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We propose that there is a regime of quantum gravity phenomena, for the case that the cosmological
constant is small and positive, which concerns physics at temperatures below the de Sitter temperature, or
length scales larger than the horizon. We observe that the standard form of the equivalence principle does
not apply in this regime; we consider instead that a weakened form of the equivalence principle might hold
in which the ratio of gravitational to inertial mass is a function of environmental parameters. We consider
possible principles to determine that function. These lead to behavior that, in the limit of ℏ → 0 and c → ∞,
reproduces the modifications of Newtonian dynamics first proposed by Milgrom. Thus modified newtonian
dynamics is elucidated as coding the physics of a novel regime of quantum gravity phenomena. We propose
also an effective description of this regime in terms of a bimetric theory, valid in the approximation where
the metric is static. This predicts a new effect, which modifies gravity for radial motions.
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I. INTRODUCTION

As discovered by Vera Rubin and her colleagues [1], and
confirmed by many subsequent observations, the rotational
velocities of stars and gas in the outer regions of spiral
galaxies depart from the 1ffiffi

r
p behavior we would expect given

Newtonian gravity and the observed distributions of bar-
yonic matter. Instead, the velocities flatten out to constant
values, v, given by a simple function of the total baryonic
mass of the galaxy, Mb,

v4 ¼ Ga0Mb; ð1Þ

where a0 is an acceleration scale, which can be read off the
data to be

a0 ¼ 1.2 × 10−8 cm=s2: ð2Þ

This empirical relation is called the baryonic Tully-Fisher
law [2]. There are several remarkable features of this law:

(i) There is remarkably little scatter, given that this is a
summary of astronomical data, and galaxies are
messy objects, with strongly nonlinear dynamics
and histories [3]. The relation appears to hold in a
diverse range of disk galaxy types.

(ii) The value of a0 appears universal.
(iii) a0 is close to the acceleration of the Universe,

aΛ ¼ c2
ffiffiffiffi
Λ

p
,

a0 ≈
aΛ
8.3

: ð3Þ

(iv) The relation involves the baryonic mass of a galaxy.

In 1983 Milgrom proposed [4] that the discrepancy of
rotational velocities from Newtonian expectations could be
expressed by a universal relation between the measured
radial acceleration

aobs ¼
v2

r
ð4Þ

and the acceleration predicted by Newtonian theory on the
basis of the observed baryonic masses,

aiN ¼ ∇iU ð5Þ

of the form

aN ¼ aobsG−2
�
aobs
a0

�
: ð6Þ

We can invert this to find a function F2ðaNa0Þ such that

aobs
aN

¼ F2

�
aN
a0

�
: ð7Þ

For small accelerations, compared to a0, Milgrom proposed
that this be chosen to reproduce the Tully-Fisher relation.
This requires that for small aN ≪ a0

aobs ¼
ffiffiffiffiffiffiffiffiffiffi
aNa0

p
: ð8Þ

On the other hand, for large a, Newtonian gravity should
be recovered.
In a recent paper, McGaugh, Lelli, and Schombert

(MLS) report [5] strong confirmation of an empirical
relation of this form, first proposed by Milgrom [4].
They measure FðaNa0Þ in a survey of rotation curves of
153 galaxies in the SPARC database [6]. They measure*lsmolin@perimeterinstitute.ca
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aobs, the actual radial acceleration by (4) at 2693 radii
on these rotation curves. At the same radii they estimate
the Newtonian gravitational potential from baryons as
observed in stars, gas, and dust, and so determine aN .
They discover that the data are well described by a simple
empirical relation of the form of (7), as shown in Fig. 1. As
they note, it is amazing that such a relation exists over a
wide range of galaxy types, sizes, and morphologies, as this
represents the observed accelerations only by a function of
the Newtonian accelerations due to baryons.
Furthermore MLS are able to fit a simple form for FðaÞ

(previously proposed in [7]), to the data which are [5,8]

F2ðaNÞ ¼
1

1 − e−
ffiffiffiffi
aN
a0

p : ð9Þ

In addition to these galactic phenomena, there is
evidence for departures from Newtonian gravity on still
larger scales, in observations of galactic clusters and large
scale structure. These diverse phenomena suggest two
hypotheses:
(1) Dark matter: Much of the matter in the Universe is

nonluminous and, likely, nonbaryonic.
(2) Gravity is modified in a regime of small acceleration.
Diverse theories have been introduced as elaborations on

one or the other hypothesis. Two remarks need to be made.

