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We disclose a novel phase transition in black hole physics by investigating thermodynamics of charged
dilaton black holes in an extended phase space where the charge of the black hole is regarded as a fixed
quantity. Along with the usual critical (second-order) as well as the first-order phase transitions in charged
black holes, we find that a finite jump in Gibbs free energy is generated by the dilaton-electromagnetic
coupling constant α for a certain range of pressure. This novel behavior indicates a small/large black hole
zeroth-order phase transition the thermodynamic response function of black hole diverges, e.g., isothermal
compressibility. Such zeroth-order transition separates the usual critical point and the standard first-order
transition curve. We show that increasing the dilaton parameter (α) increases the zeroth-order portion of the
transition curve. Additionally, we find that the second-order (critical) phase transition exponents are
unaffected by the dilaton parameter; however, the condition of positive critical temperature puts an upper
bound on the dilaton parameter (α < 1).
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I. INTRODUCTION

Since the discovery of black hole thermodynamics in the
1970s by Bekenstein [1] and Hawking [2], physicists have
been speculating that there should be some kind of
thermodynamic phase transition in this gravitational sys-
tem. Hawking and Page were the first to discover a first-
order phase transition of thermal radiation, large black
holes in the background of Schwarzschild anti–de-Sitter
(AdS) spacetime [3]. Later, by considering charged black
holes, a phase transition was shown to occur between
small-large black holes [4]. Such a phase transition has
been associated to a liquid-gas transition such as the one
occurring in the van der Waals system [5,6]. Recently, a
phase transition of charged AdS black holes has attracted
much attention. It was shown that thermodynamic proper-
ties of charged AdS black holes admit a first-order phase
transition between large and small black holes, which is
analogous to the van der Waals liquid-gas phase transition
[7,8]. In this perspective, thermodynamic analyses are
improved in an extended phase space in which the
cosmological constant and its conjugate variable are
considered as the thermodynamic pressure and volume,
respectively. It has been demonstrated that the first law of
black hole thermodynamics is consistent with the Smarr
relation provided the mass of the black hole is identified as
the enthalpy [9]. The phase transition and critical behavior
of black holes in an extended phase space have been
investigated in ample detail for various systems (see
[10–18] and references therein) and, recently, in a more

general framework in [19]. In all these works [7–19], the
cosmological constant (pressure) is considered as a variable
quantity, and the charge of the black holes is fixed. The
holographic transition of dilaton gravity (e.g., superfluidity
and superconductivity) has been studied in Ref. [20].
In another approach towards thermodynamic phase space

of black holes, it was shown that one can think of variation of
chargeQ of a black hole and keep the cosmological constant
as a fixed parameter. The motivation for this assumption
comes from the fact that the charge of a black hole is a natural
external variable which can vary [21]. In addition, the
cosmological constant is related to the background of AdS
geometry, and it is more natural to take it as a constant rather
than a variable quantity [21]. This alternative view of such a
phase space and more physically conventional description
of the phase transition naturally leads to a meaningful
response function and a more accurate analogy with the
van der Waals fluid [21]. Indeed, in this perspective, the
critical behavior occurs in theQ2-Ψ plane, whereΨ ¼ 1=2rþ
is the conjugate of Q2 [21]. It was shown that a small-large
black hole phase transition occurs with an associated critical
point ðTc;Q2

c;ΨcÞ with complete analogy with the van der
Waals fluid system [21].
A discontinuity in the derivatives of Gibbs free energy

