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The de Rham–Gabadadze–Tolley massive gravity admits pp-wave backgrounds on which linear
fluctuations are shown to undergo time advances for all values of the parameters. The perturbations
may propagate in closed timelike curves unless the parameter space is constrained to a line. These classical
phenomena take place well within the theory’s validity regime.
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I. INTRODUCTION

A nonzero graviton mass is an interesting theoretical
possibility that modifies general relativity in the infrared. It
is not so easy, though, to construct consistent theories of
massive gravity. Such attempts were initiated long ago by
Fierz and Pauli [1], who wrote down a ghost-free linearized
Lagrangian for a massive graviton in flat space. However, it
was not until recently that a consistent nonlinear theory
could be constructed [2,3], thanks to de Rham, Gabadadze
and Tolley (dRGT). The dRGT massive gravity is remark-
able in that it overcame the Boulware–Deser ghost problem
[4], formerly believed to plague any nonlinear theory of
massive gravity with instabilities.
In this paper, we consider 4D massive gravity theories

that admit Minkowski space as a solution. They constitute a
family of Lagrangians that include the graviton mass m as
well as two dimensionless parameters α3 and α4:

L ¼ 1

2
M2

P
ffiffiffiffiffiffi−gp ½Rþm2ðU2 þ α3U3 þ α4U4Þ�; ð1Þ

where the three possible potential terms are

U2¼½K�2− ½K2�; U3¼½K�3−3½K�½K2�þ2½K3�;
U4¼½K�4−6½K�2½K2�þ8½K�½K3�þ3½K2�2−6½K4�; ð2Þ

with the notation ½X�≡ Xμ
μ for the tensor

Kμ
ν ¼ δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gμρfρν

q
ð3Þ

and its various powers, where fμν is the reference metric
which we will assume to be flat: fμν ¼ ημν.
Equations (1)–(3) present the theory in the so-called

unitary gauge, in which a Hamiltonian analysis has

confirmed the non-existence of the ghost at the full non-
linear level for generic values of the parameters [5]. One
may wonder if the absence of unphysical modes in a theory
guarantees its classical consistency. After all, there are
various known instances where this is not true [6–8]. In the
context of massive gravity, this issue was raised and
critically addressed already in [9,10].
The purpose of this paper is to argue that the dRGT

theory may exhibit causality violation well below the
strong-coupling scale Λ ¼

ffiffiffiffiffiffi
m23

p
MP. More precisely, the

theory admits pp-wave backgrounds that let the longi-
tudinal modes of massive-gravity fluctuations undergo
measurable time advances everywhere in parameter space.
Should this alone not be considered as a pathology, it is
further argued that perturbations may follow closed time-
like curves except on the line

α3 ¼ −
1

2
: ð4Þ

II. PP-WAVE SOLUTIONS

Let us introduce the light-cone coordinate system
ðu; v; x⃗Þ, where u ¼ t − x3, v ¼ tþ x3, and x⃗ ¼ ðx1; x2Þ.
In these coordinates, a generic pp-wave spacetime has the
following metric:

ds2 ¼ −dudvþ Fðu; x⃗Þdu2 þ dx⃗2: ð5Þ

This geometry enjoys the null Killing vector ∂v. One can
introduce a covariantly constant null vector lμ ¼ δμu to
write this metric in the Kerr–Schild form,

ḡμν ¼ ημν þ Flμlν: ð6Þ

To see if massive gravity admits pp-waves solutions, let
us first write down the equations of motion resulting from
the Lagrangian (1). They are

Gμν þm2Xμν ¼ 0; ð7Þ
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where Gμν is the Einstein tensor and Xμν is given by

Xμν¼Kμν− ½K�gμν−α

�
K2

μν− ½K�Kμνþ
1

2
gμνð½K�2− ½K2�Þ

�

−β

�
K3

μν− ½K�K2
μνþ

1

2
Kμνð½K�2− ½K2�Þ

�

þ1

6
βgμνð½K�3−3½K2�½K�2þ2½K3�Þ; ð8Þ

while the parameters α and β are given in terms of the
original ones as α≡ 3α3 þ 1, β≡ −3ðα3 þ 4α4Þ.
The metric (6) yields the following Einstein tensor:

