the covariance matrix without the
presence of systematics. We see that our model fits the
data with remarkable precision, comparable to ΛCDM,
without the presence of a potential. Hence, having a
complete Brans-Dicke model that predicts a viable back-
ground history and fits existing data, we can proceed to
obtain the evolution of the linear perturbations in this
theory.

III. PERTURBATION THEORY

We will study the scalar perturbations of the theory
(2.1)–(2.4) around the background (2.10). So, the back-
ground spatial metric is taken to be flat across all
scales comparable to the wavelength of the perturbations.
The spatial harmonic functions satisfying the equation

ð∇2 þ k2ÞY ¼ 0 are a complete set of the simple plane
waves

Yðk⃗; x⃗Þ ∝ eik⃗·x⃗; ð3:1Þ

where ∇2 ¼ δij∂i∂j, k2 ¼ δijkikj, and k⃗ · x⃗ ¼ δijkixj. In
order to expand perturbations, scalars are expanded by Y,
while vectors and tensors are expanded respectively by

Yi ¼ −
1

k
Y;i ¼ −i

ki
k
Y ð3:2Þ

Yij ¼
1

k2
Y;ij þ

1

3
δijY ¼

�
1

3
δij −

kikj
k2

�
Y: ð3:3Þ

For a scalar perturbation the perturbed metric tensor gμν
for a given wave-number k is generally parametrized in
terms of four independent functions of time A, B, HL, HT
as [48]

ds2 ¼ g00dτ2 þ 2g0idτdxi þ gijdxidxj; ð3:4Þ

where

g00 ¼ −a2ð1þ 2AYÞ ð3:5Þ

g0i ¼ −a2BYi ð3:6Þ

gij ¼ a2ðδij þ 2HLYδij þ 2HTYijÞ: ð3:7Þ

The perturbed scalar field is written as ϕ ¼ φðτÞ þ χðτÞY,
where φ is the background field and χ the time dependent
part of the perturbation. The formulas for the perturbations
of various geometric quantities as well as of the scalar field
derivatives are given in the Appendix.
The perturbations in the stress-energy tensor are decom-

posed into four components: density δρ ¼ ρδ ¼ ρδ
~
Y

[with ρðτÞ the background density and δ
~
ðτÞ the amplitude

of density perturbation], velocity v (where the perturbed
spatial velocity is ui

u0 ¼ vYi), isotropic pressure δp ¼ ϖY
[with ϖðτÞ measuring the amplitude of isotropic pressure
perturbation], and anisotropic stress 3

2
ðρþ pÞσðτÞ in agree-

ment with [49]. The perturbed stress-energy tensor takes
the form

T0
0 ¼ −ρð1þ δ

~
YÞ;

T0
i ¼ ðρþ pÞðv − BÞYi;

Ti
j ¼ ðpþϖYÞδij þ

3

2
ðρþ pÞσYi

j: ð3:8Þ

The linearized version of the nonconservation law (2.4)
is expressed as dynamical equations for the energy density
contrast δ

~
and the velocity v as follows

FIG. 2. We plot the distance moduli μ≡m −M predicted by
our model (using the parameters of Fig. 1) and ΛCDM, and
compare to the Union 2.1 compilation from the Supernova
Cosmology Project [47]. For the error bars, we adopted the
covariance matrix without systematics.
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_δ
~
þ ð1þ wÞðkvþ 3 _HLÞ þ 3H

�
δp
δρ

− w

�
δ
~

¼ ν

φðνþ 8πφ2Þ _χ −
νðνþ 24πφ2Þ
φ2ðνþ 8πφ2Þ2 _φχ ð3:9Þ

_v − _Bþ ð1 − 3wÞHðv − BÞ þ _w
1þ w

ðv − BÞ − δp=δρ
1þ w

kδ
~

− kAþ kσ ¼ −
ν

φðνþ 8πφ2Þ
w

1þ w
kχ; ð3:10Þ

where w ¼ p=ρ is the barotropic index of the background
single fluid and δp

δρ δ~
¼ ϖ

ρ . Note that the nonconservation
Eq. (2.4) for the background has been used in the derivation
of (3.9) and (3.10). We will consider that the evolution
starts deep within matter domination and neglects radiation.
Hence, _wwill be set to zero and we will have just the matter
component.
Next we proceed with the four perturbed field equa-

tions (2.1) which give
0–0 component

φ

�
3H2A − kHB − 3H _HL − k2

�
HL þHT

3

��

−
3

2
H2χ ¼ 4πð−ρa2δ

~
þ τ1Þ ð3:11Þ

τ1 ¼
24πφ2 − ν

2λðνþ 8πφ2Þ3 ½νþ 4πð2 − 3λÞφ2� _φ2χ

þ φ _φ

λðνþ 8πφ2Þ2 f½νþ 4πð2 − 3λÞφ2�ð _φA − _χÞ

− 4πð2 − 3λÞφ _φχg þ 6νφ _φ

ðνþ 8πφ2Þ2Hχ

þ φ2

νþ 8πφ2
½k2χ þ 3H_χ − _φð6HA − kB − 3 _HLÞ�;

ð3:12Þ

0-i component

φ

�
HA − _HL −

1

3
_HT

�

¼ 4πφ2

νþ 8πφ2
ð_χ −Hχ − _φAÞ

þ 4πφ

λðνþ 8πφ2Þ2 ½νð1þ λÞ þ 4πð2 − 3λÞφ2� _φχ

þ 4π

k
ð1þ wÞρa2ðv − BÞ; ð3:13Þ

i − j (i ≠ j) component

φ

�
−k2A−kð _BþHBÞþḦT −k2

�
HLþ

HT

3

�
þHð2 _HT−kBÞ

�
¼ 8πφ2

νþ8πφ2
½k2χþ _φðkB− _HTÞ�þ12πð1þwÞρa2σ; ð3:14Þ

i − i component

2φ

��
H2 þ 2 _H −

k2

3

�
A −

k
3
ð _Bþ 2HBÞ þH _A − ḦL − 2H _HL −

k2

3

�
HL þHT

3

��
− ðH2 þ 2 _HÞχ ¼ 8πða2ϖ þ τ2Þ;