First, these are not mutually exclusive, as the galactic and
extragalactic phenomena may have different explanations.
In the early 1900s there were two anomalies observed in the
planetary orbits; both Mercury and Neptune were off track.
The first of these was explained by a modification of
gravity, the latter by the discovery of heretofore dark
matter, also known as Pluto [9].
Second, determined efforts have failed to result in a

nongravitational detection or production of dark matter.
The hypothesis that the galactic scale phenomena are

explained by a modification of Newtonian gravity was first
made by Milgrom in 1983 [4], who suggested that the
universal relation (7), (8), (9) he proposed was due to
the action of a fundamental modification in the laws of
gravity.
Many years later, it appears to be fair to say that at the

scale of galaxies, Milgrom’s hypothesis has held up well,
when compared with data [10]. Indeed, Milgrom’s hypoth-
esis must be credited with a number of predictions which
were subsequently confirmed, such as the behavior of low
surface brightness and dwarf galaxies.1 To the extent to
which this is true, this represents a challenge to the dark
matter hypothesis. While it is certainly conceivable that the
success of Milgram’s empirical relation (7), (8), (9) might
be explained by a dark matter model, that model would
have to explain the following:
(1) Why is the scatter in the Tully-Fisher relation

smaller when expressed in terms of the baryonic
mass than in terms of the presumed total mass [3]?

(2) Why does the acceleration relation hold widely, with
small scatter, over many galaxy types, when the
baryonic and dark matter distributions are weakly
coupled?

(3) Why do specific features of individual galactic
rotation curves reflect the observed baryonic matter
distributions, if most of the mass is dark matter, only
weakly coupled to baryons?

(4) Where does the observed acceleration scale a0 come
from, why is it universal, and why is it close to the
cosmological acceleration?

At the same time, as soon as one looks beyond the
context of galactic rotation curves, the MOND hypothesis
faces severe challenges of its own:

(i) It is so far expressed as a modification of non-
relativistic, Newtonian dynamics. While there are
attempts to embed MOND in a special or general
relativistic framework [17,18], none so far are
compelling theoretically. One issue is stability,
due to the incorporation of a nongauge invariant
vector field. Another issue is nonlocality, which
appears necessary to code a potential that falls off
slower than inverse distance.

FIG. 1. The empirical radial acceleration relation, as shown in
Fig. 3 of [5]. Data are taken from the SPARC data base [6].

1For reviews of modified newtonian dynamics (MOND), see
[11]; some other relevant papers on MOND are [12–16].
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(ii) These extended versions of MOND do not do well
explaining the observed behaviors of galactic clus-
ters, lensing, and large scale structure.

(iii) Given the acceleration relation, the theoretical pro-
posal is underdetermined. One could regard MOND
either as a modification of the gravitational field
equations or as a universal modification of the
principle of inertia, for small acceleration. The
evidence also underdetermines the theory, because
we mostly observe the low acceleration regime by
steady, circular motion.

It is the aspect of nonlocality, in particular, that suggests
that in the, still unlikely, case that MOND is true, it
expresses a fundamental departure from known principles.
This of course seems unlikely, but we may note several
interesting aspects of this problem.
First, we have no other probe of the regime of ultrasmall

accelerations, a < aΛ, except the motions of stars and gas
in galaxies.
Second, we may note that an accelerating observer has,

in Minkowski spacetime, an acceleration horizon at a
distance, la ¼ c2

a . This is, among other things, the peak
wavelength of the corresponding Unruh radiation [19]. A
weakly, but uniformly, accelerating detector is then, pos-
sibly, a very large object, at least from the viewpoint of its
effect on the vacuum of the quantum fields. It is then very
interesting that the regime a < aΛ is also the regime when
the peak Unruh wavelength la is of the order of the distance
to the cosmological horizon, R, defined by Λ