Gμν ¼ − 1
2
lμlν∂2F, with ∂2 ≡ ∂μ∂μ. To compute Xμν, note

that Kμ
ν ¼ δμν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ḡμρðḡρν − FlρlνÞ

p ¼ 1
2
Flμlν. Since lμ is

null, ½K� ¼ 0 andK2
μν ¼ 0. It is then clear from Eq. (13) that

Xμν ¼ Kμν ¼ 1
2
Flμlν. Therefore, the metric (6) will be a

solution of the massive gravity equation (7), provided
that the function F satisfies the massive Klein–Gordon
equation. The latter actually reduces to the 2D screened
Poisson equation since F ¼ Fðu; x⃗Þ is independent of v:

ð∂2 −m2ÞF ¼ ð∂i∂i −m2ÞF ¼ 0: ð9Þ

Assuming rotational symmetry on the transverse plane,
this equation has the following solution at x⃗ ≠ 0:

F ¼ AðuÞK0ðmjx⃗jÞ; ð10Þ

where K0 is the zeroth-order modified Bessel function of
the second kind, while AðuÞ is arbitrary in u.
Let us choose the profile of a “sandwich wave” displayed

in Fig. 1:

AðuÞ ¼
�
a exp ½− λ2u2

ðu2−λ2Þ2� if u ∈ ½−λ; λ�;
0 otherwise;

ð11Þ

where a is a numerical constant and λ is a length scale [11].
Equation (11) defines a smooth function AðuÞ ∈ C∞ðRÞ,
with a compact support ½−λ; λ�. The sandwich wave moves
at the speed of light in the v-direction. Its amplitude and
width are defined by a and λ respectively.
One might wonder about the singularity of the metric at

jx⃗j ¼ 0. In fact, such a geometry may be viewed as arising
from the stress-energy tensor

Tμν ¼ πM2
PAðuÞδ2ðx⃗Þlμlν; ð12Þ

which saturates the null-energy condition. Then, the energy
E of the source is quantified by M2

Pλ.
For future convenience, we choose the amplitude a

such that
Rþλ
−λ duAðuÞ ¼ λ. This amounts to the choice

a ≈ 0.93 ¼ Oð1Þ. We also choose the width λ to be larger
than the resolution length of the effective field theory:

λ≳ 1=Λ. The latter choice is possible for a very large
energy of the source: E ≫ Λ. This situation is completely
acceptable and does not at all invalidate the effective field
theory description [12].

III. LINEAR FLUCTUATIONS

On the pp-wave geometry described in the previous
section, let us consider linear massive-gravity fluctuations,
hμν ¼ gμν − ḡμν. Schematically, their equations of motion
read [13]

δGμν þm2δXμν ¼ 0; ð13Þ

with the quantity δGμν given by

δGμν ¼−
1

2
ð∇2hμν−2∇ρ∇ðμhνÞρþ∇μ∇νhÞ

þ1

2
ḡμνð∇2h−∇ ·∇ ·hþ R̄ρσhρσÞ−

1

2
R̄hμν; ð14Þ

where ∇μ is the covariant derivative built from the back-
ground metric ḡμν, dot denotes a contraction of indices and
h≡ ḡμνhμν. To find an expression for δXμν, we first need
the variation of the tensor Kμ

ν defined in Eq. (3). An
explicit computation gives

δKμ
ν ¼

1

2
hμν þ 1

8
Fðlμl · hν − 3lνl · hμÞ

−
1

16
F2lμlνl · h · l: ð15Þ

Then, varying Eqs. (13) one finds from a straightforward
calculation that

δXμν ¼
1

2
ðhμν − ḡμνhÞ −

2α − 1

4
Flðμl · hνÞ þ

α

4
Flμlνh

þ
�
αþ 1

4
ḡμν −

1

16
Flμlν

�
Fl · h · l: ð16Þ

Note that the parameter β has dropped out. In other words,
the linearized fluctuations on the pp-wave background are
insensitive to β. The subsequent analysis therefore holds for
any value of this parameter.

FIG. 1. Profiles of the sandwich wave: u-direction profile (left)
and radial profile in the transverse plane (right).

