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We use our previously developed identification of dispersion relations with Hamilton functions on phase
space to locally implement the κ-Poincaré dispersion relation in the momentum spaces at each point of a
generic curved spacetime. We use this general construction to build the most general Hamiltonian
compatible with spherical symmetry and the Plank-scale-deformed one such that in the local frame it
reproduces the κ-Poincaré dispersion relation. Specializing to Planck-scale-deformed Schwarzschild
geometry, we find that the photon sphere around a black hole becomes a thick shell since photons of
different energy will orbit the black hole on circular orbits at different altitudes. We also compute the
redshift of a photon between different observers at rest, finding that there is a Planck-scale correction to the
usual redshift only if the observers detecting the photon have different masses.
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I. INTRODUCTION

The κ-Poincaré algebra of symmetries, a quantum
deformation of the Poincaré algebra [1–3], is one of the
most intensively studied phenomenological models rel-
evant for quantum gravity research. This is mostly because
it provides a mathematically consistent example of a
relativistic theory with two invariants (the speed of light
and the Planck length or energy), and it produces poten-
tially observable effects, such as an energy-dependent
propagation velocity of massless particles which may be
measured in the observation of γ-ray bursts at cosmological
distances (see [4] and references therein). Geometrically,
the motion of a particle admitting κ-Poincaré symmetry can
be interpreted as happening on a flat spacetime manifold
with a curved momentum space enjoying de Sitter sym-
metry, the Planck scale being related to the curvature of the
momentum space itself [5,6].
As already discussed in [7], in order to make the

κ-Poincaré model more suited to describe quantum gravity
effects in the cosmological framework, it is necessary to
implement the κ-Poincaré dispersion relation on generally
curved spacetimes. This entails building a model of
intertwined spacetime and momentum space such that in
a local frame one recovers the flat spacetime κ-Poincaré

dispersion relation. In the local frame, the κ-Lorentz
symmetries hold, i.e., the κ-Poincaré symmetries except
translations. By now, several steps towards this goal have
been achieved. The so-called q-de Sitter dispersion relation
implements the κ-Poincaré dispersion relation on de Sitter
spacetime geometry [8] and is associated to a quantum
deformation of the de Sitter algebra of spacetime sym-
metries. A first approach to a homogeneous and isotropic
spacetime with κ-Poincaré dispersion relation was pre-
sented in [9] by gluing together slices of its de Sitter
spacetime realization. Recently, we could go even further.
In [10], we interpreted dispersion relations as level sets of
Hamilton functions on the cotangent bundle of a spacetime
manifold and developed a precise notion of symmetries of
dispersion relations. This enabled us to construct the most
general homogeneous and isotropic dispersion relation and
to identify what we called the qFLRW dispersion relation
[7]. It is constructed such that in a local frame the
dispersion relation reduces to the κ-Poincaré one, and,
when the Planck-scale deformation vanishes, it describes
the motion of a relativistic particle on Friedmann-Lemaître-
Robertson-Walker (FLRW) spacetime.
Here, we show that in fact the κ-Poincaré dispersion

relation (and the associated κ-Lorentz symmetries) can
be realized locally on a general curved spacetime.
Specifically, in Sec. II, we construct a Planck-scale-
modified Hamiltonian on a general curved spacetime, such
that at every point of spacetime there exists a basis of the
cotangent space such that the covariantly defined
dispersion relation takes the standard κ-Poincaré form.
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This characterization is similar to the fact that on every
Lorentzian manifold there exist frames of the Lorentzian
spacetime metric. In these frames, the dispersion relation of
point particles on curved spacetime takes the same form as
on flat Minkowski spacetime. In Sec. II C, we use Hamilton
equations to work out the motion in phase space of a
particle with such Planck-scale-deformed dispersion rela-
tion on generic curved spacetime, and in Sec. II D, we
derive a general formula for the redshift between two
observers. In Sec. III, we specialize our model to the case of
a spherically symmetric spacetime, presenting the most
general Planck-scale-deformed dispersion relation compat-
ible with these symmetries which reduces to the κ-Poincaré
one in the local frame. It contains four free functions
depending on the time and radial coordinate satisfying
one algebraic constraint. Two of these functions are fixed
by the undeformed metric spacetime geometry, as we show
in Sec. III B, where we deal with the Schwarzschild case.
In Sec. III C, we work out the Hamilton equations for
the Schwarzschild case, and finally, in Sec. III D, we
compute some observable effects. In particular, we show
that the radius of the circular photon orbits around a black
hole depend on the photon’s energy and that the observed
redshift of a photon moving radially in the Schwarzschild
geometry is modified with respect to the standard case
only if the two observers detecting the photon have
different masses.
During this article, we use the following notational

conventions: Indices a; b; c;… and μ; ν;… run from 0
to 3. Latin indices denote tensor components in manifold
induced coordinates, greek indices denote frame induced
coordinates ðx; pÞ ∼ P ¼ padxa ∈ T�

xM of the cotangent
bundle. Tensorial objects on spacetime, like a spacetime
metric g or a vector field Z are often interpreted as function
on the cotangent bundle g−1ðp; pÞ or ZðpÞ, which are
defined as these tensors action on the 1-form P,

g−1ðp; pÞ ¼ gabpapb; ZðpÞ ¼ Zapa:

The signature convention for the spacetime metric we use is
ð−;þ;þ;þÞ. The manifold induced coordinates on the
cotangent bundle satisfy the canonical Poisson relations
fxa; pbg ¼ δab, all other vanish.

II. κ-POINCARÉ MOMENTUM SPACES ON
CURVED SPACETIMES

The general framework of Hamilton geometry applied to
Planck-scale-modified dispersion relations is discussed in
detail in our previous publications [7,10]. Here, we only
introduce the basic notions, recalling the connection
between dispersion relations and level sets of Hamilton
functions on the cotangent bundle of a spacetime manifold.
Subsequently, we write down the Hamilton function which
implements the κ -Poincaré dispersion relation for free
particles at every point of a generic spacetime and introduce

the notion of κ-Lorentzian symmetry. We then briefly
discuss the equations of motion induced by such
Hamiltonian, and we compute the redshift between any
two observers.

A. Dispersion relations as level sets
of Hamilton functions

In general relativity, local Lorentz invariance is encoded
in terms of symmetry transformations on the tangent,
respectively, cotangent spaces of spacetime. In particular,
this symmetry manifests itself in the local invariance of the
dispersion relation of fundamental point particles, which is
given by

gabðxÞpapb ¼ −m2; ð1Þ
where m is the invariant mass parameter. On each point x
on spacetime, this dispersion relation is invariant under
Lorentz transformations of the momenta p in the following
sense: There exist frames A of the metric g such that

Hgðx; pÞ≡ gabðxÞpapb ¼ ημνAa
μðxÞAb

νðxÞpapb

¼ ημνpμpν ≡Hηðx; pÞ: ð2Þ
Lorentz invariance manifests itself in the fact that the
frame matrix A is not unique. In fact, every transformation
Â which is constructed from A via the application of a
Lorentz transformation does not change the value of the
function Hgðx; pÞ.
In previous work [7,10], we have demonstrated that one

can interpret the dispersion relation of point particles as
level sets of a Hamilton function Hðx; pÞ on the cotangent
bundle of spacetime. Then the geometry of the particle’s
phase space, i.e., the intertwined geometry of spacetime
and the point particle’s momentum space, can be derived
from the Hamilton function. Here, we schematically recall
the most important features of the Hamiltonian construction
of the phase space geometry (further details and explicit
examples can be found in [7,10]),

(i) The Hamilton equations of motion are the autopar-
allel equations of the unique torsion-free Cartan
nonlinear connection. For nonhomogeneous Ham-
iltonians, they include a forcelike source term.

