
Massless charged particles: Cosmic censorship,
and the third law of black hole mechanics

C. Fairoos,* Avirup Ghosh,† and Sudipta Sarkar‡

Indian Institute of Technology, Gandhinagar, 382355 Gujarat, India
(Received 22 July 2017; published 5 October 2017)

The formulation of the laws of Black hole mechanics assumes the stability of black holes under
perturbations in accordance with the “cosmic censorship hypothesis” (CCH). CCH prohibits the formation
of a naked singularity by a physical process from a regular black hole solution with an event horizon.
Earlier studies show that naked singularities can indeed be formed leading to the violation of CCH if a near-
extremal black hole is injected with massive charged particles and the backreaction effects are neglected.
We investigate the validity of CCH by considering the infall of charged massless particles as well as a
charged null shell. We also discuss the issue of the third law of Black hole mechanics in the presence of null
charged particles by considering various possibilities.
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I. INTRODUCTION

One of the major milestones of black hole physics was
the realization that black holes follow laws that are similar
in form to the laws of thermodynamics [1]. The initial
derivations of these laws were based on classical general
relativity and the association with thermodynamics was
merely an analogy. But the discovery of Hawking radiation
from the black hole event horizon [2] gave a precise
meaning to the thermodynamic properties of a black hole
as the consequence of quantum field theory in curved
space-time.
The second law of Black hole mechanics was then

formulated in the following way: In a classical process
involving the evolution of a black hole from one stationary
state to another, the area of the horizon cannot decrease,
provided the stress-energy tensor of the infalling matter
satisfies the null energy condition. This is known as
Hawking’s area theorem [3]. However, underlying this
proof were the following crucial assumptions. The null
generators of the horizon are assumed to be geodesically
complete. In cases where they are not, one at least needs the
spacetime to be strongly asymptotically predictable. Also,
while discussing the second law, it is always assumed that
the perturbations of black hole horizons decay in the future
and the black hole attains a new stationary state asymp-
totically. But, such an assumption is questionable as there is
no general proof of the stability of black objects in general
relativity. In a gravitational collapse, trapped surfaces are
always formed whenever there is a high concentration of
matter in a region. Then, singularity theorems demand that
there must be a singularity, at a finite time, to the future of a
trapped surface. Also, one may appeal to the weak form of

the “cosmic censorship hypothesis” (CCH) of Penrose so
that the singularity is always contained within an event
horizon. The stability of black objects under perturbation is
then a consequence of CCH, demanding that the perturba-
tions do not destroy the horizon. But the validity of the
cosmic censorship hypothesis is itself an open problem in
general relativity. If the CCH turns out to be not true, the
existence of naked singularities will have important con-
sequences for the nature of extreme gravity. Any attempt to
validate the CCH in its precise form amounts to dealing
with the global existence of solutions of general relativity.
A simpler approach could be to find a counterexample to
CCH by generating solutions with naked singularities by a
physical process from a regular solution.
One such possibility is to create an overcharged

Reissner-Nordström (RN) spacetime, i.e., a solution in
which the mass of the charged black hole (M) is less than
the absolute value of the charge (Q). The solution contains
a singularity which is not dressed in an event horizon. We
do not indulge in the question of whether such a solution
can be obtained by a Cauchy evolution of some regular
initial data, and instead, we ask a different question. Can
such a solution be obtained from a regular charged black
hole by throwing in some reasonable matter with sufficient
charge? The answer is in the negative if we start with an
extremal black hole [4]. But, it turns out that if one takes a
charged “test” particle such that its charge is greater than its
conserved energy and assumes that the mass and the charge
of the black hole change additively once the particle has
fallen into the singularity, then overcharging is possible if
the initial solution is near extremal [5]. Similar results
also hold if we try to overspin a nonextremal Kerr black
hole [6–10]. It was further shown in [5] that if one considers
the electromagnetic backreaction, then there exists only a
small window for the choice of charge and energy of the
particle provided the initial black hole is very close to
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extremality. However, a much more careful analysis of both
the electromagnetic self-force and energy of the particle
radiated to infinity showed that overcharging is not possible
[11]. For the Kerr case the dissipative part of the gravita-
tional backreaction effect was considered in [8] for a subset
of particle orbits that can cause overspinning and it was
seen that overspinning may not be averted. In [9,10] both
the dissipative and the conservative effects were considered
and it was shown that overspinning is averted.
On the other hand, for the case of a dynamical collapse of

a thin charged shell into the charged black hole, there is no
scope for overcharging. The case of overcharging with test
fields has also been considered in [12–15] and the results
indicate that overcharging is not possible.
The study of a possible counterexample of CCH is

extremely important to understand the foundation of gen-
eral relativity. Therefore, we need to explore the process of
overcharging a charged black hole in various situations to
check the validity of CCH. This is the main motivation of
this work, and we deal with the same problem in the context
of “massless charged particles.” Though not found in
nature, to the best of our knowledge, there is no argument
that rules out the existence of such particles unless the
particle is of spin 1 or larger [16–18]. In fact, the existence
of massless charged particles in a quantum theory is linked
to the complete solution of the problem of collinear infrared
divergences in quantum field theory. A consistent classical
dynamics of such a massless charged particle is given in
[19]. Also, there are solutions in general relativity, e.g., the
charged Vaidya solution that requires a stream of charged
massless particles as the matter content. We want to study if
we can overcharge a Reissner-Nordström black hole using
such null charged particles. In the absence of a tunable
parameter, namely, the rest mass, the bounds obtained in [5]
might be drastically different and could yield results which
are different.
It seems reasonable to assume that charged null particles