ð3:15Þ

τ2 ¼
ν− 24πφ2

2λðνþ 8πφ2Þ3 ½ð1þ 2λÞνþ 4πð2− 3λÞφ2� _φ2χ þ φ2

νþ 8πφ2

�
2k
3

_φB− 2ðφ̈þH _φÞA− _φ _Aþχ̈ þH_χ þ 2k2

3
χ þ 2 _φ _HL

�

−
φ _φ

λðνþ 8πφ2Þ2 f½ð1þ 2λÞνþ 4πð2− 3λÞφ2�ð _φA− _χÞ− 4πð2− 3λÞφ _φχg− 2νφ

ðνþ 8πφ2Þ2 ½H _φþ 4πλð3w− 1Þρa2�χ:

ð3:16Þ
Finally, the perturbed scalar field Eq. (2.3) gives
δϕ equation

χ̈ þ 2H_χ þ k2χ − 2φ̈A − _φð4HAþ _A − kB − 3 _HLÞ ¼ 4πλ

�
1 − 3

δp
δρ

�
ρa2δ

~
: ð3:17Þ

Because of the Bianchi identities, not all of the above
equations are independent, but as for the background,
also here, one of these equations plays the role of the
constraint. Therefore, one equation is redundant and
can be neglected. Since Eq. (3.15) is the most

complicated one containing also second derivatives,
we will not make use of this in the numerical analysis
of Sec. IV. However, in Sec. V of subhorizon approxi-
mation, Eq. (3.15) will be used, while Eq. (3.13) will
be the redundant one.
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A. Conformal Newtonian gauge

In the Newtonian gauge, one sets HT ¼ B ¼ 0, A ¼ Ψ,
HL ¼ −Φ [49]. The matter equations of motion (3.9),
(3.10) take the following form in this gauge

_δ
~
þ ð1þ wÞðkv − 3 _ΦÞ þ 3H

�
δp
δρ

− w

�
δ
~

¼ ν

φðνþ 8πφ2Þ _χ −
νðνþ 24πφ2Þ
φ2ðνþ 8πφ2Þ2 _φχ ð3:18Þ

_vþ ð1 − 3wÞHvþ _w
1þ w

v −
δp=δρ
1þ w

kδ
~
− kΨþ kσ

¼ −
ν

φðνþ 8πφ2Þ
w

1þ w
kχ: ð3:19Þ

The gravitational equations take the form
0–0 component

φð3H2Ψþ 3H _Φþ k2ΦÞ − 3

2
H2χ ¼ 4πð−ρa2δ

~
þ τ1Þ;

ð3:20Þ

τ1 ¼
24πφ2 − ν

2λðνþ 8πφ2Þ3 ½νþ 4πð2 − 3λÞφ2� _φ2χ

þ φ _φ

λðνþ 8πφ2Þ2 f½νþ 4πð2 − 3λÞφ2�ð _φΨ − _χÞ

− 4πð2 − 3λÞφ _φχg þ 6νφ _φ

ðνþ 8πφ2Þ2Hχ

þ φ2

νþ 8πφ2
½k2χ þ 3H_χ − _φð6HΨþ 3 _ΦÞ�; ð3:21Þ

0—i component

φðHΨþ _ΦÞ

¼ 4πφ2

νþ 8πφ2
ð_χ −Hχ − _φΨÞ þ 4πφ

λðνþ 8πφ2Þ2 ½νð1þ λÞ

þ 4πð2 − 3λÞφ2� _φχ þ 4π

k
ð1þ wÞρa2v; ð3:22Þ

i − j (i ≠ j) component

φðΦ − ΨÞ ¼ 8πφ2

νþ 8πφ2
χ þ 12π

k2
ð1þ wÞρa2σ; ð3:23Þ

i − i component

2φ

��
H2 þ 2 _H −

k2

3

�
Ψþ k2

3
Φþ Φ̈þ 2H _ΦþH _Ψ

�

− ðH2 þ 2 _HÞχ ¼ 8πða2ϖ þ τ2Þ; ð3:24Þ

τ2 ¼
ν − 24πφ2

2λðνþ 8πφ2Þ3 ½ð1þ 2λÞνþ 4πð2 − 3λÞφ2� _φ2χ −
φ2

νþ 8πφ2

�
2ðφ̈þH _φÞΨþ _φ _Ψþ2 _φ _Φ−χ̈ −H_χ −

2k2

3
χ

�

−
φ _φ

λðνþ 8πφ2Þ2 f½ð1þ 2λÞνþ 4πð2 − 3λÞφ2�ð _φΨ − _χÞ − 4πð2 − 3λÞφ _φχg − 2νφ

ðνþ 8πφ2Þ2 ½H _φþ 4πλð3w − 1Þρa2�χ:

ð3:25Þ

Finally, the scalar field Eq. (3.17) becomes
δϕ equation

χ̈ þ 2H_χ þ k2χ − 2φ̈Ψ − _φð4HΨþ _Ψþ 3 _ΦÞ

¼ 4πλ

�
1 − 3

δp
δρ

�
ρa2δ

~
: ð3:26Þ

B. Synchronous gauge

In this gauge, ones sets A ¼ B ¼ 0, and HL ¼ h=6,
HT ¼ −3ðηþ h=6Þ [49]. The matter equations of motion
(3.9), (3.10) take the following form in this gauge