3
¼ 1

R2.
Recent research has highlighted the far infrared physics

of gauge and gravitational physics [20]. We suggest that
MOND may be a surprise hiding in the nonlinear dynamics
of these soft modes on the scale of the cosmological
horizon.
Third, we expect that fundamental phenomena, related to

quantum gravity, are to be expressed in terms of all four of
the fundamental constants, ℏ; G; c, and Λ. But it is
conceivable that for aΛ fixed there is a regime of phenom-
ena delineated by aΛ which survives a limit in which ℏ → 0
and c → ∞. (Indeed the peak wavelength of Unruh
radiation is a quantum phenomena in which two ℏ’s have
canceled.) We may call this, very tentatively, the cosmo-
logical constant dominated regime of quantum gravity, for
it concerns length and acceleration scales comparable to R
and aΛ.
We proceed to investigate what can be said about such a

regime of quantum gravity.2

II. THE POSITIVE COSMOLOGICAL CONSTANT
DOMINATED REGIME OF QUANTUM GRAVITY

Whatever is the right quantum theory of quantum gravity,
it will depend on four dimensional constants, ℏ; G; c, andΛ.
Different regimes of quantum gravity phenomena can be
captured and delineated by studying limits such as ℏ → 0
that must recover general relativity and G;Λ → 0 that
recovers3 quantum field theory on flat spacetime. The
holographic regime explored by the AdS=CFT correspon-
dence is for negative Λ with 1

N ¼ ℏGjΛj small [35].
In the past few years, new regimes have been explored,

such as the relativity locality regime in which G and ℏ are
both taken to zero, but holding the Planck energy, given by
their ratio, fixed [36,37].
We want to explore the physics of a novel regime of

physical phenomena associated with length scales, or
wavelengths greater than or comparable to R, and accel-
erations small compared to aΛ. This new regime involves
novel physical phenomenon which survive the limits ℏ → 0
and c → ∞.
What principles might govern such phenomena?
One that does not directly is the equivalence principle.

To see why, let us review it.
As presented by Einstein, the equivalence principle

consists of two statements:
EP1: Freely falling observers, whose extent, L, is much
smaller than the radius of curvature, R (and hence R),
observe special relativity to hold to zeroth order in L

R. That
is, the zeroth order effects of gravity can be eliminated by
free fall.
EP2: Uniformly accelerated observers see themselves to be
in a uniform gravitational field, to zeroth order in L

R. That is,
gravity can be mocked up by uniform acceleration, to
zeroth order in L

R.
These are equivalent classically, so long as we respect the

restriction to phenomena on scales much smaller than the
radius of curvature.
The equivalence principle has something to say about the

relationship of the inertial mass, mI , to the gravitational
mass, mg. The first may be defined by invoking the
conservation of momentum in scattering experiments.
The inertial mass is then defined (for v ≪ c) as the ratio
of momentum to velocity. The gravitational mass is defined
independently, as a measure of the strength by which a
body is affected by the gravitational field.
The universality of free fall is normally taken to imply

mg ¼ mI . But consider the possibility that free fall is
universal at a given time and place, but that the response
of a body to the gravitational field could differ over time
and space, as a function of environmental or other param-
eters. In this case it is natural to extend the principle of
equivalence from mg ¼ mI to [33]

2The idea that MOND is an expression of quantum gravity has
been considered earlier from various points of view by Milgrom
[21], van Putten [22], Verlinde [23], Hossenfelder [24], Woodard
[25], Modesto and Randono [26], Minic et al. [27], Hendi and
Sheykhi [28], McCulloch [29], Klinkhamer [30], Pikhitsa [31],
and others [32], including the author [33,34]. The argument
below is, I believe, on the whole, novel, but in places it overlaps
some of these discussions. 3From a perturbative perspective.
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mI

mg
¼ Zðuniversal function of environment;

independent of massesÞ: ð10Þ

This suffices to let us transform gravity away by going into
free fall, or mock gravity up by uniformly accelerating.
This defines a universal function Z which can depend on
global or environmental parameters, but does not depend
on the masses themselves.
To deduce more, we have to add that the physics seen by

a freely falling observer includes Newtonian gravity in the
limit of small velocities. This then implies that

mg ¼ mI; so Z ¼ 1: ð11Þ
Now notice that while consistent classically, there is a

tension between the two parts of the equivalence principle.
This has to do with the different ways in which one can try
to extend them from a limiting case for which L

R → 0.
The tension is due to the fact that EP1 becomes exact in

the limit L ≪ R, whereas EP2 becomes exact in the limit
of perfectly uniform acceleration; i.e. it requires not a small
observer, but a static spacetime. But uniform acceleration
implies a length la ¼ c2

a . This is the distance from the
detector to the horizon created by the detector’s uniform
acceleration.
This tension becomes a conflict quantum mechanically,

because that length is the peak wavelength of the Unruh
radiation, which is then the scale over which the accel-
erating detector disturbs the vacuum.
We already know that the equivalence principle does not

easily coexist with quantum field theory because the
vacuum state of a quantum field is not a local object.
One cannot localize a quanta of a massive field to smaller
than its Compton wavelength, λC ¼ ℏ