in a given solution of the Einstein-Maxwell system should
follow a null geodesic. However, it was shown that the
particle must interact with the electromagnetic field as well,
hence modifying the equation of motion that it follows [20].
We will follow this in trying to find the trajectory of the
massless charged particle in question. We will see that as a
result of the modification of the trajectory, there will be a
point on the trajectory where the velocity four-vector
vanishes. To the future of this point, the path will be
determined by the condition that the trajectory remains
causal. We also study the case of a null charged shell
collapsing into a nonextremal RN and check if it is possible
to overcharge the black hole.
As an outcome of the above assertion on the trajectory of

null charged particles, it follows that the charged Vaidya
solution should be modified so that the weak energy
condition is satisfied. It was shown in [20] that a complete
charged Vaidya solution should be constructed by gluing an

ingoing and an outgoing Vaidya solution along the hyper-
surface on which the momentum four-vectors of the stream
of null charged particle vanish. But, the charged Vaidya
solution along with the weak energy condition is a system
which follows the third law of Black hole mechanics, which
asserts that the extremization of black hole is not possible in
a finite(advanced) time. The modification of the solution as
suggested [20] demands a careful analysis of the issue of
the third law. The original proof of the third law [21] was in
the context of the ingoing Vaidya solution only and this
needs modifications in this new setting. The results
obtained are rather surprising. We find that the black hole
can become extremal in finite time, in this modified setting,
in certain special circumstances. However, the third law
seems to remain intact in spirit.

II. MASSLESS CHARGED PARTICLE
AND THE OVERCHARGING PROBLEM

First, let us consider the problem of overcharging a black
hole. We start with the metric of a Reissner-Nordström
black hole given by

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð1Þ

where fðrÞ ¼ ð1 − 2M
r þ Q2

r2 Þ. The outer and inner horizons

are r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
. The electromagnetic potential

is A ¼ − Q
r dt. Now consider a massless charged particle in

this background geometry. The equation of motion of such
a particle follow a modified Lorentz force equation [20],
viz.,

ka∇akb ¼ qFb
ckc; ð2Þ

where Fab ¼ 2∂ ½aAb� is the electromagnetic field strength,
ka is the null four-momentum, and q the charge of the
particle. As suggested in [20], the particle’s motion deviates
from the null geodesic of the spacetime and the particle
does interact with the background electromagnetic field by
a Lorentz force. In fact, this deviation from null geodesic
motion is necessary if we want the trajectory to be
consistent with the field equation [20]. This modification
has important implications for a charged Vaidya solution.
A charged Vaidya solution suffers from a fundamental
difficulty that an observer who moves on a timelike
geodesic may measure a negative energy density in a
certain region of space-time. If we include the Lorentz force
term in the trajectory of the null charged particle, it is
possible to show that such regions are removed from the
physical space-time due to the existence of a bouncing
surface for the charged null matter.
We would like to know whether such a charged massless

particle moving along the trajectory given by Eq. (2) can
overcharge a nonextremal Reissner-Nordström black hole
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and lead to a naked singularity. To start, note that since ∂t is
a Killing vector, viz., £∂tgab ¼ 0, £∂tAa ¼ 0, it follows that

−E ¼ ðka þ qAaÞ∂a
t ð3Þ

is a constant along the integral curves of ka, which implies
that kt ¼ ðE − qQ

r Þ=fðrÞ. Using the fact that kaka ¼ 0 and
writing ka ¼ dxa

dλ , we have for a charged massless particle,

0 ¼ −fðrÞt02 þ r02

fðrÞ ; ð4Þ

which implies r02 ¼ ðE − qQ
r Þ2 and the “prime” denotes the

derivative with respect to λ. The difference between this
equation with that of the massive charged case is the
absence of a termm2fðrÞ in the expression for r02, wherem
is the mass, and this may lead to changes in the results
obtained in [4,5]. It is evident that there are two solutions,
r0 ¼ �ðE − qQ

r Þ. Choosing a particular branch, initially,
implies that the trajectory follows that branch until the
critical point where r0 ¼ 0 is reached. At this point, it is
possible to extend the curve in the future and smoothly join
it to either of the two branches. However, as we will see,
causality implies that only one branch is preferred. A look
at kt shows that in order for the trajectory to be future
directed, as it crosses the outer horizon rþ, it is necessary
that

E >
qQ
rþ

: ð5Þ

Now to overcharge a Reissner-Nordström black hole, one
must have qþQ > EþM, and if we start with an initial
extremal solution such that jQj ¼ M, we have a condition
that q > E. However, for an extremal black hole with
rþ ¼ Q, Eq. (5) implies q < E. Therefore there is a
contradiction. Hence it is not possible to overcharge an
initially extremal RN black hole by throwing in some null
charged particle. This extends the result of [4] for the
massless case.
Next, consider the case of a nonextremal charged black

hole whose condition for overcharging is qþQ > M þ E.
The critical point is rc ¼ qQ=E. In regions r < rc, E −
ðqQ=rÞ is negative. If rc > rþ, then kt ¼ ðE − qQ

r Þ=fðrÞ
becomes negative in regions rþ < r < rc, where fðrÞ is
positive. Therefore, the trajectory becomes past directed
before it can reach the horizon. Hence, it is necessary that
the critical point lie inside the outer horizon, i.e., rc < rþ.
Moreover one needs to consider the ingoing branch
r0 ¼ −ðE − qQ