_δ
~
þ ð1þ wÞ

�
kvþ

_h
2

�
þ 3H

�
δp
δρ

− w

�
δ
~

¼ ν

φðνþ 8πφ2Þ _χ −
νðνþ 24πφ2Þ
φ2ðνþ 8πφ2Þ2 _φχ ð3:27Þ

_vþ ð1 − 3wÞHvþ _w
1þ w

v −
δp=δρ
1þ w

kδ
~
þ kσ

¼ −
ν

φðνþ 8πφ2Þ
w

1þ w
kχ: ð3:28Þ

One may remove the remaining freedom and completely
define the coordinates by setting the cold dark matter
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particles are at rest, having zero peculiar velocity v. Indeed,
for cold dark matter there is no stress, σ ¼ 0, and the
isotropic pressure perturbation δp should vanish as well
since pressure gradients should only be relevant at very
small scales (and even then, this is neglected sometimes).
Thus, the condition of vanishing peculiar velocity, v ¼ 0, is
consistent with Eq. (3.28). Of course, such a result is not
possible in Newtonian gauge due to the presence of the
gravitational potential Ψ in (3.19).
The gravitational equations take the form
0–0 component

φðH _h − 2k2ηÞ þ 3H2χ ¼ 8πðρa2δ
∼
− τ1Þ; ð3:29Þ

τ1¼
24πφ2−ν

2λðνþ8πφ2Þ3 ½νþ4πð2−3λÞφ2� _φ2χ

−
φ _φ

λðνþ8πφ2Þ2f½νþ4πð2−3λÞφ2�_χþ4πð2−3λÞφ _φχg

þ 6νφ _φ

ðνþ8πφ2Þ2Hχþ φ2

νþ8πφ2

�
k2χþ3H_χþ _φ

2
_h

�
;

ð3:30Þ

0—i component

φ_η ¼ 4πφ2

νþ 8πφ2
ð _χ −HχÞ þ 4πφ

λðνþ 8πφ2Þ2 ½νð1þ λÞ

þ 4πð2 − 3λÞφ2� _φχ þ 4π

k
ð1þ wÞρa2v; ð3:31Þ

i − j (i ≠ j) component

φ

�
k2η − 6H

�
_ηþ

_h
6

�
− 3η̈ −

ḧ
2

�

¼ 8πφ2

νþ 8πφ2

�
k2χ þ 3 _φ

�
_ηþ

_h
6

��
þ 12πð1þ wÞρa2σ;

ð3:32Þ

i − i component

φ

3
ð2k2η − 2H _h − ḧÞ − ðH2 þ 2 _HÞχ ¼ 8πða2ϖ þ τ2Þ;

ð3:33Þ

τ2 ¼
ν − 24πφ2

2λðνþ 8πφ2Þ3 ½ð1þ 2λÞνþ 4πð2 − 3λÞφ2� _φ2χ þ φ2

νþ 8πφ2

�
χ̈ þH_χ þ 2k2

3
χ þ _φ

3
_h

�

þ φ _φ

λðνþ 8πφ2Þ2 f½ð1þ 2λÞνþ 4πð2 − 3λÞφ2�_χ þ 4πð2 − 3λÞφ _φχg − 2νφ

ðνþ 8πφ2Þ2 ½H _φþ 4πλð3w − 1Þρa2�χ: ð3:34Þ

Finally, the perturbed scalar field Eq. (3.17) gives
δϕ equation

χ̈ þ 2H_χ þ k2χ þ _φ

2
_h ¼ 4πλ

�
1 − 3

δp
δρ

�
ρa2δ

∼
: ð3:35Þ

IV. THE LENSING POTENTIAL

We assume the Newtonian gauge and neglecting aniso-
tropic contributions from matter fields, σ ¼ 0, the
anisotropy Eq. (3.23) yields the following algebraic relation
between the gravitational potentials and the scalar field
perturbation

Φ −Ψ ¼ χ

DðφÞ ; ð4:1Þ

where we have set

DðφÞ ¼ νþ 8πφ2

8πφ
: ð4:2Þ

Equation (4.1) defines the slip χ between the Newtonian
potentials and expresses the departure from standard

general relativity where the anisotropy equation is the
simple equation Φ ¼ Ψ.
Since in (3.22) the only derivatives of the perturbed

variables are encountered in the combination _Φ − _χ
2D, defin-

ingΦþ ¼ Φ − χ
2D, only the single derivative

_Φþ will remain.
Due to (4.1) it is

Φþ ¼ Φþ Ψ
2

; ð4:3Þ

which is called lensing potential. This is responsible for such
effects as the integrated Sachs-Wolfe effect in the CMB and
weak lensing of distant galaxies. Due to Eq. (4.1), among the
gravitational potentialsΦ,Ψ and the scalar field perturbation
χ, only two are independent quantities, which are given by
Φþ; χ. The variables Φþ, χ are linear combinations of the
gravitational potentials Φ, Ψ, and inversely

Φ ¼ Φþ þ χ

2D
ð4:4Þ

Ψ ¼ Φþ −
χ

2D
: ð4:5Þ
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We will transform the remaining gravitational equations (3.20)and (3.22) into a coupled system of first-order differential
equations for Φþ, χ. These are the functions to be evolved along with the perturbations of the matter fields. This analysis will
facilitate the numerical treatment of the equations and the interpretation of the results.
Startingwith (3.22)weget, after the substitution (4.4), (4.5)

Φ0þ ¼ −
�
1þ φ0

2D

�
Φþ þ 1

2D2

�
D0 þ φ0

2

�
χ þ 4πφ0

λðνþ 8πφ2Þ2 ½νð1þ λÞ þ 4πð2 − 3λÞφ2�χ þ 4π

kHφ
ð1þ wÞρav; ð4:6Þ

where, as mentioned, a prime denotes differentiation with respect to ln a.
A suitable linear combination of Eq. (3.20) and (3.22) leads to an equation containing the comoving density perturbation

Δ ¼ δ
~
þ 3H

k
V; ð4:7Þ

where V ¼ ð1þ wÞv. Using again (4.4) and (4.5) to convert everything into Φþ and χ, we finally get

