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When coupling fermions to gravity, torsion is naturally induced. We consider the possibility that fermion
bilinears can act as a source for torsion, altering the dynamics of the early universe such that the big bang
gets replaced with a classical nonsingular bounce. We extend previous studies in several ways: we allow
more general fermion couplings, consider both commuting and anticommuting spinors, and demonstrate
that with an appropriate choice of potential one can easily obtain essentially arbitrary equations of state,
including violations of the null energy condition, as required for a bounce. As an example, we construct a
model of ekpyrotic contraction followed by a nonsingular bounce into an expanding phase. We analyze
cosmological fluctuations in these models, and show that the perturbations can be rewritten in real fluid
form. We find indications that spinor bounces are stable, and exhibit several solutions for the perturbations.
Interestingly, spinor models do not admit a scalar-vector-tensor decomposition, and consequently some
types of scalar fluctuations can act as a source for gravitational waves already at linear order. We also find
that the first order dynamics are directionally dependent, an effect which might lead to distinguished
observational signatures.
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I. INTRODUCTION

Any successful model of cosmology is required to
explain the large scale properties of our universe, includ-
ing its near homogeneity, isotropy and flatness, as well as
the almost scale-invariant spectrum of its primordial
density perturbations. Our current understanding is that
of an expanding universe initiated at a big bang singu-
larity, at which point our usual effective description given
in terms of general relativity breaks down. It is natural to
wonder therefore how this initial singularity might be
resolved, especially in light of recent results showing that
a replacement of the big bang by regular semiclassical
geometries [1,2] does not work [3–6]. An attractive
possibility, and the basis for this paper, is to replace
the big bang with a bounce in which the current expanding
phase of our universe emerges from a prior period of
contraction.
While a cosmological bounce may be induced by

quantum gravity effects when the scale factor of the
universe shrinks to near the Planck scale [7–9], in
this paper we are interested in classical nonsingular
bouncing scenarios. In such scenarios the contraction
of the universe stops and reverses into an expanding
phase at a finite value of the scale factor “a” when
a classical description remains valid. In this way it
should be possible to follow the entire cosmological
evolution through the bounce using the well understood

framework of general relativity and effective field
theory [10–12].
According to the singularity theorems of Penrose and

Hawking [13], under rather broad assumptions the null
energy condition (NEC) must be violated in order to obtain a
nonsingular bounce. This usually requires the introduction of
some sort of NEC violating exotic matter, such as a scalar
field that undergoes ghost condensation (see, e.g., [14–17])
or models involving Galileon fields (see, e.g., [18–25]; such
models can also be embedded into supergravity [26,27]).
While a scalar condensate phase is not difficult to achieve on
its own, the situation becomes much more restrictive once
observational and stability requirements are taken into
consideration [28–30]. The purpose of this paper is to see
if a more desirable outcome might be achieved by making
use of fermionic rather than scalar matter. Such an approach
is sensible to consider for two reasons: the first being of
course the natural predominance of fermionic matter in the
standard model of particle physics (as well as the comparable
dearth of fundamental scalar fields). The second, as we will
discuss briefly in the bulk of this work, is the relative ease
with which any desirable equation of state is achievable
using spinor fields [31].
In this paper we explore models of gravity with torsion

coupled to spinors [32]. Of particular interest are models in
which the torsion is nondynamical and sourced by the
spinor content. Such models arise naturally when viewing
general relativity as a gauge theory, more specifically as
having the gauge symmetries of reparametrizations and
local Lorentz transformations (see, e.g., [33])—it is then*shane.farnsworth@aei.mpg.de
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also known as the Cartan-Sciama-Kibble theory [34–36]. In
order to be able to treat the spinor bilinear sources
classically, one must make some assumptions about the
nature of the spinors—here we will consider both commut-
ing and anticommuting spinors, and will discuss the
respective assumptions in some detail. In this framework
the usual dynamics of Einstein gravity is recovered under
most circumstances of interest, and the effects of torsion
only become relevant in regions of extreme spinor density.
The idea is that in a contracting universe, as the scale factor
drops the spinor density increases until eventually a bounce
is precipitated [37–41]. We will show how one is readily
able to construct backgrounds which not only undergo a
bounce, but which also accommodate other interesting
dynamics outside the bouncing phase, such as inflation or
ekpyrosis.
As usual, a study of cosmological perturbations is

crucial both in order to assess the viability of these
models, and to see if one might be able to distinguish
them using cosmological observations. We investigate
linear perturbation theory in some detail, showing for
instance that the linearized equations of motion may be
cast in real fluid form. Our main results include a
derivation of the equations of motion for models that
include more general spinor-torsion couplings than appear
elsewhere in the literature, the realization of the absence of
a scalar-vector-tensor decomposition, the derivation of
several solutions for the perturbations, and the identifi-
cation of directionally dependent perturbations. These
features are in direct contrast with the known results
regarding perturbations for nonsingular bounces sourced
by scalar field matter [28], and indicate that spinor
bounces may indeed have their own specific observational
signatures.
We organize the paper as follows: we first introduce

our model and present the equations of motion in Sec. II.
Then, in Sec. III we discuss how the restriction to simple
cosmological metrics considerably simplifies the dynami-
cal equations and allows for bouncing solutions. The core
of the paper is in Sec. IV, in which we analyze the
cosmological perturbations of these models by studying
the linearized equations of motion. We discuss our results
in Sec. V. In the extensive Appendix we present our
conventions and provide details regarding both the deri-
vation of the equations of motion and the construction of
perturbation theory.

II. THE MODEL

In our model the action S will be split into two parts:
the gravitational sector SG, and the matter sector SΨ. Our
goal is to explore the effect of torsion on gravitational
dynamics, and so we begin by first introducing the most
general gravitational action. Anticipating the introduction
of fermionic matter we work within the first order formal-
ism, written in terms of the frame field eI ¼ eIμdxμ, and

the Lorentz connection ωIJ ¼ ωIJ
μdxμ. Following the

effective field theory approach [42], attention is restricted
to Lagrangians which are generally covariant, locally
Lorentz invariant, and polynomial in the basic fields and
their derivatives. Under such restrictions there are only six
possible terms that can be written down to leading order,
three of which are topological and will not be considered
[43]. Of the three bulk terms, one is given by the
cosmological constant, and will be included in the matter
action SΨ. The remaining two possible terms we take for
our gravitational action:

SG ¼ κ

Z �
ϵIJKL þ 2

γ
ηI½KηJ�L

�
eIeJRKL; ð1Þ

where κ ¼ 1=32πG. Equation (1) is known as the
Cartan-Holst action, while the coupling constant γ is
known as the Immirzi parameter. Note that in a theory
without torsion the second term in Eq. (1) is identically
zero due to the symmetries of the Riemann tensor, in
which case Eq. (1) reduces to the familiar Einstein-Hilbert
action.
We next need to introduce a source for the torsion in our

model. We consider Dirac spinors, which we couple into
our model by including the following matter action:

SΨ ¼ i
2.3!

Z
ϵIJKLeIeJeKðΨ̄γLDΨ −DΨγLΨÞ

−
1

4!

Z
ϵIJKLeIeJeKeLUðΨ̄ΨÞ

þ 1

4

Z
ϵIJKLeJeKðDeIÞΘL

þ 1

4

Z
ηI½KηJ�LeJeKðDeIÞΩL; ð2Þ

where D is the covariant exterior derivative with
torsion, and Ψ is a Dirac spinor. The potential U is an
arbitrary function of the spinor bilinear Ψ̄Ψ, and might
include for example a cosmological constant tern. For
compactness of notation we have defined the spinor
currents ΘL ≡ ðαVL þ βALÞ, and ΩL ≡ ðτVL þ λALÞ,
where α, τ, β, and λ are arbitrary coupling constants,
and the vector and axial spinor bilinears are given
respectively by:

VL ¼ Ψ̄γLΨ; AL ¼ Ψ̄γ5γLΨ: ð3Þ

Our full action is given by S ¼ SG þ SΨ. Note that we have
implemented general couplings between torsion and the
vector and axial currents in order to encapsulate the various
models present elsewhere in the literature. By setting
τ ¼ λ ¼ 0 we recover the matter action introduced in
[39], while setting β ¼ τ ¼ λ ¼ 0 we recover the matter
action given for example in [42,44,45]. Turning off all
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torsion couplings α ¼ β ¼ τ ¼ λ ¼ 0 recovers the matter
action discussed for example in [46].
Having constructed the action provided in Eqs. (1) and

(2), we can now determine the corresponding equations
of motion. In order to do so we take the vierbein e, spin
connection ω, and spinor Ψ, as our fundamental fields,
and vary the action with respect to each in turn. As the
calculation itself is rather long and involved, we will simply
outline our final results. In the Appendix we present the
trickier parts of the calculation, and also provide the full
calculation for the simpler case in which the Holst term in
the action is removed and the torsion couplings are all
switched off, i.e., α ¼ β ¼ τ ¼ λ ¼ 0.
We begin by considering the variation of the action

S ¼ SG þ SΨ with respect to the spin connection ωMN ,
which yields the following equation of motion:

2κ

�
ϵIJMN þ 2

γ
ηI½MηN�J

�
ðDeIÞeJ

¼ −
1

4!
ϵIJKLeIeJeKεDL

MNAD −
1

4
ϵ½MjJKLeJeKejN�ΘL

−
1

4
eJeKe½NηM�KηJLΩL: ð4Þ

In its current form Eq. (4) is rather opaque to interpretation.
We can however make progress by solving it to obtain an
algebraic expression for the contortion CTXS, defined via
CI
MNe

NeM ¼ DeI. Full details are provided in the
Appendix, and the resulting expression for the contortion is

CTXS ¼ γ2

8κð1þ γ2Þ
�
1

2
εQXST

�
1

γ
ΘQ − ðAQ þ ΩQÞ

�

þ ηS½TδX�A

�
ΘA þ 1

γ
ðAD þ ΩDÞ

��
: ð5Þ

Our result generalizes the work found for example in
[39,42,44–46]. The reader should take care when comparing
between papers however, as there are a range of different
sign conventions being used. Notice that our expression for
the contortion is algebraic, and depends only on the vector
and axial spinor densities. In particular, if we had not
coupled spinors into our model the contortion would have
been identically zero.
We next vary the action with respect to the spinor Ψ to

obtain the following curved space Dirac equation:

i
3!
ϵIJKLε

IJKMγL ~DMΨ

¼ −
1

4
ϵIJKLε

PQJKCI
QP

δΘL

δΨ̄
−
1

4
ηI½KηJ�lεPQJKCI

QP
δΩL

δΨ̄

þ i
8.3!

ϵIJKLε
IJKMCABMγ

L½γA; γB�Ψþ δU

δΨ̄
; ð6Þ

where we have used tildes to indicate when a term is taken
to be torsion free (See Appendix A). The Dirac equation
can be simplified considerably by making use of the
expression for the contortion derived in Eq. (5). A long
calculation leads to

ieμLγ
L ~DμΨ ¼ δW

δΨ̄
; ð7Þ

where the effective potential W is defined by

W ¼ UðEÞ þ ξAAAIAI þ 2ξVAVIAI þ ξVVVIVI; ð8Þ

and where

ξAA ¼ −
3πGγ2

2ð1þ γ2Þ
�
2

γ
βð1þ λÞ þ β2 − ð1þ λÞ2

�
;

ξAA ¼ −
3πGγ2

2ð1þ γ2Þ
�
2

γ
ατ þ α2 − τ2

�
;

ξAV ¼ −
3πGγ2

2ð1þ γ2Þ
�
α

�
β þ 1

γ
ð1þ λÞ

�

þ τ

�
1

γ
β − ð1þ λÞ

��
: ð9Þ

Finally, the Einstein equations are obtained by varying the
action with respect to the vierbein,

0 ¼ 2κ

�
ϵSJKL þ 2

γ
ηSKηJL

�
eJð ~RKL þ ~DCKL þ CK

PCPLÞ

þ i
4
ϵSJKLeJeKXL −

1

3!
ϵSJKLeJekeLU

þ 1

4
ϵSJKLeJeKDΘL þ 1

2
ðηS½KηJ�L þ ηJ½KηS�LÞðDeJÞΩL

þ 1

4
ηSKηJLeJeKDΩL; ð10Þ

where XL ¼ ðΨ̄γLDΨ −DΨγLΨÞ and where we are once
again using the tildes to indicate when a quantity is
torsion free. The Einstein equations appear unfamiliar in
this first order form, but can be re-expressed in second
order form. After another lengthy but rather straightfor-
ward calculation requiring Eq. (5) and repeated use of the
identities given in Eq. (A5), the following compact form
may be obtained:

4κ ~Gμν ¼ −
i
2
½eaðμ ~Xa

μÞ − ~Xgμν� − gμνW

þ 1

8
eaνebμ½Ψ̄½γa; γb�γc ~DcΨ − ~DcΨγc½γa; γb�Ψ�;

ð11Þ
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where we have defined ~XL
τ ¼ ðΨ̄γL ~DτΨ − ~DτΨγLΨÞ.