r Þ, so that the particle is infalling. From the
overcharging condition it follows that E < q, which also
implies that rc > Q. Since for a nonextremal charged
black hole, r− < Q, we estimate the critical point as
rc > Q > r−. Once the particle has crossed the outer

horizon r ¼ rþ the radial coordinate behaves as time. At
points r < rc the factor E − qQ

r becomes negative. Since r is
decreasing to the future, one therefore has to smoothly join
the initial curve for r > rc with branch r0 ¼ E − qQ

r across
the point r ¼ rc so that the curve remains future directed
and infalling. The metric component fðrÞ is negative in the
region r− < r < rþ, so t0 becomes positive beyond r ¼ rc
and the particle therefore follows the dotted curve shown in
Fig. 1. Note that at the point r ¼ rc, ka is zero and therefore
the curve is not “discontinuous” as it might appear. It is
therefore evident that there exists a choice of q and E such
that extremization is possible. The choice can be made in
the following way. For a given nonextremal RN black hole,
choose the charge (q) and then choose E such that E > qQ

rþ
and E < q. It should be noted that given a nonextremal
black hole there always exists such a choice. This situation

FIG. 1. The dotted line represents trajectory of the massless
charged particle when its charge (q) and energy (E) satisfy the
conditions q − E > M −Q and E > qQ

rþ
.
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is however expected to change if backreaction effects are
taken into account, which we will briefly discuss later.
It is important to note that if we do not consider the

modification of the trajectory suggested in [20], the
massless charged particle would follow a null geodesic
and remain future directed always once the energy E is
chosen to be positive. Then, the condition E < q is enough
for overcharging to take place. Therefore, our result
reinforces the modification suggested in [20].

III. NULL CHARGED SHELL

Let us now consider a null charged shell of energy E (as
measured by an inertial observer) and charge q collapsing
into a charged black hole with massM and charge Q. If the
shell is spherically symmetric and nonradiating then the
spacetime outside the shell can be taken to be a RN with
mass M þ E and charge Qþ q. Let us denote the space-
times inside and outside the shell to be ðM�; g�Þ with
metrics

ds2 ¼ −f�ðrÞdv2 þ 2dvdrþ r2dΩ2: ð6Þ
Let the shell be parametrized by coordinates λ, θ, and ϕ.
The embedding of the shell in the given spacetimes will
then be given by v ¼ V�ðλÞ; r ¼ R�ðλÞ, where λ is a
parameter along the shell. The four-velocity of the shell will
then be given by Ua ¼ ðV 0; R0; 0; 0Þ, where the prime
represents derivative with respect to λ. For a radially
moving future-directed null shell, we must have V 0 ¼ 0.
Therefore the null normal is l�a ¼ ð0; R�0; 0; 0Þ and the

transverse null 1-form is n�a ¼ ð f�
2R�0 ;− 1

R�0 ; 0; 0Þ. The con-
tinuity of the metric across the shell then requires Rþ ¼ R−.
Though one does not have a unique extrinsic curvature on a
null surface, let us take one representative from the class of
extrinsic curvatures. Since the normal bundle is one dimen-
sional, the components of the extrinsic curvature along la

are KAB ¼ gablað∇∂A∂BÞb, where A, B denote tangential
coordinates. It follows that the nonzero components are

K�
θθ ¼ −R�; K�

ϕϕ ¼ −R�sin2θ: ð7Þ
As is the case with null shells, it is continuous across the
surface [22,23]. Hence we consider the transverse extrinsic
curvatures given by ~KAB ¼ gabnað∇∂A∂BÞb,

~K�
θθ ¼

f�R�

2R�0 ; ~K�
ϕϕ ¼ f�R�sin2θ

2R�0

~K�
λλ ¼ −R�00: ð8Þ

The surface stress-energy tensor is then given by [22,23]

tab ¼ μlalb þ Pqab; ð9Þ
where qab is the intrinsic metric of the spacelike cross
section of the shell. In our case, we will have μ ¼ fþ−f−

RR0 and

P ¼ 0. The energy as measured by a stationary observer E
is obtained by contracting the stress-energy tensor by the
vector ∂v and this gives

EðrÞ ¼ R0

R

�
2qQþ q2

R2
−
2E
R

�
: ð10Þ

For R0 to be negative for an infalling shell and the stress-
energy tensor to satisfy the weak energy condition at
R ¼ rþ, we need

2E ≥
2qQþ q2

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
⇒ 2qQþ q2 − 2EM ≤ 2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð11Þ

On the other hand, the overcharging condition Qþ q >
M þ E implies

2qQþ q2 − 2EM > E2 þM2 −Q2: ð12Þ

However, ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
− EÞ2 ≥ 0, which means M2 −

Q2 þ E2 ≥ 2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
and the two conditions,

Eqs. (11) and (12), are in contradiction with each other.
Therefore, it is not possible to overcharge the black hole
with a null charged shell as long as the stress tensor of the
shell obeys the weak energy condition. Note that, in
contrast to [5], where the equations of motion of a timelike
shell were used, we find that using the weak energy
condition is enough to arrive at the contradiction.
This ends our analysis of the overcharging problem with

a massless charged particle or null shell. In the next section,
we consider a charged Vaidya solution and study the
validity of the third law of Black hole mechanics.