CAMANHO, GÓMEZ, and RAHMAN PHYSICAL REVIEW D 96, 084007 (2017)

084007-2



One can now proceed to derive the scalar and vector
constraints. We would not bore the reader with the tedious
details, and just present the final results. The trace con-
straint reads

h ¼
�
αþ 1

2

��
Fl · h · lþ 2

3m2
F;μð∂μl · h · l − l · ∂l · hμÞ

�
;

ð17Þ

whereas the divergence constraint is given by

Cμ ¼ −
α

2
F∂μl · h · lþ

2α− 1

4
Fl · ∂l · hμ þ 2αþ 3

4
F;ρlμl · hρ

þ 1

4
Flμl · ∂h−

�
αþ 1

2
F;μ þ

2αþ 1

16
F2lμl · ∂

�
l · h · l;

ð18Þ

where Cμ≡∇ ·hμ−∇μh¼∂ ·hμ−∂μh−1
2
F;μl ·h ·l, and F;μ

is a shorthand notation for ∂μF.
The derivation relies on the assumption that the fluctua-

tions do not propagate through x⃗ ¼ 0, so that the back-
ground equation (9) can be used. Note that it involves not
just the divergences and trace of Eq. (13), but also
contractions thereof with the null vector lμ. Of particular
interest is the quantity ∇μδGμν, which actually reduces to
terms containing only single derivatives of the fluctuations,
thanks to the identity (5.3) of Ref. [13]. Also, one needs
the background Riemann tensor, which reads R̄ρ

σμν ¼
lσl½μ∂ν�∂ρF − lρl½μ∂ν�∂σF.
The 5 constraints (17)–(18) render nondynamical 5

components of the symmetric tensor hμν, leaving one with
5 dynamical degrees of freedom, as expected. To be more
explicit, we rewrite the scalar constraint as

h ¼ 4Fα̂hvv þ
1

m̂2
F;ið∂ihvv − ∂vhviÞ; ð19Þ

where we have defined α̂≡ αþ 1
2
, and 1

m̂2 ≡ 8
3m2 α̂. Because

h ¼ ðh11 þ h22Þ − 4ðhuv þ FhvvÞ, Eq. (19) determines
completely the linear combination (h11 þ h22) in terms
of other components. On the other hand, the vector
constraint (18) lets one set the 4 components huμ to be
nondynamical, since their v-derivatives are completely
determined. Therefore, the dynamical degrees of freedom
are the two transverse modes: (h11 − h22) and h12, plus the
three longitudinal ones: hvi and hvv.
To study the true dynamics, let us use commutators of

covariant derivatives to rewrite Eq. (13) as

ð∇2 −m2Þhμν ¼ ΔRμν; ð20Þ

where the right-hand side is written solely in terms of the
constraints and curvatures, and is given by

ΔRμν ¼ 2∇ðμCνÞ þ∇μ∇νh− 2F;ρðμlνÞl · hρ þF;μνl · h · l

− ḡμν∇ · C −m2ḡμν

�
h−

1

4
ð2α̂− 1ÞFl · h · l

�
þ � � � ;

ð21Þ

with ellipses standing for terms that do not contribute to the
physical modes. One can substitute the right-hand sides of
the constraints (17)–(18) in Eq. (20) to write down the true
dynamical equations. It turns out that the equations of
motion for the longitudinal modes completely decouple.
They have the following form [14]:

ð∂2 −m2Þhvi ¼ Yij∂2
vhvj þ Yi∂vhvv;

ð∂2 −m2Þhvv ¼ Zi∂3
vhvi þ Z∂2

vhvv; ð22Þ

where we have defined the following operators:

Yij ¼ 2ðα̂ − 1ÞFδij −
1

m̂2
ðF;ij þ F;j∂iÞ;

Yi ¼ 2α̂ðF;i þ F∂iÞ þ 2F;i þ
1

m̂2
ðF;ij þ F;j∂iÞ∂j;

Zi ¼ −
1

m̂2
F;i; Z ¼ 4

�
α̂ −

1

2

�
F þ 1

m̂2
F;i∂i: ð23Þ

The transverse derivatives of F are given, in terms of the
unit transverse-position vector n⃗≡ x⃗=jx⃗j, as

F;i ¼ −mFni
K1ðmjx⃗jÞ
K0ðmjx⃗jÞ ;