mc. But the Unruh
effect makes this conflict more fraught.
For a massless field, the Unruh effect involves for small

acceleration an arbitrarily low temperature,

TU ¼ ℏa
2πc

; ð12Þ

whose corresponding thermal distribution has a peak
wavelength,

λU ¼ ℏc
TU

¼ la ¼
c2

a
: ð13Þ

Thus, the limit of small acceleration or low temperature
involves arbitrarily long length scales, which brings us into
conflict with the condition required by the equivalence
principle that the phenomena associated with the detector
have to be smaller than the radius of curvature.
EP1 requires that all lengths are much smaller than R

and hence are smaller than R. We are consistent with this
only if the acceleration is large enough that the peak wave

length of the Unruh radiation is much smaller than the
radius of curvature, and hence R. This defines a phase of
quantum gravity, dominated by EP1.
But there could be another phase of quantum gravity not

dominated by EP1 for small acceleration, la>R or a < aΛ.
Here, a restricted form of EP2 can hold, but not EP1.
Thus, when there is a positive cosmological constant, the

resulting length scale, R, and acceleration scale, aΛ, divide
physical phenomena into two regimes.

(i) The equivalence principle dominated regime. Those
phenomena, all of whose lengths are less than R, and
all of whose accelerations are greater than aΛ, fall
into the normal regime dominated by the equiva-
lence principle. The classical description of this
physics is general relativity.

(ii) The cosmological constant dominated regime in-
cludes phenomena whose length scales are greater
than R and/or whose acceleration scales are less
than aΛ.

One way to delineate the two regimes is to express them
in terms of the relationship between the inertial and
gravitational masses,

mI

mg
¼ Z: ð14Þ

In the equivalence principle dominated regime, Z ¼ 1.
In the Λ dominated regime this can depend on other,
global or environmental, quantities (but not the masses
themselves).
We need a principle to determine how Z depends on

various quantities. The idea is that all the nonlocal and far
infrared physics connected with the cosmological horizon
scale are reflected in the dependence of Z on global or
environmental parameters. Thus, so far as local physics is
concerned, we may apply classical reasoning to the physics
in the cosmological constant dominated regime, with the
exception of the renormalization of the ratio between the
gravitational and inertial masses of a body.

III. THE THERMAL EQUIVALENCE PRINCIPLE

What should an observer in the cosmological constant
dominated regime observe? Guidance is provided by the
crucial result of Narnhofer et al. [38] and Deser and Levin
[39], who find that a uniformly accelerating detector in
de Sitter spacetime observes a thermal spectrum with a
temperature,

TDL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
dS þ

�
ℏa
2πc

�
2

s
; ð15Þ

where the de Sitter temperature is

TdS ¼
ℏc2

2π

ffiffiffiffi
Λ
3

r
: ð16Þ
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Note that TDL ≥ TdS, so the latter is a minimum temper-
ature for equilibrium.
The peak wavelength is then

λDL ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l2a
þ 1

R2

q : ð17Þ

The peak wavelength is a pure quantum phenomenon,
but so is the Unruh temperature, which means that both are
proportional to ℏ. So, when we compute the peak wave-
length, the ℏ’s cancel and we are left with a seemingly
classical criterion marking a boundary of a phase of a
quantum phenomenon,

a < aΛ: ð18Þ

For a ≫ aΛ, λU ≈ lacc ≪ R and we are in the equivalence
principle dominated phase. But for a < aΛ, λU ≈ R and we
are in the new, cosmological constant dominated phase.
Indeed not only do the ℏ’s cancel, but, when expressed in
terms of accelerations, the c’s also cancel, so we have
the possibility of a quantum gravity effect modifying
Newtonian dynamics.
Now we do not live in an exact de Sitter spacetime, so

how is the Deser-Levin temperature relevant? We propose
that it applies to an observer in the cosmological constant
dominated regime, for Λ > 0.
To be precise, let us restrict ourselves to static observers,

whose worldlines are generated by timelike killing fields of
static spacetimes. Such an observer observes an acceler-
ation, aa, and a temperature, T. The T is a minimal
temperature they can detect, when all sources of thermal
radiation, including black hole horizons, but not counting
the de Sitter temperature, are turned off or shielded. aa is
the acceleration they observe between their trajectory and
the trajectory of a freely falling body at their location.
The thermal equivalence principle (TEP) asserts that the

temperature, T, experienced by the static detector is related
to the magnitude of the acceleration, a, by the Deser-Levin
formula (15).
This incorporates the idea of the universality of free fall

in a gravitational field. aa is the acceleration the observer
has to exert to stay static by following a timeline killing
field.
Note that while this TEP extends EP2, there is no

extension of EP1 to this regime. This is because the
phenomena described by the TEP are on scales larger than
R and are thus not compatible with the restriction required
by EP1 that the relevant phenomena be small compared to
R. Indeed, it appears there is no simple way to characterize
the spectrum that freely falling or orbital detectors observe
in asymptotically de Sitter spacetimes.4