(ii) The Cartan nonlinear connection, uniquely derived
from the Hamiltonian, splits the tangent spaces of
phase space covariantly in directions along space-
time and along momentum space.

(iii) Canonical linear connections, uniquely determined
by the Hamiltonian and the nonlinear connection,
define the curvature of spacetime and of momentum
space, both of which, in general, depend on both
spacetime coordinates and momenta.

(iv) For the Hamiltonian Hgðx; pÞ ¼ gabðxÞpapb, one
obtains the usual Lorentzian metric geometry of
spacetime with a flat momentum space.
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A dispersion relation thus gives us access to observable
predictions by determining the motion of point particles
obeying the dispersion relation through the Hamilton
equations of motion, encodes the local phase space sym-
metry in terms of its local invariances, and determines the
geometry of phase space whose autoparallels coincide with
the Hamilton equations of motion. As mentioned in the
Introduction, in this article, we aim for observable pre-
dictions from a modification of the local Lorentz invariant
point particle Hamilton function in general relativity.
Specifically, we will construct a covariant Hamilton func-
tion on a generic curved spacetime whose local sym-
metry transformations are generated by the κ-Poincaré
algebra [11].

B. The locally κ-Poincaré Hamiltonian

The κ-Poincaré dispersion relation [11] can be repre-
sented as the level sets of the Hamilton function

Hκðx; pÞ ¼ −
4

l2
sinh

�
l
2
pt

�
2

þ elpt p⃗2; ð3Þ

where pt and p⃗ are, respectively, the particle’s energy and
spatial momentum and l ¼ κ−1 is the deformation param-
eter such that for l ¼ 0 the Hamiltonian reduces to the
familiar expression of special relativity

Hðx; pÞ ¼ −p2
t þ p⃗2 ¼ ηabpapb: ð4Þ

The κ-Poincaré Hamiltonian (3) is the κ deformation of the
flat Minkowski spacetime Hamiltonian (4). The idea is that
the Hamiltonian (3) determines the effective motion of
point particles in a semiclassical regime of quantum
gravity, as discussed in [10]. Hamiltons equations of
motion of both imply that all particles move force free
on straight lines in one and the same coordinate system, so
both yield particle motion on flat spacetime. The difference
is that if one derives the momentum space curvature of (3)
and (4) according to the framework of Hamilton geometry
outline in the previous section, one finds a nontrivial
momentum space curvature in the κ-Minkowski case, but
a vanishing momentum space curvature for Minkowski
spacetime.
As mentioned in the Introduction, the phenomenological

implications of this κ-deformed Hamiltonian have been
widely studied in the literature; however, most of the
observable effects would be mostly apparent in a cosmo-
logical setting or in general, in regimes where spacetime
curvature can not be neglected. This provides motivation to
look for ways to implement the κ-deformed Hamiltonian on
an arbitrarily curved spacetime ðM; gÞ, constructing a
Hamilton function which locally takes the form (3), so
that it is locally κ-Poincaré invariant in the same sense as
general relativity is locally Lorentz invariant. In [7], we

focused on homogeneous and isotropic FLRW spacetimes.
Here, we study the general case.
Let ðM; gÞ be a globally hyperbolic Lorentzian space-

time, and let Z be a normalized globally defined timelike
vector field on ðM; gÞ, which can be interpreted as function
ZðpÞ on the cotangent bundle of spacetime T�M,

gðZ; ZÞ≡ gabðxÞZaðxÞZbðxÞ ¼ −1; ZðpÞ ¼ ZaðxÞpa:

ð5Þ

The κ-Poincaré deformation of ðM; gÞ is defined by
changing the Hamiltonian Hg to HZg defined by

HZgðx; pÞ≡ −
4

l2
sinh

�
l
2
ZðpÞ

�
2

þ elZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ: ð6Þ

We label the deformed Hamiltonian by the vector field Z
since in general different choices of Z lead to different
κ-deformed Hamiltonians. In Sec. III, where we discuss the
spherically symmetric κ-Poincaré phase space, we will see
this freedom explicitly. This Hamiltonian can be considered
as κ deformation of a local Lorentz invariant spacetime to a
local κ-Lorentz invariant one and in addition, also be
derived from a modified theory of electrodynamics as
we discuss in Appendix A.
Performing a power-series expansion in l, we find

HZgðx; pÞ ¼ g−1ðp; pÞ þ lZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ
þOðl2Þ: ð7Þ

Thus, the zeroth order of HZg is identical to the Hamilton
function which determines the particle motion and the
geometry of spacetime in general relativity.
It can be shown that the Hamiltonian (6) is locally

κ-Poincaré invariant via the following argument. Since Z is
a unit-timelike vector, there exists a frame A of the metric g
such that Aa

0∂a ¼ Z, thus ZðpÞ ¼ Aa
0pa ¼ p0. Since A is a

frame, we can express the metric square of the momenta in
this frame as

gabpapb ¼ ημνpμpν ¼ −p20 þ p⃗2: ð8Þ

Thus, with respect to this frame, the κ-Poincaré (bicross-
product basis) Hamiltonian we constructed becomes

HZgðx; pÞ ¼ −
4

l2
sinh

�
l
2
p0

�
2

þ elpt p⃗2 ¼ HZηðx;pðxÞÞ;

ð9Þ

which is invariant under the transformations generated by
the κ-Poincaré algebra.
The frame A induces a local and linear transformation

on the momenta such that locally, at every x ∈ M, the
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Hamiltonian (6) takes the form (3). Again, as in the metric
general-relativistic case, this transformation is not unique.
It can be combined with a κ-Poincaré transformation, and
the value of HZg will not change. Thus, we conclude that
HZg is locally κ-Poincaré invariant in the same sense as the
metric Hamiltonian Hg is local Lorentz invariant. To be
precise, observe that this local invariance on curved space-
times excludes the translations from the full κ-Poincaré
algebra as transformations. To have a nomenclature for the
allowed transformations available, we call the remaining
elements of the algebra, i.e., the κ-Poincaré boosts and
rotations, the κ-Lorentz algebra.
The intertwined geometry of the smooth point particle

phase space, i.e., its linear connections and curvatures, can
now be derived according to the framework developed in
[10]. This derivation is beyond the scope of this article
which aims for phenomenological implications of the
modified dispersion relation induced by the Hamiltonian
(6). We also do not study in detail the consequences on this
geometric picture of general nonlinear momentum trans-
formations. We only focus on the nonlinear momentum
transformations that are symmetries of the model, i.e., that
leave the Hamiltonian invariant, and these are the trans-
formations generated by the κ-Lorentz algebra.
Before we continue with our analysis, we would like to

make a remark concerning different bases of the κ-Poincaré
algebra. The same line of argument applied above can be
generalized to different bases of the κ-Poincaré Hopf
algebra, which can be obtained by a nonlinear redefinition
of the translation generators. Different bases have in
general different Casimir operators, and thus, they are

associated to different Hamiltonians. In particular, there
exists a basis with a classical Poincaré algebra sector and
undeformed Hamiltonian. However, such a basis is char-
acterized by nontrivial coproducts of the translation gen-
erators, that imply nontrivial composition law of momenta
in particles’ interactions [6]. Thus, such a basis formalizes a
physical model with undeformed single particle dynamics
and nontrivial interaction vertices. Since in this paper we
focus our phenomenological analysis on the motion of a
free single-particle in a Schwarzschild geometry with
deformed local symmetries, it makes sense to specialize
our investigation on the κ-Poincaré bicrossproduct basis.