Notice that the last term on the RHS is not symmetric
in its indices, which appears to be in conflict with the
symmetries of the torsion free Einstein tensor. However,
by making use of the Dirac equation this term is found to
be identically zero on shell.

III. BACKGROUND COSMOLOGY

In this section we find bouncing, cosmological back-
ground solutions for the equations of motion which were
derived above. In order to do so we make two simplifying
assumptions: (i) we impose a “classicality” assumption on
spinor bilinears, in which we view spinor pairs Ψ̄Ψ as
forming a classical bosonic condensate, and (ii) we take a
flat Friedman-Lemaître-Robertson-Walker (FLRW) ansatz
for the background metric. With these two assumptions the
equations of motion simplify rather dramatically and even
allow for analytic solutions as we will describe.

A. Classicality conditions

Having derived the equations of motion in Sec. II, our
next goal is to interpret them. The usual approach in the
literature has been to view the equations of motion as
operator equations, and assume that the classical gravita-
tional field that we observe is sourced by the expectation
value of spinor bilinears such as hAIi and hVIi. Taking this
approach leads to an ambiguity however when considering
the four point spinor interaction terms present in Eq. (7). In
particular, starting with the first order formalism and
solving for the classical contortion, one obtains interaction
terms of the form hAIihAIi. On the other hand, if one
had instead started from the second-order formalism with
quartic interactions, then contributions of the form hAIAIi
would be obtained. The problem is that hAIihAIi and
hAIAIi are not in general equal [39,47].
To avoid any ambiguity, previous authors have restricted

their attention to so called “classical spinors” Ψcl ¼ hΨi
[31,39]. Classical spinors are defined as the expectation
value of the operator Ψ in a state such that fðhΨiÞ≃
hfðΨÞi for any function f. In practice the classical spinor
assumption is extremely stringent, and amounts to describ-
ing Ψcl as a four component object with complex entries.
While it is fine to presume the existence of classical spinors
as an effective description of nature, this assumption is not
well motivated by known physics. The fermions of the
standard model of particle physics are quantum fields, and
due to the Pauli exclusion principle it is not well understood
when they might be treated consistently as a classical
spinor condensate. Thankfully it is really not necessary to
impose any classicality conditions directly on the spinors in
our model. It is only spinor bilinears which appear in the
Einstein equations, and similarly the Dirac equation may be
reexpressed in projected form in terms of bilinears. A
weaker classicality assumption which one might then

consider, is to ask instead that the variance of the various
spinor bilinears is small, i.e.,

hAIAIi≃ hAIihAIi; ð12Þ

together with similar relations for the other bilinear terms
present in the model.
Once this “variance” assumption has been made the

Fierz identity can be used to further simplify the form of the
potential given in (8). In four dimensions the generalized
Fierz identity is given by [33]:

sðλ̄MχÞðψ̄NϕÞ ¼ −
1

4
ðλ̄MNϕÞðψ̄χÞ þ 1

4
ðλ̄MγaNϕÞðψ̄γaχÞ

−
1

4
ðλ̄Mγ5NχÞðψ̄γ5ϕÞ

þ 1

8
ðλ̄Mγ½ab�NϕÞðψ̄γ½ab�χÞ

−
1

4
ðλ̄Mγ5γ

aNϕÞðψ̄γ5γaχÞ ð13Þ

where λ, χ, ψ , and ϕ are Dirac spinors, and where the sign
s depends on the spin statistics chosen. For commuting
spinors, s ¼ −1 and we can immediately derive the
following identities:

hAIAIi ¼ −hVIVIi ¼ E2 þ B2; hAIVIi ¼ 0; ð14Þ

where we have defined the following densities E ¼ hΨ̄Ψi
and iB ¼ hΨ̄γ5Ψi. For commuting spinors the effective
potential given in Eq. (8) therefore simplifies considerably:

W ¼ UðEÞ þ ξðE2 þ B2Þ; ð15Þ

where

ξ ¼ −
3πGγ2

2ð1þ γ2Þ
��

2

γ
βð1þ λÞ þ β2 − ð1þ λÞ2

�

−
�
2

γ
ατ þ α2 − τ2

��
: ð16Þ

This is the same form for the potential found by those
authors who impose the so-called “classical spinor”
assumption [31,39]. In practice, since we will ultimately
only ever be dealing with spinor bilinears, what we really
mean by “commuting spinors” is that the following two
conditions hold: (i) first we ask that all quartic spinor terms
may be expressed as the square of bilinear terms, i.e., of
the form hVIihVIi. This requires either the primacy of the
first order formalism, or that the variance condition from
Eq. (12) hold. And (ii) that the conditions derived in
Eqs. (14) for commutative spinors, hold. As we will show,
under these two assumptions the equations of motion
simplify dramatically, allowing us to find a number of
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very interesting analytic solutions even at linear order in
perturbations.
It is of course physically more interesting to consider the

case of anticommuting spinors for which s ¼ 1. In this case
the Fierz identity together with our classicality assumption
on bilinears yields the following relation:

1

2
ðhVIVIi − hAIAIiÞ ¼ E2 þ B2; ð17Þ

where we note the sign change in front of square of the
axial and vector currents. Since we will only ever deal
directly with spinor bilinears, what we mean by “non-
commuting” spinors is that we will be using (17) in place of
the conditions given in Eqs. (14) for commuting spinors.
For anticommuting spinors our analysis does not require
us to impose any restriction at all on the variance of
bilinears. It is enough to presume the first order formalism
as fundamental, in which case all quartic spinor terms in the
classical action are considered to be of the form hAIihAIi.

B. Flat FLRW and commuting spinors

Our next goal is to construct background solutions which
undergo a cosmological bounce. As we demonstrate,
bouncing solutions may be readily obtained both for
commuting, and anticommuting spinors. We begin in this
section with commuting spinors, which are simpler to
deal with computationally. Our procedure is to assume the
line element of FLRW spacetime, and then given this
assumption check for consistency of the Dirac and Einstein
equations given in Eqs. (7) and (11). Notice however that
it is by no means a foregone conclusion that it will be
possible to find cosmological solutions. As can be seen
from Eq. (14), under our classicality assumption the axial
current AI is spacelike. It appears therefore that spinor
fields pick out a preferred direction in spacetime, violating
Lorentz invariance and potentially conflicting with the
isotropy assumption of the background metric. As was
shown by Isham and Nelson in [48] this fear is indeed
realized in most, but not all, cases. In most cases, once an
FLRW background solution is selected for the metric, the
equations of motion force the axial spinor current, and
therefore the spinor itself, to be identically zero. For flat
FLRW however, there is no such obstruction and consistent
solutions can be found in which the metric remains
isotropic despite AI being anisotropic.
In this paper we work with the flat FLRW line element

expressed in physical time as

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð18Þ

and we will denote the Hubble rate byH ¼ _a=a. Given this
choice of line element, it is natural to take the classical
spinorΨ to have no spatial dependence. In this case, a short
calculation shows the Einstein and Dirac equations to be

12κH2 ¼ i
2
ðΨ̄γ0 _Ψ − _̄Ψγ0ΨÞ − ½ξðE2 þ B2Þ þU0E −U�

¼ ½U þ ξðE2 þ B2Þ�; ð19aÞ

−4κð2 _H þ 3H2Þ ¼ ½ξðE2 þ B2Þ þ U0E − U�; ð19bÞ

γ0∂0Ψþ 3

2
γ0HΨ ¼ −i½ðU0 þ 2ξEÞΨ − 2iξBγ5Ψ�; ð19cÞ

where we have assumed that the potential U is a function
of E only, and the “prime” refers to differentiation with
respect to E. We have made use of the Dirac equation in
order to obtain the second line of (19a).
Notice that because of homogeneity and isotropy of the

background, the stress energy tensor on the RHS of the
Einstein equations is necessarily of the perfect fluid form

Tμ
ν ¼ uμuνðPþ ρÞ þ δμνP; ð20Þ

where because of homogeneity the pressure and density are
functions of time only, i.e., ρ ¼ ρðτÞ and P ¼ PðτÞ, and
because of isotropy the fluid is at rest in the background
universe: uμ ¼ f−1; 0; 0; 0g. From Eqs. (19a) and (19b) we
read off immediately that

P ¼ ξðE2 þ B2Þ þ U0E − U; ρ ¼ ξðE2 þ B2Þ þU;

ð21Þ

while we can use the Dirac equation (19c) to obtain the
usual conservation equation

_ρ ¼ −3HðPþ ρÞ: ð22Þ

Notice that the spinor field can accommodate any desired
behavior for its energy density and equation of state by a
judicious choice of potential U [31].
As might be expected the RHS of the Einstein equations

is expressed entirely in terms of spinor bilinears. It will be
useful therefore to also reexpress the Dirac equation in
projected form, written entirely in terms of spinor bilinears.
In order to do this, first notice that in addition to the
bilinears E and B defined below Eq. (14), there are six other
possible (nonindependent) Hermitian spinor bilinears
which can be constructed from a single background spinor
Ψ. The full list is given by:

iB ¼ Ψ̄γ5Ψ; E ¼ Ψ̄Ψ; V0 ¼ Ψ̄γ0Ψ;

A0 ¼ Ψ̄γ5γ0Ψ; iCi ¼ Ψ̄γ0γiΨ; Vi ¼ Ψ̄γiΨ;

Ai ¼ Ψ̄γ5γiΨ; Qi ¼ Ψ̄γ0γ5γiΨ: ð23Þ

To obtain dynamical equations for each of these bilinears
we consider projections of the Dirac equation of the
following form:
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iΨ†M
δW

δΨ̄
� i

�
δW

δΨ̄

�†
MΨ; ð24Þ

where M ¼ fI; γ5; γ0; γ5γ0; γi; γ5γi; γ0γi; γ5γ0γig is one of
8 possibilities taken from the four dimensional Clifford
algebra. Through this procedure we obtain the following
eight projected Dirac equations,

_E ¼ −3HEþ 4ξBA0; ð25aÞ

_B ¼ −3HB − 2ðU0 þ 2ξEÞA0; ð25bÞ

_A0 ¼ −3HA0 þ 2ðU0 þ 2ξEÞB − 4ξBE; ð25cÞ

_V0 ¼ −3HV0; ð25dÞ

_Ci ¼ −3HCi þ 2ðU0 þ 2ξEÞVi; ð25eÞ

_Qi ¼ −3HQi þ 4ξBVi; ð25fÞ

_Vi ¼ −3HVi − 2ðU0 þ 2ξEÞCI − 4ξBQi; ð25gÞ

_Ai ¼ −3HAi: ð25hÞ

C. Parity invariant bouncing solutions

Having chosen our flat FLRW background ansatz for
the metric, we are now in a position to obtain analytic
solutions to the equations of motion. Given the form of
the metric, it is reasonable—as well as computationally
advantageous—to consider solutions in which the back-
ground spinor is also parity invariant (although for a more
complete discussion of parity violations in these models
the reader should consult [42]). That is, we consider the
“ambidextrous” case of [39], in which the background
spinors satisfy:

γ0Ψ ¼ Ψ: ð26Þ

For parity invariant spinors, bilinears which sandwich
an odd number of spatial gamma matrices will always
be zero. For example Ψ̄γiγ5γjΨ ¼ 0. This implies
Vi ¼ Ci ¼ A0 ¼ B ¼ 0, while Qi ¼ Ai, and E ¼ V0.
The equations of motion therefore simplify further, and
only four remain which will be of relevance to us:

_Eþ 3HE ¼ 0; ð27aÞ

_Ai þ 3HAi ¼ 0; ð27bÞ

12κH2 ¼ ½U þ ξE2�; ð27cÞ

−4κð2 _H þ 3H2Þ ¼ ðξE2 þ U0E − UÞ: ð27dÞ

It is possible to directly solve the projected Dirac equa-
tions given in Eq. (27a) and (27b), yielding the results:

E ¼ M
a3

; Ai ¼ αi

a3
; ð28Þ

where, following Eq. (14), M; αi are time independent
constants satisfyingM2 ¼ αiαi. Interestingly this result is
true for any time dependence of the background geometry
(as noticed before [39]), and so the spinor density and
axial current monotonically increase in a contracting
universe.
We would also like to solve Eq. (27c) to obtain a

background solution for the scale factor. However such a
solution will necessarily depend on the choice of potential
U. Fortunately, given our solution for the spinor density E,
it is very easy to select the potential U such that the f0; 0g
component of the Einstein equations takes the following
tractable form:

_a2 ¼ c1
a3n−2

þ c2
a6n−2

; ð29Þ

where c1 and c2 are time independent constants.
Equation (29) has the following solution:

aðtÞ ¼
�
−
c2
c1

þ 9

4
c1n2t2

�
1=3n

: ð30Þ

which undergoes a bounce rather generically so long as c1 is
positive and c2 is negative. As an example consider the case
in which the potential is simply given by a mass term for the
spinor U ¼ mE. In this case the f0; 0g component of the
Einstein equation is precisely of the form given in Eq. (29)
for n ¼ 1. This is the so-called “borderline” scenario found
in [39], in which the matter density scales in the sameway as
the anisotropies during a contracting phase. In this case the
solution for the scale factor is given by

U ¼ mE; aðtÞ ¼
�
M

�
−

ξ

m
þ 3mt2

16κ

��
1=3

; ð31Þ

with ξ < 0. While this solution is interesting we would like
to see how easy it is to obtain not only a bouncing solution,
but also to control the dynamics away from the bounce.
For example, is it possible to obtain a phase of inflation
following the bounce, or a period of ekpyrosis prior? Spinor
inflaton fields have already been discussed elsewhere in the
literature (see, e.g., [31]), and so for the sake of interest we
will consider the example of an ekpyrotic model.
In some sense, having an ekpyrotic phase before the

bounce is not really optional, but rather necessary: in a
contracting universe small anisotropies grow as a−6 and, in
the absence of a faster-growing energy component, the
anisotropies quickly come to dominate the dynamics, thus
preventing a smooth nonsingular bounce from occurring.
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Thus, if we want to explain the required isotropy of the
contracting universe just prior to the bounce in a dynamical
fashion, we need an ekpyrotic phase. The stiff equation of
state P > ρ during ekpyrosis suppresses anisotropies and
renders the universe flat and smooth in the approach to the
bounce [49,50]. Moreover, some models of ekpyrosis can
generate the density perturbations seen as temperature
fluctuations in the cosmic microwave background (see,
e.g., [51,52] and references therein). To implement an
ekpyrotic phase, followed by a bounce, consider the
following potential:

UðEÞ ¼ −ξE2 þ b1En þ b2E2n; ð32Þ

for integer n. Now the Einstein equation is once again of the
desired form given in Eq. (29), while the equation of state is
given by

ω ¼ P
ρ
¼ U0E −U þ ξE2

U þ ξE2
¼ ðn − 1Þ þ nb2E2n

b1En þ b2E2n :

ð33Þ

Because E decreases monotonically with growing scale
factor, the equation of state approaches (n − 1) far away
from the bounce, while becoming negative (and of large
magnitude) as the bounce is approached. For an ekpyrotic
phase we require ω > 1, which means that we need to take
n > 2. For n ¼ 3 we can solve the f0; 0g component of the
Einstein equations exactly to obtain the following solution
for the scale factor:

aðtÞ ¼
�
M3

�
−
b2
b1

þ 27b1t2

16κ

��
1=9

: ð34Þ

As shown in Fig. 1, this solution neatly combines an
ekpyrotic contracting phase with a cosmological bounce
leading into an expanding phase of the universe.

D. Flat FLRW and anticommuting spinors

In the previous subsections we considered background
solutions for commuting spinors satisfying the identities
given in Eq. (14). While commuting spinors are simpler
to work with computationally, they do not correspond to
any of the fermions known in the standard model. In this
section we work with anticommuting spinors. We once
again ask that the quartic spinor terms in the equations of
motion may be taken to be of the form hAIihAIi. This can
be achieved either by assuming the variance of spinor
bilinears is low, or by assuming that the first order
description is fundamental. Given either of these assump-
tions the Einstein equations for a flat FLRW background
are given by:

12κH2 ¼ W ð35aÞ

−4κð2 _H þ 3H2Þ ¼ ðW þU0E − 2UÞ ð35bÞ

where the potential W is given as in Eq. (8). The projected
Dirac equations are given by:

_E¼ −3HEþ 4ðξAAA0 þ ξAVV0ÞBþ 4ðξVVVi þ ξAVAiÞCi;

ð35cÞ

_B¼ −3HB− 4ðξAAA0 þ ξAVV0ÞEþ 4ðξVVVi þ ξAVAiÞQi;

ð35dÞ

_A0 ¼ −3HA0 þ 2U0B; ð35eÞ

_V0 ¼ −3HV0; ð35fÞ

_Ci ¼ −3HCi þ 2U0Vi þ 4ðξAAAj þ ξAVVjÞε0jikCk

− 4½ðξAAA0 þ ξAVV0ÞQi þ ðξVVVi þ ξAVAiÞE�;
ð35gÞ

FIG. 1. Evolution of the scale factor a (left panel) and the equation of state ω (right panel) for choice of potential
U ¼ −ξE2 þ b1E3 þ b2E6, with b1 ¼ 0.1, b2 ¼ −0.1, M ¼ 1, and κ ¼ 1=4. In this model an ekpyrotic contraction phase is followed
by a non-singular bounce into an expanding phase. The ekpyrotic phase renders the universe flat and isotropic in the approach to the
bounce, and justifies the assumption of a flat FLRW metric in describing the bounce.
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_Qi ¼ −3HQi þ 4ðξAAA0 þ ξAVV0ÞCi

þ 4ðξVVVi þ ξAVAiÞB − 4ε0ijkQjðξAAAk þ ξAVVkÞ
ð35hÞ

_Vi ¼ −3HVi − 2U0Ci þ 4½ξAAAjε
0jikVk þ ξVVVjε

0jikAk�
ð35iÞ

_Ai ¼ −3HAi: ð35jÞ

We are not able to solve the above equations analytically,
even when restricting attention to parity invariant anti-
commuting spinors. This does not prevent us from making
progress however, as we can solve the above equations
numerically. We consider the simple case in which the
couplings ξAV and ξVV are both set to zero, and for which
the potential is given by a mass term for the spinor:
U ¼ mE. The projected Dirac equations then simplify
considerably. We plot solutions for these equations for a
particular choice of initial conditions below in Figs. 2
and 3. Once again a nonsingular bouncing solution is
obtained. In fact, in the solution shown in the figures the
null energy condition is violated twice, leading to a
“double” bounce. Note that in the anticommuting case

bounces arise for ξAA > 0, i.e., for the opposite sign of the
coupling than in the commuting case. Also, the axial vector
is timelike instead of spacelike for these solutions.
The numerical solutions we have obtained provide a

“proof of principle,” that commuting spinors are not a
necessary requirement in order to obtain bouncing solu-
tions. It will certainly be interesting to investigate the
properties of anticommuting spinor bounces in more detail,
to see how general they are. Here we simply note the
evident similarity with the commuting case. For now we
will return to the technically simpler case of commuting
spinors, in order to assess the stability of such nonsingular
bouncing solutions.

IV. PERTURBING AROUND FLAT FLRW

So far we have treated the universe as perfectly homo-
geneous and isotropic. We will now introduce inhomoge-
neities by perturbing around our flat FLRW background
solutions in order to address the questions of stability and
of observational consequences. In our preliminary foray we
return to the case of commuting spinors for the purpose of
computational simplicity. In future work we plan to make a
more complete analysis which includes anticommuting
spinors.

FIG. 2. Evolution of the scale factor a (left panel) and the equation of state ω (right panel) for a particular set of initial conditions, and
the choice of potential U ¼ mE, with m ¼ 0.5, M ¼ 1, κ ¼ 1=4, and choice of couplings ξAA ¼ 0.15, ξVA ¼ ξVV ¼ 0.

FIG. 3. Evolution of the spinor densities E and B (left panel) as well as the axial vector components A0 and A1 (right panel) for a
particular set of initial conditions, and the choice of potential U ¼ mE, with m ¼ 0.5, M ¼ 1, κ ¼ 1=4, and choice of couplings
ξAA ¼ 0.15, ξVA ¼ ξVV ¼ 0.
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A. Linearized equations of motion
in Newtonian gauge

In this section we analyze the linearized equations of
motion using a standard Fourier decomposition. We work
in Newtonian gauge, and provide a complete description
of our gauge fixing procedure in the Appendix for both the
metric and vierbein perturbations. The perturbed FLRW
line element in Newtonian gauge is expressed as

ds2 ¼ −ð1þ 2ψÞdτ2 þ 2aðtÞBidτdxi

þ aðtÞ2ðð1 − 2ϕÞδij þ hijÞdxidxj; ð36Þ

where ψ , Bi and hij are perturbations which depend a priori
on all spacetime coordinates, and where ∂iBi ¼ hii ¼∂ihij ¼ 0. For the perturbed Dirac spinor Ψ we introduce
the following notation:

Ψ ¼ Ψð0Þ þ Ψð1Þ; ð37Þ

where the subscripts (0) and (1) label background and first
order quantities respectively. Although our background
spinor solutions Ψð0Þ are spatially independent, we allow
for general spatial dependence of the perturbation Ψð1Þ.
Given this notation, the first order momentum space Dirac
equation is

ð1 − ψÞγ0 _Ψþ iγi
ki
a
Ψ ¼ −

3

2
γ0½H − _ϕ −Hψ �Ψ

− iðU0ðEÞΨþ 2ξðEΨ − iBγ5ΨÞÞ

−
1

2
γi
�
i
ki
a
ψ − 2i

ki
a
ϕþ 1

2
_Bi

�
Ψð0Þ

þ i
2
ðU0 þ 2ξEÞBiγ

iΨð0Þ; ð38Þ

where for compactness we have included some background
terms, and some terms higher than first order. Any terms
that are not of order 1 should be ignored by the reader.
For example, the left-hand side of Eq. (38) is intended to be
read as: −ψ∂0Ψð0Þ þ γ0∂0Ψð1Þ þ iγikiΨð1Þ. We adopt this
compact notation often throughout the remainder of the
section.
In Sec. III B, we found it useful to express the back-

ground Dirac equation in projected form, written entirely in
terms of spinor bilinears. Following an analogous pro-
cedure, we similarly project the linearized Dirac equation.
Because we are interested in parity invariant background
solutions satisfying Ψð0Þ ¼ γ0Ψð0Þ, there are only eight
possible “kinds” of first order Hermitian bilinears which
may be constructed from the background spinorΨð0Þ and its
perturbation Ψð1Þ. These are

Eð1Þ ¼ ðΨ̄ð0ÞΨð1Þ þ Ψ̄ð1ÞΨð0ÞÞ; i ~Eð1Þ ¼ ðΨ̄ð0ÞΨð1Þ − Ψ̄ð1ÞΨð0ÞÞ;
A0
ð1Þ ¼ ðΨ̄ð0Þγ5γ0Ψð1Þ þ Ψ̄ð1Þγ5γ0Ψð0ÞÞ; iBð1Þ ¼ ðΨ̄ð0Þγ5Ψð1Þ þ Ψ̄ð1Þγ5Ψð0ÞÞ;

Vi
ð1Þ ¼ ðΨ̄ð0ÞγiΨð1Þ þ Ψ̄ð1ÞγiΨð0ÞÞ; iCi

ð1Þ ¼ ðΨ̄ð0ÞγiΨð1Þ − Ψ̄ð1ÞγiΨð0ÞÞ;
Ai
ð1Þ ¼ ðΨ̄ð0Þγ5γiΨð1Þ þ Ψ̄ð1Þγ5γiΨð0ÞÞ; i ~Ai

