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The Minkowski vacuum state is expressed as an entangled state between the left and right
Rindler wedges when it is constructed on the Rindler vacuum. In this paper, we further examine the
entanglement structure and extend the expression to the future (expanding) and past (shrinking) Kasner
spacetimes. This clarifies the origin of the quantum radiation produced by an Unruh-DeWitt detector
in uniformly accelerated motion in the four-dimensional Minkowski spacetime. We also investigate the
two-dimensional massless case where the quantum radiation vanishes but the same entanglement

structure exists.
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I. INTRODUCTION

It is well known that the Minkowski vacuum state of a
quantum field is described by an entangled state between
the left (L) and right (R) Rindler wedges when it is
constructed on the Rindler vacuum [1],
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where [n;)g ) is the n;th excited state on the R (L) Rindler

vacuum with an acceleration a. Because any physical
quantity in the R Rindler wedge is not affected by the
states in the left wedge, we can safely integrate them out
and obtain a mixed state of thermal equilibrium at the
Unruh temperature 7y = a/2x [1,2]. Consequently, the
Unruh effect is usually considered to be a thermal phe-
nomenon induced by quantum entanglement. The Unruh
effect leads to various interesting theoretical predictions
(see [3] for a review) and plays a pivotal role in under-
standing phenomena in a system with a horizon, such as
Hawking radiation in the black hole geometry or particle
creation in the de Sitter universe.

To demonstrate the Unruh effect, various experiments
have been proposed [4-13]. One example is the quantum
radiation emanating from a uniformly accelerated charged
particle, which is called Unruh radiation [14-22]. The
question of whether a uniformly accelerated object emits
quantum radiation was studied for a two-dimensional case
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[23,24]. It was soon confirmed that there is no radiation
flux in a toy model of a uniformly accelerated detector in
two-dimensional spacetime [25]. Massar et al. [26] pointed
out that a uniformly accelerated object generates a polari-
zation cloud around the object, but no radiation. The result is
consistent with the intuition that the total flux of radiation
is canceled between outgoing and incoming fluxes from
a thermal equilibrium system. However, the situation is
different in the four-dimensional case. Lin and Hu reported
that a uniformly accelerated Unruh-DeWitt detector in four
dimensions emits a positive radiated power of quantum
radiation [19,20]. Reference [27] showed that the total
radiation flux is not canceled out, and quantum radiation
actually exists in a four-dimensional toy model, which
confirmed the result of Ref. [19,20]. This result was further
generalized to a uniformly accelerated charged particle in
four-dimensional spacetime [21,28,29]: Unruh radiation
actually exists.

The presence of the radiation in the four-dimensional
calculations seems to contradict the intuition that a system
in thermal equilibrium never emits radiation. In our
previous papers [27,30], we pointed out that the apparent
contradiction can be resolved by considering the entangle-
ment structure of the Minkowski vacuum in the future
wedge. Namely, in the future region to which most of the
flux of quantum radiation propagates, the L. Rindler states
cannot be integrated out, and interference between the L
and R Rindler wedge states in (1) generates quantum
Unruh radiation. Thus, Unruh radiation is interpreted as
entanglement-induced quantum radiation.

© 2017 American Physical Society
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FIG. 1. Four regions of Minkowski spacetime and correspond-
ing coordinates.

In this paper, we examine the entanglement structure of
the Minkowski vacuum state by extending the expression
(1) into the future (F) and past (P) degenerate Kasner
universes shown in Fig. 1, expanding the work of Ref. [3].
Equation (1) can be extended by first rewriting the mode
functions in the Rindler wedges in terms of the wave
functions defined globally in the entire Minkowski space-
time and then restricting them to the F and P Kasner
universes. In Appendix A, we show that it can also be
extended by using analytical continuations of the mode
functions from the L and R to the F and P regions across
the horizons. By using the extension of the mode functions
into the entire Minkowski spacetime, the expression (1) is
extended to

0,M) H {Z e~ 1) @ |nj, )| (2)
J tn=0

Note that the wave functions representing the states |n;,I)
and |n;,II) are defined in the entire spacetime, including
the future and past regions (see also [31]). Thus, the
formula makes it possible to calculate the correlations
between the operators of different regions, e.g., the operator
in the R Rindler region and that in the F Kasner region. It is
even possible to calculate the correlations between the
operators in the P and F regions. Deriving formula (2) is the
main purpose of this paper.

Another purpose is to give the full details of the
calculations in [30]. We calculate the quantum radiation
produced by a uniformly accelerated object. In previous
works [19,20], the radiation was derived using the Green
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function method with reference frame coordinates. In
contrast, to understand the physical origin of the radiation,
we used a formalism based on the expression (2) of the
Minkowski vacuum state. It shows that quantum radiation
is induced by entanglement of the vacuum between the F
region and the R Rindler region.

This paper is organized as follows. In Sec. II, we
introduce the mode functions of a massless scalar field
in four-dimensional spacetime in each of the four regions,
the R and L Rindler wedges and the F (expanding) and P
(shrinking) degenerate Kasner spacetimes. In Sec. III, we
show how the expression (1) for the Minkowski vacuum
state is extended to the F and P regions as in (2). In Sec. IV,
a similar calculation is presented for two-dimensional
spacetime for comparison to the four-dimensional case.
In Sec. V, as an application of the entanglement structure
studied in Sec. IIlI, we calculate the quantum radiation
produced by a uniformly accelerated object. The section
explains the detailed calculations omitted in our previous
letter [30]. In Sec. VI, we study a similar system in two-
dimensional spacetime [25]. In this case, the quantum
radiation vanishes. This stems from a behavior of the mode
functions specific to the two-dimensional massless fields.
In Sec. VII, a summary and conclusions are presented. In
Appendix A, we give a different derivation of the results in
Sec. III using analytical continuations of the mode func-
tions across the horizons, expanding the work in Ref. [32].
In Appendixes B and C, calculations supplementing that in
Sec. V are given.

II. MODE FUNCTIONS OF FOUR-DIMENSIONAL
MASSLESS FIELDS IN THE
R, L, F, P REGIONS

In this section, we first review the mode functions
of a four-dimensional massless field in various coordinate
systems [3]. We consider a massless scalar field whose
action is given by

1
5= [ drvmao.so. ()

and quantize it in the following coordinate systems: the R
Rindler wedge (R region), the L Rindler wedge (L region),
the F (expanding) degenerate Kasner universe (F region),
and the P (shrinking) degenerate Kasner universe (P region)
as well as the global Minkowski coordinates (see Fig. 1).
The line element of the Minkowski spacetime is given by

ds* = d* — dz? — dx?. (4)

Note that x, denotes the two-dimensional coordinates
perpendicular to the (z,z) plane. The equation of motion
becomes
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and the quantized field is expanded as
dk.d’k, .

¢ / 271. 3/2 2k ( e—ikotﬂ‘k:erikaL +H.C.), (6)

where the creation and annihilation operators satisfy the
commutation relations

Bk, Bl g | = S (ke — K (ky = k),

[Bkzkl’ Bk’:,kﬂ = [Bltzkl’ Bk’ X ]=0. (7)

Here we defined ky = +/k? + k7 . The Minkowski vacuum

state |0, M) is given by
b |0.M) =0 (8)

for any (k. k).

A. R Rindler wedge (R region: z > |t|)

The R Rindler wedge (R region) is described by the
coordinates 7 and &,

1 1
t = —e“sinhar, 7z =—e“coshar, 9)
a a

where 7 and ¢ take values in the ranges —oo <7 < o0
and —oo < £ < 0. These coordinates cover one-quarter of
Minkowski spacetime (see Fig. 1). The line element (4) and
the field equation (5) reduce to

ds* = 2% (dr* — d&*) — dx3. (10)

and
* o2
— = =X 0, 11
(812 o0& Ox? )¢ (1)
respectively. The quantized field can be expanded as

:/0 da)/_oo dsz(&gkngkL(xR)+H.c.), (12)

with the mode functions given by (see, e.g., [3])

sinhzw/a e\ o

The coordinate 7 is the proper time of a uniformly
accelerated observer at £ =0, and the mode function
(w > 0) represents a positive-frequency mode. Because
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the modified Bessel function Klw/a(%”f) is approximated
for £ - —o0 as

ke 1/ x\wa [—iw\ .
Ko () =3 (5) TR e 09

the mode function UE k. (xg) represents a standing plane

wave near the horizon, £ - —oco. At £ —» +o00, it is rapidly
damped because of the potential like exp[—xe??/a], where

we defined x = /|k, |>. The creation and annihilation

. . . N AR
operators satisfy the commutation relations [a}ih ,a

T } _
w’,k’J_
A AR ART
Sp(@— )35 (ko —K.). [k, .aR | =[al) a1 =0.
The R Rindler vacuum state is defmed as

ak, |0.R) =0 (15)

for any (w.,k ), and the n;th excited R Rindler state is
defined as

In;,R) = —= (a}")"|0, R), (16)

1
1/7’1‘}'!

where j denotes the model specified by j = (w.k).!