with respect to temperature characterizes the type of phase
transition that occurs in a thermodynamic system. A first-
order phase transition has a discontinuity in the first
derivative which is entropy, i.e., ð∂G=∂TÞ ¼ S, and a
second-order (critical) phase transition has discontinuity
(singularity) of ð∂2G=∂2TÞ. Therefore, a lesser-known
zeroth-order phase transition has a discontinuity in the
Gibbs free energy itself, which was discovered in super-
fluidity and superconductivity [22]. The author of Ref. [22]
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also showed that a zeroth-order phase transition occurs in
Bogolyubov’s model of a weakly nonideal Bose gas. On the
other hand, a novel reentrant phase transition has been
recently observed to accompany the standard first-order
phase transitions in black holes [23–27]. Motivated by the
above novel phase transitions, we intend to present a study
of small-large phase transitions in charged dilaton black
holes. Therefore, we analyze the possible phase transitions
in extended phase space for fixed charge where the
spacetime geometry is described by Einstein-Maxwell-
dilaton gravity [28]. We find that the presence of a dilaton
parameter leads to a region of the phase diagram which
allows for zeroth-, first-, and second-order phase transition
where the zeroth order separates the first- and second-order
transition along the transition curve. The extension of such
a region becomes larger with increasing dilaton parameter.
This article is structured as follows: In Sec. II, we study

the thermodynamics of (dþ 1)-dimensional charged dila-
ton black holes in the presence of Liouville-type dilaton
potential. In Sec. III, we investigate the critical behavior of
dilaton black holes. In Sec. IV, we study the equation of
state of charged dilaton black holes. The last section is
devoted to summary and conclusions.

II. BASIC THERMODYNAMICS OF THE
CHARGED DILATON BLACK HOLE

The action of (dþ 1)-dimensional spacetime in Einstein-
Maxwell theory with a scalar dilaton field (φ) reads [29]

I ¼ 1

16π

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

4

d − 1
ð∇φÞ2 − VðφÞ

− e−4αφ=ðd−1ÞFμνFμν

�
; ð1Þ

where Fμν ¼ ∂ ½μAν�, Aν is the vector potential, and α is the
coupling parameter of the dilaton with Maxwell field.
Hereon, VðφÞ is the dilaton potential, which has the
following form [28,29]

VðφÞ ¼ 2Λe4αφ=ðd−1Þ þ ðd − 1Þðd − 2Þα2
b2ðα2 − 1Þ e4φ=½ðd−1Þα�; ð2Þ

where b is a positive arbitrary constant. In the absence of
the dialton field (α ¼ 0), the above potential reduces to
VðφÞ → 2Λ, and, thus, one may interpret Λ as the cosmo-
logical constant. The (dþ 1)-dimensional spherical sym-
metric metric is given by

ds2¼−fðrÞdt2þ dr2

fðrÞþ r2RðrÞ2dΩ2
d−1; ð3Þ

where dΩ2
d−1 is the line element of a unit (d − 1)-sphere

with the volume ωd−1. Applying the ansatz RðrÞ ¼
e2αφ=ðd−1Þ, one can show that [28]

fðrÞ¼ 2Λðα2þ1Þ2r2ð1−γÞ
ðd−1Þðα2−dÞb−2γ −

ðd−2Þðα2þ1Þ2b−2γr2γ
ðα2−1Þðα2þd−2Þ

−
m

rðd−1Þð1−γÞ−1
þ 2q2ðα2þ1Þ2r2ðd−2Þðγ−1Þ
ðd−1Þðα2þd−2Þb2γðd−2Þ ; ð4Þ

φðrÞ ¼ ðd − 1Þα
2ð1þ α2Þ ln

�
b
r

�
; At ¼

qbγð3−dÞ

ΠrΠ
; ð5Þ

where γ ¼ α2=ðα2 þ 1Þ, Π ¼ ðd − 3Þð1 − γÞ þ 1, b is a
positive arbitrary constant, and m and q, respectively, are
related to the total mass and electric charge of the black
hole [28]

M ¼ bγðd−1Þðd − 1Þωd−1

16πðα2 þ 1Þ m; Q ¼ qωd−1

4π
: ð6Þ

Inasmuch as the event horizon is defined by the largest
root of fðrþÞ ¼ 0, one can write m in terms of rþ. The
temperature, entropy, and electric potential of Einstein-
Maxwell-dilaton black holes are obtained as [28]