ð1Þ ¼ ðΨ̄ð0Þγ5γiΨð1Þ − Ψ̄ð1Þγ5γiΨð0ÞÞ; ð39Þ

where our naming convention corresponds as closely as
possible with that of the background bilinears defined by
Magueijo et al. [39]. We point out in particular that the axial
scalar Bð1Þ should not be confused with the metric vector
purturbation Bi, which always apears with an index. In
projected form, the linearized Dirac equations are expressed
in terms of these eight kinds of spinor bilinears as:

_Eð1Þ ¼ −3HEð1Þ þ 3 _ϕEð0Þ − i
ki
a
Vi
ð1Þ; ð40aÞ

_Aj
ð1Þ ¼ −3HAj

ð1Þ þ 3 _ϕAj
ð0Þ − i

kj

a
A0
ð1Þ − iε0jik

ki
a
Ck
ð1Þ;

ð40bÞ

_Bð1Þ ¼ −3HBð1Þ þ i
ki
a
~Ai
ð1Þ − 2ðU0

ð0Þ þ 2ξEð0ÞÞA0
ð1Þ

− ðU0
ð0Þ þ 2ξEð0ÞÞBiAi

ð0Þ; ð40cÞ

_A0
ð1Þ ¼ −3HA0

ð1Þ þ 2U0
ð0ÞBð1Þ − i

ki
a
Ai
ð1Þ

−
�
i
ki
a
ψ − 2i

ki
a
ϕþ 1

2
_Bi

�
Ai
ð0Þ; ð40dÞ

_Cj
ð1Þ ¼ −3HCj

ð1Þ þ 2ðU0
ð0Þ þ 2ξEð0ÞÞVj

ð1Þ − i
kj

a
~Eð1Þ

þ iε0jik
ki
a
Ak
ð1Þ þ ε0jik

�
i
ki
a
ψ − 2i

ki
a
ϕþ 1

2
_Bi

�
Ak
ð0Þ

þ ðU0
ð0ÞEð0Þ þ 2ξE2

ð0ÞÞBj; ð40eÞ

_Vj
ð1Þ ¼ −3HVj

ð1Þ − i
kj

a
Eð1Þ − iε0jik

ki
a
~Ak
ð1Þ

− 2½ðU0
ð0Þ þ 2ξEð0ÞÞCj

ð1Þ þ 2ξBð1ÞA
j
ð0Þ�

−
�
i
kj

a
ψ − 2i

kj

a
ϕþ 1

2
_Bj

�
Eð0Þ

þ ðU0
ð0Þ þ 2ξEð0ÞÞBiε

0ji
kAk

ð0Þ; ð40fÞ
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_~Eð1Þ ¼ −3H ~Eð1Þ − i
ki
a
Ci
ð1Þ − 2ðU0

ð1Þ þ 2ξEð1ÞÞEð0Þ

− 2ψðU0
ð0Þ þ 2ξEð0ÞÞEð0Þ; ð40gÞ

_~Ai
ð1Þ ¼ −3H ~Ai

ð1Þ þ iε0ijk
kj
a
Vk
ð1Þ þ i

ki

a
B

− 2ðU0
ð1Þ þ 2ξEð1ÞÞAi

ð0Þ − 2ψðU0
ð0Þ þ 2ξEð0ÞÞAi

ð0Þ:

ð40hÞ
In component form, there are 16 spinor bilinears, and
correspondingly 16 projected Dirac equations. We

remind the reader that the spinor bilinears do not
all represent independent degrees of freedom as they
derive from the same spinor Ψ. For example, we
know that for commuting spinors, the bilinears
E;B; VI , and AI are related by the identity given in
Eq. (14). Further relationships can be found between
the various bilinears by use of the Fierz identity given
in Eq. (13).
After some manipulation the first order Einstein

equations can be written in the following compact
form, in which the stress energy tensor is expressed
entirely in terms of spinor bilinears:

4κG00 ¼ −8κ
�
kiki

a2
ϕþ 3H _ϕ

�
¼ ð1þ 2ψÞðU þ ξE2Þ þ i

4

1

a
½B½ikk�ε0ikjAj þ 2kiCi�; ð41aÞ

4κGi0 ¼ 4κ

�
2i
ki
a
ð _ϕþHψÞ − ð2 _H þ 3H2ÞBi þ

1

2

kkkk

a2
Bi

�

¼ −
1

4

�
2i
ki
a
~Eþ ηiniε0mnkAk

km
a

− i

�
3ηinϕ

km
a

þ 1

2
him

kn
a

�
ε0mnkAk

�
þ BiðξE2 þ U0E − UÞ; ð41bÞ

4κGij ¼ 4κ

��
−
kkkk
a2

ðψ − ϕÞ þ 2ϕ̈þ 2ð2 _H þ 3H2Þðϕþ ψÞ þ 2H _ψ þ 6H _ϕ

�
δij −

kikj
a2

ðϕ − ψÞ

− i
1

a
ð _BðikjÞ þ 2HBðikjÞÞ þ

1

2
ḧij þ

1

2

kkkk
a2

hji þ
3

2
H _hij − ð2 _H þ 3H2Þhij

�

¼ 1

4

�
2i

1

a
CðikjÞ −

1

2

��
_hjl − iBj

kl
a

�
ηik þ

�
_hil − iBi

kl
a

�
ηjk

�
εkl0mAm

�
þ ðð1 − 2ϕÞηij þ hijÞ½ξE2 þ U0E − U�:

ð41cÞ

The standard approach when perturbing about FLRW is
to separate the equations of motion at linear order into their
scalar, vector, and tensor components. This procedure is
known as the SVT decomposition and greatly simplifies
the analysis. Unfortunately, we are not able to follow the
standard approach here, as can be seen for example by
considering the B½i;k�ε0ikjAj term present in Eq. (41a). This
term is a scalar in the sense that all of its indices are fully
contracted, however it is clearly built from the vector
perturbation Bi. Similar couplings between scalar, vector,
and tensor modes can be seen in Eqs. (41b) and (41c), as
well as in the first order projected Dirac equations.
To understand this point, notice that the proof of the

SVT decomposition theorem is highly dependent on the
symmetries of the background, and requires that no relevant
background quantity can be formed which violates this
symmetry (see for example the Appendix of [53]). As seen
in Eq. (14) however, the models we consider all fail this
requirement explicitly because the background axial vector
Ai
ð0Þ picks out a preferred spacelike direction. In practice

this allows first order terms to be constructed in which the

index on a perturbation is contracted with the index on Ai
ð0Þ,

rather than always having to transform as a free index, or
else contract with non-symmetry-breaking projectors such
as ki. This is precisely the kind of SVT mixing that we
observe in the equations of motion.
Despite the difficulty of not being able to completely

decompose the equations of motions into separate scalar,
vector, and tensor parts, this does not prevent us from
making considerable progress. For example, we are able to
make simplifications by considering contractions of the
f0; ig Einstein equation with ki, and also the fi; jg Einstein
equation with kikj and ηij. After some manipulations this
procedure yields the following scalar equations:

~E ¼ −16κð _ϕþHψÞ; ð42aÞ

8κðϕ̈þ ð2 _H þ 3H2Þψ þHð _ψ þ 3 _ϕÞÞ

¼ i
2

kj

a
Cj þ

�
ξE2 þ ∂U

∂E E −U

�
; ð42bÞ
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4κðϕ − ψÞ ¼ i
8kkkk

aðklBkε
kl0mAm − 4kiCiÞ: ð42cÞ

Substituting these scalar relations back into the first order Einstein equations, we can also obtain simplified equations for the
vector and tensor modes:

8κ
kkkk

a2
Bi ¼ i

�
ηinε

0mnkAk
km
a

−
�
3ηinϕ

km
a

þ 1

2
him

kn
a

�
ε0mnkAk

�
; ð43aÞ

−8κ
kikj
a2

ðϕ − ψÞ ¼
�
i
1

a
CðikjÞ −

1

4

�
iBk

kl
a
δij þ

�
_hjl − iBj

kl
a

�
ηik þ

�
_hil − iBi

kl
a

�
ηjk

�
εkl0mAm

�

þ 4κ

�
i
1

a
ð _BðikjÞ þ 2HBðikjÞÞ −

1

2
ḧij −

1

2

kkkk
a2

hji −
3

2
H _hij

�
: ð43bÞ

1. Real fluid description

Before attempting to solve the linearized equations of
motion, we note that it is conceptually useful to reexpress
the equations of motion in fluid form. Unlike for the highly
symmetric background, the first order contribution to the
stress energy tensor cannot be expressed as a perfect fluid,
but instead take the more general form of a real fluid:

Tμ
ν ¼ uμuνðPþ ρÞ þ δμνPþ Σμ

ν; ð44Þ

where Σμν is the anisotropic stress satisfying:

Σμν ¼ Σνμ; Σμνuν ¼ 0; Σμ
μ ¼ 0; ð45Þ

with uμ ¼ f−ð1þ ψÞ; avig, uμ ¼ fð1 − ψÞ; 1a ðvi − BiÞg,
and where vi is the peculiar velocity of the fluid.
Making use of the relations given in Eq. (45), together
with equations (41), we determine the first order contri-
butions to the density ρ, pressure P and anisotropic stress
Σij to be

ρ ¼ ðU þ ξE2Þ þ i
4a

½B½ikk�ε0ikjAj þ 2kkCk�; ð46aÞ

P ¼ ½ξE2 þ U0E − U� þ i
12a

½Bkklεkl0mAm þ 2kkCk�;
ð46bÞ

Σij ¼
i
4

�
2
1

a
CðikjÞ −

2

3
ηij

kk
a
Ck þ 1

2

��
i _hjl þ Bj

kl
a

�
ηik

þ
�
i _hil þ Bi

kl
a

�
ηjk −

2

3
ηijBk

kl
a

�
εkl0mAm

�
; ð46cÞ

where we are once again using compact notation, in which
we have included background terms, and terms higher
than first order. It is also useful to define the 3-momentum
density:

qi ≡ ðρþ PÞvi
¼ i

4a

�
2ki ~E −

�
ð1 − 3ϕÞηin þ

1

2
hin

�
kmε0mnkAk

�
:

ð46dÞ

The scalar components of the anisotropic stress tensor, and
3-momentum density are given respectively by:

Σ ¼ i
8kkkk

aðklBkε
kl0mAm − 4kiCiÞ; ð46eÞ

q ¼ 1

2
~E: ð46fÞ

Here we see that anisotropic stress is induced both from the
vector perturbations Bi, as well as the spinor bilinear Ci

ð1Þ.
Using the definitions given above for ρ, P, Σ, and q,
Eqs. (41a) and (42) can be written in the standard real fluid
form

4κðϕ − ψÞ ¼ Σ; ð47aÞ

8κ

�
k2

a2
ϕþ 3H _ϕþ 3H2ψ

�
¼ −ρ; ð47bÞ

8κð _ϕþHψÞ ¼ −q; ð47cÞ

8κ½ϕ̈þ ð2 _H þ 3H2Þψ þHð _ψ þ 3 _ϕÞ� ¼ P −
2

3

k2

a2
Σ:

ð47dÞ

We may also use the projected Dirac equation to derive
evolution equations, including the equation of continuity:

_ρ ¼ −3ðH − _ϕÞðρþ PÞ þ k2

a2
q; ð47eÞ
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_q ¼ −3Hq − ψðPþ ρÞ − Pþ 2

3a2
kikiΣ; ð47fÞ

_P ¼ −6½H − _ϕ�
�
Pþ U −U0Eþ 1

2
U00E2

�

þ 1

3

k2

a2
½4HΣþ q� − 1

3
½−U0 þ 4ξE�i ki

a
Vi þHi

ki
a
Ci;

ð47gÞ

ð2 _ϕ − _ψÞ ¼ −Hð2ϕ − ψÞ þ 1

4κ

a
4k2

½−9HikjCj − 3ikj _C
j

þ 2ðU0 þ 2ξEÞikjVj�; ð47hÞ

_Σ ¼ −2HΣþ 1

2
qþ a

4k2
½−9HikjCj − 3ikj _C

j

þ 2ðU0 þ 2ξEÞikjVj�: ð47iÞ

B. Solving the equations of motion

Our goal in this section is to solve the linearized
projected Dirac equations given in Eq. (40), together with
the first order Einstein equations listed in Eq. (41). We
consider the simple potential U ¼ mE, for which we found
a bouncing background solution in Sec. III C. To make
progress we find it also useful to work in a convenient basis
k ¼ fk1; 0; 0g, for which the scalar and tensor perturbations
of the metric can be written:

Bi ¼

0
B@

0

B2

B3

1
CA; hij ¼

0
B@

0 0 0

0 h22 h23
0 h23 −h22

1
CA: ð48Þ

If we were dealing with a model in which only scalar
matter were present, then selecting such a basis would be
completely without loss of generality. This is not the case
for models with spinor content however. As discussed in
Sec. III B, the background axial vector AI

ð0Þ picks out a

preferred spacelike direction. As a result, the dynamics of
the first order perturbations will depend heavily on the
orientation of the wave vector k relative to direction picked
out by the background. We therefore separate our this
first analysis into two parts: (i) to start with, we analyze
“longitudinal” modes for which the wave vector k is
aligned with the direction picked out by the axial current,
and (ii) we analyze the first order equations for orthogonal
modes which lie in the plane perpendicular to the direction
picked out by the background axial vector.