B. L Rindler wedge (L region: —z > [¢|)
The L Rindler wedge (L region in Fig. 1) is similarly
described by the coordinates 7 and g

| .
t = — e sinh a7,

1 - -
z=——e%%coshaz, (17)
a a

where 7 and & take values in the ranges —oo < 7 < oo and
—00 < £ < o0. The line element (4) becomes

ds? = 2% (d7* — dE?) — dx?. (18)

The field equation is in the same form as (11), and we can
expand the quantized field as

_ /  do / Y@k (ak, b, () +He) o (19)
0 )

with the mode function

sinh zw/a ke®\
U;,kl(xL) = %Kiw/a< P )e ik, x| it (20)

1 . . . . .
Equation (16) is a schematic expression, where some dis-
cretization of the modes is assumed with the normalization

[a],a] 1.
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where the creation and annihilation operators satisfy the com-

mutation relations [aX &fj,kl] =5p(w—)8 (k| —K'),

wk,’
AL AL _ 1AL ALY . .
Gy p, Oy K, 1=1a, kL X ]=0. The L Rindler vacuum

state is defined as a k,[0.L) = 0 for any (w.k, ), and the

L Rindler particle state is defined as (see footnote 1)

1 (&}Jr>nf

\/nj!

C. F (expanding) degenerate Kasner universe
(F region: ¢ > |z|)

|nj,L> =

). (21)

In the F (expanding) degenerate Kasner universe (F region
in Fig. 1), we can introduce the coordinates 7 and { as
1 1 .
t =—e%coshal, z=—e"sinhal,  (22)
a a
where n and { take values in the ranges —oco < < o0

and —oo < { < 0. Thus, the line element (4) and the field
equation (5) become

ds? = 2 (dip — d¢?) — dx (23)
and
P &
_o —o. 24
(anz B o 2>¢ (24)

respectively. Because 7 is the time variable, the metric
describes an expanding universe with the scale factor e
The quantized field is expanded as

_ / do / Pk, (a5, oF, (x) +He)  (25)

in terms of the mode functions

Uf},k N (xp) =

_ipiw¢ a
fe J—i\w\/a <ﬂ> ekLrs,
2z\/4asinh(z|w|/a) a

(26)

Because the Bessel function J_jj,,|/, (¥¢7) is approximated at
n — —oo (near the horizon) as

ke —i|lw
J—i\w\/a (7) x e | |'7’ (27)

it represents a positive-frequency mode for both positive
and negative . Mode functions with a positive @ represent
right-moving wave modes in the ¢ direction, whereas
modes with a negative @ represent left-moving wave modes.
The creation and annihilation operators satisfy the commu-
il ] = 8p(w— )8y (k. —K.),

. . ~F
tation relations [aw,h,
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~F ~F — [AFT AFT )
Gy x, - oy i, | =lapx, Gy e, | = 0. We define the vacuum

state in the F region as

F) =0 (28)

(1)

forany (w, k | ), and the excited particle states are also defined
using ‘Algky
Because a positive (negative) w represents a right (left)-

moving wave mode in the ¢ direction, we can decompose
the field ¢ into

P(x) = ¢H(x) + ¢ (x). (29)
Here we define the “sinister” (“left” in Latin) field

5 (x) / do / Pk, (@55 o075 () +He)  (30)

with the mode function

_jpiog
F.s F te
v (x)=w X) =
ok, (%) o, (%) 2m\/4asinh(zw/a)
an
X J_iw/a <Kil )ei’u-n, (31)

which contains only the left-moving modes in the §
direction near the horizon. In contrast, the “dexter” (“right”
in Latin) field,

"9 (x) /da)/ dPky (a8 Fd()+Hc) (32)

is defined with the mode function

i piol
R . le
v X):=v X) =
w,kL( ) w»—’u( ) 27+/4asinh(zw/a)
an .
X J_iw/a <K€ ) e_lkL'xl’ (33)
a

which contains only the right-moving modes in the {

direction near the horizon. The annihilation operators are
. ~Fs _ AF ~F.d ~F
defined accordingly as Ay, =0 g, and Ay, =gy -

In both expansions of the field, @ takes a positive value.

D. P (shrinking) degenerate Kasner universe
(P region: —¢ > [z)
In the P (shrinking) degenerate Kasner universe (P region
in Fig. 1), we introduce the coordinates 77 and ¢
1 _ . ~ - =
t=——e“coshadl, z=—e “sinhal. (34)
a a
These variables, # and 5 , take values in the ranges —oco <

n<oo and —o0 < 5 < 00. The line element (4) and the
field equation (5) become
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daii( 1 )
ds* = e~ (dip? — d¢°) — dx?. (35)

2 P
<6‘_712 e

respectively. The quantized field is expanded as

_ / * do / ® Pk (@P, 0P,

where the mode function is defined as

and

—2aip
— g2 ax)"b 0, (36)

() +He),  (37)

ieiw&

Ke_a;? ik | -x
= . Jilo|/a emLtL.
27+\/4asinh(x|w|/a) a

(38)

”E;JQ (xp)

The creation and annihilation operators satisfy the com-
mutation relations [a]:)-kﬂag’f.k; | =6p(w—a')5) (k| —K.).
P AP 1 [sPT APT 7
[aw’kl,aw,.kl] = [am_h,aw,’k,l |=0. The vacuum state |0, P)

in the P region is defined as
gy [0.P) =0 (39)

for any (w, k), and the excited particle states are created
using the operators &5:,&.

The w in (38) is the momentum in the 5 direction, and a
positive (negative) w represents a right (left)-moving wave
mode. Thus, we can separate the right-moving wave modes
from the left-moving wave modes by decomposing

P(x) = ¢"I(x) + ™ (x), (40)

where we define

P73 (x) / dw/ d*ky (a5 vy, (x) +He.),

#P(x) / dw/ Ak (g vog, (x) + He).
The mode functions are defined as
UZ’;Q (x) = vliw‘_kL (x)
ie—iw& J (Ke_aﬁ> —ik x|
= iw/a e s
2r+/4asinh(zw/a) / a
(41)

P.d
Ve, (X) = ”Em (x)
l'eiwg K_e—aﬁ )
= > ‘]iw/a < ) elkl‘xL ’
2n+/4asinh(zw/a) a

(42)

and the annihilation operators are defined accordingly as
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AP.s N
a(u,skl aliw —k (43)
~P.d ~
aa)',kj_ = af),kL . (44)

III. DESCRIPTION OF THE MINKOWSKI
VACUUM STATE

In this section, we will connect the mode functions
defined in each coordinate system in the previous section
and express the Minkowski vacuum state as in (2), which is
defined in the entire Minkowski spacetime.

A. Positive-frequency modes in Minkowski spacetime

First, we note that the following linear combinations of
the mode functions in the R and L regions (normalized with
respect to the Klein—Gordon inner product) are positive-
frequencg modes in the Minkowski sense (see, e.g.,
Ref. [3])™:

—n'w/a L
a) ko +e Vo k|
W_wk, = 5 ’ (45)
V1—e" ww/a
L ﬂw/a R
_ Vyk, T € w,—k, 46
Wik, = . ( )

V1= e—Zmu/a

As shown in [3], these positive-frequency modes in
Minkowski spacetime are written in the integral form

e de +i0(k,)w/a ,—ikyt+ik et (47)
w — — = ¢ z e o E— s
ok -0 V8ank 2r

where the rapidity variable 0 is defined as k; = x cosh 6,
k, = ksinh @. It is thus written as

Q(k)fll (2:’;) (48)

We introduce the (unnormalized) positive-frequency modes
in Minkowski spacetime W, as

W, = /oo dee:tiew/ae—ix(tcosha—zsinhe) (49)
w
and evaluate W, in the L (R) Rindler and F(P) Kasner
coordinates. Note that W, is related to w,,; by
eikaL
=—7W,,.
V2a(2x)? =

For kK, =0, we cannot write the mode functions in
the above form [(49)] because of the relation ky = |k,|.
This case is investigated separately in Sec. IV as a

(50)

Wiw,kL

*Here, Vb, in Ref. [3] is v}, in the present paper.

083531-5



HIGUCHL ISO, UEDA, and YAMAMOTO

two-dimensional massless field. In the four-dimensional
case, the modes with k; = 0 make negligible contributions
to the composition of a physically relevant wave packet.

Equations (45) and (46) are solved to obtain the R
Rindler mode UEJM and L Rindler mode v;h in terms of
the positive-frequency Minkowski modes. Renaming them
as vi)ykL and vg‘kl for later convenience, we have

_ o mw/ay
R 1 W—(H,kL € W+w,_kj_
VN DU = . (51)
DL WHL 1 — ¢~ 27w/a
Woiwk, — e—ﬂw/a *
L n_ e —wk,
vw.kl - Uw,kL - . (52)

A= e—27m}/u

These wave functions are defined in the entire Minkowski
spacetime through the integral representation of (49). This
makes a striking contrast to the original definitions of vfj.kl

and ”5;1@’

namely, in the R and L Rindler wedges, respectively.
After briefly discussing the R and L regions for clarity,

we explicitly evaluate the integral in the F and P regions

and relate v. , and v, with the mode functions defined
Lo L

which are defined only in the restricted regions,

there.

B. R region
In the R region, (49) reduces to

W, = /oo dee:tiaw/aeik(e“5/a)sinh(&—ar)
w

o]

— pEior /oo dOe*i0w/a pix(e®/a)sinh O (53)

[58)

Considering the convergence property at |§] = co on the
complex plane, the integration contour of 8 can be shifted
to the contour 6 = x + zi/2 — ie with (¢ > 0) in the range
—00 < X < 00!

