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We study the cosmological particle creation in the tachyon inflation based on the D-brane dynamics in
the Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter modifies
the warp factor which results in two effects: a modification of the RSII cosmology and a modification of the
tachyon potential. Besides, a string theory D-brane supports among other fields a U(1) gauge field
reflecting open strings attached to the brane. We demonstrate how the interaction of the tachyon with the
U(1) gauge field drives cosmological creation of massless particles and estimate the resulting reheating at
the end of inflation.
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I. INTRODUCTION

The tachyon inflation models [1–4] are a popular class of
models inspired by string theory. What distinguishes the
tachyon from the canonical scalar field is that the tachyon
kinetic term is of the Dirac-Born-Infeld (DBI) form [5]:

L ¼ −VðθÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gμνθ;μθ;ν

q
: ð1Þ

A similar action appears in the so called DBI inflation
models [6]. In these models the inflation is driven by the
motion of a D3-brane in a warped throat region of a
compact space and the DBI field corresponds to the
position of the D3-brane. One obvious advantage of the
tachyon models is that one can get around the no-go
theorem [7] that generally applies to string-theory moti-
vated inflation models. The theorem is derived under rather
reasonable physical assumption: the absence of higher
derivative terms, non-positivity of the potential, positivity
of the canonical kinetic terms for massless fields, and the
finiteness of the Newton constant. To have accelerated
expansions one has to give up at least one of these
assumptions. In both tachyon and DBI inflation scenarios
the kinetic term is neither canonical nor positive definite
and hence in this case the no-go theorem does not apply.
Unfortunately, the tachyon inflation suffers from a

reheating problem imminent for all tachyon models with
the ground state at θ → ∞ [2]. This reheating problem is
easily demonstrated for a rather broad class of models with
inverse power law potentials VðθÞ ∝ θ−n. As shown by
Abramo and Finelly [8] for n > 2 in the limit θ → ∞,
p → 0− very quickly yielding a cold dark matter (CDM)

domination at the end of inflation. For n < 2, p → −1 for
large θ and the universe behaves as quasi-de Sitter. After
the inflationary epoch in both cases the tachyon will remain
a dominant component unless at the end of inflation, it
decayed into inhomogeneous fluctuations and other par-
ticles. This period, known as reheating [9–14], links the
inflationary epoch with the subsequent thermalized radia-
tion era. In the conventional reheating proposal, the inflaton
field decays perturbatively into a collection of particles and
during the decay it goes through a large number of
oscillations around the minimum of its potential. The
tachyon field rolls towards its ground state without oscil-
lating about it and the conventional reheating mechanism
does not work. However, it has been shown [3] that a
coupling of massless fields to the time dependent tachyon
condensate could yield a reheating efficient enough to
overcome the above mention problem of a CDM domi-
nance. In this paper we explicitly study the reheating
that results from a coupling of the tachyon with a U(1)
gauge field.
A simple tachyon model can be analyzed in the frame-

work of the second Randall-Sundrum (RSII) model [15].
The original model consists of two D3-branes in the 4þ 1
dimensional anti-de Sitter (AdS5) background with line
element

ds2ð5Þ ¼ Gð5Þ
ab dX

adXb ¼ e−2jyj=lημνdxμdxν − dy2; ð2Þ

with the observer brane placed at y ¼ 0 and the negative
tension brane pushed of to y ¼ ∞. One additional dynami-
cal 3-brane moving in the AdS5 bulk behaves effectively as
a tachyon with a potential VðθÞ ∝ θ−4, and hence, it drives
a dark matter attractor. In this paper, we study a braneworld
tachyon inflation scenario based on a generalized Randall-
Sundrum model, assuming the presence of matter in the
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bulk, e.g., in the form of a minimally coupled scalar field.
This setup is also referred to as a thick brane [16,17]. The
bulk scalar will change the braneworld geometry and, in
particular, the braneworld cosmology will differ from that
of the original RSII model. Besides, the tachyon potential,
instead of being a simple inverse quartic potential, will be a
more general function depending on the scalar field self-
interaction potential. In this paper we abbreviate this type
of braneworld cosmology by BWC.
Starting from a given warped geometry, we can construct