C. Particle motion

Having implemented the κ-Poincaré dispersion relation
locally on a general curved spacetime as level sets of the
Hamilton function (6), we study the particle motion in
phase space which is determined by the Hamilton equations
of motion derived from (6). These are eight first-order
ordinary differential equations which are equivalent to four
second order ordinary differential equations, the Euler-
Lagrange equations of the Lagrangian corresponding to the
Hamiltonian in consideration. The transformation of the
Hamiltonian representation of the theory to its Lagrangian
counterpart is the starting point for finding a Finsler
geometric formulation of the κ-deformed geometry of
spacetime, which is investigated in several articles [12–14].
The Hamilton equations of motion of the general κ-

deformed Hamiltonian imply the following relation
between velocities and momenta:

_xa ¼ ∂̄aHZg

¼ Za

�
−
2

l
sinhðlZðpÞÞ þ lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ þ 2elZðpÞZðpÞ

�
þ 2elZðpÞgabpb; ð10Þ

while the evolution of momenta is given by

_pa ¼ −∂aHZg

¼ pq∂aZq

�
2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ − 2elZðpÞZðpÞ

�
− elZðpÞpbpc∂agbc: ð11Þ

The latter can be written in an explicitly covariant form with respect to manifold induced coordinate transformation by
introducing the Levi-Civita connection of the Lorentzian metric g,

_pa ¼ pq∇aZq

�
2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ − 2elZðpÞZðpÞ

�
þ 2elZðpÞpcpbΓc

ba

þ pqΓq
abZb

�
2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ − 2elZðpÞZðpÞ

�
:

Observe that this spacetime metric is used here as an available mathematical tool to check the covariance of the equations of
motion explicitly. It is not what fundamentally determines the geometry of spacetime, momentum space nor the motion of
particles (in fact, we can not really separate spacetime and momentum space within the phase space). The fundamental
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ingredient is the Hamilton function itself, and when the Planck-scale corrections are introduced, spacetime and momentum
space are intertwined so that it is not possible to talk about a spacetime metric on its own.
Reshuffling the terms in the above equations, we find

pq∇aZq

�
2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ − 2elZðpÞZðpÞ

�

¼ _pa − 2elZðpÞpcpbΓc
ba − pqΓq

abZb

�
2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ − 2elZðpÞZðpÞ

�
: ð12Þ

Since the Hamilton equations of motion are covariant, i.e., behave tensorial under manifold induced coordinate changes,
and since the left-hand side of these equations are covariant as well, the right-hand side must be covariant. For l → 0 we
obtain, as expected, the geodesic equation in its Hamilton formulation and the usual relation between momenta and
velocities in general relativity

_xa ¼ 2gabpb; _pa − 2pcpbΓc
ba ¼ 0 ⇒ ẍa þ Γa

bc _xb _xc ¼ ∇_x _x ¼ 0: ð13Þ

We do not transform the Hamilton equations of motion of the κ-deformed Hamiltonian into their Euler-Lagrange form
explicitly since this is a lengthy calculation not needed for the scope of this article. If needed, they can be directly calculated
from the Lagrangian corresponding to the κ-deformed Hamiltonian. Surprisingly, it is not too difficult to derive the
Legendre transformation Lðx; _xÞ ¼ _xapaðx; _xÞ −HZgðx; pðx; _xÞÞ of HZg explicitly. The calculations are discussed in
Appendix B and yield

_xapa ¼
gð_x; _xÞ þ gð_x; ZÞ2

lgð_x; ZÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2gð_x; ZÞ2 þ l2gð_x; _xÞ þ 4

p
−
gð_x; ZÞ

l
ln

�
1

2
ðlðgð_x; ZÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2gð_x; ZÞ2 þ l2gð_x; _xÞ þ 4

q
Þ
�

ð14Þ

HZgðx; pðx; _xÞÞ ¼
2

l2
−
gð_x; ZÞ

l
−

4

l2

1

ðlgð_x; ZÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2gð_x; ZÞ2 þ l2gð_x; _xÞ þ 4

p
Þ : ð15Þ

Even though these expressions are quite involved, one can calculate their l → 0 limit and obtain

_xapa ¼
1

2
gð_x; _xÞ; HZgðx; pðx; _xÞÞ ¼

1

4
gð_x; _xÞ ⇒ Lðx; _xÞ ¼ 1

4
gð_x; _xÞ ð16Þ

as expected.
The main qualitative difference between the Hamilton

equations in general relativity and the ones for the κ-
deformed Hamiltonian is that in general relativity the _pa
equation is only sourced by a term proportional to the
Christoffel symbols, while in the κ-deformed case, there are
extra source terms. This means that, unlike in general
relativity, there exists no coordinate system around every
point q of spacetime such that _pa ¼ 0 at q (i.e., it is not
possible to define normal coordinates around every point).
This nicely demonstrates what we already discussed in
Theorem 2 of [10], namely that for nonhomogeneous
Hamiltonians a forcelike term appears in the Hamilton
equations dragging particles away from autoparallel motion.

D. Observers and redshift

One prominent feature of physics on curved spacetimes
is the gravitational redshift. Following our previous

analysis done for homogeneous and isotropic models
[7], here we investigate how the amount of redshift between
two observers in a generic curved spacetime is influenced
by the κ deformation. In order to do so, we need a notion
of the frequency νσðγÞ of a light ray γ measured by an
observer σ.
A light ray is a solution γðτÞ ¼ ðxγðτÞ; pγðτÞÞ of the

Hamilton equations of motion which satisfies HðγÞ ¼ 0.
An observer is a curve σðλÞ ¼ ðxσðλÞ; pσðλÞÞ to which a
tangent vector is associated via _xaσ ¼ ∂̄aHðσÞ and which
satisfies the following properties:
(1) The energy of an observer is real for all masses and

spatial momenta, i.e., HðσÞ < 0.
(2) It is normalized, i.e., HðσÞ ¼ −m2

σ ¼ constant.
These conditions are the same conditions observers satisfy
in general relativity, which can be realized in the l → 0
limit of the theory we are discussing. Note that we do not
demand the observer’s curve to be a solution of the
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remaining Hamilton equations, since there exist observers
who are not freely falling on spacetime. However, the
relation between the observer’s four momentum pσ and the
observer’s tangent _xσ is given via the first Hamilton
equation of motion. So the observer is also subject to
the κ-deformed dynamics, in contrast to other models
considered [9,15,16], in which the observer is formalized
just as a low-energetic (classical) worldline. In our case,
however, since we are describing deformations to the
particles’ dynamics in a Schwarzschild-like framework
later, the mass of the observer plays a crucial role, being
proportional to the influence of the κ deformation detected
in the observer’s reference frame, as we will see explicitly
in Sec. III D 2.
The frequency an observer associates to the light ray is

given by

νσðγÞ ¼ pγa
_xaσ
mσ

¼ pγa
∂̄aHðσÞ
mσ

: ð17Þ

Surely this expression only makes sense when the light ray,
and the observer intersect at a certain point on spacetime.
For the κ-Poincaré Hamiltonian _x is displayed in (10) so