1. Longitudinal modes

We begin by considering perturbative modes for which
the wave vector k is aligned with the background axial
vector. Given the basis chosen in Eq. (48), this corresponds

to a parity invariant background solution in which
A2
ð0Þ ¼ A3

ð0Þ ¼ 0, and for which A1
ð0Þ ¼ −Eð0Þ. From the

definitions of the spinor bilinears given in Eqs. (23) and
(39), it then follows that for parity invariant backgrounds
the following identifications hold:

A1
ð1Þ ¼ −Eð1Þ; V1

ð1Þ ¼ −A0
ð1Þ; ~A3

ð1Þ ¼ −A2
ð1Þ;

~A2
ð1Þ ¼ A3

ð1Þ; ~A1
ð1Þ ¼ − ~Eð1Þ; Bð1Þ ¼ C1

ð1Þ;

V3
ð1Þ ¼ C2

ð1Þ; V2
ð1Þ ¼ −C3

ð1Þ: ð49Þ

Making use of these relations allows us to remove much of
the degeneracy occurring in the linearized equations of
motion. In particular, the 16 components of the projected
Dirac equations given in Eq. (40) reduce to the following
set of eight:

_Eð1Þ ¼ −3HEð1Þ þ 3 _ϕEð0Þ þ i
k1
a
A0
ð1Þ; ð50aÞ

_~Eð1Þ ¼ −3H ~Eð1Þ − i
k1
a
C1
ð1Þ − 2ðU0

ð1Þ þ 2ξEð1ÞÞEð0Þ

− 2ψðU0
ð0Þ þ 2ξEð0ÞÞEð0Þ; ð50bÞ

_A0
ð1Þ ¼ −3HA0

ð1Þ þ 2U0
ð0ÞC

1
ð1Þ þ i

k1
a
Eð1Þ

þ
�
i
k1
a
ψ − 2i

k1
a
ϕ

�
Eð0Þ; ð50cÞ

_C1
ð1Þ ¼−3HC1

ð1Þ− i
k1

a
~Eð1Þ−2ðU0

ð0Þ þ2ξEð0ÞÞA0
ð1Þ; ð50dÞ

_C2
ð1Þ ¼ −3HC2

ð1Þ − 2ðU0
ð0Þ þ 2ξEð0ÞÞC3

ð1Þ − i
k1
a
A3
ð1Þ

−
1

2
_B3Eð0Þ þ ðU0

ð0ÞEð0Þ þ 2ξE2
ð0ÞÞB2; ð50eÞ

_C3
ð1Þ ¼ −3HC3

ð1Þ þ 2ðU0
ð0Þ þ 2ξEð0ÞÞC2

ð1Þ þ i
k1
a
A2
ð1Þ

þ 1

2
_B2Eð0Þ þ ðU0

ð0ÞEð0Þ þ 2ξE2
ð0ÞÞB3; ð50fÞ

_A2
ð1Þ ¼ −3HA2

ð1Þ þ i
k1
a
C3
ð1Þ; ð50gÞ

_A3
ð1Þ ¼ −3HA3

ð1Þ − i
ki
a
C2
ð1Þ: ð50hÞ

We note rather curiously that for longitudinal modes there
is an absence of mixing terms between scalar, vector, and
tensor modes exhibited by the projected Dirac equations.
To be clear, in the above 8 equations the “scalar” terms
ϕ;ψ ; Eð1Þ; A0

ð1Þ; ~Eð1Þ, and C1
ð1Þ decouple completely from

what we will term the components of “vector” modes B2,
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B3, C2
ð1Þ; C

3
ð1Þ; A

2
ð1Þ, and A3

ð1Þ. A similar decoupling also

occurs for the Einstein equations, and so for longitudinal
modes the SVT decomposition appears to hold, just as
would be the case for scalar matter content. The scalar
Einstein equations given in Eqs. (41a) and (42), become:

0 ¼ 8κ

�
kiki

a2
ϕþ 3H _ϕþ 3H2ψ

�
þ ðU þ ξE2Þ þ i

2

1

a
k1C1;

ð51aÞ

0 ¼ ~Eþ 16κð _ϕþHψÞ; ð51bÞ

0 ¼ 8κðϕ̈þ ð2 _H þ 3H2Þψ þHð _ψ þ 3 _ϕÞÞ − i
2

k1

a
C1 − ξE2;

ð51cÞ

0 ¼ 8κðϕ − ψÞ þ i
kkkk

aðkiCiÞ: ð51dÞ

Similarly, Eq. (43) yield the following relations for the
vector components Bi:

B2 ¼ i
a

8κk1
A3
ð1Þ; B3 ¼ −i

a
8κk1

A2
ð1Þ;

C2
ð1Þ ¼ −4κð _B2 þ 2HB2Þ; C3

ð1Þ ¼ −4κð _B3 þ 2HB3Þ;
ð52Þ

together with two equations for the tensor modes hij:

0 ¼ 4κ

�
ḧ22 þ 3H _h22 þ

kkkk
a2

h22

�
− _h23Eð0Þ;

0 ¼ 4κ

�
ḧ23 þ 3H _h23 þ

kkkk
a2

h23

�
þ _h22Eð0Þ: ð53Þ

Because the scalars, vectors, and tensors decouple from
one another we are able to solve each set of equations
independently. We begin by first considering the scalar

dynamics, which at least naively seem to be overcon-
strained. That is, the 6 scalar terms ϕ;ψ ; Eð1Þ; A0

ð1Þ; ~Eð1Þ,
and C1

ð1Þ appear to be governed by eight equations of

motion (four projected Dirac equations together with the
four scalar Einstein equations). It turns out however the
not all 8 equations are independent. By differentiating
Eq. (51a), and then making use of Eqs. (51a), (51b), (50a),
(51c), and (51d), we can obtain the projected Dirac
equation for C1 given in Eq. (50d). Similarly, by differ-
entiating Eq. (51b) and then making use of Eqs. (51b),
(50b) we can obtain Eq. (51c). A complete system of
equations describing the scalar dynamics is therefore given
by the following two Dirac equations:

_Eð1Þ ¼ −3HEð1Þ þ 3 _ϕEð0Þ þ i
k1
a
A0
ð1Þ; ð54aÞ

_A0
ð1Þ ¼ −3HA0

ð1Þ þ i
k1
a
½Eð1Þ þ 16κU0

ð0Þðϕ − ψÞ
þ ðψ − 2ϕÞEð0Þ�; ð54bÞ

where we have used Eq. (51d) to remove all instances of
C1
ð1Þ from the above equations. The remaining two scalar

Einstein equations are similarly given by:

0 ¼ 8κ

�
1

2

kiki

a2
ðϕþ ψÞ þ 3H _ϕþ 3H2ψ

�
þ ðU þ ξE2Þ;

ð54cÞ

0 ¼ 8κðϕ̈þ ð2 _H þ 3H2Þψ þHð _ψ þ 3 _ϕÞÞ

þ 4κ
k1k1

a2
ðϕ − ψÞ − ξE2: ð54dÞ

While these equations are difficult to solve analytically,
they are straightforward to solve numerically. We plot the
typical behavior of the scalar perturbations below in Figs. 4
and 5. As can be seen in the figures, the perturbations grow
in amplitude toward the time of the bounce, and decay

FIG. 4. Evolution of the first order spinor bilinears Eð1Þ and A1
ð1Þ for k1 ¼ 2 (left panel) and k1 ¼ 10 (right panel), for a given choice of

initial conditions. We have chosen the potential U ¼ mE, with m ¼ 0.1, ξ ¼ −0.1,M ¼ 0.3, and κ ¼ 1=4. We set the initial conditions
at t ¼ −50, and choose them such that all Fourier modes are either purely real or purely imaginary, with −iA0

ð1Þ ¼ Eð1Þ ¼ ϕ ¼
_ϕ ¼ ψ ¼ 0.1Eð0Þ.
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again afterwards. Thus the bounce is stable to longitudinal
perturbations. For long wavelength modes, where the
k-dependence in the equations may be neglected, the
spectrum will be unchanged by the bounce, though
the amplitude will depend on the details of the background
solution and the initial conditions for the perturbations.
Notice also that the metric perturbations ϕ and ψ are
unequal (and in fact they are approximately opposite to
each other over large regions of the solution), and thus the
solution involves increased anisotropic stress induced by
the spinor bilinears in the vicinity of the bounce.
We next consider the vector perturbations, which once

again seem at least naively to be over constrained. That is,
the dynamics of the six modes C2

ð1Þ; C
3
ð1Þ; A

2
ð1Þ; A

3
ð1Þ; B

2, and

B3, seem to be governed by 8 equations of motion [four
projected Dirac equations together with the four equations
given in (52)]. Combining Eq. (52) together with Eq. (50g)
and (50h), it can be shown after a little manipulation that
C2
ð1Þ ¼ C3

ð1Þ ¼ 0, and therefore also that the Bi scale as a−2.

The first order axial currents A2 and A3 scale as a−3. We
therefore find:

B2 ¼ i
1

8κk1

~α3

a2
; B3 ¼ −i

1

8κk1

~α2

a2
;

A2
ð1Þ ¼

~α2

a3
; A3

ð1Þ ¼
~α3

a3
; ð55Þ

where the ~αi, are k-dependent, but time independent. We
need to ensure that these solutions are compatible with
Eqs. (50e) and (50f), which after setting C3 ¼ C2 ¼ 0,
become:

0 ¼ 8κ
k1k1

a2
~α3 þHEð0Þ ~α2 þ 8κ _H ~α3; ð56Þ

0 ¼ 8κ
k1k1

a2
~α2 −HEð0Þ ~α3 þ 8κ _H ~α2: ð57Þ

We see immediately that in order to satisfy these equations,
the (k-dependent) constants ~α2 and ~α3 must be set
identically to zero. The vector dynamics for longitudinal
modes is therefore completely constrained and we have
B2 ¼ B3 ¼ C2

ð1Þ ¼ C3
ð1Þ ¼ A2

ð1Þ ¼ A3
ð1Þ ¼ 0. This situation

is reminiscent of the results of Isham and Nelson in [48],
who found that solving the full set of Einstein equations for
FLRW metrics with spatial curvature required the back-
ground axial vector current to be set to zero.
The dynamics for the tensor modes is described com-

pletely by Eq. (53). Solving this pair of equations numeri-
cally, we obtain a typical solution, which we display in
Fig. 6. Again the solutions grow in amplitude in the
approach of the bounce, and decay afterwards, such that
the amplitude is typically of comparable magnitude on
either side of the bounce.

FIG. 6. A typical example of the behavior of tensor modes around the time t ¼ 0 of the nonsingular bounce for k1 ¼ 2 (left panel) and
k1 ¼ 10 (right panel). We set the initial conditions at t ¼ −50, with h22 ¼ _h22 ¼ h23 ¼ _h23 ¼ 0.01Eð0Þ.