T ¼ −
ðd − 2Þðα2 þ 1Þb−2γ

4πðα2 − 1Þ r2γ−1þ −
Λðα2 þ 1Þb2γ
2πðd − 1Þ r1−2γþ

−
q2ðα2 þ 1Þb−2γðd−2Þ

2πðd − 1Þ rð2d−3Þðγ−1Þ−γþ ; ð7Þ

S ¼ bγðd−1Þωd−1

4
rðd−1Þð1−γÞþ ; U ¼ qbγð3−dÞ

ΠrþΠ : ð8Þ

In the Appendix, using Wald’s formalism [9,30–33], we
present a derivation of the first law of thermodynamics that
includes a variation in the cosmological constant. We also
show that the mass of the dilaton black hole is equivalent to
enthalpy. Hence, the first law of thermodynamics and
Smarr formula take the form,

dM ¼ TdSþ UdQþ VdP; ð9Þ

M ¼ ðd − 1Þð1 − γÞ
Π

TSþUQþ ð4γ − 2Þ
Π

VP; ð10Þ

in which P and V are the thermodynamic pressure and
volume, respectively, given by

P ¼ −
ðdþ α2Þb2γΛ
8πðd − α2Þr2γþ

;

V ¼ ð1þ α2Þωd−1bðd−1Þγ

dþ α2
rðdþα2Þ=ð1þα2Þ
þ : ð11Þ

In the absence of the dilaton (α ¼ 0), the above pressure
becomes P ¼ −Λ=8π, which is the pressure of the
Reissner-Nordstrom-AdS (RN-AdS) black hole [8].
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III. INSTABILITY AND PHASE TRANSITION
IN THE DILATON BLACK HOLE

The sign of the response functions must be positive for
local stability of a thermodynamic system [5]. Since we
consider an extended phase space, it is important to study
the behavior of the isothermal compressibility

κT ¼ −
1

V
∂V
∂P

����
T
: ð12Þ

The negative sign of κT indicates local thermodynamic
instability and, therefore, a phase transition in the system.
To see the exact behavior of the thermodynamic system
with regard to local instability, we need to calculate the
Gibbs free energy G ¼ GðT; PÞ, which is obtained as

G¼M−TS¼
� ðd−2Þð1þα2Þbγðn−3Þ
16πðα2þd−2Þrðn−3Þðγ−1Þ−1þ

þ Pðα4−1Þbγðd−1Þ
ðd−1Þðdþα2Þrdðγ−1Þ−γþ

þ q2ð2d−3þα2Þðα2þ1Þbγð3−dÞ
8πðd−2þα2Þðd−1Þrðn−3Þð1−γÞþ1

þ

�
ωn−1:

ð13Þ

Let us first consider the Gibbs free energy in the absence of
the dilaton (α ¼ 0) depicted in Fig. 1 for d ¼ 3. According
to Fig. 1, the Gibbs energy is single valued and increases
monotonically with the increasing pressure for T > Tc
and is locally stable (κT > 0) everywhere, as indicated by
the solid blue line. However, for T < Tc, it becomes

multivalued with negative κT shown by the dashed red
line. Since the minimum value ofG is chosen by the system
at equilibrium, this indicates a first-order phase transition
which occurs between the SBH and LBH where the slope
of G is discontinuous at the transition point. At T ¼ Tc, a
second-order phase transition occurs between the SBH and
LBH where G is single valued and continuous but is
nonanalytic. The corresponding phase (P-T) diagram for
RN-AdS black hole is illustrated in the inset of Fig. 1. The
SBH is distinguished from the LBH by a transition line
with a critical point at the end of the transition curve. Note
that this transition curve looks analogous to the van der
Waals P-T diagram. The qualitative behavior for higher-
dimensional black holes is the same as d ¼ 3.
Now, we turn to examine the effects of the dilaton field