IV. NULL CHARGED FLUID AND
THE GLUED VAIDYA SOLUTION

Consider the ingoing Vaidya solution,

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2; ð13Þ

where fðrÞ ¼ 1 − 2mðvÞ
r þ q2ðvÞ

r2 . This is a solution of the
Einstein-Maxwell field equations with the following stress-
energy tensor,

Tab ¼ Mab þ Eab; ð14Þ

whereMab is the matter stress-energy tensor and Eab is the
electromagnetic part. The expression for Eab is standard
while the expression for Mab is given by

Mab ¼ 1

4πr2

�
_m −

q _q
r

�
δar δ

b
r ¼ ρkakb; ð15Þ
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where the dot denotes derivative with respect to v. If the
fluid four-velocity is taken to be ka ¼ δar, then it implies
that the null charged particles are following an affinely
parametrized geodesic. Then the weak energy condition
is violated at regions r < q _q

_m ¼ rc [20]. In fact, a timelike
observer can enter into this region and in principle can
measure the local violation of the weak energy condition.
This is indeed a problematic feature of the ingoing
Vaidya solution. To avoid this pathological nature it
was asserted that the null charged particles constituting
the fluid must follow a modified Lorentz force equation
given by [20]

ka∇akb ¼ qFb
ckc; ð16Þ

where q is the ratio of the charge density and the energy
density. This unavoidably implies that the fluid must
become outgoing from being initially ingoing at a critical
surface r ¼ rc, hence avoiding the pathological region
where violation of the energy condition occurs. As a
consequence, one has to glue an ingoing Vaidya to an
outgoing Vaidya along the surface r ¼ rc to recover
the full physical space-time. In the foregoing discussions,
we will assume that the surface r ¼ rc is spacelike.
One reason for this consideration is the fact that if the
surface is timelike, then both the ingoing and the out-
going Vaidya solutions must coexist in the same region
of spacetime and one fails to find the metric that
describes this behavior. This feature can also be gener-
alized to higher dimensions, as well as with the AdS
boundary condition and for higher curvature theories of
gravity [24].
Consider two manifolds M;M̃ corresponding to

ingoing and outgoing Vaidya, respectively, glued along
the spacelike surface r ¼ rc ¼ q _q

_m Fig. 2. The corresponding
metrics are given by

ds2 ¼ −fðrÞdv2 þ 2dvdrþ r2dΩ2 ð17Þ

ds2 ¼ −f̃ðrÞdu2 − 2dudrþ r2dΩ2: ð18Þ

Let the parametric equation for the hypersurface B, along
which the two solutions will be matched, be

r ¼ RðλÞ; v ¼ VðλÞ ð19Þ

r ¼ ~RðλÞ; u ¼ UðλÞ: ð20Þ

The continuity of the metric then implies that1

ð−fðRÞV 02 þ 2R0V 0Þdλ2 þ R2dΩ2

¼B ð−f̃ð ~RÞU02 − 2 ~R0U0Þdλ2 þ ~R2dΩ2; ð21Þ

which implies RðλÞ ¼ ~RðλÞ. Further, we must have
fðRÞ ¼ f̃ðRÞ. This puts the conditions mðVÞ ¼ ~mðUÞ
and qðVÞ ¼ ~qðUÞ and

ð−fðRÞV 02 þ 2R0V 0Þ ¼ ð−fðRÞU02 − 2R0U0Þ: ð22Þ

Hence, we have the following matching condition,

−fðRÞðV 0 þU0ÞðV 0 −U0Þ þ 2R0ðV 0 þ U0Þ ¼ 0: ð23Þ

Therefore, one can either have ðV 0 þ U0Þ or
−fðRÞðV 0 −U0Þ þ 2R0 ¼ 0. Following the nomenclature
in [25] we will call the first matching condition the
“reflective matching” and the second one the “Ori match-
ing.” In the latter case, if at any time v ¼ v0 and λ ¼ λ0, an
apparent horizon [given by fðRÞ=0] coincides with B, then
it would imply R0jλ0 ¼ 0, which will subsequently imply
that the surface B is null. This contradicts our initial
assumption that the hypersurface is spacelike. Since while
discussing the issue of the third law, the apparent horizons
will be allowed to cross B, we will not be considering the
Ori matching condition. There are no such issues if one
considers the reflective matching. Also, either of the
matching conditions, along with the fact that the hyper-
surface B is spacelike, restricts the choice of the functions
mðvÞ and qðvÞ. The existence of such a choice was shown
in [25], where the authors constructed such functions from
the conditions. Here, instead of restricting ourselves to a
particular choice of these functions, we address the ques-
tion of whether the apparent horizons given by r� ¼
mðvÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðvÞ2 − qðvÞ2

p
can cross B for some generic

mðvÞ and qðvÞ. In other words, we want to find the location
of the surface B with respect to the two apparent horizons
of the two Vaidya spacetimes, and the subsequent outward
evolution. These would help us to get hints about the
location of the extremal apparent horizon if it forms at
all in a finite time. This is discussed in Sec. VA. In the

FIG. 2. The gluing of an ingoing Vaidya and an outgoing
Vaidya along a spacelike surface.

1The derivatives with respect to λ are denoted by 0.
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subsequent section we deal with the third law in this
context, using the results derived in Sec. VA.