νσðγÞmσ ¼ ZðpγÞ
�
−
2

l
sinhðlZðpσÞÞ

þ lelZðpσÞðg−1ðpσ; pσÞ þ ZðpσÞ2Þ

þ 2elZðpσÞZðpσÞ
�
þ elZðpσÞ2g−1ðpσ; pγÞ ð18Þ

with correct classical limit l → 0

νσðγÞ ¼
2

mσ
g−1ðpσ; pγÞ: ð19Þ

We demanded that HðσÞ ¼ −m2
σ is constant; thus, we

can use

−
4

l2
sinh

�
l
2
ZðpσÞ

�
2

þ elZðpσÞðg−1ðpσ; pσÞ

þ ZðpσÞ2Þ ¼ −m2
σ ð20Þ

to simplify the frequency to

νσðγÞ ¼
1

mσ
ZðpγÞ

�
2

l
e−lZðpσÞ −

2

l
− lm2

σ þ 2elZðpσÞZðpσÞ
�

þ elZðpσÞ 2

mσ
g−1ðpσ; pγÞ: ð21Þ

This last expression can easily be used to calculate the
redshift between two different observers σ1 and σ2 who
intersect the light ray at different spacetime positions

zþ 1 ¼ νσ1ðγÞ
νσ2ðγÞ

: ð22Þ

In Sec. III D 2, we will use this formula to derive the
deformation of the gravitational redshift in a κ deformation
of Schwarzschild geometry.

III. SPHERICALLY SYMMETRIC
κ-DEFORMED PHASE SPACE

In our previous article [10], we gave a detailed account
of the notion of symmetry in Hamilton geometry.
Summarizing, a Hamiltonian Hðx; pÞ is invariant under
the action of certain diffeomorphisms Φ on phase space if
the vector field XΦ which induces this diffeomorphism
annihilates the Hamiltonian

XΦðHÞ ¼ 0: ð23Þ

Particularly interesting are those diffeomorphisms of phase
space which are induced by a diffeomorphism of the
spacetime manifold. In this case, the symmetry condition
becomes

XCðHÞ≡ ðξa∂a − pq∂aξ
q∂̄aÞH ¼ 0; ð24Þ

where X ¼ ξaðxÞ∂a is the vector field which induces the
diffeomorphism of spacetime. The details of the derivation
of this symmetry condition can be found in [10], while an
application in the context of homogeneous and isotropic
geometries is discussed in [7]. In the following, we use
this construction to define general spherically symmetric
Hamiltonians.

A. The general case

In order to study spherically symmetric phase spaces,
it is most convenient to use spherical coordinates
ðt; r; θ;ϕ; pt; pr; pθ; pϕÞ. The generators of rotations of
spacetime are

X1 ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ ð25Þ

X2 ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ ð26Þ

X3 ¼ ∂ϕ: ð27Þ

Their complete lifts are displayed in the Appendix C.
Evaluating Eq. (24), we find, with the same techniques
already used in the homogeneous and isotropic case [7],
that the most general spherically symmetric Hamiltonian
must take the form

Hðx; pÞ ¼ Hðt; pt; r; pr; wðθ; pθ; pϕÞÞ with

w2 ¼ p2
θ þ

1

sin θ2
p2
ϕ: ð28Þ
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As one could expect, the form of the Hamiltonian is less constrained compared to the homogeneous and isotropic case [7].
This freedom translates to the appearance of several free functions in the most general third-order polynomial expansion
around the standard metric dispersion relation,

Hðx; pÞ ¼ −Aðt; rÞp2
t þ Cðt; rÞptpr þ Bðt; rÞp2

r þ Rðt; rÞw2

þ lðDðt; rÞp3
t þ Eðt; rÞp2

t pr þ Fðt; rÞptp2
r þ Gðt; rÞp3

r þ Jðt; rÞptw2 þ Kðt; rÞprw2Þ þOðl2Þ: ð29Þ

Since we are interested in building a Hamiltonian that
reduces to the κ-Poincaré one in the local frame, we will
have a reduced freedom compared to this general case. In
particular, we want to construct a Hamiltonian that, besides
having spherical symmetry, can be written in the form (6).
The general κ-deformed Hamiltonian (6) is built out of two
elements: a spacetime metric term g−1ðp; pÞ and a vector
field term ZðpÞ. The mostly considered spherically sym-
metric metric term, which contains all spherically sym-
metric vacuum solutions of the Einstein equations, can be
written, after an appropriate choice of coordinates, as1

g−1ðp; pÞ ¼ −aðt; rÞp2
t þ bðt; rÞp2

r þ
1

r2
w2: ð30Þ

On the other hand, in order to respect spherical symmetry,
the vector field term must take the form

ZðpÞ ¼ cðt; rÞpt þ dðt; rÞpr; ð31Þ

subject to the condition gðZ; ZÞ ¼ −1, which yields

−
cðt; rÞ2
aðt; rÞ þ dðt; rÞ2

bðt; rÞ ¼ −1: ð32Þ

Plugging these objects into the κ-deformed Hamiltonian (6)
results in the most general spherically symmetric κ-
deformed Hamiltonian,

HZg ¼ −
4

l2
sinh

�
l
2
ðcpt þ dprÞ

�
2

þ elðcptþdprÞ
�
ð−aþ c2Þp2

t þ 2cdprpt þ ðbþ d2Þp2
r þ

1

r2
w2

�
; ð33Þ

where we suppressed the arguments of the functions a, b, c,
d for the sake of readability.
The functions c and d, intertwined by (32), identify a

family of κ deformations of the phase space of a spherically
symmetric spacetime. One could hope that some funda-
mental mechanism derived from a complete theory of
quantum gravity would single out one specific correct
form of the deformation.
One the other hand, if one restricts to specific spherically

symmetric spacetimes, it is not always the case that there
exists such freedom in the definition of the κ deformation.
For example, including further symmetries like in the
homogeneous and isotropic case discussed in [7], the only
normalized homogeneous and isotropic vector field evalu-
ated on a 1-form P ¼ padxa is

ZðpÞ ¼ pt: ð34Þ
Then the unique homogeneous and isotropic κ-deformed
Hamiltonian was found to be

HqFLRW ¼ −
4

l2
sinh

�
l
2
pt

�
2

þ elptaðtÞ−2
�
ð1 − kr2Þp2

r þ
1

r2
w2

�
: ð35Þ

Here, no additional degrees of freedom in addition to the
scale factor of the FLRW metric, which is determined by
the Einstein equations, appear.
In the following, we specialize to the κ deformation of

the most famous spherically symmetric solution of
Einstein’s equations, the Schwarzschild geometry.