A. Phase transition versus phase boundary

The de Sitter temperature is the minimum temperature
that can be measured in equilibrium in a static spacetime
with positive cosmological constant. Similarly, the peak
wavelength is bounded above by the cosmological horizon,

λDL ≤ R: ð19Þ

While we see many stars with a < aΛ, in terms of temper-
ature and peak wavelength it appears that the cosmological
constant dominated regime lives in the neighborhood of a
phase boundary characterized by approaching the minimal
temperature or the maximal peak wavelength.
This may then be a kind of quantum critical phenomena,

at a minimal temperature, which is as close as an observer
in de Sitter spacetime can get to T ¼ 0.
If so, we may expect phenomena in this region to scale.

Indeed, Milgrom proposes that MOND behavior is char-
acterized by invariance under scaling [40]. He proposes that
in the regime of small acceleration, equations of motion are
to scale uniformly under

xi → λxi; t → λt ð20Þ

with masses held fixed, as are fixed constants including Λ,
G, and a0. (c is automatically invariant, while ℏ requires a
separate discussion, which we postpone as the factors of ℏ
cancel in the limit we are discussing here.)
We note that Newton’s law,

ar̂N ¼ −
mg

mI

GM
r2

; ð21Þ

is not homogeneous under scale transformations, so long
as mg ¼ mI .
We can use the possibility that mg ¼ Z−1mI to modify

the acceleration law to make it scale invariant in the Λ
dominated regime.
Since Z characterizes the Λ dominated phase, we expect

it may depend on Λ, but as it is dimensionless, it will have
to depend on the ratio of R to other lengths. A length of
interest is la; hence we expect5

Z

�
R
lacc

�
¼ Z

�
TU

TdS

�
¼ Z

�
a
aΛ

�
: ð22Þ

We note that when we express Z in terms of accelerations,
the c’s cancel. If we impose scale invariance, then Z must
scale like λ−1. Hence scale invariance requires

Z
�
a
aΛ

�
¼ a

aΛ
: ð23Þ

4I am thankful for conversations with Jurek Kowalski-Glikman
on this and related questions.

5Note here that a is the magnitude of the acceleration of the
static observer.
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This gives us the MOND acceleration relation,

ai
a
aΛ

¼ ∇iϕN ¼ −r̂i
GM
r2

: ð24Þ

Note that the original observation which motivated this
whole story, of flat rotation curves, is a verification of
scaling, as the velocity, which is scale invariant, becomes
independent of radius.

IV. ENTROPIC DEFINITION
OF INERTIAL MASS

How could there arise, from fundamental theory, a
scaling of the ratio of inertial to gravitational mass? To
explore this, we bring in the entropic gravity hypothesis of
Verlinde [41].6 However, we interpret Verlinde’s idea as an
entropic elucidation of the concept of—and principle of—
inertia. The idea is that the inertial mass arises from
consideration of how well a particle can be localized.
Following [22,41], we assign an entropy to how local-

izable a particle is by a static detector confined within an
horizon. The minimal localization a static, accelerating
detector can make of a particle is that it is within some
distance scale, L, defined by a detector. The detector should
be smaller than her horizon, so L ≤ R. The best localization
of the particle she can make is that the particle is within a
Compton wavelength, λC. We can then define an entropy of
localization which is the negative of the information gained
by such a localization, which is proportional to the ratio of
the best and worst possible localization,

Sloc ¼ 2π
L
λC

: ð25Þ

This entropy counts the information potentially available
by localizing the particle.
First we check that this gives Newtonian dynamics when

the cosmological constant is turned off, which means we
take R → ∞ and TDL ¼ TU. The corresponding free energy
is (for vanishing cosmological constant)

W ¼ TS ¼ ℏa
2πc

Sloc ¼
L
λC

ℏa
c
: ð26Þ

Now we follow Verlinde in defining an entropic force as
T times the differential of S gotten by moving the particle a
distance ΔL within by the detector,