V. THIRD LAW

The third law of Black hole mechanics as formulated in
[1] says that the state of zero surface gravity cannot be
attained in a finite number of steps. In order to have a
sensible notion of the term “finite number of steps,” one
must consider the evolution of a black hole, which
necessarily goes through a dynamical stage. But during
the dynamical stage, there is no definition of surface
gravity. If one alternatively takes Planck’s version of the
third law of thermodynamics, it would imply that the
entropy of the extremal black hole must be zero, which of
course is in conflict with the fact that extremal black holes
do have a nonzero area and entropy. Hence, the process of
extremization and the conditions on geometric quantities
correctly describing the notion of an extremal horizon must
be formulated carefully in a coordinate-invariant way.
In [26], it was argued that an initially charged black hole

would become extremal when the trapped surfaces between
the inner and the outer horizon have been squeezed out. In
other words, on a given time slice, one is left with a
marginally trapped surface, with trapped surfaces neither
on the inside nor on the outside. To model this situation, let
us first construct a local null tetrad l, n,m, m̄, where l and n
denote the outgoing and the ingoing null directions,
respectively. The outer black horizon is characterized by
the condition θl ¼ 0. Since there are no trapped surfaces on
the inside of the outer black hole horizon, the expansion θl
must be negative inside. Therefore, we must have £nθl < 0
on the outer horizon. Similarly, there are no trapped
surfaces on the outside of the inner black hole horizon,
which imposes the condition £nθl > 0 on the inner horizon.
For the extremal black hole, there are no trapped surfaces
either on the inside or on the outside of the horizon and
therefore the derivative of the expansion must be zero.
Hence one defines an extremal black hole horizon by the
conditions θl ¼ 0 and £nθl ¼ 0. For a spherically sym-
metric charged Vaidya solution, this condition is equivalent
to mðvÞ ¼ jqðvÞj [27].
Now, recall the original derivation of the third law as in

[21]. The proof is by contradiction. The initial assumption
can be restated as the black hole extremizes in a finite time
v ¼ v0 and was nonextremal for v < v0. The proof then
goes on to show that if the weak energy condition were true
when r > rc, then the black hole must have been over-
charged for v > v0. Note that in this geometry the surface
r ¼ rc lies at the boundary of the region, where the energy
condition holds, and therefore it is not necessary to
consider the case in which the black hole might extremize
at r ¼ rc. In the modified solution of [20], the surface
r ¼ rc lies at the interface of the ingoing and outgoing
regions and one must, therefore, consider this case as well.
Our first aim herewould be to track the outer evolutions of

the two apparent horizons of both the ingoing and the

outgoingVaidya solutions in the glued spacetime. To achieve
this we will start with the following initial configurations or
locations of the apparent horizons and check if they can
evolve across the hypersurfaceB.We enumerate the cases for
the ingoing solution here. Those for the outgoing solution are
similar. Let us denote the outer and inner apparent horizons
for the ingoing Vaidya solution by rþ and r−, respectively.

A. Location and evolution of the apparent horizons

Note that the location of B, say, at v ¼ v0, can be
determined by calculating the value of the metric function
fðRðλÞÞ. For example, if fðRðλÞÞ is positive, then either
RðλÞ > rþ > r− or RðλÞ < r− < rþ. Its location at v > v0
can then be determined by finding the derivative of fðRðλÞÞ
along B. We deal with the ingoing part of the solution only.
The outgoing piece gives similar results, with appropriate
modifications.
Consider the ingoing solution. The normal 1-form to B in

Mþ is then given by dr − _rcdv. The tangent space of B is
therefore spanned by e1 ¼ _rc∂r þ ∂v; e2 ¼ ∂θ; e3 ¼ ∂ϕ.
If one defines intrinsic coordinates as in Eq. (19), then
the push forward of the vector field ∂λ tangent to B is
_V∂v þ _R∂r. This implies

∂f
∂λ ¼B V 0∂vf þ R0∂rf ¼ R0

R3
ð2mðVÞR − 2½qðVÞ�2Þ; ð24Þ

where ∂vf has been dropped because it can be shown to be
zero on B. Let us choose λ to be such that it increases
outwards, i.e., in the direction of spacelike infinity. This
convention is equivalent to choosing V 0 to be positive. We
will now discuss the evolutions of the apparent horizons
with respect to B, by considering two different configura-
tions. We will consider other possibilities later.
Case Ia: Both the apparent horizons of the ingoing

solution are located to the future of B at some value of the
parameter λ ¼ λi, i.e., RðλiÞ > rþðλiÞ > r−ðλiÞ; cf. Fig. 3.
In this situation, we say that both rþ and r− are in the
unphysical region at λ ¼ λi. This nomenclature is moti-
vated by the fact that the spacetime to the future of B is
the outgoing Vaidya rather than being ingoing Vaidya.
We then ask the following question. Is it possible that at
some λ > λi, rþðλÞ > RðλÞ, while demanding that B
continues to be spacelike? This case is discussed exten-
sively below.
Let us consider the ingoing solution. Suppose at λ ¼ λ0,

RðλÞ ¼ rþðVðλÞÞ such that in a neighborhood of λ0, RðλÞ >
rþðVðλ0ÞÞ for λ < λ0 and RðλÞ < rþðVðλÞÞ for λ > λ0. This
implies the following,

fðRðλÞÞ > 0 λ < λ0

fðRðλÞÞ ¼ 0 λ ¼ λ0

fðRðλÞÞ < 0 λ > λ0; ð25Þ
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which also implies that df
dλ jλ0 < 0. From the expression for

the derivative of fðRÞ derived in Eq. (24) and the fact that
Rðλ0Þ > rþðλ0Þ > mðVðλ0ÞÞ, one can infer that at λ ¼ λ0

dR
dλ

< 0: ð26Þ

Since we have chosen V 0 > 0, Eq. (26) together with
Eq. (21) implies that B ceases to be spacelike, which
contradicts our initial assumption.
Case Ib: One of the apparent horizons of the ingoing