W, = eTiotFr0/2a /oo dxeiixw/ae—(xe“‘f/a) cosh x (54)
(0 k)

where we used sinh(x + zi/2) = icoshx. Because the
integral representation of the modified Bessel function is
given by

B B +xv—zcosht ,— (ke /a) cosh x
Ki,(2) = dxeTv—zcoshi, . (55)

[Se]

we have

o [sinhzw/a Ke“*
1 _ ,—iwt 41k x —_ R
Uw,kL — pmiwT pik x| 74”461 Kiw/a <a = Uw,kL ()CR),

(56)
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and

vl =0. (57)

wk |

The result in (56) just confirms (51). On the other hand,
(57) shows that the wave function defined in the L Rindler
wedge (52) has no support in the R Rindler wedge.

C. L region
In the L region, (49) reduces to

Wiw — /oo deeiiew/ae—ik(e“é/a)sinh(6‘+a‘?)' (58)

(o]

By changing the contour on the complex plane, as in the R
region, it is written as

W, = e:Fim%ifm)/Za /oo dxe:!:ixm/ae—(xe“g/a)coshx’ (59)

—o0

LI

and v, are evaluated in the L region as
vi)ﬁkL =0, (60)
Pl pmih ik Sinhﬂw/aK' Ke“
ok, 4rta iwla\ " g
= vy (x0)- (61)

The result in (61) just confirms (52). On the other hand,
(60) shows that the wave function defined in the R Rindler
wedge (51) has no support in the L Rindler wedge.

D. F region
In the F region, (49) reduces to

W, = /oo d‘gei-iﬂw/ae—ix(e”’?/a)cosh(()—a()

o

— ptiod /oo deeiiew/ae—ix(e“”/a)coshf}‘ (62)

[Se]

In this case, because the convergence property at |#] = oo is
different from that in the R Rindler case, the integration
contour can be shifted on the complex plane, as shown in
Fig. 2. Then the integration is rewritten as

W:I: — ej:ia){{e:Fﬂw/Za /oo dxeq:ixw/ae—(lce“”/a)sinhx
®
0

o0
+ eiﬂ'w/Za/ dxeTixo/a p—(ke"/a)sinhx
0

—mi/2 . o an !
+/,/2 dge:tzﬁw/ae—z(r«z /a)cosh&}. (63)

The last term on the right-hand side of the above equation
reduces to

083531-6
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TC -
§l

Y

Y

FIG. 2. Contour of integration on the complex plane.

_ieiiwéeiﬂwﬂa /ﬂ dx€¢a)x/ae—izsinx' (64)
0

By using the Bessel Schlifli integration formula

1 [ . sinvm [ ‘
J,(z) =~ [ cos(vt—zsint)dt— dtevi—zsinht
7 Jo 7 Jo

(65)
we find that
| —i e—im{

J (Kea”> ik x|
v = —iw, —)e
ok 25 /da sinh(zw/a) '\ a

F,
= vw’skl (x),

(66)

_ i i
I _ e

Ke ik
Vok, — ? J—ia)/a emH
"t 2x4/4asinh(zw/a) a

F.d
= Vg, (x).

(67)

As shown in Fig. 3, the wave function ”Iu.kl is originally
defined in the R region and vanishes in the L region.
Consequently, in the F region, it becomes the left-moving

mode vfﬁﬁ near the horizon between the R Rindler and F

11
wk |

is originally defined in the L region and vanishes in the R
region. Consequently, in the F region, it becomes the right-

Kasner wedges. On the other hand, the wave function v

moving mode ”Z?u near the horizon between the L Rindler
and F Kasner wedges.

E. P region
In the P region, (49) reduces to

W, = /oo dge:tiew/aeiK(e’“;’/a)cosh(@—&-aﬁ)
)

(Se]

_ eq:ia)g’ /oo deeiiﬂa)/aeik(e’“ﬁ/a) coshe' (68)

(e
This is obtained by taking the complex conjugate of W,

in the F region and replacing # and ¢ with — and ¢,
respectively, and we find

: ia)g’
I - e

J <Ke_a;]> ik, x|
v = : — e
“k. " 2z fdasinh(zaja) '\ a

d
= ”Z.h (x),

(69)
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<\\MN\> N7 <<WWN\> . 2
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AIT y N ~T
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7/ N
7/ AN
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s N
s UP,S vp,d N
. k. k.
~IT ~T
CI’(;J,kL a(o,kJ_

FIG. 3. Mode functions in each region and their relationships.

The red and blue undulating modes are vL_kL and ”g-kﬁ

respectively, which are associated with the annihilation (creation)

Al ATF Al AT
operators a,,; (&, ) and a,, (@, ).

: —iu)g'
I 114

Ke~ .
Uk, = - Jiw/a (—) e—ikixy
2r+/4asinh(zw/a) a

P.s
= lel (x).

(70)

As shown in Fig. 3, the wave functions »' (') appear in the
P region as the right (left)-moving mode v*¢ (v*) near the
horizon between the R (L) Rindler and P Kasner wedges.

F. Entanglement of the Minkowski vacuum state

Summarizing the results in the previous subsections, we
find that the functions v, and vy, , are identified with the

functions introduced in Sec. II as follows:

F.s

UW,kl F Uw.kL F
R 0 R
v R
1 _ .k I —
Voo, (X) = Vo, (X) =
w.k ’ w.k L
R 0 L o Uu).kL L
P.d P.s
vw,kl p /Uu).kL p

(71)

The behavior of the wave functions is drawn schematically
in Fig. 3. It can also be obtained by using continuations
of the wave functions through the Minkowski positive-
frequency mode functions (see Appendix A). Thus, we can
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obtain globally defined annihilation operators, &}u,h and

by making the following identifications:

a)k ’
Al .— ~R _ APd _ AFs
Aok, = Qox, = Yok, = Yk, >
A1 _ ~L __ APs __ AFd
a, kl =4, kT aa).kl - aa).kJ_

We can now expand the quantum field in terms of the
mode functions v7, (x) (6 =L1II) and the globally

defined operators as

0=y Am da)/oo Pk, (a0, 17,
o=LII —©

Note that the expansion is valid in the entire Minkowski
region. By using these modes, the Minkowski vacuum state
is written as

(%) +He).

(72)

) = H [Nj Z e n; 1) @ |n;, II)], (73)
j n;=0

OMBN0M) = [ dw [ i oy, (908, 0 ot O, 00}

PHYSICAL REVIEW D 96, 083531 (2017)

where N; = V1 — e72i/% and j = (w;,k,). Notice that

w; takes only positive values.

Equation (73) expresses the Minkowski vacuum state in
four-dimensional spacetime as an entangled state con-
structed on the basis of the modes »' and »". The
entanglement structure of the Minkowski vacuum between
the R and L regions is well-known [1,2], and (73) gives a
generalization to the F and the P regions. Therefore, it is
now possible to calculate the correlations between the
operators of any of the regions R, L, F, and P. For example,
as discussed in Ref. [30], the entanglement between the
states in the F and R regions is important for understanding
the quantum radiation associated with the Unruh effect.
This will be discussed in Sec. V. It also represents timelike
entanglement between states in the F and P regions [31].

G. Two-point Wightman function

To confirm completeness of the mode expansion in (72),
we compute the two-point Wightman function using (72)
and show that it reproduces the two-point function calcu-
lated in the Minkowski basis as in Ref. [3]. The two-point
Wightman function is computed as

1

a0, )+ 0, (v, ()} oz {0, (), () + vl (W) i, (¥
. . . eﬂa)/a
+ vka( )Ukaj_( X))+ vw,ﬂ( )vw_kl (x) e b (74)
where we used
R o 1
(0.Ma, Dok, ag’,k’l ) = <O’M|a2k ng’ )= m%(m —o')8p(ky — k).
Tw/a
ATE A e
(0. Mlag],, ng’ ) = (0.Mla, . ay, 0.M) = W_l%(w—w/)‘%(h — k).
Using the definitions of the mode functions in (52), we find that the two-point Wightman function becomes
<0,M|¢(x)¢(x’)|0, M> = /)' da)/ dzkl{w—m,kL (x)wiw,kL (X/) + Wm,kL (x)w(t),kl (.X'/)}. (75)
This is equivalent to the two-point function
2
<O,M|¢(x)¢(x’)|0, M> _ /Me—iko(t—z’—ie)ﬂ'kz(z—z’)+ikj_~(xL—xl)’ (76)
(27)32k,

as can be demonstrated using (47). This result proves that the mode expansion in (72) correctly forms a complete set of

wave functions in the entire Minkowski spacetime.
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IV. TWO-DIMENSIONAL MASSLESS FIELD

Here we study the entanglement structure of the
Minkowski vacuum in a two-dimensional massless scalar
field. The modes correspond to the k;, = 0 modes, which
may be neglected in the four-dimensional case. The analysis
is much simpler and is well-known in the literature (see, e.g.,
[3]), but it is instructive to show how the entanglement
structure differs from that in the four-dimensional case.

The quantized field in two dimensions is expanded as

ot z) = /_: \/%(@ke‘ik“”kz +Hc). (77)
|
1 — O(— 1 al)iw/a —
vy (x) = 6(=U) 4m( vy«
1 .
UB(3) = 0(-V) o (—aV)ere =
HI( ) — Q(U) ;ﬂ-w ((IU) iw/a _
B0 = 0(V) <= (av) " =

PHYSICAL REVIEW D 96, 083531 (2017)
) is defined by

The Minkowski vacuum state
Bk|0, M) = 0, for any k.