F;ij ¼ m2F

�
ninj þ

K1ðmjx⃗jÞ
mjx⃗jK0ðmjx⃗jÞ ð2ninj − δijÞ

�
: ð24Þ

IV. SHAPIRO TIME DELAY / ADVANCE

One of the classic tests of general relativity is the Shapiro
time delay [15] suffered by a light ray while passing by a
massive body. We would like to compute this delay (or
advance) for the longitudinal modes of the massive-gravity
fluctuation upon crossing the sandwich wave. To this end,
we note that the general solutions of Eq. (20) and the
constraints (17)–(18) can be written as superpositions of
eigensolutions of the form:

hμνðu; v; x⃗Þ ¼ ~hμνðuÞeiðpvþq⃗·x⃗Þ; ð25Þ
where p and q⃗ are the momenta in the u-direction and the
transverse directions respectively.
Note that q⃗ ¼ q⃗ðuÞ since the probe will experience a

radial impulse in the transverse plane during the course of
the sandwich wave, u ∈ ½−λ; λ�. Let q⃗− and q⃗þ be the
incoming and outgoing transverse momenta respectively.
We denote by b⃗ the impact parameter vector (in the
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transverse plane) at u ¼ −λ. The unit vector along this
direction is e⃗≡ b⃗=b, where b ¼ jb⃗j. We choose q⃗− to be
aligned with b⃗, i.e., q⃗− ¼ q−e⃗with q− > 0.
We will consider the following regime of parameters:

Λ≳ 1

λ
≫ p ≫ q− ≫

1

b
≫ m: ð26Þ

The above parametric relations may very well be accom-
modated because the separation between the scales Λ
and m is huge ∼

ffiffiffi
3

p
MP=m. The condition q−b ≫ 1 ensures

that the probe is far away from x⃗ ¼ 0. For simplicity of
analysis, we take the particle to be ultrarelativistic with
p ≫ q− ≫ m, but all momenta are much smaller than Λ.
On the other hand, the sandwich wave is chosen to be very
thin compared to the length scales characterizing the probe:
λp ≪ 1, but thick enough to be “seen” in the effective
theory: λΛ≳ 1. Finally, the choice of a small impact
parameter, mb ≪ 1, amplifies the effects of the sandwich
wave on the probe.
While the probe particle is passing through the sandwich

wave, its transverse position x⃗ will change slightly:
jx⃗ − b⃗j≲ λ, jn⃗ − e⃗j≲ λ=b. We will neglect these small
changes. The radial impulse deflects the particle but keeps
q⃗ðuÞ aligned with e⃗: q⃗ðuÞ ¼ qðuÞe⃗. Note that qðuÞ remains
positive and small compared to p. To see this, let us use the
deflection formula (A.36) of Ref. [16], which is a valid
approximation because the sandwich wave is thin. With
E∼M2

Pλ and q⃗þ≡qþe⃗, we can write ðq−=pÞ − ðqþ=pÞ∼
λ=b. Given the separation of scales (26), we conclude that
qþ > 0 and qþ ≈ q−. The same conclusion holds for qðuÞ
as it varies continuously.
Let us collectively denote the longitudinal modes as

fΦIðuÞg with I ¼ 1, 2, 3, defined as

Φ1 ¼ ei ~hvi; Φ2 ¼ εijei ~hvj; Φ3 ¼ ~hvv; ð27Þ
where εij is the Levi–Civita symbol in the transverse plane.
Now, plugging the expressions (25) into Eqs. (28) and
using the redefinitions (27) results in the following first-
order coupled differential equations:

ð∂u − ipγÞΦIðuÞ ¼ ipAðuÞMIJΦJðuÞ; ð28Þ
where γ ≡ 1

4
ðq2 þm2Þ=p2, and the 3 × 3 matrix M con-

tains the functions K0ðmbÞ≡ k0 and K1ðmbÞ≡ k1 in the
following nonzero components:

M11 ¼
α̂ − 3

6
k0 þ

2α̂ð1 − iqbÞ
3mb

k1;

M13 ¼ −
7α̂q
6p

k0 −
4α̂qþ 3iðα̂þ 1Þm2b − 4iα̂q2b

6pmb
k1;

M22 ¼ −
α̂þ 1

2
k0 −

2α̂

3mb
k1; M31 ¼ −

2iα̂p
3m

k1;