the bulk scalar interaction potential and the potential of the
tachyon field that corresponds to the position of the
dynamical D3-brane. We consider a DBI type effective
field theory of rolling tachyon on the D3-brane obtained
from string theory. In particular, we analyze a general class
of tachyon potentials and reheating due to the coupling of
the tachyon condensate to the massless Abelian gauge field.
We will analyze some typical potentials: a general inverse
power law potential and the exponential potential.
The remainder of the paper is organized as follows. In the

next section, we introduce the DBI effective field theory
and derive the density of cosmologically created massless
particles. In Sec. III, we derive the field equations in a
covariant Hamiltonian formalism. In Sec. IV, we discuss
the basic equations of the tachyon inflation and estimate the
density of reheating and the density of the tachyons at
the end of inflation. The concluding remarks are given
in Sec. V.

II. DYNAMICAL BRANE AS A TACHYON

The action of the 3þ 1 dimensional brane in the five
dimensional bulk is equivalent to the Dirac-Born-Infeld
description of a Nambu-Goto 3-brane [18,19]. However,
string theory D-branes possess three features that are absent
in the simple Nambu-Goto membrane action: (i) they
support an Abelian gauge field Aμ reflecting open strings
with their ends stuck on the brane, (ii) they couple to the
dilaton field ϕd, (iii) they couple to the (pull-back of) Kalb-
Ramond [20] antisymmetric tensor field Bμν which, like the
gravitational field gμν, belongs to the closed string sector.
Consider a 3þ 1-dimensional D-brane moving in the
4þ 1-dimensional bulk spacetime with coordinates Xa,
a ¼ 0, 1, 2, 3, 4. The points on the brane are parameterized
by XaðxμÞ, μ ¼ 0, 1, 2, 3, where xμ are the coordinates
on the brane. In the string frame the action is given
by [21]

Sbr ¼ −σ
Z

d4xe−ϕd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgðindÞ þ BÞ

q
; ð3Þ

where σ is the brane tension and gðindÞμν is the induced metric

or the “pull back” of the bulk spacetime metric Gð5Þ
ab to the

brane,

gðindÞμν ¼ Gð5Þ
ab

∂Xa

∂xμ
∂Xb

∂xν : ð4Þ

It will be advantageous to work with line element in
conformal coordinates

ds2ð5Þ ¼ Gð5Þ
ab dX

adXb ¼ 1

χ2ðzÞ ðgμνdx
μdxν − dz2Þ; ð5Þ

where the functional form of χðzÞ depends on the self-
interaction potential of the bulk scalar field [22]. For a pure
AdS bulk χ ¼ z=l with l being the AdS curvature radius.
We will derive our basic equations assuming an arbitrary
monotonously increasing function of z and specify its form
later on when we calculate the reheating.
To derive the induced metric we use the Gaussian normal

parametrization XaðxμÞ ¼ ðxμ;ΘÞ, with the tachyon field Θ
substituted for the fifth coordinate z which has become a
dynamical field. With this we find

gðindÞμν ¼ 1

χ2ðΘÞ ðgμν − Θ;μΘ;νÞ: ð6Þ

The field B is an antisymmetric tensor field that
combines the Kalb-Ramond and a U(1) gauge fields
Bμν ¼ Bμν þ 2πα0Fμν. In the following we will ignore
the dilaton and the Kalb-Ramond field Bμν. After a few
algebraic manipulations similar to those in Ref. [23], the
brane action may be written as [24]

Sbr ¼−σ
Z

d4x
ffiffiffiffiffiffi
−g

p
χ−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−XÞð1þYÞ−Z−W2

q
; ð7Þ

where we have introduced the abbreviations:

X ¼ gμνΘ;μΘ;ν; W ¼ ð2πα0Þ2χ4 ϵ
μνρσFμνFρσ

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p

Y ¼ ð2πα0Þ2
2

χ4FμνFμν

Z ¼ ð2πα0Þ2
2

χ4Θ;μFμ
νFνρΘ;ρ:

Next, neglecting the dilaton, expanding (7), and keeping
the terms up to quadratic order in Fμν we obtain

Sbr ¼ −σ
Z

d4x
ffiffiffiffiffiffi
−g

p � ffiffiffiffiffiffiffiffiffiffiffiffi
1 − X

p

χ4
þ ð2πα0Þ2

4
FμνFμν

�
þ Sint;