We now describe the Minkowski vacuum state using
the quantum states constructed in the R, L, F, and P
regions. For a massless scalar field in two dimensions,
owing to conformal invariance, the solution for the mode
function is written in a form similar to that of the
Minkowski coordinates. Then, we separate the solutions
in each region into the right-moving and left-moving
waves, for which we use notation similar to that for the
four-dimensional case. We define the mode functions as
follows:

0 F
R4 = om0 /\[Aze R
0 L’
b = e"""(ﬁ_g)/ Vazw P
0 F
0 R
vhs = e‘iw<%_5>/\/% L’
W28 = om0t )\ /Agw P
ed = em00=0) /\/Azey F
0 R
phd e‘iw(%’Lé)/m L’
0 P
vt = e @) /\/Azw F
oS = i) |\ [Aze R
0 L
0 P

where we introduced the light-cone coordinates U and V in Minkowski spacetime as U = t — z and V = ¢ + z. The modes
are illustrated in Fig. 4. A notable difference from the four-dimensional case with k | # 0 is that all the modes propagate in
the light-cone directions and cover only two regions, namely, P and R (or L), or F and R (or L).

With these mode functions and the creation and annihilation operators satisfying [a5,a%)] = 8,,8p (@ — ),

(a3, agy) =

s = 3 / " do(ac,v8,(x) + Hee).
o=LILIIV /0

Further, the Minkowski vacuum state is given by

S e o, 1) @ [ D)

n,=0

'°’M>=13[

] @] [N o Y e, T @ |,y IV) |

0, [&Z,T, AZ)’,T] = 0, where 6,06’ = LIL III, IV, we can expand the quantum field as

(78)

3 (19)

o' n, =0

0
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HIGUCHL ISO, UEDA, and YAMAMOTO

where N, = V1 — =2/ Equation (79) expresses the
quantum entanglement in the Minkowski vacuum state of
the massless field in two-dimensional Minkowski space-
time, which also describes the modes with k; =0 in
four-dimensional Minkowski spacetime (see Fig. 4). In
the two-dimensional massless case, owing to conformal
invariance, the left- and right-moving modes are decoupled,
and so is the vacuum. In the four-dimensional case, a single
wave function, v/, describes a mode propagating from the
P region through the R Rindler wedge to the F region. In
contrast, the P and F regions are not connected by a single
wave function in the two-dimensional case because the
mode functions 2., v, vl and vV are functions of a
single positive variable, =U or £V. This is the reason for
the absence of quantum radiation in the two-dimensional
massless scalar studied in Sec. VI.

In the rest of this section, we compute the two-point
Wightman function and show that the above mode expan-
sion forms a complete basis in two-dimensional Minkowski
spacetime. The two-point Wightman function is given by

(0, M[(x)(x")[0, M) = /0 " do {{UL(X)vS (x') + g (x)

+ {ve, (X)ve(x') +

+ o)) + o ()0l ()}

@)

PHYSICAL REVIEW D 96, 083531 (2017)

t
A
\\ -
AN 7/
F.d Fs
\\ Uw Uw //
~ TN NIV
al* M, 4y
AN s/ R
N s .S
ULd N p Uo)
N 7/
AN 7/ 2
ULS Arr RN .
a. 7 Al Rd
() 0 s a g
/ \\ © UO)
/ N
M o
7/ AN
P,s
ol pPd
s ® N

FIG. 4. Behavior of mode functions in the two-dimensional
case.

1
T (L,
v (X )} 1— e—27ra}/a

1 () ol () + o ()0l ()

Tw/a ) X 1
‘ + (o)l () + oY ()oY ()}

+{v

1= e—27tw/a
* * 1 * *
+ {vh ()oi(¥') + v (x)vi}/(x’)}m + {op (X)) () + vy () v (')
v I e/
+ v m (X)Ua)(x/)+1}w ( ) (u( )}W—l s (80)
where we used
T A 1
(0, M|a, M) = (0,M|alllall" |0, M) = m%(w—w'),
R erm)/a
<0,M|a5aw, > = <O,M|awa > == e2ﬂ(u/—a_15D(w - Cl)/),
N 1
(O,M|agaw > <0 M|Cl > l_eméD(w_w/)v
eﬂw/a
wMWWWMW=QW%ﬁMW=;mtﬁwwd) (81)

The others are zero. In terms of the positive-frequency Minkowski modes defined as

=1 —27[0)/(1/
=1 _e—27rw/a/
0

\/— wke

with

—ikU F

R -ikV 7
a,e LG

—ikU
9

o dk
” U) =1 = e—27m}/a/ 472. al(;ke

\/1 = g2mw/a ak
/ A€

—th
b
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i omw/2a —iw/a : mw/2a in/a
R e a . L e a .
a, = — I'll—iw/a),a;, = - — I'l +iw/a),
ko n ok <k> ( /a). @y 2V wk <k> ( /a)

LILIILIV

the wave functions v are written as (see, e.g., Ref. [3]):

Fw(U) B e_ﬂw/uF:)<U)

PHYSICAL REVIEW D 96, 083531 (2017)

N (v) —
o(-U)ih(x) = e (2)
G,(V)—e™/Gy(V)
O(=V)vg(x) ==~ o, (83)
V1-= e—27m)/u
F,(U)—e™/F; (U
oruyt(n) = TPl (54)
1— e—Zﬂw/a
G (V) _ e—mu/aG* (V)
O(V)vlY (x) = =2 27, 85
(V)Y (x) = (85)
By using these relations, the two-point Wightman function reduces to
(0, Mgh(x)¢h(x')|0, M) = / do{F ,(x)F;,(x') + Fo,(x) F},(X') 4+ G (x) Gy (x') + G (x) G, (x') }. (86)
0
By using the relation
/oo do(1 — e72/%)(aR a® , + abal ) = 6p(k = K'), (87)
(86) becomes
o dk . ) ; ’ o dk . Nt ikt
<O,M|¢(x)¢(x')|O,M> _ / _(e—zk(V—V) 4 e—zk(U—U)) — / T pilk(r=1 )+zk(z—z)’ (88)
o 4nk —oo 47 |k]

which is nothing but the expression obtained directly from
the Minkowski mode expansion (77).

V. APPLICATION I: QUANTUM RADIATION
FROM A UNIFORMLY ACCELERATING
DETECTOR IN FOUR-DIMENSIONAL
SPACETIME

As an application of the entanglement structure inves-
tigated so far, we study the quantum radiation emanating
from an Unruh-DeWitt detector coupled to a massless
scalar field in four-dimensional spacetime [19-21,27,
30,33]. The radiation is caused by the two-point correla-
tions between the R region and the F region based on (73),
which cannot be calculated using the ordinary expres-
sion (1). A two-dimensional case is studied in the next
section.

The Unruh-DeWitt detector model contains a harmonic
oscillator Q(z) moving at uniform acceleration with the
world-line trajectory z(z), which is coupled to the massless

[

>

FIG. 5. Schematic of the Unruh-DeWitt detector model. The
hyperbolic curve is the detector’s trajectory, and the detector is
an infinitely small harmonic oscillator coupled to the massless
scalar field.
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scalar field ¢ in four-dimensional spacetime (see Fig. 5).
The action is given by

510412 = [ an(Q(0) - %0(0)
1
+ > / d4x5‘”¢(x)8ﬂ¢(x)
44 [ dixdsPlQ) )68 x - 2(0).
(89)
where m and €, are the mass and angular frequency of the

harmonic oscillator Q, respectively. The dot denotes differ-
entiation with respect to 7. Here P[Q] is defined as

d'Q(7)
dil

Plo@) =Y p, (90)

where p; are constants [33].

The world-line trajectory of the detector is specified by
X = z#(t), where 7 is the proper time of the detector. The
trajectory under uniformly accelerated motion is given by
x,(r)=0. (91)

t(r)=a"'sinhar, z(r)=a'coshar,

The equations of motion for Q(z) and ¢(x) are given by

O(7) + Q30(r) = —Pp(z(7))]. (92)

3>

00, (x) =1 [ Pl (x =), (93)

where we defined P[¢(z(7))] = 3 ;p;(—1)/ %. These
are linearly coupled equations; hence, the system can be
solved exactly [19,20]. As we show in the following, the
equation of motion (92) becomes a Langevin-type equa-
tion, and the harmonic oscillator, after a transient phase,
eventually becomes thermalized to an equilibrium state at
the Unruh temperature, T = a/2z. Consequently, the
scalar field ¢ is also stabilized to a steady state. We thus
consider such an equilibrium phase in the following
investigation [21,33]. In the presence of the harmonic
oscillator, the scalar field ¢(x) is given by the sum of
the homogeneous solution ¢ (x) and the inhomogeneous
solution ¢y, (x):

$(x) = $n(x) + Pinn (x). (94)

The homogeneous solution ¢y (x) represents the vacuum
fluctuation and always exists independent of the presence
or absence of Q(z). In contrast, the inhomogeneous
solution ¢;,,(x) is generated by the harmonic oscillator
Q(7) and is given by

PHYSICAL REVIEW D 96, 083531 (2017)
in(x) = 4 / dZPO()Grlx — (). (95)

where Gy (x —y) is the retarded Green function. Note that
the harmonic oscillator Q(z) is considered to be in the
classical ground state and to be excited only through
interaction with the quantum fluctuations of the scalar
field ¢y (x), as is shown below. Thus, Q(7) is determined
by the quantum field ¢y,(z(7)) on the trajectory of the
detector z(7).
By inserting (94) into (92), we obtain

2
0+950-2 P [ ¢PO@IGH:A) - )

= 2 Bz (96)

In the four-dimensional massless case, the retarded Green
function is given by

Galx =) = 7-3p(e*(x = 1) =),

1
o (x = y) = 5 (5 = ) (¥ = ). (97)
To regularize the ultraviolet divergences in the 7’ integral
at 7 =17, we introduce the regularized retarded Green
function [19],

1 /8 ,
Ghlr—2) = ﬁAZE‘W”Z"“" 6~ x?). (98

where A is the regularization parameter. Then, we have
bunlc(2) = 2 [ a2 PLOEIGA(7) - 2(2)

- £{acplow) - L rigw) + o0a .
99)

where ¢ =27/4T1°(5/4)/\/m. In the large-A limit, the
O(A™") terms can be dropped.