solution is located to the future of B at some value of the
parameter λ ¼ λi, i.e., rþðλiÞ > RðλiÞ > r−ðλiÞ; cf. Fig. 4.
In this situation, we say that r− is in the unphysical region
at λ ¼ λi. We then try to find out if it is possible that at some
λ > λi, r−ðλÞ > RðλÞ while demanding that B continues to

be spacelike. Suppose that at λ ¼ λ0, RðλÞ ¼ r−ðVðλÞÞ,
such that in a neighborhood of λ0, rþðVðλÞÞ > RðλÞ >
r−ðVðλÞÞ for λ < λ0 and RðλÞ < r−ðVðλÞÞ for λ > λ0. This
implies the following,

fðRðλÞÞ < 0 λ < λ0

fðRðλÞÞ ¼ 0 λ ¼ λ0

fðRðλÞÞ > 0 λ > λ0; ð27Þ

which also implies that df
dλ jλ0 > 0. Therefore at λ ¼ λ0

dR
dλ

< 0: ð28Þ

Similar arguments as above show that this also contradicts
our assumption. The above two situations studied imply
that if the apparent horizons are in the unphysical region of
the ingoing solution, then they cannot emerge into the
physical region during its outward evolution.
In fact, one can get a stronger result on the evolution of

the apparent horizons only for the case where R > rþ > r−,
initially. Let

x ¼ 2mR − 2q2 ð29Þ

⇒
xþ 2q2

2m
¼ R > m ð30Þ

⇒ x > 2m2 − 2q2 > 0: ð31Þ

As per our convention, V 0 is positive. Since fðRÞ is positive
in this case, it follows from Eq. (21) that R0 has to be
positive for B to remain spacelike. Hence according to
Eq. (24), ∂λf is positive. Therefore fðRÞ continues to
increase. Consequently the apparent horizon r ¼ rþ cannot
even approach B in the outward direction. However, note
that if rþ > R > r− initially, then r− may approach B. This
is because, according to Eq. (21), R0 can be chosen to be
negative or positive.
Case IIa: Both the apparent horizons of the ingoing

solution are located to the past of B at some value of
the parameter λ ¼ λi, i.e., RðλiÞ < r−ðλiÞ < rþðλiÞ;
cf. Fig. 5. In this case, we will say that both the apparent
horizons are located in the physical region of the
spacetime. Then the relevant question is whether at some
λ > λi, r−ðλÞ < RðλÞ, keeping B spacelike. These ques-
tions are addressed below.
Suppose that at λ ¼ λ0, RðλÞ ¼ rþðVðλÞÞ such that in a

neighborhood of λ0, r−ðVðλÞÞ < RðλÞ < rþðVðλÞÞ for λ <
λ0 and RðλÞ > rþðVðλ0ÞÞ for λ > λ0. This implies the
following,

FIG. 3. Schematic diagram corresponding to case Ia. The
results of Sec. VA show that the apparent horizons cannot
cross B.

FIG. 4. Schematic diagram corresponding to case Ib. The
results of Sec. VA show that apparent horizon r− cannot cross
B but can however approach B.
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fðRðλÞÞ < 0 λ < λ0

fðRðλÞÞ ¼ 0 λ ¼ λ0

fðRðλÞÞ > 0 λ > λ0; ð32Þ

which also implies that df
dλ jλ0 > 0. Therefore at λ ¼ λ0

dR
dλ

> 0: ð33Þ

Following the same arguments as above, we conclude that
this is a possible transition.
Case IIb: One of the apparent horizons of the ingoing

solution is located to the past of B at some value of the
parameter λ ¼ λi, i.e., r−ðλiÞ < RðλiÞ < rþðλiÞ. The ques-
tion we ask here is whether at some λ > λi, rþðλÞ < RðλÞ,
while demanding B to remain spacelike.
Now suppose at λ ¼ λ0, RðλÞ ¼ r−ðVðλÞÞ such that

in a neighborhood of λ0, rþðVðλÞÞ > RðλÞ > r−ðVðλÞÞ
for λ < λ0 and RðλÞ < r−ðVðλÞÞ for λ > λ0. This implies
the following,

fðRðλÞÞ < 0 λ < λ0

fðRðλÞÞ ¼ 0 λ ¼ λ0

fðRðλÞÞ > 0 λ > λ0; ð34Þ

which also implies that df
dλ jλ0 > 0. Therefore at λ ¼ λ0

dR
dλ

< 0: ð35Þ

Both the above cases imply that if the apparent horizons are
in the physical region of the ingoing solution, then it is
possible for them to move into the unphysical region during
the outward evolution.
According to the discussion in this section we conclude

the following: if any of the apparent horizons are located in

the unphysical region, it cannot evolve into the physical
region during its outward evolution. The reverse is however
possible.

B. Extremization

Here, we explore the process of extremization in the light
of the conclusions of the previous section. The cases here
will be numbered according to whether the apparent
horizons extremize to the future of B, to the past of B,
or on B, and have no connection to the numbering in the
previous section. However, the results of Sec. VA will
narrow down the number of subcases we must deal with.
The discussion will only be for the possible cases in the
ingoing solution. Those for the outgoing solution are a
straightforward modification of those in the ingoing case.
Before going over to the arguments, we derive certain

relations which will be helpful. Let α ¼ m2 − q2. Then the
following equations can be obtained,

dα
dλ

¼ 2ð _mm − _qqÞ dV
dλ

ð36Þ

d2α
dλ2

¼ ð2 _m2 þ 2mm̈ − 2_q2 − 2qq̈Þ
�
dV
dλ

�
2

þ 2ð _mm − _qqÞ d
2V
dλ2

: ð37Þ

Let us now consider each of the possible cases
separately.