ð8Þ

where
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Sint ¼ σ
ð2πα0Þ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Fμ
ρFρνΘ;μΘ;ν þ

X
4
FμνFμν

�
:

ð9Þ

The first term in brackets in (8) is the basic tachyon
Lagrangian with potential

VðΘÞ ¼ σχ−4ðΘÞ; ð10Þ

the second term is the Maxwell Lagrangian provided
σ ¼ ð2πα0Þ−2. The action (9) describes the interaction
between the tachyon and the gauge field which will be
responsible for reheating at the end of inflation. It is
convenient to express this term in the form

Sint ¼ σð2πα0Þ2
Z

d4x

� ffiffiffiffiffiffi
−g

p fðXÞ
2

FμνFμν

4

−
ffiffiffiffiffiffiffi
−G

p
GμαGνβ

FμνFαβ

4

�
; ð11Þ

where

fðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ X2

p
: ð12Þ

In (11) we have introduced the effective metric tensor and
its determinant, respectively, as [25,26]

Gμν ¼ Ωc½gμν − ð1 − c2s Þuμuν�; ð13Þ

G≡ detGμν ¼ Ω4
cc2sg; ð14Þ

where

uμ ¼
Θ;μffiffiffiffi
X

p ; uμ ¼ gμνΘ;νffiffiffiffi
X

p ð15Þ

are the components of the tachyon fluid four-velocity, Ωc is
an arbitrary conformal factor, and cs is the effective sound
speed defined by

c2s ¼
fðXÞ − X
fðXÞ þ X

: ð16Þ

The last term in square brackets in (11) being conformally
invariant will not contribute to the creation of photons [27].
Hence, the reheating will be affected only by the first term
in square brackets due to the time dependent factor in front
of the Maxwell Lagrangian.
To simplify the estimate of the photon creation rate we

will replace the Maxwell term FμνFμν by the Lagrangian
for two noninteracting massless scalar degrees of freedom
conformally coupled to gravity. With this simplification the
interaction term is represented by a free scalar field in an
effective time-dependent gravitational field and we can

estimate the creation rate using the well-known method of
adiabatic expansion [28]. For each scalar degree of freedom
φ we take

Sscal ¼
σð2πα0Þ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p fðXÞ
2

�
gμνφ;μφ;ν −

1

6
Rφ2

�
;

ð17Þ

where R is the Ricci scalar associated with the metric gμν.
In the following, we will assume the background metric

to be a spatially flat Friedmann-Robertson-Walker (FRW)
spacetime with a four-dimensional line element in the form

ds2 ¼ gμνdxμdxν ¼ dt2 − a2ðtÞðdr2 þ r2dΩ2Þ: ð18Þ

In the cosmological context, it is natural to assume that the
tachyon condensate is comoving, i.e., the velocity compo-
nents are uμ ¼ ð1; 0; 0; 0Þ. Then f becomes a function of _Θ
only

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ _Θ4

p
: ð19Þ

By way of a conformal transformation

~gμν ¼ fgμν; ~gμν¼ f−1gμν; ~g¼ det ~gμν ¼ f4g; ð20Þ

the action may be expressed in the form

Sscal ¼
Z

d4x
ffiffiffiffiffiffi
−~g

p 1

2

�
~gμνφ;μφ;ν −

�
~R
6
þm2

eff

�
φ2

�
; ð21Þ

where

~R ¼ R
f
þ 6

f

�
3

2

_a _f
af

þ 1

2

f̈
f
−
1

4

�
_f
f

�2�
: ð22Þ

is the Ricci scalar associated with the metric ~gμν, and

m2
eff ¼

1

f

�
1

4

�
_f
f

�2

−
3

2

_a _f
af

−
1

2

f̈
f

�
: ð23Þ

is a time dependent effective mass squared. In (21) we have
omitted the constant factor σð2πα0Þ2=2 as it does not affect
the cosmological particle creation.
The energy density of created particles for two massless

fields is given by

ρradðtÞ ¼
1

π2a3

Z
∞

0

dqq2ωðtÞjβqðtÞj2

¼ 1

π2

Z
∞

0

dωω3jβqðtÞj2; ð24Þ

where ω ¼ q=aðtÞ is the time dependent frequency equal to
the physical momentum. The quantity jβqðtÞj2 is the square
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of the Bogoliubov coefficient which represents the spectral
density of particles created at time t. For a fixed comoving
momentum q the square of the Bogoliubov coefficient at an
arbitrary time t is given by [26]