M33 ¼ −
2α̂þ 1

2
k0 þ

2iα̂q
3m

k1: ð29Þ

Let the eigenvalues of M be μI. Explicit computation
shows that they are independent of both p and q. The
matrix P composed of the eigenvectors of M is u-
dependent, but this dependency is as small as qðuÞ=p.
Then, in terms of the modes Φ0

I ≡ P−1
IJ ΦJ, Eqs. (28) are

approximately diagonal, and hence can be integrated to

Φ0
IðþλÞ ≈Φ0

Ið−λÞeip
R þλ

−λ
duðγþμIAðuÞÞ: ð30Þ

Note that the dynamical equations for the diagonalized
modes Φ0

I are second order in p, despite the fact that in
Eqs. (28) there appear ∂3

v-terms (they arise from the mixing
of modes).
The integral in Eq. (30) is to be understood as the shift in

the v-coordinate suffered by the Ith mode upon crossing the
sandwich wave [8]. To find the shift relative to massless
propagation in flat space, we write the relevant terms
originating from γ:

Δγ ¼ 1

4
m2=p2 þ 1

4
ðq2 − q2−Þ=p2: ð31Þ

The first piece comes from the nonzero graviton mass,
whereas the second from the nonzero curvature.
The eigenvalues μI are independent of p and q. For small

impact parameter mb ≪ 1 they reduce to

μ1¼
2α̂

3m2b2
; μ2¼−

2α̂

3m2b2
; μ3¼

2α̂þ1

2
lnðmbÞ; ð32Þ

and dominate over the Δγ-contributions [17]. Then, the
v-shift relative to flat-space massless propagation reads

ΔvI ≡
Z þλ

−λ
duðΔγ þ AðuÞμIÞ ≈ λμI: ð33Þ

A positive shift corresponds to a time delay, whereas a
negative Δv corresponds to a time advance (see Fig. 2).
Any value of α̂ yields a time advance for at least one of

the modes. Since μ1 and μ2 have opposite signs, Eq. (33)
says that any nonzero value of α̂ will lead to a time advance
either for Φ0

1 or Φ0
2. In that case, for jα̂j≳m2b2 the time

advance is larger than the resolution time of the effective
theory: jΔvj≳ 1=Λ. When α̂ ¼ 0 both μ1 and μ2 are zero,
but the third eigenvalue μ3 is negative because 1 ≫ mb

FIG. 2. Upon crossing the sandwich wave the probe undergoes
a time advance (left) or a time delay (right).
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[18]. Then, the third mode Φ0
3 undergoes a time advance

jΔvj > OðλÞ, which is measurable in the effective theory.

V. CLOSED TIMELIKE CURVES

The argument that time advances lead to close timelike
curves (CTC) is standard. For the sake of self-contained-
ness we just present the arrangements of Appendix G of
Ref. [8]. Strictly speaking, one would need a refined
version of the simplistic setup appearing in Fig. 3.
We imagine two sandwich waves moving in opposite

directions, centered respectively at u ¼ 0 and v ¼ 0,
separated in the transverse plane by a distance r. The
probe crosses the waves one after the other, and for α̂ ≠ 0
either Φ0

1 or Φ0
2 acquires time advances jΔvj ¼ jΔuj∼

jα̂jλ=ðm2b2Þ. Note that there is a contribution to the time
delay from the nonzero mass, since the probe travels a finite
distance ∼jΔvj. This contribution goes as jΔvjðm2=p2Þ and
is therefore negligible in front of jΔvj. Right after each
wave passes by, a mirror is needed to control the motion in
the transverse plane. The mirrors must be set in appropriate
angles to counter deflections.
In between the two waves the probe travels a transverse

distance d ¼ r − 2b. In order to form a CTC we would
need d ∼ jα̂jλ=ðm2b2Þ. We also require d ≫ 1=m, so that
the waves have negligible overlap at u ¼ v ¼ 0. These
requirements combine into m2b2 ≪ jα̂jmλ. In other words,
the small numbers ϵ1 ≡mb and ϵ2 ≡ λ=b should be chosen
such that ϵ1=ϵ2 ≪ jα̂j. With the present LIGO bound [19]
on the graviton mass one can maintain the separation of
scales (26) while making the ratio ϵ1=ϵ2 as small as 10−6.
Therefore, our argument leaves room for the following
parameter region:

jα̂j ∼ jα3 þ
1

2
j≲ 10−6: ð34Þ

This is in spirit the line α3 ¼ −1=2, reported in Eq. (4).
With improved bounds on the graviton mass, this region
will only get narrower.
One still needs to see if the third mode Φ0