1. Case 1

Suppose that the black hole extremizes to the past of B.
From the considerations of Sec. VA, it is clear that there is
only one configuration, that of case IIa, whose outward
evolution can lead to this. It is only possible if RðλÞ <
r−ðλÞ < rþðλÞ at λ ¼ λi and the black hole extremizes for
some λ > λi. Note that this situation has been discussed in
[21]. However, the next two cases are only specific to the
kind of solution we are considering, i.e., the glued Vaidya
solution.
Let us assume that the black hole extremizes at λ ¼ λ0

and v ¼ Vðλ0Þ ¼ v0 and that it was nonextremal, i.e.,
mðv0Þ > qðv0Þ for λ < λ0. Then mðv0Þ ¼ qðv0Þ and
rþðv0Þ ¼ mðv0Þ. Suppose rþðv0Þ > Rðλ0Þ; cf. Fig. 6. In
that case

mðVðλ0ÞÞ >
q _q
_m

����
λ0

; ð38Þ

dmðVðλÞÞ
dλ

����
λ0

>
dqðVðλÞÞ

dλ

����
λ0

: ð39Þ

If we choose dV
dλ > 0, so that λ increases with v, then the

above condition implies that mðvÞ < qðvÞ to the past of v0,

FIG. 5. Schematic diagram corresponding to case IIa. It is
possible for this evolution to occur.
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which contradicts our assumption. Note that this argument
is essentially the same as that given in [21].

2. Case 2

The black hole extremizes to the future of B. In this case,
there are several possibilities. However, in either case, the
extremal horizon is located in the unphysical region.
Therefore, we do not discuss it further. However, we do
show that such an evolution, though possible, is unphysical.
Suppose the black hole extremizes at λ ¼ λ0 and

v ¼ Vðλ0Þ ¼ v0 and that it was nonextremal before that,
i.e., mðvÞ > qðvÞ for v < v0. Then mðv0Þ ¼ qðv0Þ and
rþðv0Þ ¼ mðv0Þ. Suppose rþ < RðλÞ. In that case

mðVðλ0ÞÞ <
q _q
_m

����
λ0

; ð40Þ

dmðVðλÞÞ
dλ

����
λ0

<
dqðVðλÞÞ

dλ

����
λ0

ð41Þ

_mðvÞjv0 < _qðvÞjv0 ; ð42Þ

which implies that mðvÞ < qðvÞ to the future of v0, which
does not contradict our assumption. However, since this
piece of the horizon lies in the excised piece of spacetime, it
is not physical.

3. Case 3

The black hole extremizes on B. In this case too, a lot of
possibilities are ruled out. Case Ia, for example, is ruled out
by Sec. VA. Hence we are left with two possibilities
rþðλiÞ > RðλiÞ > r−ðλiÞ (cases Ib and IIb) and rþðλiÞ >
r−ðλiÞ > RðλiÞ (IIa), which we need to analyze in detail.
Suppose that the black hole extremizes at λ ¼ λ0, that

v ¼ Vðλ0Þ ¼ v0, and that it was nonextremal before that,
i.e., mðvÞ > qðvÞ for v < v0. Then mðv0Þ ¼ jqðv0Þj and
rþðv0Þ ¼ mðv0Þ. Suppose rþ ¼ RðλÞ. Then

mðVðλ0ÞÞ ¼
q _q
_m

����
λ0

ð43Þ

and therefore we are unable to assert anything. Now
consider the function α. By the above conditions,

αjv0 ¼ 0 ð44Þ

_αjv0 ¼ 0. ð45Þ

Now, suppose the black hole was nonextremal for v < v0.
Then one has to choose

α̈jv0 ≥ 0; ð46Þ

which implies

dR
dλ

¼
�
_mþ qq̈ −mm̈

_m

�
dV
dλ

: ð47Þ

In this case one can check that ∂f∂λ ¼ 0. Therefore one needs

to check the sign of ∂2f
∂λ2 . Note that

∂2f
∂λ2

����
v¼v0

¼
_R
R3

�
mðqq̈ −mm̈Þ

_m

�
dV
dλ

����
v¼v0

: ð48Þ

From the expression of α in Eq. (36) and the condition on it

in Eq. (46), it follows that ∂2f∂λ2 > 0 for _m < 0. In this case, f
has a minimum at λ ¼ λ0, which implies that f is positive
for both λ < λ0 and λ > λ0. This means that B is either to
the future or to the past of both the apparent horizons for
λ < λ0 and λ > λ0. The two possibilities, which are con-
sistent with the results of Sec. VA, are schematically
portrayed in Figs. 7 and 8.
On the other hand if _m > 0, then ∂2f

∂λ2 < 0, which implies
that f has a maximum at λ ¼ λ0. Therefore f is negative for
both λ < λ0 and λ > λ0, and Fig. 9 is implied.

FIG. 6. Case 1: The black hole extremizes to the past of B in a
finite time. We have shown that this is not possible.

FIG. 7. Case 3: The black hole extremizes on B. Apparent
horizons bounce back to the physical region.
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However note that the case where _m < 0 can be removed
by simply saying that it involves an influx of negative mass.
The other case _m > 0 can be removed by observing that the
instantaneous extremal horizon formed can never be the
outermost marginally trapped surface on B and therefore
will never be observable by an asymptotic observer. Hence
though extremal horizons are formed in finite time, it does
not seem to violate the third law in spirit.