jβqj2 ¼
1

4

�
ω

W
þW

ω
þ 1

4ωW

�
_W
W

−
_ω

ω

�2

− 2

�
; ð25Þ

where the positive function WðtÞ satisfies the differential
equation

W2 ¼ Ω2 þW1=2 d2

dt2
ðW−1=2Þ; ð26Þ

with initial conditionsWðt0Þ ¼ ωðt0Þ and _Wðt0Þ ¼ _ωðt0Þ at
a conveniently chosen t0, e.g., at the beginning of inflation.
The time-dependent function Ω is given by

Ω2 ¼ ω2 þ fm2
eff þ

1

4

�
_a
a

�
2

−
1

2

ä
a
: ð27Þ

Nota bene: If the effective mass meff were equal to zero
then, as may be easily verified, the function W ¼ ω would
be a solution to (26) for an arbitrary a and, by virtue of (25),
jβqj2 would vanish identically. This is to be expected since
in this case the action (22) would describe a conformally
coupled massless scalar field and hence there would be no
particle creation.
As usual, we expect the integral (24) to diverge at the

upper bound. To check the UV limit of the integrand we
need the asymptotic expression for jβqj2. The behavior of
jβqj2 in the limit q → ∞ is obtained from Eq. (25) by
making use of the second order adiabatic expansion

W ¼ ωþ ωð2Þ þOðω−3Þ: ð28Þ

Applying the general result of Ref. [26] to our expression
(27), we find

ωð2Þ ¼ 2ωfm2
eff : ð29Þ

Then from (25) and (28) with (29), we obtain

jβqj2 ¼
1

16

F4

ω4
þOðω−6Þ; ð30Þ

where

F2 ¼
���� 32 _a _f

af
þ 1

2

f̈
f
−
1

4

�
_f
f

�2����: ð31Þ

Hence, the integral in (24) diverges logarithmically.
However, we know that the estimate of the spectral
functions is unreliable beyond the string scale so we
may choose the cutoff of the order of Ms ¼ 1=

ffiffiffiffi
α0

p
. In

practice one can do the integral up to some large momen-
tum using the exact function (25) and the remainder of the
integral estimate using the asymptotic expression (30).
To evaluate the energy density (24) and compare it with

the tachyon energy density at the end of inflation we need
to study the evolution of the tachyon fluid during inflation.
This will be done in the next section.

III. FIELD EQUATIONS

In this section, we derive the tachyon field equations
from the action (8) ignoring the gauge field. Then, the
tachyon Lagrangian takes the form

L ¼ −
σ

χðΘÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − gμνΘ;μΘ;ν

p
: ð32Þ

In the following, we will assume the spatially flat FRW
spacetime on the observer brane with four-dimensional line
element in the standard form (18). The treatment of our
system in a cosmological context is conveniently per-
formed in the covariant Hamiltonian formalism [29–31].
To this end we first define the conjugate momentum field as

Πμ
Θ ¼ ∂L

∂Θ;μ
: ð33Þ

In the cosmological context, Πμ
Θ is timelike so we may also

define its magnitude as ΠΘ

ΠΘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνΠ

μ
ΘΠν

Θ

q
: ð34Þ

The Hamiltonian density may be derived from the stress
tensor corresponding to the Lagrangian (32) or by the
Legendre transformation. Either way one finds [31]

H ¼ σ

χ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Π2

Θχ
8=σ2

q
: ð35Þ

Then, we can write Hamilton’s equations in the form

_Θ ¼ ∂H
∂ΠΘ

; ð36Þ

_ΠΘ þ 3HΠΘ ¼ −
∂H
∂Θ : ð37Þ

In the spatially flat BWC, the Hubble expansion rate H is
related to the Hamiltonian, via a modified Friedmann
Eq. [22], which can be written as

H ≡ _a
a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

3
H
�
χ;Θ
k

þ 2πGN

3k2
H
�s
; ð38Þ

where k ¼ GN=G5 is a mass scale which will later be fixed
from phenomenology, and χ;Θ is an abbreviation for
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∂χ=∂Θ. In addition, we will make use of the energy-
momentum conservation equation combined with the time
derivative of (38) to obtain the second Friedmann equation