φ0

λD
χ0 ¼ −

8πρ

H2
Δþ 3χ −

4πðν − 24πφ2Þ
λðνþ 8πφ2Þ3 ½νþ 4πð2 − 3λÞφ2�φ02χ þ 8π

νþ 8πφ2

�
3νφ0

4πD
þ 3φ2 þ 3φ2φ0

2D
þ 2φ2D0φ0

2D2

−
2 − 3λ

2λD
φφ0

�
φφ0

2D
þ φ0 þ 3φ

�
−

νφ0

8πλD

�
φ0

2D
þ 3ð1þ λÞ

��
χ −

3φφ0

D
Φþ0

þ 8πφ0

νþ 8πφ2

�
2 − 3λ

2λD
φ2φ0 þ ν

8πλD
φ0 − 3φ2

�
Φþ −

2k2φ
a2H2

Φþ: ð4:8Þ

We now have the tools to obtain the evolution of
the linear perturbations in the complete Brans-Dicke
theory. Equations (3.18), (3.19) can easily be expressed
in terms of the lensing potential and primed derivatives.
Equation (3.24) is the redundant equation. We will solve
numerically the system of the first-order differential equa-
tions (3.18), (3.19), (4.6), and (4.8). This system is well-
defined since the isotropic pressure δp can be considered
negligible in the scales of interest. In principle δp could be
substituted from Eq. (3.26), however this would bring
unnecessary complexity due to the second derivatives of χ,
so we do not follow this method. The remaining part of
Eq. (3.26) can be checked for consistency in the end for the
numerical solution obtained. However, in the subhorizon
approximation of the next section the consistency of this
equation will become manifest. In order to perform the
numerical integration, we impose initial conditions on Φþ
and χ at a redshift of zi ¼ 1000, as if we had minimal
deviations from standard general relativity, i.e. Φþi ¼ −1
and χi ¼ 0. Since in GR the two Newtonian potentials
remain constant in the initial era of evolution and the
lensing potential is a combination of these potentials, it is
reasonable to set Φþi

0 ¼ 0. Then, Eqs. (4.6) and (4.8)
provide the initial velocity vi of the matter perturbation
and the initial comoving density perturbation Δi. Indeed,
using (2.11) initially, we get the standard GR relations

vi ¼
2k

3aiHi
Φþi ð4:9Þ

Δi ¼ −
2k2

3a2iH
2
i

Φþi: ð4:10Þ

We can see the evolution of the lensing potential Φþ and
the slip χ in Figs. 3(a) and 3(b), respectively, for the CBD
model. The first immediate observation is that the evolution
of the linear perturbations in the complete Brans-Dicke
theory (both the lensing potential and the slip) is scale-
dependent, particularly at early-times. This is a general
feature of modified gravity theories, and is in complete
contrast to the scale-independent GR+ΛCDM predictions.
Indeed in GR, the absence of χ makes Eqs. (4.6) and (3.19)
an autonomous system for Φ, v̂ ¼ v=k, without containing
k. Together with the above initial conditions Φi ¼ −1,
v̂i ¼ 2Φi=ð3HiÞ, which do not contain k as well, it
arises that Φ; v̂ are scale-independent in GR, while (4.8)
shows that δ

~
is scale-dependent in GR. In CBD however,

the existence of the last k-term in (4.8), as well as the kv
term in (3.18), result in the scale-dependence of all
perturbations.
Then, we have the oscillatory behavior of the slip

between the Newtonian potentials, shown in Fig. 3(b).
This is also observed in other (noninteracting) scalar-tensor
theories such as metric fðRÞ [50], or the hybrid metric-
Palatini theory [51], and can be understood from Eq. (3.26)
which is the equation of a damped harmonic oscillatory
with a driving term. We observe these oscillations mainly at
early-times, and they become more pronounced the smaller
the scales (higher k’s) we consider, as these modes start
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deep within the range of action of the additional force the
scalar degree of freedom mediates. As in standard Brans-
Dicke theory (with at most a constant potential), we have
a massless scalar field. Hence, its effective Compton
radius can include and impact even the largest scales
(smallest k) we consider at early times. These oscillations
could lead to instabilities at early-times. For instance, in
metric fðRÞ, the oscillations in the gravitational potentials
manifest in the perturbation of the metric Ricci scalar δR,
leading to a possible overproduction of new massive
scalar particles in the very early Universe [52]. A more
detailed study on this is, however, beyond the scope of the
current work.
As the cosmological evolution continues, the oscillations

in χ get progressively damped by the Hubble friction term
in Eq. (3.26), and they eventually get smoothed and
unnoticeable toward the present. As we approach a ¼ 1,
we see that the equilibrium position of χ is shifted from
zero to a positive value, and shows a tendency to increase.
This is due to the driving term in Eq. (3.26), which tries
to displace χ from the equilibrium position set by the
initial conditions. Hence, as δ

~
grows, the driving term will

become more important, and its overall effect will be more
significant the larger the value of λ is.
Lastly, we have the lensing potentialΦþ in Fig. 3(a). We

have again the distinct effect of the scale-dependent
oscillations at early times that propagate from the evolu-
tion in χ. Such rapid oscillations in Φþ can contribute
to a significant early-times integrated Sachs-Wolfe (eISW)
effect, which could impact the CMB as seen in Ref. [53] for
instance. Furthermore, we also have a noticeable departure
from standard GR+ΛCDM toward the present. We can see
in Fig. 3(a) that the absolute value of the lensing potential
exhibits a distinct growing tendency at late-times. In the
standard cosmological model, with the onset of cosmic

acceleration, the lensing potential decays due to the
expanding background. What we see in CBD is that,
despite having accelerating background solutions, jΦþj
actually grows as we approach a ¼ 1, yielding a late-times
integrated Sachs-Wolfe (lISW) effect opposite to that of
ΛCDM. This should produce a noticeable impact on the
larger scales of the CMB, which might cause difficulties
with current observations of the lISW [54–56].
Note also from Eqs. (4.4), (4.5), and Fig. 3 that the

Newtonian potentials Φ, Ψ oscillate around −1 at early
times. Although these potentials normally acquire negative
values due to the attractive character of gravity, however, it
can be seen that Ψ passes to positive values at late times.
This late-times behaviour of Ψ will become significant in
Sec. VI, where the behaviour of δ

~
will be studied.