B. The κ-deformation of Schwarzschild geometry

In the Schwarzschild solution of general relativity, the
functions which determine the spacetime metric are

aðt; rÞ ¼ 1

1 − rs
r

; bðt; rÞ ¼ aðt; rÞ−1 ¼ 1 −
rs
r
; ð36Þ

where rs is the Schwarzschild radius. Thus, the functions c
and d appearing in the timelike vector field Z which defines
the deformation of the classical phase space, Eq. (31), must
satisfy

1The most general version of the term would be g−1ðp; pÞ ¼
−aðt; rÞp2

t þ cðt; rÞptpr þ bðt; rÞp2
r þ dðt; rÞw2. In case the gra-

dient of dðr; tÞ is spacelike or timelike, the form we displayed can
be achieved; however, in case the gradient of dðr; tÞ is vanishing
or a null vector, this may not be possible [17].
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−
�
1 −

rs
r

�
cðt; rÞ2 þ dðt; rÞ2

ð1 − rs
r Þ

¼ −1; ð37Þ

according to Eq. (32). Following the discussion of the
previous section, we can write down the general spherically
symmetric κ deformation of the phase space of
Schwarzschild spacetime

HZSchwðx; pÞ ¼ −
4

l2
sinhðl

2
ðcpt þ dprÞÞ2

þ elðcptþdprÞ
��

−
1

1 − rs
r

þ c2
�
p2
t

þ 2cdprpt þ
�
1 −

rs
r
þ d2

�
p2
r þ

1

r2
w2

�
:

ð38Þ
In the rest of this section, we omit the subscript ZSchw for
the sake of readability. As already mentioned, we find a
family of deformations defined by the function c and d
subject to the condition (37). This result demonstrates the
importance of our general construction in Sec. II B, since
without the insight that a vector field parametrizes the
possible κ-Poincaré deformations, we may not have found
this general class of κ deformations of Schwarzschild
geometry.

C. Motion in phase space

To study observable consequence of the κ deformation of
Schwarzschild geometry, we now discuss the equations of
motion for point particles.
In general relativity, the Einstein vacuum equations

guarantee that every spherically symmetric solution of the
equations is static, also known as Birkhoff’s theorem.
Since so far we have not developed further the dynamics
which the κ deformation of a classical spacetime geom-
etry has to satisfy, in the following, we assume for
simplicity that c and d do not depend on t, i.e., that ∂t
induces yet another symmetry of H.
Because of the symmetry of the geometry which we are

studying, there exist several constants of motion, one for
each generator of symmetry XI, displayed in Eqs. (25) to
(27), to which we add the generator of time translations ∂t.
The constants of motion are found as XIðPÞ ¼ Xa

I ðxÞpa. In
fact, it is easy to see that this object is constant along the
solutions to the Hamilton equations of motion. One then
finds the constants of motion,

E ¼ pt; L ¼ pϕ; K1 ¼ sinϕpθ þ cot θ cosϕpϕ;

K2 ¼ − cosϕpθ þ cot θ sinϕpϕ: ð39Þ

We can use these constants to restrict the motion of
particles to the equatorial plane, fixing θ ¼ π

2
and

pθ ¼ 0. For this case, L ¼ pϕ ¼ w. Moreover, H itself

is another constant of motion representing the dispersion
relation

−m2 ¼ −
4

l2
sinh

�
l
2
ðcpt þ dprÞ

�
2

þ elðcptþdprÞ
��

−
1

1 − rs
r

þ c2
�
p2
t

þ 2cdprpt þ
�
1 −

rs
r
þ d2

�
p2
r þ

1

r2
w2

�
: ð40Þ

Under these conditions, the nontrivial Hamilton equations
of motion are

_t ¼ ∂̄tH; _pr ¼ −∂rH; _r ¼ ∂̄rH; _ϕ ¼ ∂̄ϕH:

ð41Þ

Solving analytically the equations of motion is not
possible, so, in order to get a first impression of the sort
of effects caused by κ deformations of Schwarzschild
spacetime geometry, we choose c ¼ 1ffiffiffiffiffiffiffiffiffi

j1−rs
r j

p in the region

r > rs, i.e., outside the classical horizon, for which
Eq. (37) implies d ¼ 0. A thorough analysis of the
implications of general κ deformations of Schwarzschild
geometry, parametrized by the functions c and d, will be
discussed in an upcoming separate article.

D. Observable effects in d = 0 κ-deformed
Schwarzschild geometry

Choosing c ¼ 1ffiffiffiffiffiffiffiffiffi
j1−rs

r j
p ≡ 1ffiffiffi

A
p , r > rs and thus d ¼ 0,

the κ-deformed Schwarzschild Hamiltonian takes the
form,

Hðx; pÞ ¼ −
4

l2
sinh

�
l
2

ptffiffiffiffi
A

p
�

2

þ e
lptffiffi
A

p
�
Ap2

r þ
1

r2
w2

�
:

ð42Þ

Using this specific choice of the free functions allows us
to study some relevant features of the model explicitly.
In the following, we focus on the effects of the
deformation on the circular orbits around the origin
with radius larger than rs and on the redshift between
stationary observers.

1. Circular particle motion

The relevant Hamilton equations in the study of circular
motion are the ones associated to the radial coordinate and
momentum. Moreover, the on shell condition H ¼ −m2

relates the particle’s energy pt to the radial and angular
momenta,
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ptffiffiffiffi
A

p ¼ −
1

l
ln

 
1þ l2m2

2
� l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�
l2m2

4
þ 1

�
þ w2

r2
þ p2

rA

s !

→ −
1

l
ln

 
1þ l2m2

2
þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�
l2m2

4
þ 1

�
þ w2

r2
þ p2

rA

s !
; ð43Þ

where the sign was chosen so to have ð ptffiffiffi
A

p Þ2 ¼ −m2 for

observers with pr ¼ w ¼ 0 in the l ¼ 0 limit.
A circular orbit is characterized by constant radial

coordinate, _r ¼ 0. Then from the Hamilton equation for
_r, it follows that the radial momentum must be constantly
vanishing,

0 ¼ _r ¼ ∂̄rH ¼ 2Apre
lptffiffi
A

p
⇒ pr ¼ 0: ð44Þ

This of course also implies that _pr ¼ 0. Using the Hamilton
equation for the radial momentum,

0 ¼ _pr ¼ −∂rH ¼ −
1

l
sinh

�
lptffiffiffiffi
A

p
�
rs
r2

pt

A
3
2

− e
lptffiffi
A

p
�
rs
r2
p2
r −

2w2

r3

�
þ l

2

pt

A
3
2

rs
r2

e
lptffiffi
A

p
�
Ap2

r þ
w2

r2

�
ð45Þ

¼ −
1

l
sinh

�
lptffiffiffiffi
A

p
�
rs
r2

pt

A
3
2

þ e
lptffiffi
A

p 2w2

r3
þ l

2

pt

A
3
2

rs
r4
w2e

lptffiffi
A

p
; ð46Þ

where in the second line we used pr ¼ 0. Before
solving for r, we can simplify this expression further by
using the mass-shell constraint (43) to remove the pt
dependence,

1
l lnð1þ l2m2

2
þ lPmÞ

A
2rsrPm

�
1þ l2m2

2
þ lPm

�
− 4w2 ¼ 0; ð47Þ

where we multiplied everything by 2r3e−
lptffiffi
A

p
, and we defined

Pm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðl2m2

4
þ 1Þ þ w2

r2

q
. In the massless limit, this

becomes

1
l lnð1þ l w

rÞ
A

2rsw

�
1þ l

w
r

�
− 4w2 ¼ 0: ð48Þ

In general, the Eqs. (47) and (48) are not solvable
analytically, so we continue our study perturbatively.
The above equations read, up to first order in l,

rs
r − rs

 
2m2r2 þ 2w2

�
3 − 2

r
rs

�

þ lðw2 þ 2m2r2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ w2

r2

r !
¼ 0; ð49Þ

for the massive case, and

w2

�
−4þ 2

rs
r − rs

þ lw
rs

rðr − rsÞ
�

¼ 0 ð50Þ

for the massless case. Solving for r, one finds the radius of
circular orbits for massive particles,

rm ¼ w2

m2rs

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3

�
rsm
w

�
2

s !