FIG. 5. Evolution of the scalar modes ϕ and ψ for k1 ¼ 2 (left panel) and k1 ¼ 10 (right panel), with the same parameter choices as in
Fig. 4.
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2. Orthogonal modes

In this subsection we explore the linearized equations
of motion for modes which are perpendicular to the
direction picked out by the background axial vector. It is
convenient to maintain the basis chosen in Eq. (48) for the
first order modes, and so we consider a parity invariant
background solution in which A1

ð0Þ ¼ A3
ð0Þ ¼ 0, and for

which A2
ð0Þ ¼ −Eð0Þ. It follows from Eqs. (23) and (39), that

for parity invariant backgrounds the following identifica-
tions hold:

A2
ð1Þ ¼−Eð1Þ; V2

ð1Þ ¼−A0
ð1Þ; ~A3

ð1Þ ¼A1
ð1Þ; ~A1

ð1Þ ¼−A3
ð1Þ;

~A2
ð1Þ ¼− ~Eð1Þ; Bð1Þ ¼C2

ð1Þ; V3
ð1Þ ¼−C1

ð1Þ; V1
ð1Þ ¼C3

ð1Þ:

ð58Þ

As occurred with longitudinal modes we find that the
original 16 components of the projected Dirac equations
given in Eq. (40) collapse down to the following set of 8:

_Eð1Þ ¼ −3HEð1Þ þ 3 _ϕEð0Þ − i
k1
a
C3
ð1Þ; ð59aÞ

_~Eð1Þ ¼ −3H ~Eð1Þ − i
k1
a
C1
ð1Þ − 2ðU0

ð1Þ þ 2ξEð1ÞÞEð0Þ

− 2ψðU0
ð0Þ þ 2ξEð0ÞÞEð0Þ; ð59bÞ

_C1
ð1Þ ¼ −3HC1

ð1Þ þ 2ðU0
ð0Þ þ 2ξEð0ÞÞC3

ð1Þ − i
k1

a
~Eð1Þ

þ 1

2
_B3Eð0Þ; ð59cÞ

_C3
ð1Þ ¼ −3HC3

ð1Þ − i
k1
a
Eð1Þ − 2ðU0

ð0Þ þ 2ξEð0ÞÞC1
ð1Þ

−
�
i
k1
a
ψ − 2i

k1
a
ϕ

�
Eð0Þ þ ðU0

ð0ÞEð0Þ þ 2ξE2
ð0ÞÞB3;

ð59dÞ

_A0
ð1Þ ¼ −3HA0

ð1Þ þ 2U0
ð0ÞC

2
ð1Þ − i

k1
a
A1
ð1Þ þ

1

2
_B2Eð0Þ; ð59eÞ

_A1
ð1Þ ¼ −3HA1

ð1Þ − i
k1

a
A0
ð1Þ; ð59fÞ

_A3
ð1Þ ¼ −3HA3

ð1Þ − i
k1
a
C2
ð1Þ; ð59gÞ

_C2
ð1Þ ¼ −3HC2

ð1Þ − i
k1
a
A3
ð1Þ − 2ðU0

ð0Þ þ 2ξEð0ÞÞA0
ð1Þ

þ ðU0
ð0ÞEð0Þ þ 2ξE2

ð0ÞÞB2: ð59hÞ

We note that unlike was the case for longitudinal modes, no
obvious decoupling seems to occur between scalar and

vector modes. Instead the set of modes fEð1Þ; ~Eð1Þ; C1
ð1Þ;

C3
ð1Þ;ϕ;ψ ; B

3g seem to decouple from the set fA0
ð1Þ; A

1
ð1Þ;

A3
ð1Þ; C

2
ð1Þ; B

2g, at least at the level of the Dirac equations.

Let us see if this decomposition continues to hold: The
scalar Einstein equations given in Eqs. (41a) and (42),
become:

0 ¼ 8κ

�
kiki

a2
ϕþ 3H _ϕþ 3H2ψ

�
þ ðU þ ξE2Þ

þ i
4

1

a
½−B3k1Eþ 2k1C1�; ð60aÞ

0 ¼ ~Eþ 16κð _ϕþHψÞ; ð60bÞ

0 ¼ 8κðϕ̈þ ð2 _H þ 3H2Þψ þHð _ψ þ 3 _ϕÞÞ − i
2

k1

a
C1 − ξE2;

ð60cÞ

0 ¼ 8κðϕ − ψÞ þ i
4kkkk

aðk1B3Eþ 4k1C1Þ; ð60dÞ

while the equations of motion given in Eq. (43) yield the
following relations for the vector components Bi:

B2 ¼ i
a

8κk1

�
A3 þ 1

2
h23E

�
;

B3 ¼ i
a

8κk1

�
E − 3ϕE −

1

2
h22E

�
; ð61Þ

along with two pairs of equations which relate the tensor
modes hij to the scalar and vector modes:

0 ¼
�
i
1

2a
C2k1 −

1

4
_h23E

�
þ 4κi

1

2a
ð _B2k1 þ 2HB2k1Þ;

0 ¼
�
i
1

2a
C3k1 þ

1

4
_h22E

�
þ 4κi

1

2a
ð _B3k1 þ 2HB3k1Þ;

ð62aÞ

0 ¼ 1

2
iB3

k1
a
E − 4κ

�
ḧ22 þ 3H _h22 þ

kkkk
a2

h22

�
;

0 ¼ 1

2
iB2

k1
a
Eþ 4κ

�
ḧ23 þ 3H _h23 þ

kkkk
a2

h23

�
: ð62bÞ

Indeed, just as was the case for the projected Dirac
equations, no explicit mixing occurs in the Einstein
equations between the set fEð1Þ; ~Eð1Þ; C1

ð1Þ; C
3
ð1Þ;ϕ;ψ ; B

3;

h22g and the set fA0
ð1Þ; A

1
ð1Þ; A

3
ð1Þ; C

2
ð1Þ; B

2; h23g. We are

free therefore to treat these two sets as behaving completely
independently from one another. Before making use
of this decomposition however, we note that a few of
the above equations offer immediate analytic solutions.
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Differentiating Eq. (61) with respect to time, and making
use of the projected Dirac equations for Eð1Þ and A3

ð1Þ given
in Eqs. (59a) and (59g), we obtain:

_B2 ¼ −2HB2 − i
a

8κk1

�
i
k1
a
C2
ð1Þ −

1

2
_h23E

�
;

_B3 ¼ −2HB3 − i
a

8κk1

�
i
k1
a
C3
ð1Þ þ

1

2
_h22E

�
: ð63Þ

Substituting these equations into Eq. (62a) we then find the
following relationship between the vector components C2

ð1Þ
and C3

ð1Þ, and the tensor modes hij:

i
k1
a
C2
ð1Þ ¼

1

2
_h23E; i

k1
a
C3
ð1Þ ¼ −

1

2
_h22E: ð64Þ

Making use of these relationships for C2
ð1Þ and C3

ð1Þ, we see
that Eq. (63) simplifies further, and the vector modes Bi

scale as a−2. Equations (64) also allow us to solve
Eqs. (59a), and (59g), which yield:

A3
ð1Þ ¼

�
−
1

2
h23 − 2

~α3

M

�
Eð0Þ; B2 ¼ −i

1

4κk1

�
~α3

a2

�
;

Eð1Þ ¼
�
3ϕþ 1

2
h22 − 2

~M
M

�
Eð0Þ; B3 ¼ −i

1

4κk1

�
~M
a2

�
;

ð65Þ

where the ~α3, and ~M are (k-dependent) constants with
respect to time. These solutions very clearly exhibit mixing
between scalar, vector, and tensor modes.
To find the remaining solutions it will be useful to

consider the mode decomposition which occurs between
the various perturbative modes for the full set of equations
of motion. We begin in particular, by searching for
solutions for the set f ~Eð1Þ; C1

ð1Þ; C
3
ð1Þ;ϕ;ψ ; h22g, which

are compatible with the solutions for fEð1Þ; B3g already
given in Eq. (65). As was the case for longitudinal modes, it
appears at least naively, as though the remaining equations
of motion are overconstrained, because there are more
equations than degrees of freedom. Not every equation is
independent however: Differentiating Eq. (60a) with
respect to time, and then making use of Eqs. (60a),
(59a), (51c) and (51d) we can derive Eq. (59c) for C1

ð1Þ.
Similarly By differentiating Eq. (60b) with respect to time,
and then making use of Eqs. (60b) and (59b) we can derive
Eq. (60c). We therefore have only to consider the reduced
set fϕ;ψ ; C3

ð1Þ; h22g, with dynamics specified by the

following equations:

0 ¼ 8κ

�
1

2

kiki

a2
ðϕþ ψÞ þ 3H _ϕþ 3H2ψ

− _H

�
3ϕþ 1

2
h22 − 2

~M
M

��
− i

k1
a
3

8
B3E; ð66aÞ

0 ¼ ϕ̈þ ð2 _H þ 3H2Þ
�
ψ þ 3ϕþ 1

2
h22 − 2

~M
M

�

þHð _ψ þ 3 _ϕÞ þ 1

2

k21
a2

ðϕ − ψÞ þ i
64κ

k1

a
B3E; ð66bÞ

0 ¼ i
k1
a
C3
ð1Þ þ

1

2
_h22E; ð66cÞ

0 ¼ 1

2
iB3

k1
a
E − 4κ

�
ḧ22 þ 3H _h22 þ

kkkk
a2

h22

�
; ð66dÞ

_C3
ð1Þ ¼ −3HC3

ð1Þ − i
k1
a

�
ψ þ ϕþ 1

2
h22 − 2

~M
M

�
Eð0Þ

þ ðU0
ð0Þ þ 2ξEð0ÞÞ

�
3

2
Eð0ÞB3 − 16κi

k1
a
ðϕ − ψÞ

�
;

ð66eÞ

where we have made use of our solution for Eð1Þ given in
Eq. (65) to simplify these equations further. We could
similarly have used the solutions given in Eq. (65) to
remove B3 from the equations. Our ultimate goal is to
whittle down Eq. (66) to a set of four equations in four
unknowns. We are unfortunately not able to do so analyti-
cally however, and so we must turn to numerics. We find
that the above set of equations are indeed consistent, so
long as the vector perturbation B3 is set to zero. In
particular, we have been able to solve Eqs. (66a), (66b),
(66c), and (66d) simultaneously, while making use of
Eq. (66e) in order to set the initial conditions. We then
find that Eq. (66e) remains consistent with the solutions
obtained throughout their evolution. Example solutions
for the modes fϕ;ψ ; C3

ð1Þ; h22g are displayed below in

Figs. 7, 8, 9, and 10. All examples we have explored show
the same characteristic behavior: the perturbations grow in
amplitude towards the bounce, reach a finite maximum
value and decay again in a more or less time-symmetric
manner after the bounce, though in some cases the
amplitude is enhanced by the bounce. Note that in all
cases the evolution of scalar, vector and tensor modes is
linked, and the presence of scalar modes necessarily
induces the presence of gravitational waves. This is one
of the main distinguishing features of spinor bounces. Also,
just as for the longitudinal solutions, the scalar metric
perturbations ϕ and ψ are unequal, a feature that reveals
how near the bounce anisotropic stress plays an increas-
ingly important role.
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FIG. 8. A typical example of the behavior of the scalar modes iA0
ð1Þ and A1

ð1Þ around the time t ¼ 0 of the nonsingular bounce for
k1 ¼ 2 (left panel) and k1 ¼ 10 (right panel), with the same choice of parameters and initial conditions as in Fig. 7.

FIG. 9. A typical example of the behavior of the vector modes iC2
ð1Þ and −iC3

ð1Þ around the time t ¼ 0 of the nonsingular bounce for
k1 ¼ 2 (left panel) and k1 ¼ 10 (right panel), with the same choice of parameters and initial conditions as in Fig. 7.

FIG. 10. A typical example of the behavior of the tensor modes h22 and h23 around the time t ¼ 0 of the nonsingular bounce for k1 ¼ 2
(left panel) and k1 ¼ 10 (right panel), with the same choice of parameters and initial conditions as in Fig. 7.