_H ¼ −4πGNðHþ LÞ
�
χ;Θ
k

þ 4πGN

3k2
H
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πGNH
3kχ;Θ þ 2πGNH

s
_χ;Θ: ð39Þ

In the pure AdS bulk χ;Θ ¼ 1 in which case one recovers the
usual RSII modifications of the Friedmann equations [32].
The last term on the right-hand side of Eq. (39) con-

taining the time derivative _χ;Θ could be neglected provided

j_χ;Θj
χ;Θ

≪
_jHj
H

: ð40Þ

It may be easily shown that this approximation is justified
as long as

χjχ;ΘΘj
χ2;Θ

≪ 4; ð41Þ

which may be checked once the function χðΘÞ is specified.
For example, in the original RSII model where χðΘÞ ¼ kΘ
the inequality (41) is trivially satisfied. For an exponential
dependence χðΘÞ ∝ ekΘ and a general power law χ ∝ Θn,
n≳ 1=4, one finds χjχ;ΘΘj=χ2;Θ ¼ 1 and j1 − 1=nj, respec-
tively, so in these two cases Eq. (41) is marginally satisfied.
To solve the system of equations (36)–(38) it is con-

venient to rescale the time as t ¼ τ=k and express the
system in terms of dimensionless quantities. To this end we
introduce the dimensionless functions

h ¼ H=k; θ ¼ kΘ; πθ ¼ ΠΘ=σ: ð42Þ

Besides, we rescale the Lagrangian and Hamiltonian to
obtain the rescaled dimensionless pressure and energy
density:

p ¼ L
σ
¼ −

1

χ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ8π2θ

q ¼ −
1

χ4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _θ2

p
; ð43Þ

ρ ¼ H
σ
¼ 1

χ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ8π2θ

q
¼ 1

χ4
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − _θ2
p : ð44Þ

In these equations, and from now on, the overdot denotes a
derivative with respect to τ. Then, following Ref. [33], we
introduce a dimensionless coupling

κ2 ¼ 8πGN

k2
σ ¼ 8πG5

GN
σ; ð45Þ

and from (36)–(38) we obtain the following set of equations

_θ ¼ χ4πθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ8π2θ

q ¼ πθ
ρ
; ð46Þ

_πθ ¼ −3hπθ þ
4χ;θ

χ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χ8π2θ

q ; ð47Þ

where

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2

3
ρ

�
χ;θ þ

κ2

12
ρ

�s
: ð48Þ

In addition, from (39) we obtain the second Friedman
equation in dimensionless form

_h ¼ −
κ2

2
ðρþ pÞ

�
χ;θ þ

κ2

6
ρ

�
þ κ2ρ

6h
χ;θθ _θ: ð49Þ

Obviously, the explicit dependence on σ and k in
Eqs. (46)–(49) is eliminated leaving one dimensionless
free parameter κ.

IV. TACHYON INFLATION AND REHEATING

The basic quantities in all inflation models are the so
called slow-roll parameters defined as [4,34]

ϵi ≡ d ln jϵi−1j
Hdt

; i ≥ 1; ð50Þ

where

ϵ0 ≡H�
H

ð51Þ

and H� is the Hubble rate at an arbitrarily chosen time. The
conditions for a slow-roll regime are satisfied when ϵ1 < 1
and ϵ2 < 1, and inflation ends when any of them
exceeds unity.
Tachyon inflation is based upon the slow evolution of θ

with the slow-roll conditions [4]

_θ2 ≪ 1; θ̈ ≪ 3h_θ: ð52Þ

It may be shown that, in our formalism, the slow-roll
conditions equivalent to (52) are