parameter (α ≠ 0) on the phase transition of black holes in
extended phase space. For this purpose, we plot the Gibbs
free energy as a function of pressure for α ¼ 0.4 and d ¼ 3
in Fig. 2. One can see that for T ≥ Tc, the behavior is
similar to the previous case (α ¼ 0); namely, the Gibbs free
energy is single valued and increases monotonically with
increasing the pressure. Here, Tc is the critical point where
a second-order phase transition occurs. In the range of
temperature T ≤ Tf , where the loop is formed at T ¼ Tf , a
first-order phase transition occurs similarly to the van der
Waals fluid system. However, for the temperature range
Tf < T < Tc, an interesting phenomenon occurs where a
finite jump in G leads to a zeroth-order phase transition.
Such zeroth-order phase transition has previously been
considered in the theory of superfluidity and superconduc-
tivity [22] and, more recently, has been reported as a part of
reentrant phase transition in black holes [23–27].
To be more specific, let us consider the case of T ≈

0.064 ∈ ½Tf ; Tc� in Fig. 3. Decreasing the pressure of the
system (despite its multivaluedness) follows a locally stable
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FIG. 1. Gibbs free energy as a function of pressure for α ¼ 0,
q ¼ 1, and d ¼ 3 and different values of temperature. Below the
critical temperature (Tc), it shows multivalued behavior indicat-
ing a first-order phase transition [small black hole (SBH)/large
black hole (LBH)]. The positive (negative) sign of κT is identified
by blue solid (dashed red) line. Note that various curves are
shifted for clarity. The corresponding phase diagram (P-T) is
shown in the inset.
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FIG. 2. Gibbs free energy as a function of pressure for different
values of temperature and α ¼ 0.4, b ¼ 1, q ¼ 1, and d ¼ 3. The
positive (negative) sign of κT is identified by the blue solid
(dashed red) line. For T ≤ Tc, GðPÞ develops nonanalytic
behavior in different ways at T ¼ Tc for Tf < T < Tc and finally
for T < Tf. Note that various curves are shifted for clarity.
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regime (κT > 0) by choosing the lower G value. However,
at P ¼ P0, a jump to a higher (stable) value of G is
required, thus, leading to a discontinuous G and a zeroth-
order phase transition. Note that this type of phase
transitions is absent in normal liquid-gas transitions such
as the van der Waals fluid.
The phase diagram of the charged dilaton black hole is

shown in Fig. 4. A van der Waals–like first-order phase
transition occurs for ðT; PÞ < ðTf ; TfÞ. This is followed by
zeroth-order phase transition curve with finite jump inG for
the range ðTf ; TfÞ < ðT; PÞ < ðTc; TcÞ. Interestingly, the
zeroth-order transition curve terminates at the critical point
ðTc; TcÞ.

IV. EQUATION OF STATE

The equation of state P ¼ PðT; rþÞ (for fixed q) can be
obtained by using Eq. (7) as

P ¼ ðdþ α2Þðd − 1ÞT
4ðd − α2Þð1þ α2Þrþ

þ ðd − 2Þðd − 1Þðdþ α2Þb−2γ
16πðα2 − 1Þðd − α2Þr2−2γþ

þ ðdþ α2Þq2b−2γðd−2Þ
8πðd − α2Þr1−ð2d−3Þðγ−1Þþγ

þ
: ð14Þ

The P − rþ isothermal diagrams for α ¼ 0.4 and d ¼ 3 are
shown in Fig. 5. The critical point is essentially an
inflection point where (∂P=∂rþ ¼ 0 and ∂2P=∂r2þ ¼ 0)
and can be obtained as [16]