þ l
4
w2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
w

mr0m

�
2

s
ð4r0m − 5rsÞ

ðw2 − r0mrsm2Þ ; ð51Þ

where r0m ¼ liml→0rm. In the massless limit, this becomes

rm¼0 ¼
3

2
rs þ l

w
6
: ð52Þ

This last results indicates that the photon sphere, which is
universal in Schwarzschild geometry, is in fact dependent
on the angular momentum of the photons once the Planck-
scale deformation is introduced, so that photons with
different energy are allowed to orbit a black hole at different
altitudes. Such a modification of the geometry of the
photon sphere of spherically symmetric black holes would
immediately have an influence on further observables like
lensing [18] and the observation of the shadows of black
holes [19]. These subjects go beyond the scope of this
article and will be investigated in the future.

2. Redshift

Our goal here is to compute the change in the energy of a
photon as measured by two different observers, σ1 and σ2,
at rest. The observers are characterized by their spacetime
coordinates and momenta: σi ¼ ðxσi ; pσiÞ, i ¼ 1, 2. Since
the observers are at rest, only the time component of their
four momentum is nonzero: pσi ¼ ðpσit; 0; 0; 0Þ. In this
case, the mass-shell constraint given by the Hamiltonian
reads
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Hðxσi ; pσiÞ ¼ −
4

l2
sinh

�
l
2

pσitffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxσiÞ

p �
2

¼ −m2
σi : ð53Þ

This constraint implies that the four momentum of
the observers is related to their position and mass

via pσit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxσiÞ

p
Qσi , with Qσi ≡ − 1

l ln
�
1þ l2m2

σi
2

þ

lmσi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σi
4

q �
being a constant.

Having defined the observers, we can use Eq. (21) to
obtain the frequencies that each of them associates to the
photon,

νσiðγÞ ¼
1

mσi

pγtjσiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxσiÞ

p �
2

l
e−lQσi −

2

l
− lm2

σi

�

¼ pγtjσiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðxσiÞ

p
"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σi

4

s #
: ð54Þ

The time component of the momentum of the photon at
the position of the observer σi is given by pγtjσi. Since the
light trajectory γ is a solution of the Hamilton equations
of motion, pγt is constant along γ. In particular, pγt has
the same value at the intersection point with σ1 and at the
intersection point with σ2, so pγtjσ1 ¼ pγtjσ2 ¼ pγt. The
redshift of the photon between the two observers is thus
given by

zþ 1 ¼ νσ1ðγÞ
νσ2ðγÞ

¼
ffiffiffiffiffi
A2

pffiffiffiffiffi
A1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σ1
4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σ2
4

q ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r2

1 − rs
r1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σ1
4

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2m2

σ2
4

q
ð55Þ

≃
ffiffiffiffiffiffiffiffiffiffiffi
1 − rs

r2

1 − rs
r1

s �
1þ l2

8
ðmσ1 −mσ2Þðmσ1 þmσ2Þ

�
; ð56Þ

where in the last step we only kept the lowest order l
correction. Thus, for two static observers the redshift of a
photon is identical to the one in Schwarzschild geometry to
all orders in l, if the observers have the same mass.
Otherwise, if the observers have different masses, then they
measure a redshift which departs from the standard result to
second order in l. This influence of the mass of the
observers on the redshift is due to the fact that we assumed
that the observers are also subject to the κ-deformed
dynamics. If one were to assume that observers follow
the dynamics of the general relativistic Hamiltonian (2), or
that the observers have negligible masses, then there would
be again no additional effect compared to the usual redshift
in Schwarzschild geometry.
Surely the results of this section highly depend on the

specific choice of observers and of the vector field Z
(remember that the possible deformations of Schwarzschild

geometries encoded by the vector field Z depend on two
free functions of spacetime coordinates, which we fixed at
the beginning of this Sec. III D in order to have a workable
example). In general, we would expect that the Planck-scale
deformation would alter the gravitational redshift of pho-
tons in spherical symmetry also for equal-mass observers,
as it is the case in the homogeneous and isotropic
cosmological situation discussed in [7].

IV. DISCUSSION

We used the insights we gained in the local implemen-
tation of the κ-Poincaré dispersion relation on homo-
geneous and isotropic spacetimes [7] to extend our
findings to general curved spacetimes. The key result of
our work is the construction of a phase space in which
locally one can identify a spacetime with κ-Lorentz
symmetry, i.e., κ-Poincaré symmetries excluding trans-
lations. The implementation of this local symmetry via
the level sets of a Hamilton function on the point particle
phase space causes the geometry of spacetime and the
geometry of momentum space to be intertwined into a
geometry of phase space.
In Eq. (6), we presented the locally κ-Poincaré Hamilton

function, which deserves its name by the fact that at every
point on spacetime there exists a local basis of the
cotangent spaces of the spacetime manifold such that the
level sets of the Hamilton function assume the form of
the κ-Poincaré dispersion relation. This is the direct
generalization of local Lorentz invariance of the geometry
of spacetime to local κ-Lorentz invariance. The explicit
construction of the κ-Poincaré Hamilton function will allow
us to study the mathematical differential geometric struc-
ture of the phase space geometry in the future. In particular,
the local frame bundle properties of spacetime are of
interest since equivalent frames are no longer identified
with linear transformations like Lorentz transformations
but with the partly nonlinear κ-Lorentz transformations, the
κ-Poincaré boosts and rotations.
Having established the notion of a general κ-deformed

phase space, we studied the motion of test particles on such
a background. The modification of the geodesic equation
was presented in Eq. (11). As already stated when we
introduced Hamiltonian geometry in [10], there appears a
forcelike term in the equations of motion which can not be
absorbed into the geometry of spacetime. Thus, there exists
no local coordinate system such that the equations of
motion locally reduce to ẍþOðx2Þ ¼ 0 as they do in
normal coordinates in the undeformed spacetime geometry.
Also, generalizations of normal coordinates, as they were
discussed in the context of Finsler geometry in [20] and
[21], do not exist. To complete the discussion on particle
motion on the κ-deformed phase space geometry, we
derived the Lagrangian formulation of point particle
motion. This can be used as starting point for the derivation
of a Finslerian version of the locally κ-deformed spacetime
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geometry in the future, as it was done for particular
κ-deformed geometries in [12–14].
In the second half of this article, we derived the most

general form of the locally κ-Poincaré Hamilton function
compatible with spherical symmetry. We obtained a
Hamilton function defined in terms of four free functions
of the time and radial coordinate, two of which are fixed by
the specific spacetime geometry on which the deformation
is based. The presence of the other two free functions is due
to the fact that the timelike vector field, which is necessary
to define the Hamilton function, is not fixed by the
available symmetry constraints. This is to be contrasted
with the homogeneous and isotropic case [7], where the
symmetry constraints were sufficient to fully determine the
form of the deformation.
We studied observable predictions of the model in the