3 can form
CTCs in the parameter region (34). A similar analysis

shows that this can happen if ϵ1j ln ϵ1j ≫ 1=ϵ2. It is easy to
see that in the regime (26) under consideration, the above
parametric condition cannot be satisfied, so that CTCs may
not be formed in the region (34).

VI. SUMMARY AND REMARKS

Within the dRGT theory’s validity regime we find that
1. For all values of α3 and α4, physical modes of the

theory undergo measurable time advances,
2. Outside the region (4), CTCs can be formed.
The time advances experienced by the longitudinal

modes, relative to flat-space massless propagation, may
themselves be regarded as a serious pathology [20]. This is
presumably an IR manifestation of the restrictions arising
from requiring a sensible UV-completion [24]. Indeed, in
order for a theory to make sense in the UV, a sensible
requirement would be that the asymptotic Lorentz invari-
ance is respected, so that one can define an S-matrix.
Should the time advances alone not be considered a

pathology of the theory, CTC formation would leave one
only with the region of validity (4) [25]. In this regard it is
interesting to look at the Cheung–Remmen parameter
island (see Fig. 4), singled out by positivity constraints
on scattering amplitudes [26]. In the parameter plane of
ðc3; d5Þ≡ ð−α3=2;−α4=4Þ, our result corresponds to the
line c3 ¼ 1=4, and it rules out the minimal model repre-
sented by the black dot of Fig. 4 at c3 ¼ 1=6 and
d5 ¼ −1=48. The positivity constraints are necessary but
not sufficient for the existence of a UV-completion. Our
analysis, on the other hand, considers only one class of
backgrounds allowed by the dRGT theory.
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FIG. 3. Motion of a probe that follows a CTC, projected on the
u − v plane (left) and on the transverse plane (right).

FIG. 4. A cartoon of the Cheung-Remmen parameter island.
The red line c3 ¼ 1=4 corresponds to our result α3 ¼ −1=2.

CAUSALITY CONSTRAINTS ON MASSIVE GRAVITY PHYSICAL REVIEW D 96, 084007 (2017)

084007-5



[1] M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
[2] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020

(2010).
[3] C. de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev.

Lett. 106, 231101 (2011).
[4] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368

(1972).
[5] S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101

(2012); J. High Energy Phys. 04 (2012) 123.
[6] G. Velo, Nucl. Phys. B43, 389 (1972).
[7] M. Henneaux and R. Rahman, Phys. Rev. D 88, 064013

(2013).
[8] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A.

Zhiboedov, J. High Energy Phys. 02 (2016) 020.
[9] S. Deser and A. Waldron, Phys. Rev. Lett. 110, 111101

(2013); S. Deser, K. Izumi, Y. C. Ong, and A. Waldron,
Mod. Phys. Lett. A 30, 1540006 (2015); S. Deser, M.
Sandora, A. Waldron, and G. Zahariade, Phys. Rev. D 90,
104043 (2014).

[10] S. F. Hassan and M. Kocic, arXiv:1706.07806.
[11] H. Bondi, F. A. E. Pirani, and I. Robinson, Proc. R. Soc. A

251, 519 (1959).
[12] The situation is analogous to having a macroscopic (super-

Planckian) black hole in general relativity.
[13] L. Bernard, C. Deffayet, and M. von Strauss, Phys. Rev. D

91, 104013 (2015).
[14] Notice the terms of order three in derivatives on the right-

hand side of (28). They appear precisely because the scalar
constraint (19), which contains derivatives, has been used to
eliminate the combination h11 þ h22.

[15] I. I. Shapiro, Phys. Rev. Lett. 13, 789 (1964).
[16] T. Dray and G. ’t Hooft, Nucl. Phys. B253, 173 (1985).
[17] Recall that the expressions (32) hold only for small mb.