V. SUBHORIZON APPROXIMATION

We now consider wave modes that are deep within the
Hubble radius such that k ≫ aH. In this limit, we adopt the
quasistatic approximation, discarding time derivatives of
perturbations when compared to their spatial variation. This
is generally a good approximation for scalar-tensor theories
on small scales [57]. In practice, this allows one to keep
the terms proportional to k2=ða2H2Þ, as well as those
related to the matter perturbation δ

~
and ϖ, and is known

as the subhorizon approximation [58,59]. Equation (3.20)
becomes

Φ ¼ −
4π

φ

a2

k2
ρδ
~
þ 4πφ

νþ 8πφ2
χ: ð5:1Þ

Therefore, Eq. (3.20), which gave the differential equa-
tion (4.8) for χ, has now become an algebraic equation.
Equation (3.23) coincides with equation (4.1) for the

(a) (b)

FIG. 3. We plot the evolution of the lensing potential Φþ and the slip χ between the Newtonian potentials as a function of scale factor
for different k (h/Mpc) scales, using the CBD model.
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slip. Also the complicated equation (3.24) gets the simple
algebraic form

Φ −Ψ ¼ 8πφ

νþ 8πφ2
χ þ 12π

φ

a2

k2
ϖ: ð5:2Þ

Due to Eq. (4.1), Eq. (5.2) gives ϖ ¼ 0, so in the
subhorizon approximation our previous assumption of
negligible isotropic pressure perturbation is verified. This
means that in the context of the present approximation the
i − i and i − j (i ≠ j) equations coincide ifϖ ¼ 0, and they
provide information for the potential Ψ. The differential
equation (3.26) becomes

χ ¼ 4πλ
a2

k2
ρδ
~
− 12πλ

a2

k2
ϖ; ð5:3Þ

where ϖ ¼ 0 has to be set. Therefore, we see a propor-
tionality between the slip χ and the matter perturbation
δ
~
. Finally, Eq. (3.22) or the lensing potential equation (4.6)
does not accept any simplification and is the redundant
equation in this approximation, which should be satisfied
on shell.
From Eqs. (5.1) and (5.3) we can express Φ in terms

of δ
~
as

k2

a2
Φ ¼ −

4π

φ

�
νþ 8πφ2ð1 − λ=2Þ

νþ 8πφ2

�
ρδ
~
: ð5:4Þ

Then, from Eq. (5.2) we get Ψ as

k2

a2
Ψ ¼ −

4π

φ

�
νþ 8πφ2ð1þ λ=2Þ

νþ 8πφ2

�
ρδ
~
; ð5:5Þ

and we write again Eq. (5.3) for completeness

χ ¼ 4πλ
a2

k2
ρδ
~
: ð5:6Þ

Equations (5.4), (5.5), and (5.6) express algebraically the
gravitational and scalar field perturbations in terms of the
matter density perturbation δ

~
. This δ

~
is given by the system

of equations (3.18) and (3.19) after substitution of (5.4),
(5.5), and (5.6). In the next section, we will derive an
autonomous second-order differential equation for δ

~
within

the subhorizon approximation. Note also from Eqs. (5.4),
(5.5), and (5.6) the proportionality of Φ, Ψ to χ, in
agreement with the late-times behaviours derived numeri-
cally in the previous section without any approximation.
Lastly, we can relate from the above expressions the

lensing potential Φþ in the subhorizon approximation to
the scalar-field perturbation as

Φþ ¼ −
1

λφ
χ: ð5:7Þ

This equation also coincides with the subhorizon limit of
the slip equation (4.8), where a term proportional to v=k
should be ignored in this limit [this is due to that
ignoring the various terms in (4.8) means from (4.6)
ignoring the term v=k]. From Eq. (5.7) we can anticipate
that if χ grows at late-times, then Φþ will follow that
behavior, increasing in absolute amplitude, in agreement
with Fig. 3(a). The scale-independence of χ at late-times,
shown in Fig. 3(b) and explained in the next section,
implies also the same independence for Φþ, Φ, Ψ. This is
consistent with the nonmassive Brans-Dicke theory [60],
and contrasts, for instance, with metric fðRÞ theories
[50]. This is the reason why we are not able to resolve
the differences in the evolution of the lensing potential
and χ in Fig. 3 for the different k scales when we
approach the present time.
We can now write the two functions that are commonly

used to parametrize deviations from general relativity in
modified theories of gravity, μða; kÞ and γða; kÞ. The
former defines the relation between the Newtonian poten-
tial Ψ and the matter density perturbation, while the latter
parametrizes the ratio between the gravitational potentials,
such as [61,62]

k2

a2
Ψ ¼ −4πμða; kÞρδ

~
; ð5:8Þ

Φ
Ψ

¼ γða; kÞ: ð5:9Þ

Hence, for the complete Brans-Dicke theory, these func-
tions will take the form

μCBDða; kÞ ¼
1

φ

νþ 8πφ2ð1þ λ=2Þ
νþ 8πφ2

; ð5:10Þ

γCBDða; kÞ ¼
νþ 8πφ2ð1 − λ=2Þ
νþ 8πφ2ð1þ λ=2Þ ; ð5:11Þ

which recover the known results for standard massless
Brans-Dicke in the limit of ν ¼ 0 [60]

μν¼0ða; kÞ ¼
2ωBD þ 4

2ωBD þ 3

1

φ
; ð5:12Þ

γν¼0ða; kÞ ¼
ωBD þ 1

ωBD þ 2
: ð5:13Þ

VI. GROWTH RATE

The equations for matter perturbations (3.18) and (3.19)
in the matter era with σ ¼ ϖ ¼ 0 take the following form
(without making use of the approximation on subhorizon
scales)
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_δ
~
þkv−3 _Φ¼ ν

φðνþ8πφ2Þ _χ−
νðνþ24πφ2Þ
φ2ðνþ8πφ2Þ2 _φχ ð6:1Þ

_vþHv − kΨ ¼ 0: ð6:2Þ

We differentiate (6.1) once more and eliminate _v; v from
(6.1) and (6.2) to find the equation of motion for δ