F ¼ T
ΔS
ΔL

¼ ℏ
λCc

a: ð27Þ

We can now define the inertial mass in terms of the
Compton wavelength, by

mI ≡ ℏ
λCc

ð28Þ

to find Newton’s second law,

F ¼ mIa: ð29Þ

Hence, we have derived the principle of inertia, and inertial
mass, from entropic considerations.
But this argument assumed the cosmological constant

vanishes. What happens when we turn on a small Λ? We
consider the case of positive Λ, in which case there is a
cosmological horizon, at a distance R defined by Λ

3
¼ 1

R2.
In the presence of Λ there is an irreducible de Sitter

temperature TdS. Because the temperature in equilibrium
cannot be reduced to below, TdS, hence we can posit that
the change in free energy is

ΔW ¼ ðTDL − TdSÞ
ΔS
ΔL

: ð30Þ

It is necessary to subtract off TdS in the entropic derivation
of the force law; otherwise a freely falling detector with
a ¼ 0 would experience a force.
To get the force we take again the derivative with respect

to ΔL to find

F ¼ ðTDL − TdSÞ
ΔS
ΔL

¼ a2

2aΛ

ℏ
λCc

: ð31Þ

This should be set equal to the Newtonian force law,
F ¼ mgaN .
Assuming that mg ¼ mI, this leads to the MOND

dynamics

a2 ¼ 2aNaΛ: ð32Þ

We can explain this by noting that when there is no
cosmological horizon the entropic force is proportional to
TU ∝ a, whereas in the presence of a positive cosmological
constant we have, for small a,

F ∝ ðTDL − TdSÞ ∝
a2

2aΛ
: ð33Þ

Alternatively, the deviation from Newtonian physics
seen in MOND can be expressed by a renormalization
of the relation between inertial and gravitational masses,
inserted into the standard Newtonian laws of gravity and
inertia,

6The general relativistic version of this idea is described in
[42–44]. A version of Verlinde’s argument valid in loop quantum
gravity is in [45]. Other proposals to derive MOND from entropic
gravity are described in [22,23,26].
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mI ¼ mgZ

�
a
aΛ

�
; ð34Þ

with Z½ aaΛ� ¼ a
aΛ

for a < aΛ.
Notice several things: The temperature is always that

seen by a static observer. This is an accelerated observer,
locally. It is not on a geodesic, so the acceleration is
nonzero for Newton, special, and general relativity. The
static observer may observe particles in free fall and in
orbit. We have no reason to worry about what temperatures
those particles would see were they equipped with detec-
tors. This explains how the results can be valid for circular
motion as seen in spiral galaxies.
Second, the thermodynamics we employ is equilibrium

thermodynamics. There must be periods of nonequilibrium
behavior, while a galaxy is forming. Our simple model so
far has nothing to say about such behavior; it assumes the
galaxy has been static for a long time.
Third, from this argument we recover the scaling (20) in

the cosmological constant dominated regime. This supports
the picture that MOND is a kind of critical phenomena
related to being near the boundary of minimal temperature
at T ¼ TdS.
Finally, this entropic origin of inertia is reminiscent of

the idea that inertial motions are those that see the least
thermal fluctuations [46,47].

V. EFFECTIVE DESCRIPTION

The conclusion we come to, from the foregoing, is that
MOND can be described as a modification of the principle
of inertia, arising from the insertion, into the ratio of
gravitational to inertial mass, of a renormalization factor, Z,
which is a function of global or environmental variables. So
the equations of motion for a star in a galaxy, with
trajectory xiðtÞ, become modified to

ẍi ¼ Z−1gij∇jϕ; ð35Þ

where gij is the inverse of the spatial metric. Z can be
read as

Z ¼ mI

mg
¼ Z

�
TU

TdS

�
¼ Z

�
a
aΛ

�
; ð36Þ

where TU is the Unruh temperature observed by a static
detector held at that point, and a is the magnitude of the
acceleration necessary to hold that detector in place.
We can express this as a bimetric theory, in which the

metric that governs the motion of particles is not the same
as the metric that solves the Einstein equations.
We note that for a particle in free fall or orbital motion in

the static gravitational field, ẍi ¼ −ai, by the equivalence
principle (where ai is evaluated at their location). But these
are conceptually distinct and generally not equal. ai is the

acceleration of a static detector held at a fixed position in
the gravitational field, while ẍi is the acceleration of a
particle in free fall. Moreover, the dependence on ai is
actually a proxy for a dependence of the ratio of gravita-
tional to inertial mass on the local temperature. Thus, we do
not have an issue of equations of motion of higher order in
time derivatives. We do have a question as to how the
dependence of TU evolves in time in nonstatic configura-
tions or nonequilibrium states.7