Pc ¼
� ðd − 1Þðd − 2Þ
2ð2d − 3þ α2Þðd − 1þ α2Þ

	½γ−ð2d−3Þðγ−1Þþ1�=2Π

×

�ðdþ α2Þð2d − 3þ α2Þðd − 2þ α2Þ
8πð1þ α2Þðd − α2Þb2γ=Πq2ð1−γÞ=Π

	
; ð15Þ

Tc ¼
� ðd − 1Þ
2q2ðd − 1þ α2Þ

	ð1−2γÞ=2Π� ðα2 þ d − 2Þ
πð1 − α2Þbγðn−1Þ=Π

�

×

�ð2d − 3þ α2Þ
ðd − 2Þ

	½ð2d−3Þðγ−1Þ−γ�=2Π
; ð16Þ

rþc ¼
�
2q2ðd − 1þ α2Þð2d − 3þ α2Þb6γ−2dγ

ðd − 2Þðd − 1Þ
	
1=2Π

: ð17Þ

According to Eq. (16), the critical temperature has positive
values if the dilaton parameter is restricted to α < 1. One
can calculate the critical exponents α0 ¼ 0, β0 ¼ 1=2,
δ0 ¼ 3, and γ0 ¼ 1 associated with the second-order tran-
sition, which are mean-field values such as the van der
Waals fluid system [16].
For T < Tc, we observe local instability (κT < 0) and

negative pressure in some range of quantities for the
system. Such an unphysical behavior is remedied by
choosing the globally stable Gibbs free energy as illustrated
in Fig. 2. For T < Tf, where a first-order phase transition
occurs, a globally unphysical part is replaced by the isobar
line for which GSBH ¼ GLBH. Following the behavior of
Gibbs free energy, we observe that the modified isobar line
for the zeroth-order phase transition starts at the point of
local minimum of isotherm for range Tf < T < Tc. One
can see from Fig. 5 that κT diverges (∂P=∂rþ ¼ 0) in the
case of zeroth-order phase transition. Similarly, one can
plot the entropy (S) versus temperature (T) as well and will
subsequently see that the heat capacity at the constant
pressure diverges in the zeroth-order phase transition.
Figure 6 shows a SBH/LBH phase diagram for various

values of the dilaton parameter α. As is seen from the
figure, increasing α from zero (RN-AdS BH) will lead to
the creation and elongation of the zeroth-order phase
transition as the critical point moves higher, and the
first-order transition curve (purple) bends lower and further
in the P-T space. Finally, it is worth mentioning that similar

0.0026 0.0028 0.0030 0.0032 0.0034

0.066

0.068

0.070

0.072

0.074

0.076

P

G

P0

FIG. 3. A closeup of T ≈ 0.064 ∈ ½Tf ; Tc� in Fig. 2 displays a
zeroth-order phase transition which is accompanied by a finite
jump in G at P0 ≈ 0.00274. The positive (negative) sign of κT is
identified by the blue solid (dashed red) line, and the arrows show
the direction of the increasing rþ.
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qualitative behavior for the higher-dimensional (d > 3)
charged dilaton black holes can be observed.

V. SUMMARY

In this paper, we have investigated the thermodynamic
phase behavior of charged dilaton black holes in the
presence of Liouville-type dilaton potentials. Because of
the presence of the dilaton field, these solutions are neither
asymptotically flat nor (A)dS [28]. We have disclosed the
effects of the dilaton field on the phase transition properties
of charged black holes in an extended phase space. In
addition to the usual small/large black hole transition (first
and second order) [7,8], we have observed a zeroth-order
phase transition between a small and large black hole in
which isothermal compressibility and heat capacity at the
constant pressure diverge. In addition, the Gibbs free
energy has a finite jump at the point where a zeroth-order

phase transition occurs. We have also obtained that a
zeroth-order phase transition emerges in a longer portion
of the transition line by increasing a coupling constant of
the dilaton field. It is worth noting that a coupling constant
is restricted to α < 1, for which the critical temperature is
positive. Finally, we have shown a set of critical exponents
which are the same with the van der Waals fluid system.
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APPENDIX A: THE FIRST LAW OF
THERMODYNAMICS FOR DILATON BLACK

HOLE WITH THE VARIATION OF
COSMOLOGICAL CONSTANT

To prove a version of the first law of thermodynamics
with varying cosmological constant Λ in a dilaton black
hole, we utilize a Hamiltonian approach by applying the
Noether current formalism of Wald which was obtained
earlier in [30,31,33]. For simplicity of calculation, we do
not consider the charge of the black hole and also set d ¼ 3.
The variation of the Hamiltonian that generates translation
along a Killing vector ξ is given as [30,32]