~

δ̈
~
þH_δ

~
þ k2Ψ − 3Φ̈ − 3H _Φ

¼ 1

a

�
νa

φðνþ 8πφ2Þ _χ −
νðνþ 24πφ2Þa
φ2ðνþ 8πφ2Þ2 _φχ

�
:
: ð6:3Þ

Now the subhorizon approximation can be implemented
and Eq. (6.3) gets simplified as

δ̈
~
þH_δ

~
þ k2Ψ ¼ 0: ð6:4Þ

Converting to e-folding time ln a we get

δ
~

00 þ
�
H0

H
þ 1

�
δ
~

0 þ k2

H2
Ψ ¼ 0: ð6:5Þ

Using Eq. (5.5) to replace Ψ we obtain

δ
~

00 þ
�
H0

H
þ 1

�
δ
~

0 −
4π

H2

νþ 4πð2þ λÞφ2

φðνþ 8πφ2Þ ρa2δ
~
¼ 0: ð6:6Þ

The second order differential equation (6.6) for the dynam-
ics of the linear matter perturbations δ

~
can also be written as

f0 þ f2 þ
�
H0

H
þ 1

�
f −

4π

H2

νþ 4πð2þ λÞφ2

φðνþ 8πφ2Þ ρa2 ¼ 0;

ð6:7Þ

where f ¼ d ln δ
∼

d ln a is the linear growth rate. The modified
gravitational coupling predicted by the CBD theory
through μCBDða; kÞ will lead to a growth history that is
different than that of an effective dark energy model within
GR that exhibits the same expansion history as our
complete Brans-Dicke model.
Equation (6.6) defines an autonomous differential equa-

tion for the quantity δ̂
~
¼ δ

~
=k2. No k-dependence is present

in this equation for δ̂
~
. Moreover, from the initial conditions

(4.9) and (4.10) we get δ̂
~ i
¼ −2Φþi=ð3H2

i Þ, which also
does not depend on k. This initial condition also arises from
the subhorizon Eqs. (5.7) and (5.6) with the use of (2.11).
Since both the differential equation and the initial condition
of δ̂

~
do not depend on k, thus δ̂

~
is scale-independent, which

means that δ
~
is proportional to k2 in the subhorizon limit

(the same is true in the subhorizon limit of GR). From
Eq. (5.6), we obtain that χ is scale-independent in this
approximation, in agreement with the late-times behaviour

of Fig. 3(b). Thus, all Φþ, Φ, Ψ are scale-independent in
this limit. Finally, since knowing δ̂

~
means from (5.5) that Ψ

is known and scale-independent, thus Eq. (6.2) is converted
into an autonomous differential equation for v̂ ¼ v=k
which does not depend on k. Additionally, the initial
condition (4.9) is v̂i ¼ 2Φþi=ð3HiÞ, which also does not
depend on k. Therefore, v̂ is scale-independent and v
depends linearly on k in the subhorizon approximation (this
is also true in GR, but at all times).
In Fig. 4 we plot for recent redshifts the numerical

evolution of fσ8ðzÞ, also known as growth rate, with the
amplitude of fluctuations σ8ðzÞ given by

σ8ðzÞ ¼ σ08

δ
~
ðz; kÞ
δ
~
ð0; kÞ ; ð6:8Þ

where the current value of σ8 can be estimated through the
cosmic microwave background [43], weak-lensing [63], or
galaxy clustering [64]. On the other hand, fσ8 can be
extracted from redshift space distortions (RSD) observa-
tions as a function of redshift. The most recent fσ8 data
points available were used in Fig. 4, and can be consulted in
Table I. The plot of Fig. 4 has been made using the exact
equations discussed in Sec. IV, and not the approxi-
mated Eq. (6.7).
We can see in this figure that the CBD theory predicts

less growth than ΛCDM, and could potentially provide a
better fit to existent RSD data than the concordance
cosmological model. This may seem counterintuitive given
that, in Sec. IV, we concluded that the lensing potential Φþ
exhibited a distinct late-time growth as the slip between the
gravitational potentials also grew at late-times. Since the
scale used in Fig. 4 is certainly subhorizon at low redshifts,
the decrease of fσ8 or also of f, compared to ΛCDM, can
be explained from the last term in Eq. (6.7). The effective

FIG. 4. We plot fσ8 for the CBD model against ΛCDM. The
data points used can be seen in Table I. The parameters used were
λ ¼ 1, ν ¼ −100 and Ω̂m ¼ 0.17, φi ¼ 0.029. We have taken
σ08 ¼ 0.83, as measured by the Planck collaboration [43].
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gravitational coupling concerning the perturbations is given

from (6.7) as Geff ¼ νþ4πð2þλÞφ2

φðνþ8πφ2Þ , and it can be seen that Geff

passes from positive to negative values recently. This
change of sign happens when the scalar field crosses the
critical value φc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijνj=½4πð2þ λÞ�p
, and it is φc < φ∞ as

long as λ > 0. For ΛCDM or for BD, the corresponding
Geff’s are positive. Therefore, as φ grows toward the
present, f0 in the CBD theory acquires a negative con-
tribution (or before that, a decaying positive contribution)
due to Geff , providing less growth. Similarly, the equation
governing fσ8 in the subhorizon approximation arises
from (6.7) as

ðfσ8Þ0 þ
�
H0

H
þ 1

�
fσ8 þ

σ08
δ
~
ð0; kÞ

k2

H2
Ψ ¼ 0; ð6:9Þ

where the Newtonian potential Ψ from (5.5) is proportional
to Geff and of opposite sign. A recent negative Geff gives a
positive Ψ, as already known, and decreases fσ8. A similar
behavior in Geff was observed in a specific nonlocal model
of modified gravity that also lead to a prediction of less
growth than ΛCDM [76].
We have tested numerically that, as long as one requires