_θ≃ χ4πθ ≪ 1; _πθ ≪ 3hπθ; ð53Þ

so that in the slow-roll approximation we may neglect the
factors ð1 − _θ2Þ−1=2 ¼ ð1þ χ8π2θÞ1=2 in (43) and (44).
Then, during inflation we have
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h≃ κffiffiffi
3

p
χ2

�
χ;θ þ

κ2

12χ4

�
1=2

; ð54Þ

_θ≃ 4χ;θ
3hχ

≃ 4χχ;θffiffiffi
3

p
κ

�
χ;θ þ

κ2

12χ4

�−1=2
; ð55Þ

and

θ̈≃ 4_θffiffiffi
3

p
κ

�
χ;θ þ

κ2

12χ4

�−3=2�
χ2;θ

�
χ;θ þ

κ2

4χ4

�

þ 1

2
χχ;θθ

�
χ;θ þ

κ2

6χ4

��
: ð56Þ

As a consequence, the first two slow-roll parameters
defined in (50) can be approximated by

ϵ1 ¼ −
_h
h2

≃ 8χ2χ2;θ
κ2

�
χ;θ þ

κ2

6χ4
−
χχ;θθ
4χ;θ

��
χ;θ þ

κ2

12χ4

�−2
; ð57Þ

ϵ2 ¼ 2ϵ1 þ
ḧ

h _h
≃ 8χ2χ2;θ

κ2

�
χ;θ þ

κ2

12χ4

�−2�
χ;θ þ

κ2

4χ4

−
κ2χ;θ
6χ4

�
χ;θ þ

κ2

6χ4

�−1�
: ð58Þ

This should be contrasted with the corresponding results of
the tachyon inflation in the standard cosmology:

ϵ1 ≃ ϵ2 ≃ 8χ2χ2;θ
κ2

: ð59Þ

In Eq. (59), and in the expression for ϵ2 in (58), we have
neglected the contribution of the terms proportional to the
second derivative χ;θθ.
Close to and at the end of inflation χðθÞ ≫ 1 so the

contribution of the inverse quartic term κ2=χ4 will be
negligible compared to χ;θ. Then

h≃ 1ffiffiffi
3

p κχ1=2;θ

χ2
; _θ≃ 4ffiffiffi

3
p χχ1=2;θ

κ
; ð60Þ

θ̈≃ 4ffiffiffi
3

p
κ

�
χ3=2;θ þ 1

2
χχ−1=2;θ χ;θθ

�
_θ; ð61Þ

ϵ1 ≃ 8
χ2χ;θ
κ2

�
1 −

χχ;θθ
4χ2;θ

�
; ð62Þ

and ϵ2 ≃ ϵ1 also holds if we neglect the contribution of the
χ;θθ term in (62). Hence, in the slow-roll regime the tachyon
inflation in the BWmodified cosmology proceeds in a quite
distinct way compared with that in the standard FRW

cosmology. The expressions in (60) and (62) can be used at
the end of inflation where one requires

ϵ1ðθfÞ≃ 8
χ2ðθfÞχ;θðθfÞ

κ2

�
1 −

χðθfÞχ;θθðθfÞ
4χ2;θðθfÞ

�
≃ 1: ð63Þ

Unlike the end of inflation, the beginning of inflation
is characterized by χ;θðθiÞ ≪ κ2=ð12χ4ðθiÞÞ, hence, the
χ;θðθiÞ may be neglected with respect to κ2=ð12χ4ðθiÞÞ.
Besides, the terms proportional to χ;θθ may also be
neglected so we find

ϵ1ðθiÞ≃ 192
χ6ðθiÞχ2;θðθiÞ

κ4

ϵ2ðθiÞ≃ 288
χ6ðθiÞχ2;θðθiÞ

κ4
≃ 3

2
ϵ1ðθiÞ: ð64Þ

Then, in the slow-roll approximation the number of e-folds
is given by

N ≃ κ2

4

Z
χf

χi

dχ
χ3χ2;θ

�
χ;θ þ

κ2

12χ4

�
: ð65Þ

The subscripts i and f in Eqs. (63)–(65) denote the beginning
and the end of inflation, respectively. Specifically, for the
exponential potential, i.e., for χðθÞ ¼ eθ=4

Nexp ≃ κ4

24χ8i

�
1þ 8

χ5i
κ2

�
−
2

3
≃ 1

2ϵ1ðθiÞ
−
2

3
; ð66Þ

whereas for a general power lawpotential, i.e., for χðθÞ ¼ θn,
with n > 1=4 and n ≠ 1=3, we obtain