special case of deformations of the Schwarzschild
geometry, where the vector field defining the deforma-
tion was chosen as the tangent of the standard observer
at rest in Schwarzschild geometry. In an upcoming
article, we will investigate the influence of the choice
of this vector field on observables in more detail. The
freedom in the choice of the vector field defining the
deformed Hamiltonian may be related to the deformed
boosts which underly the κ-deformed spacetime geom-
etry, in the sense that the deformed boost may map one
choice of Z to another. This will be matter of inves-
tigation in future work. For our choice of κ-deformed
Schwarzschild geometry, we studied two possibly
observable features: the radius of photon orbits around
the spherical symmetric black hole (known as photon
sphere in the standard case) and the gravitational red-
shift between two observers at rest with respect to each
other and with respect to the black hole horizon. For the
first observable, we found that the photon sphere, which
is universal for all photons in Schwarzschild geometry,
becomes momentum dependent. In particular, photons
with a different angular momentum have circular orbits
at different altitudes (52). For the redshift, we found that
corrections to the standard Schwarzschild case emerge
only at the second order in the deformation parameter,
(55). Moreover, these corrections are proportional to the
difference of the masses of the observers measuring the
frequency of the photon, and they only exist if one
assumes that the observers enjoy the same deformed
symmetries as the photon itself.
In an upcoming work, we will study the spherically

symmetric κ-Poincaré deformed spacetime geometry in
further detail to derive observable implications in solar
system and black hole observations, like perihelion shifts,
light deflections, the horizon, and the singularity. Further
interesting studies, which are now in reach, are locally
κ-deformed spacetime geometries with any desired sym-
metry, like axial symmetry, as generalization of the spheri-
cally symmetric case.

Besides these phenomenological studies, one can further
develop our method to locally implement more general
dispersion relations on curved spacetime, generalizing the
κ-Poincaré case that was studied here. The procedure to be
applied would be to identify four basis vector fields fZig3i¼0

on spacetime which represent, when applied to a four
momentum ZiðpÞ, the different Cartesian momentum
components pi ¼ ZiðpÞ. This sort of generalization would
be particularly interesting since it would allow us to
compare predictions concerning black hole physics
obtained in the framework of Hamilton geometry to the
ones obtained using rainbow gravity as a formalization of
Planck-scale effects [22–25].
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APPENDIX A: THEORIES OF
ELECTRODYNAMICS LEADING TO
κ-POINCARÉ LIGHT PROPAGATION

To demonstrate that the κ-deformed Hamiltonian we
constructed in Eq. (6) can be obtained as the geometric
optics limit of a theory of electrodynamics, we summarize
here the arguments leading to such a theory.
Theories of electrodynamics are rooted in field equations

which yield charge and magnetic flux conservation.
Following the axiomatic approach to electrodynamics
presented in [26], a most general way to formulate such
a theory requires two 2-form fields, the electric field
strength F and the magnetic excitation H, and a closed
current 3-form J subject to the equations

dF ¼ 0; dH ¼ J: ðA1Þ
In four dimensions, these are eight equations which shall
determine the components of the fields F and H, which are
twelve in total. Thus, this set of equations is not sufficient to
yield a predictive theory of electrodynamics. In addition, a
so-called constitutive relation # is necessary to define a
predictive theory of electrodynamics, which defines a func-
tional dependence of the excitation on the field strength

H ¼ #ðFÞ: ðA2Þ
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Combining these equations on a contractable spacetime, one
obtains F ¼ dA, which makes the theory a theory with a
1-form potential A as fundamental field and gauge invari-
ance. The remaining field equation, the second in (A1),
becomes d#dA ¼ J as dynamical equation for the potential.
All theories of electrodynamics constructed according to this
scheme are gauge invariant by construction.
The most famous examples of theories of electrodynam-

ics are local and linear, i.e., H is a linear function of F.
In Maxwell vacuum electrodynamics on curved space-
time, the constitutive relation is given by the Hodge star
operator of the metric H ¼ ⋆F, or in components Hab ¼
1
2
ϵabcdgcegdfFef, while, for example, electrodynamics in

media is described by a general local and linear constitutive
relation Hab ¼ 1

4
ϵabcdχ

cdefFef. Here, ϵabcd is the Levi-
Civita symbol and χabcd the so-called constitutive density,
where we omit explicit displaying density factors like
determinants of the metric, for the sake of a compact
presentation of the arguments. Details on this approach to
electrodynamics can be found, for example, in [26–28] and
further references therein.
To obtain a theory of electrodynamics which implies

propagation of light (respectively, propagation of singular-
ities in the language of partial differential equations
[29–32]) governed by the κ-deformed Hamiltonian, we
consider the following class of linear higher derivative
constitutive relations:

Hab ¼
1

2
ϵabcdGec

ðQ;SÞðx; ∂ÞGdf
ðQ;SÞðx; ∂ÞFdf ðA3Þ

with

Gab
ðQ;SÞðx; ∂Þ ¼

4

l2
sinh

�
i
l
2
Zð∂Þ

�
2 Qab

Qð∂; ∂Þ
− e−liZð∂Þðg−1ð∂; ∂Þ þ Zð∂Þ2Þ Sab

Sð∂; ∂Þ ;
ðA4Þ

whereZð∂Þ¼ZaðxÞ∂a, g−1ð∂;∂Þ¼g−1abðxÞ∂a∂b,Qð∂;∂Þ¼
Qabðx;∂Þ∂a∂b, and Sð∂; ∂Þ ¼ Sabðx; ∂Þ∂a∂b. The opera-
tors Q and S parametrize different constitutive relations
and thus, different theories of electrodynamics. Simple
choices, not involving further derivatives, may be

Qab ¼ gab ¼ Sab; or Qab ¼ gab; Sab ¼ gab þ ZaZb:

ðA5Þ
As a remark, recall that using constitutive laws which
involve derivative operators is something known in the
literature. The most famous example of such a higher
derivative theory of electrodynamics may be Bopp-
Podolski electrodynamics [33,34], which is studied as
a candidate theory of electrodynamics which yields a
finite self force of charged particles [35].

We will now demonstrate that all theories of electrody-
namics which are constructed from a constitutive law of the
form (A3) yield wave propagation governed by the
Hamiltonian (6).
It is well-known that for local and linear constitutive laws

the wave propagation is governed by the Fresnel poly-
nomial, first derived in [27],

Gðx; pÞ ¼ 1

4!
ϵc1a1a2a3ϵd3b1b2b3χ

a1c1b1d1ðxÞχa2c2b2d2ðxÞ
× χa3c3b3d3ðxÞpd1pc2pd2pc3 : ðA6Þ

It serves as Hamiltonian which determines the motion of
light along those solutions of Hamiltons equations of
motion which satisfy Gðx; pÞ ¼ 0. Technically speaking,
it is the principal polynomial of the dynamical equation
d#ðdAÞ ¼ J, obtained from its Fourier space representa-
tion. Or, in other words, the highest derivative term in the
equation where the partial derivatives are exchanged with
−ip. Since only this highest order derivative term is
relevant for the geometric optics limit of the theory, we
do not need to worry about using covariant or partial
derivatives when defining (A3) in terms of (A4). Terms
involving a connection coefficient, which covariantize the
field equations, are of lower order derivatives acting on the
dynamical field and thus do not contribute.
In Maxwell electrodynamics with χabcd ∼ ga½cgd�b, one

obtains Gðx; pÞ ¼ ðgabpapbÞ2, while, for example, in an
uniaxial crystal with χabcd ∼ ga½cgd�b þU½aXb�U½cXd�,
where X denotes the crystal axis and U the rest frame of
the crystal, one obtains birefringent light propagation from
the bimetric Fresnel polynomial Gðx; pÞ ¼ gabpapbðgcd−
ðgijXiXjÞUcUd þ XcXdÞpcpd.
Algebraically, we are dealing with the same situation

as in the general local and linear case, except that our
constitutive relation is a partial differential operator.
Following the usual derivation of the Fresnel polynomial,
again see [26–28] for details, we find the same algebraic
expression for the principal symbol except that our con-
stitutive density now depends on momenta, by the inter-
change of ∂ → −ip, when going from configuration to
Fourier space