Ω0
DE ≈ 0.7, the above change in sign of Geff or Ψ close to

the present persists, independently of the parameters or the
initial conditions of the background evolution, even set at
different redshifts. We have actually found very special
values of the parameters (with λ < 0) and initial conditions,
consistent with Ω0

DE ≈ 0.7, such that G0
eff > 0, however, the

whole cosmology arising is physically unacceptable. Also,
Geff can remain permanently positive if the requirement of
background viability is relaxed and Ω0

DE is set to a value of
approximately 1=2. We can not, for now, provide a definite
proof on the inevitability of the change of sign in Geff for
reasonable evolutions of the CBD theory; however it seems
that the scalar field evolves toward φ∞ as we progress into
the far future, and before reaching the present-time, will
already have crossed the critical value φc. In Fig. 5, we plot
the evolution of the scalar field ϕ (background part only)
as a function of the scale factor a (which we extend beyond
a ¼ 1) for different parameters λ and ν, together with the
evolution of Ψ. As we can see, the crossing in Ψ is
inevitable, unless one relaxes the requirement of having
ΩDE ≈ 0.7 today. Only when we take Ω0

DE ≈ 0.5 is the
crossing in Ψ not verified, as the scalar field tends to same
asymptotic value more slowly.
Negative values of Geff is a fundamental issue and may

jeopardize the viability of the theory on the smallest scales;

TABLE I. RSD fσ8 measurements from various sources, used
in Fig. 4.

Survey z σ8fðzÞ Source

6dFGRS 0.067 0.423� 0.055 Beutler et al. (2012) [65]

LRG-200 0.25 0.3512� 0.0583 Samushia et al. (2012) [66]
0.37 0.4602� 0.0378

BOSS 0.30 0.408� 0.0552 Tojeiro et al. (2012) [67]
0.60 0.433� 0.0662
0.38 0.497� 0.063 Alam et al. (2016) [68]
0.51 0.458� 0.050
0.61 0.436� 0.043

WiggleZ 0.44 0.413� 0.080 Blake (2011) [69]
0.73 0.437� 0.072

Vipers 0.8 0.47� 0.08 De la Torre et al. (2013) [70]
2dFGRS 0.17 0.51� 0.06 Percival et al. (2004) [71,72]
LRG 0.35 0.429� 0.089 Chuang and Wang (2013)

[73]
LOWZ 0.32 0.384� 0.095 Chuang et al. (2013) [74]
CMASS 0.57 0.441� 0.043 Samushia et al. (2013) [75]

(a) (b)

FIG. 5. We plot the evolution of the scalar field ϕ (background part only) and the Newtonian potential Ψ as a function of scale factor,
for the CBD model. On the top plots, we have Ω0

DE ≈ 0.7, while on the bottom plots we require Ω0
DE ≈ 0.5.
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however, this does not mean that the CBD theory should be
ruled out immediately. First, it is possible that the gravi-
tational constant that controls the gravitational effects in a
static spherically symmetric configuration around a central
mass is unrelated to the above Geff . This issue can be
resolved if local solutions are found and a parameterized
post-Newtonian analysis is performed. There could also
be a screening mechanism ensuring the suppression of
the additional interaction mediated by the theory on the
smallest scales and, hence, hiding any evidence of this
change of sign in Geff . Another option could be that the
theory does not couple to baryons, and hence only impact
dark matter, allowing it to modify galactic dynamics
without affecting ordinary matter and passing laboratory
tests of gravity. Lastly, there is the possibility of consid-
ering a potential VðϕÞ that does not have to be dominant
today, but could provide the necessary contribution to the
dark energy density that would prevent the scalar field
crossing the critical value that changes the sign of Geff . It
would also be interesting to perform a complete dynamical
analysis of the equations of motion of the theory, since this
would allow to make a more definitive statement on the
behavior of Geff and, eventually, find background attractor
solutions that could avoid this problem altogether.

VII. CONCLUSIONS

In this work, we focused on one of three generalizations
of the standard Brans-Dicke gravity (BD), named as
complete Brans-Dicke theories (CBD) [36]. These were
derived at the level of the field equations by analyzing
exhaustively the Bianchi identities, while maintaining the
BD scalar field wave equation and relaxing the standard
matter conservation.
For this particular model, which for brevity we also

refer to as CBD, there is one new parameter ν that
mediates the interaction between the dark sectors. It
had been previously shown that, for negative values of
this parameter, the theory was able to produce accelerating
cosmological solutions today without the presence of a
potential VðϕÞ [38]. Here, we have extended the appli-
cability of these solutions to high redshifts, which, as we
show in Sec. II, yield a stable matter domination regime
that is gradually overtaken by the dark energy component
to yield acceleration today. Moreover, we obtain a nice fit
to the low-redshift supernovae data. For our background
solutions, we assume slow-roll initial conditions, with the
initial value of the scalar field being found by requiring
ΩDE ≈ 0.7 today.
We then study the evolution of linear perturbations in the

CBD theory in order to understand the impact it can have
on the large scale structure of the Universe we observe. We
present the full set of perturbed gravitational equations in
both the Newtonian and synchronous gauges. One feature
that becomes immediately obvious, and is transversal to
most modified gravity theories, is the dynamical anisotropy

between the gravitational potentials, dependent on the
perturbation χ of the scalar field.
In particular, χ evolves according to a damped harmonic

oscillator subjected to an external force proportional to the
matter perturbation δ