FIG. 7. A typical example of the behavior of the orthogonal scalar modes ϕ and ψ around the time t ¼ 0 of the nonsingular bounce for
k1 ¼ 2 (left panel) and k1 ¼ 10 (right panel). We set initial conditions at t ¼ −50, and again choose initial conditions such that the
Fourier modes of the perturbations are either purely real or purely imaginary, with iA0

ð1Þ ¼ A1
ð1Þ ¼ h23 ¼ 0.3Eð0Þ and

ϕ ¼ −ψ ¼ h22 ¼ 0.1Eð0Þ, while our choice of parameters are given by m ¼ 0.1, ξ ¼ −0.1, and κ ¼ 1=4.
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We next consider the dynamics of the four modes
fA0

ð1Þ; A
1
ð1Þ; C

2
ð1Þ; h23g, which do not include scalar metric

perturbations and are completely described by the equations:

_A0
ð1Þ ¼ −3HA0

ð1Þ þ 2U0
ð0ÞC

2
ð1Þ − i

k1
a
A1
ð1Þ −HB2Eð0Þ;

ð67aÞ

_A1
ð1Þ ¼ −3HA1

ð1Þ − i
k1

a
A0
ð1Þ; ð67bÞ

0 ¼ i
k1
a
C2
ð1Þ −

1

2
_h23E; ð67cÞ

0 ¼ 1

2
iB2

k1
a
Eþ 4κ

�
ḧ23 þ 3H _h23 þ

kkkk
a2

h23

�
; ð67dÞ

_C2
ð1Þ ¼ −3HC2

ð1Þ þ i
k1
a

�
1

2
h23 þ 2

~α3

M

�
Eð0Þ

þ ðU0
ð0Þ þ 2ξEð0ÞÞðEð0ÞB2 − 2A0

ð1ÞÞ; ð67eÞ

where we have simplified the above expressions by making
use of the solution for A3

ð1Þ given in Eq. (65). We could

similarly have used the solutions given in Eq. (65) to remove
B2. Once again we are not able to continue analytically,
however the above five equations are consistent, so long as
the vector perturbation B2 is set to zero. In particular, we are
able to first solve the equations of motion and constraints
(67a), (67b), (67c), and (67d), making use of Eq. (67e) in
order to set the initial conditions. We then find that Eq. (67e)
remains consistent with the solutions obtained. Example
solutions for the modes fA0

ð1Þ; A
1
ð1Þ; C

2
ð1Þ; h23g are displayed

below in Figs. 7, 8, 9, and 10. These examples are
remarkably similar to the solutions obtained for the inde-
pendent set of modes discussed above. Once again, the
bounce is stable and combines scalars, vectors and tensors
together.

V. DISCUSSION

Circumventing the big bang is an ambitious goal. In
classical general relativity it amounts to finding a loophole
in the Penrose-Hawking singularity theorems, which is no
easy feat. In particular it is proving notoriously difficult
to violate the null energy condition in a convincing way.
Spinor cosmologies have the great advantage that they
employ a rather minimal generalization of general relativity
which includes adding torsion. This is well motivated from
the framework of deriving relativity as a gauge theory, and
naturally allows for the coupling of fermions to gravity. It is
therefore doubly interesting that such models can also
allow for solutions undergoing a cosmological bounce in
which the scale factor transitions from a contracting to an
expanding phase of the universe. More generally, such

models easily allow for a wide range of possible cosmo-
logical evolutions, as we have discussed. Nevertheless, let
us repeat here that our classicality assumption on spinor
bilinears is a rather non-trivial one, which deserves further
examination. The results of the present paper motivate a
more extensive study where the fermions are treated
quantum mechanically, in the spirit of the study of
Damour and Spindel [54].
Despite the attractive features of spinor models, to date

most treatments of cosmological solutions involved only a
discussion of the background. Just a few works looked at
perturbations of the spinor fields, but we are not aware of
any work taking into account metric perturbations as well.
We have done so in this paper, and have discovered several
interesting and perhaps unexpected features. For instance,
we have found that spinor bounces are stable to linear
perturbations, despite the fact that the null energy con-
ditions is violated near the bounce, and this without any
particular tuning of the parameters of the models. The
stability is ensured by the fact that the torsion terms, which
ultimately induce the null energy violating contributions to
the stress tensor, only enter algebraically—thus they do not
alter the kinetic terms of the metric or matter perturbations,
and do not induce the ghosts that plague many other
NEC-violating models.
Furthermore, in cosmological spinor models the standard

decomposition into scalar, vector and tensor modes does not
in general lead to decoupled equations for these different
sets of modes. Rather, the gamma matrices needed to
describe Dirac spinors also have the consequence of provid-
ing direction-dependent background quantities that spoil the
scalar-vector-tensor decomposition usually present at linear
order. Far from being a drawback, this feature may well lead
to the most interesting consequences for spinor driven
bounces: already at linear order, scalar fluctuations generated
during a contracting phase will generate gravitational waves.
This leads to the interesting prospect that spinor bounces
may lead to more pronounced gravitational wave signatures,
especially in cosmological models where there is no addi-
tional source of primordial gravitational waves at linear
order, such as in ekpyrotic models [50,55].
Another remarkable consequence of these models is that

their cosmological perturbations are direction dependent,
even when the background is given by an isotropic FLRW
solution. This is again due to the direction dependent
gamma matrices required to define the Dirac spinors. A
clear goal for future studies will be to determine to what
extent these distinguishing features may be observable in
cosmological experiments.
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APPENDIX A: CONVENTIONS AND
USEFUL IDENTITIES

In this section we outline the conventions and useful
identities that we use in this paper. To facilitate comparison
of results we follow closely the conventions used by
Magueijo et al. [39]. In particular we work with the flat
metric ηIJ ¼ diagð−1; 1; 1; 1Þ, such that the spacetime
metric gμν ¼ ηIJeIμeJν is mostly positive. For spacetime
indices we use Greek letters, while for internal Lorentz
indices we use upper case Roman letters. When summing
over only spatial indices we use lower case Roman letters.
The co-tetrad is denoted eI ¼ eIμdxμ, while for a general
m-form Λ we define Λ≡ 1

m!
Λa1…amdx

a1 ∧ … ∧ dxam . The
determinant of the co-tetrad is defined as:

e ¼ 1

4!
ϵIJKLε

μνδσeIμeJνeKδ e
L
σ ; ðA1Þ

where following [39], the symbol ϵIJKL is a local SOð1; 3Þ
spacetime scalar antisymmetric in all of its indices, and
satisfying ϵ0123 ¼ 1. The symbol εμνσδ is a spacetime
density, which is antisymmetric in all of its indices and
satisfies ε0123 ¼ 1. Equation (A1), yields the following
useful relation which we make repeated use of throughout
the paper:

εμνδσeIμeJνeKδ e
L
σ ¼ eεIJKL ¼ −eϵIJKL: ðA2Þ

Wewill use the Weyl representation for spinors in this paper,
with the following convention for gamma matrices γI:

γI ¼
�
0 σ

σ̄ 0

�
; γ5 ¼

i
4!
ϵabcdγ

aγbγcγd ¼
�−I2 0

0 I2

�

ðA3Þ

where σ ¼ f1; σig, σ̄ ¼ f1;−σig, and where σi are the Pauli
matrices. It is easy to check that these gamma matrices
satisfy fγI; γJg ¼ −2ηIJ. We can use the gamma matrices to
construct generators Σab of the Lorentz group, which are
Krein anti-Hermitian and take the form:

Σab ¼ −
1

4
½γa; γb�: ðA4Þ

The following identities will be used extensively, and will be
indispensable for those wishing to reproduce the results of
this paper:

½½γa; γb�; γc� ¼ 4ðηacγb − ηbcγaÞ ðA5aÞ

f½γa; γb�; γcg ¼ 4γ½aγbγc� ¼ i4εabcdγ5γd ðA5bÞ

γ0γaγ0 ¼ ðγaÞ† ðA5cÞ

The covariant exterior derivative on spinors is given by:

DΨ ¼ dxμð∂μ þ ωμÞΨ≡ dxμ
�
∂μ þ

1

2
ωIJμΣIJ

�
Ψ; ðA6Þ

where ω is the spin connection. The covariant exterior
derivative acting on the co-tetrad defines the torsion two
form TI:

TI ≡DeI ¼ deI þ ωI
JeJ: ðA7Þ

As we show in Eq. (5), the spacetime torsion TI is sourced
by the axial and vector currents AJ and VJ. It will be useful
to decompose the spin connection as follows:

ωIJ ¼ ~ωIJ þ CIJ; ðA8Þ

where ~ω is the “torsion free” spin connection obtained by
setting AI ¼ VI ¼ 0. The torsion free spin connection
satisfies the equation TI ¼ 0, and depends only on the
vierbein eI . As a result the torsion can be expressed in terms
of the contortion one-form CIJ ¼ CIJ

μdxμ: TI ¼ CI
JeJ ¼

CI
JKeKeJ. We use a “tilde” to indicate when a quantity is

torsion free. For example the covariant exterior may be
denoted

D ¼ ~Dþ C: ðA9Þ

Finally we define the curvature two-form RIJ by:

RIJ ¼ dωIJ þ ωI
Kω

KJ ¼ ~RIJ þ ~DCIJ þ CI
KCKJ: ðA10Þ

The torsion free Ricci tensor ~Rμν and Ricci scalar ~R are
defined respectively by

~Rμν ¼ eIμeJν ~R
IK

JK;

~R ¼ ~RIJ
IJ; ðA11Þ

while the torsion free Einstein tensor is defined by

~Gμν ¼ ~Rμν −
1

2
gμν ~R: ðA12Þ

APPENDIX B: DERIVING THE EQUATIONS OF
MOTION: A SIMPLIFIED EXAMPLE

The derivation of the equations of motion is too lengthly
to show in complete detail here. Instead we provide the
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reader with a derivation in full detail for a simplified model in which α ¼ β ¼ τ ¼ λ ¼ 0, and for which we remove the
Holst term in the gravitational part of the action. We also choose UðΨ̄ΨÞ ¼ 0. Given these simplifications the full action is
written as:

S ¼ κ

Z
ϵIJKLeIeJRKL þ i

2.3!

Z
ϵIJKLeIeJeKðΨ̄γLDΨ −DΨγLΨÞ: ðB1Þ

We consider the vierbein eI , spin connection ωmn, and spinorΨ as our fundamental fields, and so the variation of this action
is given by:

δS ¼ 2κ

Z
ϵIJKLðδeIÞeJRKL þ i

4

Z
ϵIJKLðδeIÞeJeKðΨ̄γLDΨ −DΨγLΨÞ

þ κ

Z
ϵIJKLeIeJDδðωKLÞÞ − i

16.3!

Z
ϵIJKLeIeJeKðδωMNÞðΨ̄fγL; ½γM; γN �gΨÞ

þ i
2.3!