GðpÞ ¼ 1

4
ϵc1a1a2a3ϵd3b1b2b3χ

a1c1b1d1ð−ipÞχa2c2b2d2ð−ipÞ
× χa3c3b3d3ð−ipÞpd1pc2pd2pc3 : ðA7Þ

Since the specific constitutive relation is constructed from
an operator which has the same index structure as the
Hodge star of a metric, it is simple to calculate the Fresnel
polynomial (A7) for the constitutive relation (A3), and we
find

GðpÞ ¼ ðGabðx;−ipÞpapbÞ2 ¼ ðHZgðx; pÞÞ2; ðA8Þ
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for any choice of Q and S. An explicit calculation can be
found in [28] for the standard Maxwell case.
Thus, there exists a huge class of higher derivative gauge

invariant theories of electrodynamics, parametrized by Q
and S, whose geometric optics limit is governed by the
locally κ-deformed Hamiltonian we constructed in this
article and is thus invariant under local κ-Poincaré
transformations.
As final remark, we like to point out that the symmetries

of the geometric optic limit and the full field theory may
very well differ. In the case of the uniaxial crystal, the field
equations are defined in terms of a metric and two vector
fields. In the geometric optics limit, these building blocks
combine to a bimetric Fresnel polynomial; thus, the geo-
metric optics posses all the symmetries these metrics share.
The full field theory however can not be formulated in
terms of the two metrics alone and hence, may posses
different symmetries. Thus, whether the theory of electro-
dynamics leading to κ-deformed geometric optics must be
locally κ-Poincaré invariant itself is an open issue. It may

very well be that local κ-Poincaré invariance is only a
geometric optics feature and not one of the full field theory.
This would in particular depend on the full quantum gravity
theory whose semiclassical limit can be described in terms
of the local κ-Poincaré symmetries.

APPENDIX B: THE κ-POINCARÉ LAGRANGIAN

In Sec. II C, we discussed the Hamilton equations of
motion of the general κ-Poincaré Hamiltonian. Here, we
demonstrate how the corresponding Lagrangian can be
obtained from which one can derive the second order Euler-
Lagrange equations. The Legendre transformation from the
Hamiltonian to the Lagrangian involves the terms

Lðx; _xÞ ¼ _xðpðx; _xÞÞ −Hðx; pðx; _xÞÞ; ðB1Þ

which we will derive now.
In (10), we already found

_xa ¼ ∂̄aH

¼ Za

�
−
2

l
sinhðlZðpÞÞ þ lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ þ 2elZðpÞZðpÞ

�
þ elZðpÞ2gabpb: ðB2Þ

Contracting this equation with Z yields

gð_x; ZÞ ¼ 2

l
sinhðlZðpÞÞ − lelZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ;

ðB3Þ
which allows us to write

_xa ¼ Za½−gð_x; ZÞ þ 2elZðpÞZðpÞ� þ elZðpÞ2gabpb; ðB4Þ

and

_xapa ¼ −ZðpÞgð_x; ZÞ þ 2elZðpÞðZðpÞ2 þ g−1ðp; pÞÞ
ðB5Þ

as well as

gð_x; _xÞ ¼ −gð_x; ZÞ2 þ 2elZðpÞðZðpÞgð_x; ZÞ þ _xðpÞÞ ðB6Þ

¼ −gð_x; ZÞ2 þ 4e2lZðpÞðZðpÞ2 þ g−1ðp; pÞÞ ðB7Þ

¼ −gð_x; ZÞ2 þ 4elZðpÞ
�
2

l2
sinhðlZðpÞÞ − gð_x; ZÞ

l

�
ðB8Þ

¼ −gð_x; ZÞ2 − 4

l
elZðpÞgð_x; ZÞ þ 4

l2
ðe2lZðpÞ − 1Þ:

ðB9Þ

The last equation can be reformulated as quadratic equation
for elZðpÞ

0 ¼ e2lZðpÞ − lelZðpÞgð_x; ZÞ − l2

4
ðgð_x; _xÞ þ gð_x; ZÞ2Þ − 1

ðB10Þ

with the solution

elZðpÞ ¼ l
2
gð_x; ZÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

2
gð_x; ZÞ2 þ l2

4
gð_x; _xÞ þ 1

r
ðB11Þ

¼ 1

2
ðlgð_x; ZÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2gð_x; ZÞ2 þ l2gð_x; _xÞ þ 4

q
Þ

ðB12Þ

ZðpÞ ¼ 1

l
ln

�
1

2
ðlgð_x; ZÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2gð_x; ZÞ2 þ l2gð_x; _xÞ þ 4

q
Þ
�
: ðB13Þ

Finally, we can use the terms we found to solve (B4) for
pðx; _xÞ
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paðx; _xÞ ¼
1

2
gab _xbe−lZðpÞ

−
1

2
gabZb½−e−lZðpÞgð_x; ZÞ þ 2ZðpÞ� ðB14Þ

¼ 1

2
e−lZðpÞðgab _xb þ gabZbgð_x; ZÞÞ − gabZbZðpÞ

ðB15Þ

¼ gab _xb þ gabZbgð_x; ZÞ
lgð_x; ZÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lgð_x; ZÞ2 þ lgð_x; _xÞ þ 4

p
ðB16Þ

−
gabZb

l
ln
�
1

2
ðlgð_x; ZÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lgð_x; ZÞ2 þ lgð_x; _xÞ þ 4

q
Þ
�
: ðB17Þ

Contracting this expression with _xa yields the desired
Eq. (14). Equation (15) is obtained by solving (B3) for

elZðpÞðg−1ðp; pÞ þ ZðpÞ2Þ ¼ 2

l2
sinhðlZðpÞÞ − gð_x; ZÞ

l
;

ðB18Þ

plugging this result into the Hamiltonian (6) and inserting
(B12) afterwards.

APPENDIX C: THE LIFTS OF THE SYMMETRY
GENERATING VECTOR FIELDS

TO PHASE SPACE

In Sec. III A, we used the lifts of the vector fields which
generate spherical symmetry on spacetime to derive the
most general spherically symmetric Hamilton function on
phase space. These lifts

XC
I ¼ ξa∂a − pq∂aξ

q∂̄a ðC1Þ

of the vector fields XI ¼ ξaI ðxÞ∂a, I ¼ 1, 2, 3 [see Eqs. (25)
to (27)] are given by

XC
1 ¼ sinϕ∂θ þ cot θ cosϕ∂ϕ

þ cosϕ
sin θ2

pϕ∂̄θ − ðcosϕpθ − cot θ sinϕpϕÞ∂̄ϕ; ðC2Þ

XC
2 ¼ − cosϕ∂θ þ cot θ sinϕ∂ϕ

þ sinϕ
sin θ2

pϕ∂̄θ − ðsinϕpθ þ cot θ cosϕpϕÞ∂̄ϕ; ðC3Þ

XC
3 ¼ ∂ϕ: ðC4Þ

It can be easily checked by direct calculation that the
Hamiltonian (28) satisfies XC

I ðHÞ ¼ 0 for all I ¼ 1, 2, 3.
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