~
. At late-times, as we show in Sec. IV,

after the oscillations have been damped out, χ is pushed
toward larger values relatively to its equilibrium initial
position which we set to zero. In turn, this is manifested in
the lensing potential Φþ which exhibits an unusual growth
at late-times. Hence, Φþ not only resists the expanding
background, but does increasing in amplitude, in a clear
departure from ΛCDM, where the perturbations are
expected to decay once Λ starts to dominate. This behavior
becomes clear looking at the subhorizon quasistatic
approximation for the evolution of the Newtonian poten-
tials, which we present in Sec. V. Then, the lensing
potential is directly proportional to χ, and hence follows
its late-time behavior, growing as we approach a ¼ 1.
Another interesting feature is that the evolution of all

perturbations in the CBD theory is scale-dependent at early
times. At late-times the gravitational potentials and the
scalar field perturbation become scale-independent; what
can be explained through the subhorizon approximation
and also be observable in our numerical results. This is
verified in nonmassive standard Brans-Dicke gravity as
well [60].
We have also studied the evolution of the growth rate for

the complete Brans-Dicke theory. We have concluded that
the CBD theory predicts less growth than ΛCDM, and
could produce a better fit to existent fσ8ðzÞ data from RSD
observations. This fact is clearly explained in the subhor-
izon approximation, where the behaviour of fσ8ðzÞ is
controlled by the time-time Newtonian potential Ψ.
Contrary to the behavior of the lensing potential, Ψ passes
from negative to positive values recently, and hence, as the
scalar field grows in time, the theory predicts less growth
than ΛCDM. However, in parallel with the sign change of
Ψ in the subhorizon scales, the effective gravitational
constant Geff for the perturbations also changes sign and
becomes negative recently. This effect seems to persist
independently of the choice of the parameters or the initial
conditions of any reasonable background evolution, and
may jeopardize the validity of the theory on the smallest
scales. It is premature to decide on this before local
spherically symmetric solutions are found and the existence
of screening mechanisms is investigated that might sup-
press the additional interaction mediated by the theory in
order to pass the stringent solar-system tests of gravity.
Other options would be the decoupling of baryons from the
theory which would alleviate the small scale constraints on
the theory, or the existence of a potential preventing the
sign change of Geff . Finally, the study of the background
attractor solutions through a dynamical system analysis
should allow a more decisive statement on the behavior
of Geff .
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APPENDIX: JORDAN FRAME
PERTURBATION EQUATIONS

We present here some perturbed geometric quantities
used for deriving the perturbed equations of motion. As for
the Christoffel symbols we have

δΓ0
00 ¼ _AY; δΓ0

0i ¼ −ðkAþHBÞYi ðA1Þ

δΓ0
ij ¼

�
−2HAþ k

3
Bþ 2HHL þ _HL

�
δijY

þ ð−kBþ 2HHT þ _HTÞYij ðA2Þ

δΓi
00 ¼ −ðkAþ _BþHBÞYi ðA3Þ

δΓi
0j ¼ _HLδ

i
jY þ _HTYi

j ðA4Þ

δΓi
jk ¼ −kHLðδijYk þ δikYj − δjkYiÞ þHBδjkYi

þHTðYi
j;k þ Yi

k;j − Yjk
;iÞ: ðA5Þ

Indices in Yi, Yij are raised with δij. The perturbed Ricci
tensor and Ricci scalar are

δR ¼ 2

a2

�
−6

ä
a
A − 3H _Aþ k2Aþ k _Bþ 3kHB

þ 9H _HL þ 3ḦL þ 2k2
�
HL þHT

3

��
Y ðA6Þ

δR00 ¼ −½k2A − 3H _Aþ kð _BþHBÞ þ 3ḦL þ 3H _HL�Y
ðA7Þ

δR0i ¼
�
−
�
ä
a
þH2

�
B − 2kHAþ 2k _HL þ 2

3
k _HT

�
Yi

ðA8Þ

δRij ¼
�
−2

�
ä
a
þH2

�
A −H _Aþ k2

3
Aþ k

3
ð _Bþ 5HBÞ

þ ḦL þ 5H _HL þ 2

�
ä
a
þH2

�
HL

þ 4k2

3

�
HL þHT

3

��
δijY þ

�
−k2A − kð _BþHBÞ

þ ḦT þH _HT þ 2

�
ä
a
þH2

�
HT − k2

�
HL þHT

3

�

þHð _HT − kBÞ
�
Yij: ðA9Þ

The perturbations of the scalar field derivatives, due to δgμν
and δϕ, are given by the expressions

δð∇μ∇νϕÞ ¼ ∇μ∇νðδϕÞ − δΓλ
μν∂λφ ðA10Þ

δð∇μ∇νϕÞ ¼ ∇μ∇νðδϕÞ þ δgμλ∇λ∇νϕ − gμλδΓκ
λν∂κφ;

ðA11Þ

where δð∇μ∇νϕÞ ¼ ∇μ∇νϕ − ∇̄μ∇̄νφ, δð∇μ∇νϕÞ ¼
gμλ∇ν∇λϕ − ḡμλ∇̄ν∇̄λφ, ∇ denotes the covariant derivative
with respect to the perturbed metric gμν, ∇̄ denotes the
covariant derivative with respect to the background metric
ḡμν and ϕ ¼ φþ δϕ. Since δϕ ¼ χðtÞY, we get

δð∇0∇iϕÞ ¼ ½−k_χ þ kHχ þ _φðkAþHBÞ�Yi ðA12Þ

δð∇0∇0ϕÞ ¼ ðχ̈ −H_χ − _φ _AÞY ðA13Þ

δð∇i∇jϕÞ ¼
�
−H_χ −

k2

3
χ

þ _φ

�
2HA −

k
3
B − 2HHL − _HL

��
δijY

þ ½k2χ þ _φðkB − 2HHT − _HTÞ�Yij ðA14Þ

δð∇0∇0ϕÞ ¼
1

a2
ð−χ̈ þH_χ þ 2φ̈A − 2 _φHAþ _φ _AÞY

ðA15Þ

δð∇0∇iϕÞ ¼
1

a2
ðk_χ − kHχ − k _φAÞYi ðA16Þ

δð∇i∇jϕÞ ¼
1

a2
½k2χþ _φðkB− _HTÞ�Yi

j

þ 1

a2

�
−H_χ −

k2

3
χþ _φ

�
2HA−

k
3
B− _HL

��
δijY

ðA17Þ

δð∇i∇iϕÞ ¼
1

a2
½−3H_χ − k2χþ _φð6HA− kB− 3 _HLÞ�Y:

ðA18Þ
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