In earlier sections, I argued that both scale invariance and
a thermodynamic or entropic origin of the first law suggests

Z

�
a
aΛ

�
¼ a

aΛ
for a < aΛ ð37Þ

and Z ¼ 1 otherwise.
Let us next see if we can describe this phenomena in

terms of an effective picture in the language of general
relativity. We can, in a limited sense that applies only to
static spacetimes, as follows.
We start with (35), which tells us that we can describe

MOND as a replacement in the spherically symmetric case

grr∂rϕ → Z−1grr∂rϕ: ð38Þ

Recall that in the Newtonian limit of general relativity

g00 ¼ 1 −
2ϕ

c2
¼ f: ð39Þ

This suggests that the metric that governs the motion of
particles in a static gravitational field is modified by

grr → ~grr ¼ Zgrr; ð40Þ

with the rest unmodified.
We may call this the thermal metric.8 We recall that the

leading term in the geodesic equation, in the Newtonian
limit of the spherically symmetric case, is

ẍr ¼ Γr
00 _x

0 _x0 ≈ Γr
00c

2; ð41Þ

where

Γr
00 ¼ −

1

2
grr∂rg00: ð42Þ

This gives to leading order

Γr
00 → ~Γr

00 ¼ Z−1Γr
00: ð43Þ

7As a result of the limitation to motion in static spacetimes, we
are unable to address the issue of instabilities.

8This name was suggested by Matteo Smerlak.
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Then we have a prescription for encoding MOND as an
effective description within general relativity, in the case
that the metric is static:
(1) Leave the field equations in the original metric, gab,

unmodified.
(2) The motion of a particle in a static gravitational field

is given by the geodesics of the modified, thermal
metric, i.e. from the variational principle

S ¼ mI

Z
ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~gab _xa _xb

q
; ð44Þ

where the metric ~gab is defined by the radial
component being rescaled by grr → ~grr ¼ Z½F �grr.

(3) We then study the variational principle,

δFS ¼ 0: ð45Þ

The meaning of δF is that when varying the action,
the path is to be varied with F held as a fixed
function. This gives us xaðsÞF , where there is a
solution for every fixed function, F . We are then
interested in those solutions that satisfy9 (45) to-
gether with

F ¼ a
aΛ

: ð46Þ

This may be thought of as a condition of equilib-
rium. The idea is that Z is defined as a function of
ratios of temperatures, as a result of processes of
equilibration to the Deser-Levin temperature. In the
MOND, or cosmological constant dominated re-
gime, this is close to the de Sitter temperature, so
equilibration takes place over cosmological time
scales. The particle motion takes place over much
shorter time scales and is determined by the varia-
tional principle with respect to which the thermal
background, and hence Z, can be considered fixed.
Equation (46) is a consistency condition that ex-
presses the fact that the dynamical and thermal
equilibrium of the galaxy is made up of vast numbers
of stars.

This reproduces to zeroth order in v2

c2 the picture we
arrived at above. There is, however, an additional term in
the modified geodesic equation which survives the non-
relativistic limit c → ∞. It comes from the term in the
geodesic equation ~Γr

rr _r2. Including it, the full radial part of
the geodesic equation reads

ẍr ¼ −
1

Z
grr∂rϕ −

_r2

c2
∂rϕ −

_r2

∂rϕ
2πGρΘ½Z − 1�: ð47Þ

We also use the fact that

Z ¼ j∂iϕj
a0

; ð48Þ

where ∇2ϕ ¼ 4πGρ. The second term is standard from the
Schwarzschild solution. The third term is novel. It is small
for most galaxies because it vanishes for circular motion. In
addition, by the time the theta function turns on, indicating
we are in the MOND regime, the baryon density will be
falling off exponentially. It will make a contribution to the
precision of the perihelion for the orbits of stars in disk
galaxies, but these do not seem to be easy to measure. But it
still may be the source of new effects that might be
observable. More worryingly, it may have a nontrivial
effect on the radial motions of stars in elliptical galaxies.