When P[Q] = Q, (96) is simplified as follows. By
inserting the solution (99) into (96), we find that Q(z)
satisfies the equation of motion

0+20+ 20 ="pialr). (100

where we introduced y = A%>/8zm and the renormalized
frequency Q2 = QF — A>A¢/4xm. This is the Langevin
equation with the dissipation term coming from the

radiation reaction term, whereas the noise term on the
right-hand side comes from the quantum fluctuation
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¢n(z(r)) on the trajectory z(r). Using the Fourier-
transformed variables

1
0(r) = 2—/ da)e‘”‘”Q() (101)
7
1 00 —iot
Wz@) =5 [ docg(@). (102
we find the solution in the equilibrium state:
O(w) = Mh(w)p(o). h(w) :
) = ih(w)p(w), W) = .
¢ —mw?* + mQ? — i2mwy
(103)

For the general case P[Q] # Q, the function h(w) is
replaced by
f(=o)
- 2f(w)f(-

where we defined f(w)
Green function satisfies

h(w) = (104)

~ El

)G (w)

:ijj(—iw)j. The retarded

—mae® + mQ}

Gulw) = [ dle=2)Ga(r =) = Gi-o);
(105)
hence, the relation h(w) = h*(—w) holds.

Thus, from (95), we have the expression for the
inhomogeneous solution:

un(x) = 2 / de / 9D it f () (@) Gr(x — 2(2)) (@)

- o | e f@h(@)oo).

(106)

PHYSICAL REVIEW D 96, 083531 (2017)

where pg(x) is defined as

-2 \/(L2)2 + 22

a

Po(x) (107)

with

L2:—x”x”+%:—t2+zz+xi+%. (108)
The factor py(x) in the second equality of (106) comes from
the Jacobian used to evaluate §(c*(x —z(z))) in the
integration, and 7¥ is the proper time on the detector’s
trajectory at which a past light cone from position x
intersects it (see Fig. 6), as defined in (116). Note that
the inhomogeneous solution ¢;,,(x) is determined by the
quantum fluctuation ¢(w), that is, the Fourier transform of
¢n(z(7)) on the trajectory in the R Rindler wedge.

We next investigate the behavior of the two-point
correlation function,

(P(x)p(¥)) = (Pn(x)Pn(¥)) + (Pn(xX)Pinn ()

+ (@inn ()P0 (¥)) + (Dinn () Pinn (¥)) 5
(109)

from which one can calculate the energy—momentum
tensor and study the properties of the quantum radiation.
The correlation function in (109) contains essentially three
terms. The first term, (¢, (x)¢,(y)). represents the vacuum
fluctuation and always exists irrespective of the presence
of Q(z). Thus, it is irrelevant in the present discussion
and can be ignored. The last term, (@i, (x)Pinn(y)), is the
naive radiation term. When the source term Q(z) behaves
classically, for example, for a charged particle, it is the only
term that contributes to the radiation. Indeed, when we
calculate the Larmor radiation in classical electromagnetic
theory, this term gives the radiation. Thus, we call it the

FIG. 6. ¥ is the proper time 7 of the point where the past light cone of x* intersects the detector’s trajectory. When x* is in the R region,
7' is the proper time 7 of the point where the future light cone of x* intersects the detector’s trajectory (left panel). When x* is in the F
region, 7', is the proper time 7 of the point where the past light cone of x* intersects the hypothetical detector’s trajectory in the L region,
and the trajectory is a mirror image of the real trajectory (right panel).
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naive radiation term. In the present case, because the
harmonic oscillator is excited by the quantum fluctuation
¢n(z(7)), it is not sufficient to consider only this term; it is
also necessary to consider the quantum interference. The
remaining term, (¢ (x)biun(¥)) + (s (¥)6hy(»)) repre-
sents this interference. Thus, the issue of the quantum
Unruh radiation is strongly affected by the structure of the
interference terms.

PHYSICAL REVIEW D 96, 083531 (2017)

Now we calculate the two-point functions [21,27,33].
Since the inhomogeneous term is written in terms of the
homogeneous term (quantum fluctuation) on the trajectory
as in Eq. (106). This means that the field ¢;,,(x) is a
quantum field, and the quantity (i, (x)@in(y)) is also the
vacuum expectation value of the product of the fields
¢inn(x) and ¢y (v). By using (106), we straightforwardly
obtain the naive radiation term as

b)) = e [ 92 [ 9 oo (0ol (plohp(a). (110
With the use of (102), we have
(o / de / 47 (i (2(0)a (2())) e/
/ df/ 5 —r( ) = ie)’ = (lr) =)’
/ de / dr 4ﬂ)281nh2{(1—r’—i6)/2}
—5D(a)+w)m (111)

where we used the Wightman function of the massless scalar field in the four dimensions [34]. Using Eq. (104) and

Imf}R(w) = w/4r (see, e.g., [33]), we have
h(w)f(w)

Then, Eq. (110) is written as

(@inh (X)Pinn () =

~ h(~w)f(~w) = 2i2ImG (@) | f(@)h(@)|* =

—il? / dw
(47[)2p0(x)p0(y) oo 2 eZi‘m}/a -1

i 5| f(@)h(@)[*. (112)

L f@)h() - f—w)h(-w)e ), (113)

Here we changed the integration variable from @ to —w. This term gives rise to the radiation naively expected from the

detector in the thermally excited state.

On the other hand, the interference term is obtained by using (102) and (106) as (see Ref. [33])

(Pn (%) Pinn (V) + (Pinn () bn (1))

_ —il? / dw 1
(47)%p0(x)po () J-oo 27 €37/ —

Z3 % d 1 S
s | e f @)h(o) - f-wh(-w)]e .

" (4”)2P0(x),00 ) J-

(114)

The details of the similar calculations based on the Green function method in the reference frame coordinates are given in
Sec. VA, and calculations based on the operator formalism with (73) are given in Sec. V B.

In the above formula (114), we defined

Z () = ™/0(t — z) + 0(—t + 2),

and ¥ is given by

(115)
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1 a 4
=—1 IR R g LA+ (2 =52
T aOg{Z(Z—z)< +14/ +a2[ ]
(116)

for x* in either the R or F region. On the other hand, 7% is
given by a different solution:

e T |

(117)

for x* in the R region (upper sign) or F region (lower sign).
When x* is in the R region, 7* (7% ) is the proper time of the
detector at the point where the detector’s trajectory inter-
sects the past light cone (future light cone) of x* (see the
left-hand panel of Fig. 6). On the other hand, when x* is in
the F region, z¥ is the proper time of the detector at which
the detector’s trajectory intersects the past light cone of x*
as above, but 7 is the proper time at the intersection point
of the past light cone of x* and the hypothetical detector in
the L region (see the right-hand panel of Fig. 6), whose
trajectory is defined as

t(r) = —a"'sinh ar, z(r) = —a~! cosh ar,

x, (1) = 0. (118)

Looking at (113) and (114), we see that the naive
radiation term (¢h;, (X)ian(v)) is completely canceled by
the second part of the interference term (114). Therefore,
we finally find

(@) (y)) = (hn(x)n(¥))

—ip? o dw 1
(47)200(x)po () J-co 27 ¥/ — 1
X [f(@)h(w)e® "~ Z (o)

— f(~o)h(-0)e ™™D Z ()]

(119)

for x, y in the F or R region. From the two-point function,
one can calculate the energy-momentum tensor:

T —lim o 0 1 5 0 0
ey \ Oxt Oy 2T e oy
X (@) () = (Pn(x)hn ()]s, (120)
where the subscript S indicates symmetrization over x
and y. The energy flux at a large distance is derived from
the energy-momentum tensor, and the behavior is inves-
tigated in Ref. [27]. The energy radiation rate is roughly
estimated as dE/dt = a*A*/8x*mQ?. The result is con-
sistent with that found in Refs. [19,20].

PHYSICAL REVIEW D 96, 083531 (2017)
Xy
4 |

FIG. 7. Typical behavior of the angular distribution of the
radiation flux. In general, the behavior of the radiation flux
depends on the parameters of the model. In this case (Q/a = 0.2
and y/a = 1), the radiation is maximum in the direction of
acceleration. The position x is chosen so that ¥ = 0.