δH½ξ� ¼
Z
C
dΣa

ωaffiffiffiffiffiffi−gp ; ðA1Þ

where C is a Cauchy surface and dΣa ¼ na
ffiffiffi
h

p
d3y. Here, h

is the determinant of a three-dimensional hypersurface with
the normal field na. In Eq. (A1), ωa for Einstein gravity
coupled to a scalar (dilaton) field is given as [33]

ωa ¼ −δð ffiffiffiffiffiffi
−g

p
JaÞ þ

ffiffiffiffiffiffi−gp
8π

�
∇bðξ½aδvb�Þ −

∂VðφÞ
2∂Λ ξaδΛ

	
;

ðA2Þ

in which

δva ¼ ∇bδgab −∇aδgbb − 4δφ∇aφ: ðA3Þ

In the absence of the dilaton (φ ¼ 0), Eqs. (A2) and (A3)
reduce to expressions calculated in the AdS black hole [32].
The Noether current in Eq. (A2) is Ja ¼ ∇bJab ¼
1
8π∇bð∇½aξb�Þ, where Jab is the antisymmetric Noether
potential [30,33]. By using Eqs. (A2) and (A3) and
applying Stokes’s theorem, one can write Eq. (A1) as
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0 2 4 6 8 10 12
0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005
P

r

FIG. 5. P − rþ diagram of charged dilaton black holes for
various temperatures and α ¼ 0.4, b ¼ 1, q ¼ 1, and d ¼ 3. The
regions of zeroth- and first-order phase transition are charac-
terized by different colors. The isobars (black thin line) remedy
the unphysical locally and globally unstable regimes; see Fig. 2.
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leads to a larger portion of the transition curve belonging to the
zeroth-order phase transition. The critical points are highlighted
by a black solid circle.

NOVEL PHASE TRANSITION IN CHARGED DILATON … PHYSICAL REVIEW D 96, 084012 (2017)

084012-5



δH½ξ� ¼−
1

2
δ

Z
H
dΣabJabþ

1

2
δ

Z
∂C∞

dΣabJab−
1

16π

×
Z
∂C∞

dΣabξ
½aδvb�−

δΛ
16π

Z
C
dΣa

∂VðφÞ
∂Λ ξa; ðA4Þ

where H is the bifurcation surface, and ∂C∞ is a boundary
of C at infinity. Note that the timelike Killing vector
vanishing on the bifurcation surface does not contribute
to Eq. (A4). In this situation, δH½ξ� ¼ 0 does not meanH½ξ�
is zero. Then one can recognize the first term on the right-
hand side of Eq. (A4) as −κδS=2π after the horizon Killing
field is normalized to unit surface gravity κ [30]. The
second and third terms are identified as δM where the
Killing vector approaches an asymptotic time translation
[30]. Now, we interpret the last term of Eq. (A4) as −VδP,
which can be written as

VδP ¼ δΛ=16π
Z
H
naξa

ffiffiffi
h

p
d3y

∂VðφÞ
∂Λ ; ðA5Þ

where the divergence term in the above equation is omitted
by adding a suitable counterterm [32]. Inserting Eq. (2) into

the above expression and taking into account Eq. (5), we
can rewrite Eq. (A5) as

VδP ¼ b2γδΛ=8π
Z
H

naξa
ffiffiffi
h

p
d3y

r2γ
: ðA6Þ

Hence, according to the metric (3) and thermodynamic
pressure Eq. (11), one can easily calculate the thermody-
namic volume in Einstein dilaton gravity as

V ¼ 4πð1þ α2Þb2γ
3þ α2

rð3þα2Þ=ð1þα2Þ
þ : ðA7Þ

Also, one can find that from Eq. (A4), the first law of the
dilaton black hole with varying cosmological constant takes
the form

δM ¼ TδSþ VδP; ðA8Þ

in which T ¼ κ=2π. In this regard, the mass of the dilaton
black hole is interpreted as the enthalpy rather than the
internal energy.
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