A. Hamiltonian analysis

To understand better the modification in dynamics
implied by (47) we turn to a Hamiltonian analysis of
particle motion in the thermal geometry. We proceed as
usual [48] and identify two conserved quantities for a
particle with trajectory xaðsÞ and four velocity ua ¼ dxa

ds ,

E ¼ ~gabuakb ¼ f _t; L ¼ ~gabuarb ¼ r2 _ϕ; ð49Þ

where ka and ra are the time and angular Killing vector
fields. Setting −1 ¼ ~gabuaub yields the conservation law,

E2 ¼ Z
2
_r2 þ V; ð50Þ

where V is the standard Schwarzschild potential,

V ¼ 1

2

�
1 −

2GM
r

þ L2

r2
−
2GML2

r3

�
: ð51Þ

The variational principle (44) is then equivalent to a
Lagrangian,

L ¼ Z
2
_r2 − V: ð52Þ

We turn this into a Hamiltonian in the usual way,

H ¼ p2

2Z
þ V; ð53Þ

where the radial momentum is defined by

p ¼ δL
δ _r

¼ Z _r: ð54Þ

We also have

_p ¼ −
δH
δr

¼ −
∂V
∂r þ p2

Zr
θ½1 − Z� ð55Þ9In the MOND limit.
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from which we deduce the radial acceleration relation,

̈r ¼ −
1

Z
∂V
∂r − _r2

2πGρ
∂rϕ

θ½1 − Z�; ð56Þ

using Z ¼ ∂rϕ, this reproduces (47).
Outside the matter distribution, where ϕ ¼ GM

r , this can
also be expressed as

̈r ¼ −
1

Z
∂V
∂r −

_r2

r
θ½1 − Z�: ð57Þ

VI. DISCUSSION

We have arrived, very tentatively, at a kind of effective,
bimetric description, so far valid only for static spacetimes.
The standard metric, gab, is a solution to Einstein’s
equations, whose source is baryonic matter. However,
the metric that governs the motion of particles is a different
metric, ~gab, which differs from the standard metric only by
a scaling of the radial component by a function of the
temperature seen by a static observer.
This is justified by a rough argument based on the

entropic gravity hypothesis of Verlinde and others, modi-
fied by the presence of a positive cosmological constant. It
can also be justified by a scaling argument based on the
scaling hypothesis of Milgrom. That hypothesis can in turn
perhaps be justified by seeing the MOND regime as critical
phenomena due to the proximity of a phase boundary.
It is painfully clear that the ideas discussed here are

tentative and unlikely. Surely dark matter is a far simpler
and less challenging hypothesis, and we will all breathe a
sigh of relief if and when it is detected. Meanwhile, there
are several challenges and opportunities which are raised
by the present proposal:

(i) The far field is a big issue. MOND cannot go on
forever. For one thing we need to make contact with
the large scale successes of general relativity. Z
needs to level off at a constant at some distance,
hopefully with a scaled mass. Until this is addressed
the theory has nothing to say about the relevance of
MOND scaling at extragalactic scales relevant for
clusters and large scale structure, where the dark
matter hypothesis appears to work well.

(ii) Quantum gravity must ultimately explain the effec-
tive bimetric structure. One possibility is to employ
disordered locality [49,50] as studied in [34].

(iii) In the above analysis we assumed disk galaxies are
spherical, which they are not.

(iv) We assumed that there is an immediate transition
between Zð aa0Þ between z ¼ 1 for a > a0 and Z ¼ a

a0
when a < a0. In most of the MOND literature this

transition is softened by an interpolating function as
in (9).

(v) Most interestingly, we have found a new prediction
for dynamics in theMOND regime, given by the third
term in (47). This does not affect circular motion, but
it does introduce a damping of radial motion which
may play a role in the dynamics of elliptical galaxies
or in the formation of disk galaxies. We note that it is
present only in the MOND regime, but it does not
depend on the value of a0.

(vi) What we have studied here is an effective theory,
limited to test matter propagating on static space-
times. One issue to be clarified is whether the
biometric theory described here has instabilities
when the restriction to static spacetimes is lifted.
After that is clarified, the next step is to stationary
spacetimes and should be straightforward. Beyond
that we need to consider how to consistently couple
matter to the gravitational field in the MOND
regime. Equivalently, we want to consistently couple
the two metrics to each other and to matter. If the
picture presented here is in the right direction, that
dynamics will be nonlocal and out of equilibrium. It
is unlikely this can be expressed in a local or field
theoretic form. Indeed, it is possible that the proc-
esses of equilibration on a cosmological scale reveal
irreversible aspects of quantum gravity, as discussed
in [51–58].
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