Figure 7 shows an example of the angular distribution of
the energy flux, which is estimated on the future light cone
of the point on the detector’s trajectory z = 0, where the
parameters are Q/a = 0.2 and y/a = 1. The behavior of
the energy flux depends on the parameters of the model.

A. Calculation of (¢, (x)¢y, (z(7))) with Green
function in the reference frame coordinates

In this and the following sections, we calculate the
interference term (114) by two different methods. One is
the Green function method adopted in [21,33] and
reviewed in this section. The other is the operator method
based on the entanglement structure of the Minkowski
vacuum (73), which is given in the next section. This
gives a physical interpretation of the quantum radiation in
the F region.

Remember that the inhomogeneous solution ¢, (x) is
determined by the vacuum fluctuation ¢,(z(7*)) on the
trajectory of the accelerated motion. Thus, the interference
term (¢, (x)in(y)) in (119) is essentially given by the
two-point correlation function (¢y,(x)¢,(z(7Y))) of the
vacuum fluctuations, one component of which, ¢y (x), is
in the F region for x € F, and the other, ¢, (z(7Y)), is in the
R region, z(z2.) € R. This is the key quantity for clarifying
the origin of the quantum radiation, which we examine in
the following sections.

We briefly review the calculation of this quantity using
the Green function method in the reference frame coor-
dinates [21,33]. The Fourier transform of (¢, (x)¢,(z(7)))
becomes

n2)0(0) = [ dre () (2(0)) == 5P (),

T

(121)

where we defined
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eiwr
Plx,w)= | dr - .
o= [ (P CSp ay papey ) g
(122)

The poles of the denominator of (122) are obtained by
solving (1 —2°(z) —ie)? — (x — z'(z))?> —x} =0, which
yields

T, — i€ + i2xna xinRregion
T =
T_— i€+ i2ana,v, + ina + i2xna xinFregion

(123)

where n takes integer values, n =0,£1,+2---. The

integration in (122) yields

P(x,m)

i ( Z - 1 -
:ﬂ< x(w) ot _ etwr_) (124)

20 eZer/a -1 e27m)/a -1

for x in the R or F region, and we obtain [21,33]
|

(0. M by (x)bn (2(7))|0. M) = (0, M|¢pf-¢

where

(0, Mlghy (x)hn (2(x))[0, M)

) eﬂw/a
/ dw//"z"l( i, (), (2(2)) ey v, (0 5,ki(z(f))ezm/7a_1>’

(0. Mlgpy,

*(*)¢n(2(7))[0. M)

/ da)//dm( Vark, ()x, (2(0) oz

(%) (2(7))|0, M) +
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i 0o .
- dwe™@r
O (2(6)) =~ [ e
eia)rf .
o)

( AN
(125)

eZIm)/a -1 e27m)/a

The first and second terms on the right-hand side of
(125) correspond to the first and second terms on the right-
hand side of (1 14).3 As we saw, only the first term in (114)
contributes to the quantum radiation, whereas the second
term in (114) cancels out the naive radiation term. Because
the physical origins of these two terms are not clear in the
Green function method in the reference frame coordinates,
we will re-derive it in the next section using the operator
formalism based on the discussions in Sec. I F.

B. Calculation of (¢, (x)¢,(z(7))) in the operator
formalism with (73)

We compute the correlation function (0, M]¢y(x)x
¢n(z(7))|0,M) using the operator formalism on the
Minkowski vacuum (73). Here we focus on x in the F
region, but we can show that a similar result is obtained
when x is in the R region (see Appendix B).

When x is in the F region, the correlation function
becomes

(0. Mldhy* (x)¢hu (2(2))

) (126)

eﬂw/a

(127)

1

S O O ) 029

Here we used the expression of the Minkowski vacuum in (73) and the results in Sec. III G.
The coordinates of x in the F region are specified as (17, {,x, ). We first focus on the first term of the integration in (127).

It becomes

/) dw//dszvg‘iL(x)

o0
dweiw(—iwr

—i
Y 16&:‘%

elta)/a s X« <
e27m)/a -1 /)' dKKJ—i(U/a <E e“ﬂ) K—i(u/a (Z) J() (Kxj_),

R elrw/a
vw.kj_ (Z(T)) eZmu/a _

1

(129)

where we used the expression Jo(x) = 5= [3* dpe™™? and the relation ,(z) = e™"/2J,(e™/?z) which holds for

2.

—r < argz < n/2. Then, by using the mathematical formula

*Note that the interference term in (114) represents a combination of (¢, (x)¢in ()

+ (@inn ()P ()
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/ ® K ()L, (BT, (1)

0

_ (aﬂ)—u—l},ve—(v—&-l/Z)ﬂi i1)2
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\/2_7'[(82 _ 1)u/2+1/4

D,.12(©), (130)

which holds for Ra > [Rp|, ¢ > 0, Ko > —1, and R(v + ) > —1, where O is defined as 2ap0 = o + > + ¥, and

DY (@) = i\/;@2 — 1) e+ Ve -1 (131)
we can show the following equality:
© K K a . .
dix] —e |\ K . —\J — l(uri—zwg. 132
A KKJ _iw/a <Cl e ) —iw/a <a) O(K-XL) 2,00(X) e ( )
Here we used the definitions of py(x) and z% in (107) and (117), respectively.
Then, (129) reduces to
/ood //de F.d ( ) R ( ( )) en’a)/a —i /ood —lwT+iot! elrw/a (133)
® v% (X)v T = we P
0 L%k, wk; z ean/a -1 871'2,00()6) 0 e27zw/a -1
and
O M) (IO M) = [ derior T (134)
’ h h ’ - 87t2p0(x) oo e2ro/a _ ’
This is nothing but the first term of Eq. (125) for x in the F region.
Similarly, the second term of the integration on the right-hand side of (128) is evaluated as
A do / / Py, (R ((0) Ty
—i o . X 1 8] K K
— —iwl+iwt . = oan . -
- \/WA dwe 1— e_z,m,/a A dKKJ—lw/u <a e >Kl(u/a <a> JO(KXJ_)
—i 0 o 1
— d WOT—1WT_ s 135
8ﬂ2p0(x)A we 1= e—2mu/a ( )
where we used K, (z) = K_,(z) and the relation
a o a , .
iotl —iwd _ —twrf-ﬁ-tw{’ 136
2p(x) 2p(x) (136)
which is obtained directly from the definition of 71 (see Appendix C). Thus, we finally obtain
B B —i I~ e eiwrﬁ
OMIE W IOM) = ot [ dwetor (=570, (137)

which is the second term in (125).

The results in this section demonstrate that (0, M|¢E’dx
(x)¢bn(2(2))[0. M) and (0. M[¢by " (x)¢bu (2(2))|0. M) explain
the first and second terms in (125), which correspond to the
first and second terms in the interference term (114),
respectively. Therefore, the remaining two interference
terms come from (0, M|} (x)¢hy(2(7))|0,M). As shown
in the previous section, the right-moving wave Kasner

mode and the Rindler mode, vf‘d(: v) and o (= v}),

|
respectively, are in the entangled state; therefore, this can be
understand as the origin of the quantum radiation produced
by the Unruh-DeWitt detector.

C. Physical interpretations

In this section, we consider the physical meaning of
the cancellation of the naive radiation term by the inter-
ference terms. In the equilibrium phase, the Unruh-DeWitt
detector is thermalized at the Unruh temperature, and the
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inhomogeneous solution, ¢;,,, is given by the stationary
solution. In this phase, one may expect that the total
radiation will vanish because the outgoing and incoming
fluxes are balanced. However, the present situation differs
from that in an ordinary thermalized system because the
harmonic oscillator is accelerated, and energy is constantly
injected. Furthermore, the thermal behavior of the system is
obtained only by tracing out the states in the L Rindler
wedge, but in the F region, into which most of the radiation
flux propagates, we cannot separate the L. and R Rindler
modes, and the logic based on the thermal behavior of the
Unruh effect is not necessary valid. In the following, we
discuss the origin of the partial cancellation of the radiation
flux in terms of the Kubo-Martin-Schwinger (KMS)
relation.
As we saw in [21], if the KMS-like relation

(@(@)¢n(x)) = p(@)([p(@), Pu(x)])

is satisfied, the two-point correlation function is shown to
reduce to

(@(x)@(y)) = (dn(x)n())
i2? :
= _ZL”Q dr,dr,dwe™" %) p(w)
X [Gr(x. 2(7:))Ga (v, 2(7y)) f (@) h(w)

= Ga(x,2(7,))Gr(y. 2(2y)) f (o) h(-0)].

(138)

(139)

Here p(w) is any function of @ and is typically given
by p(w) =1/(1 —e/T).

In the F region, because x (or y) is always in the future of
the trajectory z(z), G4 (x, z(7)) vanishes. Thus, if the above
relation holds, the two-point correlation would vanish.
However, a straightforward calculation shows [21] that
the relation is slightly violated as

{@(@)¢n(x)) = p(@)([p(@), Pn(x)])

i emu/a

" dmpy(x) eele — |

elors (x)

. (140)

where p(w) = 1/(1 — e2**/@), The second term, which
violates the KMS-like relation, is responsible for the
quantum Unruh radiation.