Looking at the exact expressions for the eigenvalues, one
can check that all three of them go to zero for large values of
mb, as they should.

[18] When α̂ ≠ 0, the right-hand side of the scalar constraint (19)
is nonzero, which will always go along with causality
violation (see also [9]). Here we find that even if the trace of
the graviton field is zero on-shell, the system exhibits time
advances.

[19] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 061102 (2016).

[20] The absence of time advances has been used before in the
literature, as a legitimate and necessary requirement for a
theory to be healthy [21]. These are global time advances
that should be understood as a violation of the asymptotic
causal structure, i.e., Lorentz symmetry. Strictly speaking,
the pp-wave background does break asymptotic Lorentz
invariance. Such a background, however, ought to be
considered as an idealization of a coherent bunch of finite
energy wave packets. In a more realistic setting, the wave
packets would have to get focused from infinity to form a
mildly deformed pp-wave, and then disperse after some time.
Thus, instead of an energy source that remains concentrated
in a small region from null past to null future, we would have
“radiation” coming from null past to form a transitory pp-
wave before dispersing. In this way the energy would be
dispersed both in the past and the future, and the solution
would respect asymptotic Lorentz invariance. For the sake of
simplicity one may just analyze the transient pp-wave, and
this is enough for our purpose. Given this, the light cone at
infinity is fixed, and so the time advances we found
correspond to causally connecting spacelike-separated
points. Since the pp-wave vanishes before and after
u ¼ �λ, a mode propagating from asymptotic infinity to
asymptotic infinitywould undergo the same time advances as
found above. These time advances are problematic if one uses
the notion of causality introduced by Gao andWald [22]: one
cannot send signals faster than what is allowed by the
asymptotic causal structure of the spacetime (see also
[23]). This notion has already been used in Ref. [8].

[21] G. D’Appollonio, P. Di Vecchia, R. Russo, and G.
Veneziano, J. High Energy Phys. 05 (2015) 144.

[22] S. Gao and R. M. Wald, Classical Quantum Gravity 17,
4999 (2000).

[23] K. D. Olum, Phys. Rev. Lett. 81, 3567 (1998).
[24] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and

R. Rattazzi, J. High Energy Phys. 10 (2006) 014.
[25] In our setup, forming CTCs requires “mirrors” that reflect

the probe. Therein, it is tacitly assumed that such “reflec-
tions” do not introduce significant time delays that would
wash out the time advances. The dRGT theory could, in
principle, dynamically protect itself against formation of
CTCs (see for example [10]).

[26] C. Cheung and G. N. Remmen, J. High Energy Phys. 04
(2016) 002.

CAMANHO, GÓMEZ, and RAHMAN PHYSICAL REVIEW D 96, 084007 (2017)

084007-6

https://doi.org/10.1098/rspa.1939.0140
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevD.82.044020
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevLett.106.231101
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.1103/PhysRevD.6.3368
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1103/PhysRevLett.108.041101
https://doi.org/10.1007/JHEP04(2012)123
https://doi.org/10.1016/0550-3213(72)90027-2
https://doi.org/10.1103/PhysRevD.88.064013
https://doi.org/10.1103/PhysRevD.88.064013
https://doi.org/10.1007/JHEP02(2016)020
https://doi.org/10.1103/PhysRevLett.110.111101
https://doi.org/10.1103/PhysRevLett.110.111101
https://doi.org/10.1142/S0217732315400064
https://doi.org/10.1103/PhysRevD.90.104043
https://doi.org/10.1103/PhysRevD.90.104043
http://arXiv.org/abs/1706.07806
https://doi.org/10.1098/rspa.1959.0124
https://doi.org/10.1098/rspa.1959.0124
https://doi.org/10.1103/PhysRevD.91.104013
https://doi.org/10.1103/PhysRevD.91.104013
https://doi.org/10.1103/PhysRevLett.13.789
https://doi.org/10.1016/0550-3213(85)90525-5
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1007/JHEP05(2015)144
https://doi.org/10.1088/0264-9381/17/24/305
https://doi.org/10.1088/0264-9381/17/24/305
https://doi.org/10.1103/PhysRevLett.81.3567
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1007/JHEP04(2016)002
https://doi.org/10.1007/JHEP04(2016)002