VI. CONCLUSIONS

In the first part of the work, we have considered a
charged massless particle which is falling into a black hole
and attempted to overcharge it. It turns out that if one starts
from an initially extremal one, it is not possible to do so.
The black hole does not capture the particles with the
energy and charge required to overcharge. However if one
initially starts with a nonextremal one, then it is possible to
overcharge it. The interpretation seems to be that the
original nonextremal black hole jumps to an overcharged
one while avoiding the extremal stage. The bounds
obtained for the energy and charge of the particle arise

only from the overcharging condition and the condition that
the particle trajectory remains causal. Further constraints on
the allowed choices of energy and charge are expected to
occur if one considers the backreaction effects. We leave
the consideration of the backreaction effects for some
future work.
We do however consider the case of a null charged shell

imploding into the black hole. It turns out that it is not
possible to overcharge the black hole with such a charge
configuration.
Finally, we conclude that the null charged particles must

follow a modified equation of motion as opposed to a
geodesic motion, and therefore the issue of the third law of
Black hole mechanics needs to be readdressed in the
context of the charged Vaidya solution as constructed in
[20] and we note that it is possible to extremize the black
hole in a finite time. We discuss this further in the
discussion section.

VII. DISCUSSION

Establishing the laws of Black hole mechanics requires
the cosmic censorship hypothesis to be true. It is worth-
while to test the validity of the assumptions behind the
“area theorem,” most importantly, the cosmic censorship
hypothesis. However, it is hard to either prove or disprove
the CCH from the global analysis of the Einstein equations.
The alternative approach, therefore, is to look for counter-
examples, if any. One such route is to create an overcharged
or overspinning black hole from some regular initial
solution. These overcharged solutions have naked singu-
larities which are not covered by the horizon. Though these
are exact solutions of Einstein’s equations, it is not known
if they can be obtained through the evolution of some
regular initial data. If they could, then they would provide
the counterexamples of the weak form of the CCH. In this
paper, we therefore look into such a scenario for highly
boosted or null charged matter falling into a Reissner-
Nordström black hole. There is no evidence of a null
charged particle in nature, but our motivation is to check the
validity of CCH under extreme conditions and all forms of
possible matter. In the absence of a full global analysis of
CCH, such studies may provide important clues of the
domain of applicability of CCH.
We have considered the infalling matter to be a massless

charged particle. Treating it as a test particle, we computed
its trajectory and the results have been discussed in Sec. VI.
This seems to be a reasonable starting point despite the fact
that the notion of point particles is ill defined both in
gravity and electromagnetism. It is because the gravita-
tional or electromagnetic field of a point particle diverges at
the location of the particle. One can, however, extract a
finite part of this field, calculate the finite backreaction
effects, and carry out modifications to the trajectory. For
massive charged particles such effects have been studied
and the conclusion is that the CCH holds when the

FIG. 8. Case 3: The black hole extremizes on B. Apparent
horizons continue to evolve into the unphysical region.

FIG. 9. Case 3: The black hole extremizes on B and the
condition rþðλiÞ > RðλiÞ > r−ðλiÞ continues to hold.
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self-force effects are taken into consideration [11]. In the
case of massless particles, it seems that there are neither
electromagnetic radiative effects nor conservative self-force
effects that would modify the trajectory [19] and hence only
the gravitational backreaction effect caused by the stress-
energy tensor of the particle can act as a cosmic censor.
An exact calculation is, however, possible by consider-

ing an imploding null charged shell. It should be noted that
the “equations of motion” of the timelike charged shell
were used in [5]. In our case, however, we find that without
explicit use of the equations of motion for the charged shell,
one can argue that overcharging by a null charged shell is
not possible. We establish this only by using the condition
that the shell’s stress-energy tensor, calculated from the
discontinuities in the transverse extrinsic curvatures, must
satisfy the weak energy condition.
As has been discussed, the interpretation of overcharging

by a particle seems to imply that the extremal state of the
black hole is avoided and it jumps from an initially
nonextremal state to an overcharged one. Hence it is
important to ask if it is indeed possible for an extremal
charged apparent horizon to form in a finite time. This is the
motivation of the second part of our work, where we
investigate the issue of the third law of Black hole mechanics
in the case of the modified charged Vaidya solution, as
constructed in [20]. We found that there is a possibility of an
extremal apparent horizon to form momentarily on the
hypersurface (B) where the null charged fluid makes a
transition from being ingoing to outgoing. Note that these
are consequences of choosing the reflective matching of the
coordinates on either side of the surfaceB. The configuration
should finally evolve into a nonextremal apparent horizon in
the excised piece of the solution or bounce back into the
physical region, provided α̈, at extremality, is strictly greater
than zero. As has been discussed, in spite of this, the third law

does not seem to be violated. This is due to the fact that the
extremal horizon formed cannot be the outermostmarginally
trapped surface on B. This argument seems to have some
familiarity with Israel’s other proof of the third law [26] in
terms of the evolution of the marginally trapped surfaces.
Note that, as has been pointed out in [28], this proof by Israel
[26] already assumes some form of cosmic censorship.
One can also look at the consequences if α̈ ¼ 0 at

extremality and choose α⃛ < 0.
It is known that with the reflective matching the extrinsic

curvature has a jump discontinuity as in the case of a thin
shell. The effects of this jump on the interpretation of the
obtained results might be interesting. It will also be
important to extend these studies beyond the simple setting
of spherical symmetry.
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Note added.—Recently a highly relevant work [29] came
up, whose authors used the validity of the physical process
first law to establish that, a Kerr-Newman black hole cannot
be overspun/overcharged by some generic matter satisfying
the null energy condition. Our work related to the null
charged particle then is a special case which reinforces
their proof.
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