VI. APPLICATION II: QUANTUM RADIATION
FROM A UNIFORMLY ACCELERATING
DETECTOR IN TWO-DIMENSIONAL SPACETIME

As an application of the results in Sec. IV, we study the
Unruh-DeWitt detector model coupled to a massless scalar
field in two-dimensional spacetime. We first review the
derivation of the two-point function in this model, follow-
ing Ref. [25]. The action is given by (89) with the
dimensionality replaced by d = 2. The equations of motion

PHYSICAL REVIEW D 96, 083531 (2017)

for Q(z) and ¢(x) are essentially the same as (92) and
(93), respectively. Hereafter, we adopt P[Q] = dQ/dr and
P[p(z(z))] = —d¢(z(7))/dx for simplicity, as in Ref. [25].
As in the previous section, the equations can be solved
exactly, and the solution of ¢ is given as the sum of the
homogeneous solution ¢, (x) and the inhomogeneous
solution ¢ (x), ie., @(x) = Pn(x) + Pin(x), where
¢n(x) carries the vacuum fluctuation, and ¢y, (x) is given
in terms of Q(r) as

bnl) =3 [ a2, 0@)Galx =), (141)

In the two-dimensional case, the retarded Green function
for a massless scalar field is given by

Grlx = Z(T/» = %H(t —z+ e“f/a)e(z 47— ear’/a)'
(142)

Thus, we find that the equation of motion for Q(r)
reduces to

0(2) +270(0) + RO =~ - hu(a(D). (143)

where we defined y = A%>/4m. The solution is given by

o) =~ / C snQolr = 7) ()

(144)

We find that the two-point function is given by

(p(x)p(x')) = (én(x)n(x"))
= (Pn(X)Pinn (X)) + (Binn (X) P (X)) + (Binn (X) Pin (X))
y [*dw e™/a

—- L [ UV )

+ |@?U'V|®/*h(-w)} (145)
when x and x’ are in the F region Ref. [25]. The calcula-
tions are given in Sec. VIA. We defined h(w) =
iw/(w* — Q} + 2iwy). When x and x’ are in the right-hand
region of the detector’s trajectory in the R region, i.e.,
22—t >1/a? and 7> — > > 1/a?, the two-point function is

(@) () = (n(x)n(x))

= (Pn(X)Pinn (X)) + (Binn (X) P (X)) + (Binn (X) Pin (X))
= | e (VT

+ |@?U'V]@/¢h(w)}. (146)
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Note that the two-point function is a function of either
UV’ or U'V. The two-point function with the vacuum
contribution subtracted is nonzero, although the quantum
radiation vanishes, as shown in Ref. [25]. This
can be understood as follows. The radiation flux is
calculated as T, =T, =Tyy—Tyy with Tyy =
limy 0y Oy [(P(x)P(x')) = (n(x)én(x'))] and Tyy =
limy_y 0y Oy () G)) — (y(D)bn(¥))],  but  the
two-point function has no dependence on UU’ or VV'.
Therefore, there is no quantum radiation in the two-
dimensional model. This behavior is specific to the two-
dimensional case.

If the naive radiation term was not canceled by the
interference term, it would give a nonvanishing flux even in
the two-dimensional case. Actually, when x and x" are in
the F region, the naive radiation term is given by (Ref. [25])

<¢inh (x)¢inh (x/) >

2% [®dw 1 .
= — (V/V)@la|p(@)]2. (147
T ) @ eZn’w/a -1 ( / ) | (w)| ( )

Then if we use the relation i(w) + h(—w) = 4y|h(w)|?, the
naive radiation term is rewritten as
|

Pn(2(7)) =

[es]

+ /oo dwe‘i“’”e”w/zar(iw/a)|k/a|‘i“’/”9(—k)} + H.C.:| .

o]

Then, for x in the F region, we find the following formula:

<O’ M|¢h(x)¢h(Z(T/))|O, M> = L /oo d_w ei(m”

dr |_ @

1 i d_(l) e—i(uf

dr |_o @

where we used

©dk .y
e
A ||
k

0 dk ikV
—e —
/—00 |‘ |

The first and second terms on the right-hand side of (150)
correspond to the first and second terms on the right-hand
side of (146). The second term cancels the naive radiation
term, as in the four-dimensional case. Thus, the first term is
responsible for the remaining two-point function (145). In
the next subsection, we perform the same calculation using

—iw/a

k _ e—”w/za(aU)i“’/”F(—ia)/a),

a

iw/a

= e™/24(qV) /T (iw/ a).

s
2na ) oo \/aall] |-

e;m)/a _ e—ﬂw/u {(

eZﬂa)/a _
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(Pinn (%) inn (X))
- ﬁ/: dfﬁ (V/V))il(h(w) + h(~a)).

(148)

Thus, if this term remained, the component of the energy—
momentum tensor 7'y, would be nonzero.

A. Calculation of (¢, (x)¢py(z(7))) in the
reference frame coordinates

In the following, we look at the details of the calculations
of the interference terms and compare the Green function
method in the reference frame coordinates with the calcu-
lation in the operator formalism with (73) to determine the
origin of the two-point function (145). In particular, we
focus on the Wightman function (¢y,(x)¢,(z(7'))) for x in
the F region.

The two-dimensional massless scalar field is described
by (77). According to Ref. [25], the scalar field on the
accelerated trajectory of the detector can be written as

dwe™" e/ (—iw/a)|k/ a0 (k)

(149)

1 aU)iw/a + eizm/a (av)—iw/a}

1

l{en’w/a(aU)—iw/a + (av)i(u/a}’ (150)

the operator formalism with (79) to determine the physical
origin of these two terms in (150).

B. Calculation of (¢hy, (x)¢hy,(z(7))) in the
operator formalism with (79)

Here, the same calculation is performed in the operator
formalism with (79). Following the description in Sec. IV,
when x is in the F region, one can write the quantized field
in two-dimensional spacetime as

Pn(x) = ¢y (x) + " (). (151)

where we defined
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hrd(x) = / ¥ do(@WoM(x) + He)),  (152)
0
Fs(x) = A Y do@Y o (x) + He).  (153)

The quantum field on the detector’s trajectory is given by

Pn(2(7) = ¢y (2(7) + By (2(7)).

where we defined

(154)

RA(4(2)) = / " do(@ ol (:(7)) + He).  (155)
0

B(e(e) = [ doall ol () + He). (156

Thus, the two-point function is given in the following form:

(0, M|pp, ()b (2(2"))[0, M)
= (0, Mg (x) by (2(7'))[0, M)
+ (0, M| (x)hy* ((7)) |0, M), (157)
where we defined
(0, Mg (x) by (2('))|0, M)
1 0 d Tw/a ) .

=/ ;"’762;/0_1(aU)—tw/ae—twf, (158)

(0, M|ghy* (x) by * (2(7)) |0, M)
L[edo 1 yyivfag-io’ (159)

:E e @ e2ﬂw/a_1

Here we used the relations derived in Sec. IV. Note that
these two formulas are equal to the first and second terms
on the right-hand side of (150), respectively. The detector’s
trajectory is parametrized by x' = a~!coshar and
! = a 'sinha7/, and we can write e?” =a(x +1¢) =
aV’ on the detector’s trajectory. Then, we may write the
two-point Wightman function as

(0. Mgty (x); “(2())[0. M)

1 [odo e/

=) e e @UV)T (160)
<0,M‘¢ES()¢) E'S(Z(T/)) 0,M>
: = do ! iw/a
=) e V) Ja.  (161)

As in the four-dimensional case studied in the previous
section, (160), (0, M|¢p ¢ (x)pr(z('))|0,M) is almost
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the same as the first term on the right-hand side of
(145). The differences between them are the coupling
constant and Ah(w), which reflects the interaction
between the detector and the vacuum fluctuations.
Therefore, the remaining interference terms come from
(0, M|gE9(x) R4 (2(7'))|0,M), whereas the contribution
corresponding to (0, M|¢p " (x)pr(z(7'))|0, M) is canceled
out by the naive radiation term (148).

In contrast to the four-dimensional case, as described
in Ref. [25], the remaining two-point function does not
give rise to quantum radiation in the two-dimensional
case. This property is a special characteristics of the two-
dimensional case.

VII. SUMMARY AND CONCLUSIONS

In this paper, we extended the entanglement structure of
the Minkowski vacuum from the ordinary L. and R Rindler
wedges into the entire Minkowski spacetime, including the
Kasner expanding universe (F region) and Kasner shrinking
universe (P region). Our result clarifies the structure of the
entanglement of the Minkowski vacuum state in a unified
manner and makes it possible to give an operator interpre-
tation of the calculation of the two-point correlation functions.