Z
ϵIJKLeIeJeKðδΨγLDΨþ Ψ̄γLDδΨ −DΨγLδΨ −DδΨγLΨÞ: ðB2Þ

The Euler-Lagrange equations are obtained directly from
Eq. (B2) by setting the variation to zero. Considering first
of all the variation of the action with respect to the spin
connection we obtain the following equation of motion

2κϵIJ
MNCI

PQeQePeJ ¼
1

4!
ϵIJKLeIeJeKεLMNPAP; ðB3Þ

where we have made use of the identity given in Eq. (A5b).
Direct comparison can be made between this result and
that which we provided for our full model in Eq. (4). The
above equation can be solved to obtain an expression for
the contortion. The approach is to first multiply through on
both sides of the above equation by eX. After some
manipulation we then obtain:

ðηX½NCQjM�
Q þ CXNMÞ ¼ 1

16κ
εXNMPAP: ðB4Þ

Contracting this equation with ηXM yields CMN
M ¼ 0, and

so we immediately find the following algebraic expression
for the contortion,

CXMN ¼ 1

16κ
εXMNPAP: ðB5Þ

Direct comparison can be made between this expression
for the contortion, and that provided for our full model in
Eq. (5).
We next consider variation of the action with respect

to the spinor Ψ. After some manipulation, we obtain the
following curved space Dirac equation:

iϵIJKLεIJKM
�
2γL ~DMΨ −

1

8
CSTMfγL; ½γS; γT �Ψ

�
¼ 0:

ðB6Þ

We can write the above equation in completely torsion free
form, by making use of the expression for the contortion
given in Eq. (B5). We then find:

ieμLγ
L ~DμΨ ¼ i

8
CMNLγ

L½γM; γN �Ψ ¼ 3πGAIγ5γIΨ; ðB7Þ

where we have again made use of the identity given
in Eq. (A5b). If we define W ¼ 3πG

2
ADAD, then we can

reexpress the Dirac equation as

ieμLγ
L ~DμΨ ¼ δW

δΨ̄
; ðB8Þ

where direct comparison can be made with Eq. (7).
Finally we consider the variation of the action with

respect to the vierbein, which yields the following Einstein
equation:

κϵIJKLeJeMeNRKL
MN

¼ −
i
4
ϵIJKLeJeKeMðΨ̄γLDMΨ −DMΨγLΨÞ: ðB9Þ

We use the expression for the contortion given in Eq (B5) to
rewrite this equation in torsion free form:

κϵIJKLeJeMeN ~RKL
MN

¼ −
i
4
ϵIJKLeJeKeMðΨ̄γL ~DMΨ − ~DMΨγLΨÞ

þ 1

4.16κ
ϵIJKLeJeKeMðδLMAPAP − ALAMÞ

−
1

8
ϵIJKLeJeMeNεKLNP ~DMAP

−
1

8.16κ
ϵIJKLeJeMeNðεPMKQAQε

PL
NSASÞ: ðB10Þ
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The Einstein equations appear very unfamiliar when written in this first-order form. To reexpress them in second order form
we first multiply though on both sides by eX. After some manipulation we obtain:

4κ ~Gμν ¼
i
2
gμν ~X −

3

4.16κ
gμνAIAI −

i
2
eLμ ~X

L
ν −

1

4
eLμeMνε

LMNP ~DNAP: ðB11Þ

where XL
μ ¼ ðΨ̄γLDμΨ −DμΨγLΨÞ, and where we have used the vierbein to switch to spacetime indices. Notice that the

above equation appears a little strange in that the last two terms on the right-hand side do not appear to be symmetric in their
indices. Let us however consider the antisymmetric part of the second term on its own:

−
i
2
eL½μ ~X

L
ν� ¼ −

i
4
eLμeMνðΨ̄ðγLηMN − γMηLNÞ ~DNΨ− ~DNΨðγLηMN − γMηLNÞΨÞ

¼ −
i
16

eLμeMνðΨ̄½½γM; γL�; γN � ~DNΨ− ~DNΨ½½γM; γL�; γN �ΨÞ

¼ i
16

eLμeMνðΨ̄f½γM; γL�; γNg ~DNΨþ ~DNΨf½γM; γL�; γNgΨÞ−
i
8
eLμeMνðΨ̄½γM; γL�γN ~DNΨþ ~DNΨγN ½γM; γL�ΨÞ

¼ 1

4
eLμeMνε

LMNP ~DNAP −
i
8
eLμeMνðΨ̄½γM; γL�γN ~DNΨþ ~DNΨγN ½γM; γL�ΨÞ; ðB12Þ

where for the second equality we have made use of the
identity given in Eq. (A5a). We therefore express the
torsion free Einstein equation in its final form as:

4κ ~Gμν ¼
i
2
gμν ~X −

i
2
eLðμ ~X

L
νÞ − gμν

3πG
2

AIAI

−
i
8
eLμeMνðΨ̄½γM; γL�γN ~DNΨ

þ ~DNΨγN ½γM; γL�ΨÞ: ðB13Þ
Direct comparison can be made between this equation and
Eq. (11). Once again the second line on the right-hand side
does not appear symmetric in its indices. Notice however
that this term is identically zero on shell, which can be seen
by making use of the Dirac equation given in Eq. (B8).

APPENDIX C: DERIVING THE FORM OF THE
CONTORTION TENSOR CIJK

In Appendix B we derived the equations of motion for a
simplified model with no Holst term, and for which
α ¼ β ¼ τ ¼ λ ¼ 0. While deriving the equations of
motion for the full model is significantly more computa-
tionally intensive, it is for the most part no more technically
difficult. Perhaps the one exception is in deriving Eq. (5)
from Eq. (4). In this section we therefore fill in the details of
that calculation. We begin by first contracting both sides of
Eq. (4) with ðεSTMN − 2γηS½MηN�TÞeX, which after some
manipulation yields:

− 8κγ

�
1þ γ2

γ2

�
½CX½TS� þ ηX½TCQjS�

Q�

¼ ηX½SδT�A ðγQA þ ðAA þ Q̄AÞÞ

þ 1

2
εQXSTðQQ − γðAQ þ Q̄QÞÞ: ðC1Þ

The first term on the left-hand side of this equation has
antisymmetrized brackets around two of its indices that we
wish to remove. In order to do so we sum together instances
of Eq. (5) with various permutations of its indices. From
this procedure we obtain:

8κγ

�
1þ γ2

γ2

�
½CTXS þ 2ηS½XCQjT�

Q�

¼ ηS½XδT�A ðγQA þ ðAA þ Q̄AÞÞ

þ 1

2
εQXSTðQQ − γðAQ þ Q̄QÞÞ: ðC2Þ

Next, in order to remove the second term on the left-hand
side of this equation, notice that we can obtain an expression
for CTX

T on its own by contracting Eq. (6) with ηST :

CTX
T ¼ 3γ

16κð1þ γ2Þ ½γQ
X þ ðAX − Q̄XÞ�: ðC3Þ

Substituting this expression for CTX
T back into Eq. (6) finally

yields an algebraic equation for the contortion which we
provide in Eq. (5).

APPENDIX D: SELECTING A GAUGE

In order to simplify the linearly perturbed equations of
motion we choose to work in a fixed gauge. As vierbein
gauge fixing is not often discussed in the literature we will
provide details here. We begin by determining how our
metric and vierbein perturbations transform under the
symmetries of our model. The line element in conformal
time is given by

ds2¼aðτÞ2½−ð1þ2ψÞdτ2þ2BidτdxiþðδijþhijÞdxidxj�;
ðD1Þ
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where ψ ;ϕ; Bi, and hij are perturbations which depend
a priori on all spacetime coordinates. We can use the
invariance of the line element under coordinate trans-
formations to determine how each of these perturbations
transforms under a coordinate transformation:

ds2 ¼ gμνdxμdxν ¼ ~gρσd~xρd~xσ

¼ ~gρσ
d~xρ

dxμ
d~xσ

dxν
dxμdxν

→ gμν ¼ ~gρσ
d~xρ

dxμ
d~xσ

dxν
ðD2Þ

If we consider a coordinate transformation of the form
xμ → ~xμ ¼ xμ þ ξμ, where ξμ is small so that it can be
treated as a perturbation, Eq (D2) tells us that the metric
perturbations must transform as:

ψ → ~ψ ¼ ψ −Hξ0 − _ξ0 ðD3aÞ

Bi → ~Bi ¼ Bi þ ∂iξ
0 − δij _ξ

j ðD3bÞ

hij → ~hij ¼ hij − 2ξ0Hδij − δkj∂iξ
k − δki∂jξ

k: ðD3cÞ

Following a similar procedure we can also work out how
the perturbed vierbein must transform under coordinate
transformations. We express the components of the per-
turbed vierbein eaμ in conformal time as:

e00 ¼ aðτÞð1þ ψÞ; e0i ¼ aðτÞCi;

ei0 ¼ aðτÞEi; eij ¼ aðτÞðδij þ kijÞ: ðD4Þ

Note that the Ci and Ei that are used in this section denote
spacetime fluctuations, and that they are unrelated to the
spinor bilinears used in the rest of the paper. We then use
the invariance of the tetrad ea under coordinate trans-
formations to determine how the vierbein must transform:

ea ¼ eaμdxμ ¼ ~eaνd~xν

¼ ~eaν
d~xν

dxμ
dxμ

→ eaμ ¼ ~eaν
d~xν

dxμ
ðD5Þ

Once again looking at coordinate transformations of the
form xμ → ~xμ ¼ xμ þ ξμ where ξμ is small so that we can
treat it like a perturbation, Eq. (D5) tells us that the vierbein
perturbations transform as

ψ → ~ψ ¼ ψ −Hξ0 − _ξ0; ðD6aÞ

Ei → ~Ei ¼ Ei − _ξi; ðD6bÞ

Ci → ~Ci ¼ Ci − ∂iξ
0; ðD6cÞ

kij → ~kij ¼ kij − ∂jξ
i − δijHξ0: ðD6dÞ

Notice that the vierbein and metric perturbations are not
independent, but are linked via the definition gμν¼eaμebνnab.
We therefore find:

Bi ¼ −Ci þ ηijEj; ðD7aÞ

hij ¼
X
k

ðδki kkj þ δkjk
k
i Þ: ðD7bÞ

It is easy to check that the gauge transformations given in
Eq. (D3) can be reproduced by making use of Eqs. (D6)
together with Eqs. (D7).
As well as a coordinate index, the vierbeine also have a

Lorentz index. Under an infinitesimal Lorentz transforma-
tion, the vierbeine transform as eaμ → êaμ ¼ ðδab þ Λa

bÞebμ.
As short calculation shows that vierbein perturbations
therefore transform as

ψ → ψ̂ ¼ ψ ; ðD8aÞ

Ei → Êi ¼ Ei þ Λi
0; ðD8bÞ

Ci → Ĉi ¼ Ci þ Λ0
i; ðD8cÞ

kij → k̂ij ¼ kij þ Λi
j: ðD8dÞ

From Eqs. (D7) it follows that the metric perturbations Bi
and hij remain invariant under local infinitesimal Lorentz
transformations, as expected.
Let us now eliminate the redundant components that

arise because we are analyzing a gauge theory. We start by
fixing a local Lorentz gauge. The vierbein perturbations
account for 16 degrees of freedom, which is 6 more than
for the metric. The Lorentz group is 6 dimensional, and so
the choice we take is to fix the extra degrees of freedom in
the vierbein (i.e., we leave the spinor degrees of freedom
completely unfixed). We set:

Ci ¼ −ηijEj; ðD9Þ

kij ¼ kji; ðD10Þ

which from Eq. (D7) implies Bi ¼ −2Ci ¼ 2Ei. Having
used up all of our Lorentz freedom to gauge fix the
vierbein, we next want to use coordinate freedom to do
the same for the metric. Before doing so however it will be
useful to first perform a so called scalar, vector, tensor
(SVT) decomposition of the metric. This means that we
decompose the vector perturbation Bi into its scalar and
vector components [56]:
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Bi ¼ ∂iB|{z}
scalar

þ B̂i|{z}
vector

ðD11Þ

where ∂iB̂i ¼ 0. We similarly decompose hij into its
constituent parts:

hij ¼ 2δijϕþ 2∂hi∂jiχ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
scalar

þ 2∂ðiF̂jÞ|fflfflffl{zfflfflffl}
vector

þ 2ĥij|{z}
tensor

; ðD12Þ

where ∂hi∂jiχ ¼ ð∂i∂j − 1
3
δij∂k∂kÞχ, and hatted quantities

are divergenceless ∂iF̂i ¼ ∂iĥij ¼ 0 and traceless ĥii ¼ 0.
Likewise ξi ¼ ξ̂i þ ξ;i. We therefore see that the metric
perturbations decompose into four scalar degrees of
freedom ϕ;ψ ; B; χ, four vector degrees of freedom
B̂i; F̂i, and two tensor degrees of freedom ĥij. Under this

decomposition the gauge transformations given in Eq. (D3)
are reexpressed as:

ψ → ψ −Hξ0 − _ξ0; χ → χ − ξ;

ϕ → ϕ − ξ0H −
1

3
∂k∂kξ; B → Bþ ξ0 − _ξ;

B̂i → B̂i − ∂0ξ̂i; F̂i → F̂i − ξ̂i; ðD13Þ

while ĥij is gauge invariant. It is immediately clear that by
choosing ξ; ξ0 and ξ̂i appropriately we have the freedom to
set two scalar and two vector degrees of freedom to zero.
We choose Newtonian gauge: B ¼ χ ¼ F̂i ¼ 0. The final
line element is given in Eq. (36), where in an effort to
reduce clutter we have dropped the ‘hats’ on the vector and
tensor perturbations.
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