We also applied the results to discuss the physical origin
of the quantum radiation produced by an Unruh-DeWitt
detector in uniformly accelerated motion. We showed that
quantum entanglement between the Rindler mode in the R
region and the right-moving wave Kasner mode in the F
region explains the origin of the quantum radiation. In the
two-dimensional case, a similar structure appears in the
two-point function of the field; however, the energy—
momentum tensor vanishes owing to a special character-
istic of two-dimensional spacetime.
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APPENDIX A: ANALYTIC CONTINUATION
OF THE MODE FUNCTIONS

In this appendix, we show that the relations of the mode
functions derived in Sec. III can also be obtained by using
the continuation through the Minkowski positive-frequency
mode function. Here we first compute the purely positive-
frequency mode in the F and P regions. Following (47), we
have
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€ieri } 0 ) o ,
Weiwk, = 5 etilo dgej:zaw/ae—z(/ce /a) cosh @
V8alnm -

eikl_-xJ_

o

eiiéa)eﬂ(u/ZthQ)

/861271' iw/a

for the F region and

=—i

(ke®/a) (A1)

eikal - 0 ) N '
Weiwk, = . eTikw deeizgw/ae—ﬂ(lce /a)cosh@
V8alnm -

eikL-xJ_

oo

e$i5’me—7m)/2aH§1)

\/8—&271' iw/a

for the P region, where we used the formulas for the Hankel
function

— i (ke™7/a)

(A2)

—2i —vmi/2 IS )
Hl(,l)(z) _ e / et coshprdr,  (A3)
n 0
2i +umi/2 S )
HY () =2 / emi= o coshyrdr.  (Ad)
n 0

Note that all the positive-frequency mode functions can be
constructed within the F or P region, even for the massless
field [3,34-36]. This will be true for a d(> 3)-dimensional
spacetime because the transverse momentum acts as an
effective mass. When the field has a mass, all the informa-
tion goes to the F region or comes from the P region.
Hence, one can construct the mode function corresponding
to the Minkowski positive-frequency mode in the F and P
regions.

1. Continuation to the positive-frequency
Minkowski mode function

Equations (A1) and (A2) can be analytically continued
as a Minkowski positive-frequency solution to the R and L
Rindler wedges as follows. We first note that, because
positive-frequency solutions behave like e~ it is implicit
that upon analytic continuation, we must treat ¢ as ¢ — ie,
where € > 0, so that the exponential function does not
diverge as ky — o0. On the other hand, for negative-
frequency solutions behaving like e, it is implicit that
we must treat 7 as t + ie.

Now, letting t+z—>t+z—ie, as t=+z changes
from a positive to a negative value, we have a small
imaginary part. This means that (1 — z)? — ¢~ (z — 1) as
t — z becomes negative (R Rindler wedge) and ( + z)? —
e (—z—1)? as t+z becomes negative (L Rindler

wedge). Table I summarizes the continuation of /1> — z2

and /(1 + z)/(t — z) from the F and P regions to the R

and L regions through the horizons. These continuation
rules are equivalent to the continuation of the coordinate
variables shown in Table II.
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TABLEI. Continuation of v/#> — z> and
F and P regions to R and L regions.

(t+2z)/(t—z) from

F—-R 22 e mil2Z 7, iz _, gtrif2 [zt
-z =t
F—-1L t2 _ Z2 N e—lti/z‘ /ZZ _ tz’ t+z N e’”i/z /Z_+T
-z -t
P—-R \ /t2 _ 25 etmi/2 /z2 — 12’ itz _, ptaif2 [t
-z -t
P—->L t2_Z2 - e+”i/2‘/Z2—l’2, tz e_”i/z o+t
-z z—t
TABLE II.  Continuation of the coordinate variables from F and
P regions to R and L regions.
F—=R t={-4i E=n+£i
FoL Pl fi E=ntgi
P—R T=-(-£i §=—N—5i
P—-L T=0-41, E=—f—Li

2. Continuation from F region to R and L regions

From Sec. II. C, we choose the positive-frequency mode
function in the F region:
E.s _ . F
Uw.gkl (X) - U—m,kL (X)

ol an

e Ke .

_ ik, x
- J—iw/a( a )e L,

2m\/4asinh(zw/a)

(AS)

F.d
Ve, (%) = Ug,—h (x)
—jelot KeN .
; (e,

2r+/4asinh(zw/a) a

(A6)

Using the mathematical formulas J_, (z) = [e™ " H" (z)+
emH) (2)])/2, B (@) = (H () and HO(2) =

e‘”’”'Hf,z) (z), we have

Y i [exerae-ioc ) (ﬂ)
*k " 2\ /Aa sinh(zw/a) 2 i\ a
. ke Y =
e ml. () )]
Wk, — €™ “Wo k.
- V11— e—2ﬂw/a ’ (A7)
. ik -
S —ie” l[enw/aeing@ (ﬂ)
ok ox\/da sinh(zw/a) 2 i\ a
. ke Y«
e ()
B Work, — e—/r(u/aw*_w’kL
- 1= e—27tw/a ’ (AS)
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Applying the continuation of the positive-frequency
mode in the F region into the R region, { — 7+ 354,
q—)f—ﬁi, we have

F. . [sinhzw/a ke
Uu).skl — e ke 471'461 leKiw/a ( a = vg.kL ’
(A9)
e, =0, (A10)

where we used K, (z) = —(zi/2)e "2 HP (e7/27) and
KU(Z) = K_,,(Z).

Similarly, for the continuation of the positive-frequency
mode in the F region into the L region, { — —%—Z—’Zi,
n— E—ﬁi, we have
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v, = 0. (A11)
.., [sinhzw/a _. . Ke®
”Z'jq — ek 470 ¢ WTKI'(U/“( a > = v&),kl'
(A12)

This is the result described in Sec. III F (Ref. [3]).

3. Continuation from P region to R and L regions

Using the relation J,(z) = (Hﬁ”(z) +HY (2))/2,
HY (z) = (HY(z) HY(z) = e H(z), the mode
function in the P region is written as

l.e_iki'xi . K.e—aﬁ
5;’;‘1_ (X) = - e_lwé"]im/a <_>
2zy\/4asinh(zw/a) a
ie~kix. L[ = ) (ke ooy (ke 1 *
— - e—lwé‘H< ) < > + e—ﬂw/u{eleH( ) ( )} :|
27\/4a sinh(zw/a) 2 [ wla\ a wla\ a
Wa),—kL - e_ﬂUJ/awiw,kl (A13)
B 1— e—Zﬂ(u/u ’
pd jetkrxs s kel
u;,kL ()C) = 0 elwc‘]iw/a
27+/4asinh(zw/a) a
_ jetkLxL l [ei“’ZH(.]> <Ke—“'7) N g—”w/“{e_i‘”&H(.I) (Ke—an) }*]
27+/4asinh(zw/a)2 wla\ a wle\  a
Wk, = €W
B 1— e—27ra)/a (A14)
[

Applying the continuation of the positjve—frequency - ok, . [sinh 7 /a .- e L
r~node in the P region into the R region, { » —t—£i, Yok, 7€ drta Kiv/a q ) Yok
n— —¢&—4-1i, we have (A17)

P.s
V%, = 0, (A15)
: i = 0. (A18)
pd v g [sinhzw/a . Ke“s
vw,kl — erky 4471'461 e Kiw/u (a = vg),kL’
(A16)  APPENDIX B: CALCULATION OF (¢, ()¢ (z(7)))

where we used K, (z) = (zi/2)e""/2H\ (e7/27).
Similarly, for the continuation of the positive-frequency
mode in the P region into the L region, { — 7+ 4.1,

n— —&—4-1, we have

083531-

WITH RINDLER STATE FOR x
IN THE R REGION

Here, we consider the correlation function with x in the R
region using the description in the R Rindler spacetime. In
this case, we have
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(0, M|cpy (x)pn (2(7')) 0, M)
~ [ o / / PR | () + 0 OOV ] (B1)
where x is specified by the coordinates (z, &, x| ). We consider the first term of the integration,
/ dw/dzkﬂ) (z(7)) = Aw %e‘i“’(’"/) /Ooo dkkK iy (ke a)K (k) a)Jo(kx 1), (B2)

where we used K,(x) = K_,(x) and [} dpe™®*+<¢ = 27J,(kx, ). Using the mathematical formula [37], we have

© 1 v -
A dix ™ K, (ax) K, (Pr)J, (ye)dk = 5 \/g(aﬂywr(y +u+ 1)y —p+1)(0% - 1)_”/2_1/48”_1/12/2(6), (B3)

where © is defined as 20 = a® + > + y?, and Bﬂ”l/lz/z(é’ ) is the Legendre function, which is satisfied under the

conditions Re(v 4+ y) > —1 and Rev > —1, and the formula on page 172 of Ref. [38],

B p©) = s { (04 VOr— 1) - (o ver- 1)) (B4

Then we have

/Ooo dKKKim/a(Keag/a)Kiw/a(K/a)JO(KxJ_)
2 ,—aé

T4 silrrjlh:ﬂa)/a) N { (6 +Vei- )""/“ (6 Ve - 1>_iw/“}’ (B3)

where © has the expression © = (€% + ¢7%¢(1 + a*x3))/2. In the R region, we have

e“V/0? -1
= ). (B6)
e (O + VO —1)F! = e, (B7)
Then, (B2) reduces to
/ d“’/ Pk R (2(7)) = 5 — / " dwe? (e — 7o), (BS)
87%py(x) Jo
and finally we have
— =i i —iwt( yiot, _ iort 1
(0, M|y, (x)n(2(7))]0, >—m/_w dwe™* (e e )m (B9)

for x in the R region. This is equivalent to (125) for x in the R region.

APPENDIX C: DERIVATION OF (136)

Using the definition of z_, (116), we can write

o0 — a 72 14 i ) :2(t+z) 1
2(t—2)( Eryraat Z)> a g2y iAo 2) “

Using the definition of 7, for x* in the F region, (117), we can write

t
e = LE 2 prar (C2)
r— Z

083531-23
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For x* in the F region, (¢ + z)/(t — z) = e**; then, we have

PHYSICAL REVIEW D 96, 083531 (2017)

ear_—a§ — e—arﬂrac‘ (C3)
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