Nn ≃ κ4

96nð4n − 1Þχ8−2=ni

�
1þ 24nð4n − 1Þ

3n − 1

χ5−1=ni

κ2

�

−
3nþ 1

2ð3n − 1Þ≃
2n

ð4n − 1Þϵ1ðθiÞ
−

3nþ 1

2ð3n − 1Þ : ð67Þ

The tachyon energy density is obtained by multiplying
(44) by σ, i.e.,

ρtach ¼ σρ ¼ σ

χ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − _θ2

p : ð68Þ

Neglecting _θ2 with respect to 1, we have

ρtach ≃ σ

k4
k4

χ4
: ð69Þ

The value of the dimensionless parameter σ=k4 may be
estimated using the observational constraint on the ampli-
tude of scalar perturbations. Calculation of the power
spectrum of scalar perturbations at the lowest order in
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ϵ1 and ϵ2 proceeds in the same way as in the standard
tachyon inflation [4] with the result

PS ≃ ð0.44þ 2αϵ1 þ 0.72ϵ2Þ
GH2

πϵ1
: ð70Þ

Here α is a parameter related to the expansion in ϵ1 of the
speed of sound cs ¼ 1–2αϵ1 þOðϵ21Þ, which in our case
yields α ¼ 1=12. For our purpose, it is sufficient to use the
approximate expression PS ≃GH2=ðπϵ1Þ and compare
with the power spectrum amplitude As ≃ 2.2 × 10−9 mea-
sured by Planck 2015. This implies a condition

H
MP

¼ 1ffiffiffiffiffiffiffiffi
24π

p κ2k2χ1=2;θ

χ2
ffiffiffi
σ

p ≲ ffiffiffiffiffiffiffiffi
πAs

p ≃ 8.31 × 10−5; ð71Þ

which must be satisfied close to and at the end of inflation
(where ϵ1 ≲ 1). Hence,

σ

k4
≳ 1010

24π · 8.312
κ4χ;θ
χ4

ð72Þ

and

ρtach ≳ 1010

24π · 8.312
κ4χ;θ
χ8

k4: ð73Þ

The tension of the D3 brane is related to the string coupling
constant gs via [21]

σ ¼ 1

ð2πÞ3α02gs
; ð74Þ

where 1=ð2πα0Þ is the string tension. From this and (72) we
find a constraint

gs ≲ 3 · 8.312 × 10−10

π2
χ4

κ4χ;θ

M4
s

k4
; ð75Þ

where Ms ¼ 1=
ffiffiffiffi
α0

p
. Hence, with κ > 1, one can make the

string coupling much less than unity even if k ≪ Ms and
we can choose k and Ms, such that the natural scale
hierarchy [35]

H < Ms < MP ð76Þ

is satisfied.
To estimate the proportion of radiation at the end of

inflation we will use the approximate expression (30) in the
frequency interval F < ω < ∞ and neglect the contribution
in the interval 0 < ω < F. In this way, we obtain an
estimate of the integral (24)

ρradðtÞ≃ F4

16π2

Z
Λ

F

dω
ω

¼ F4

16π2
ln
Λ
F
; ð77Þ

where Λ is a physical momentum cutoff of the order of k.
This expression should be compared with the tachyon
energy density (69). To estimate F, we use Eq. (31) which
can be written as

F2 ¼ k2
���� 32 h

_f
f
þ 1

2

f̈
f
−
1

4

�
_f
f

�2����: ð78Þ

From (19) we find

_f ¼ 2_θ3θ̈

f
; f̈ ¼ 6_θ2θ̈2 þ 2_θ3θ

:::

f
−
4_θ6θ̈2

f3
ð79Þ

and calculate h using Eq. (54).

A. Reheating in the standard tachyon inflation

For the sake of comparison we first make an estimate of
the reheating in the tachyon inflation of the standard
cosmology. In this case, for χ ¼ θn, we find

h ¼ κffiffiffi
3

p 1

χ2
; ð80Þ

_θ ¼ 4ffiffiffi
3

p
κ
χ;θχ; ð81Þ

θ̈ ¼ 16

3κ2
ðχ;θθχ;θχ2 þ χ3;θχÞ; ð82Þ

θ
:::
¼ 64

3
ffiffiffi
3

p
κ3

ðχ;θθθχ2;θχ3 þ χ2;θθχ;θχ
2 þ 5χ;θθχ

3
;θχ

2 þ χ5;θχÞ:

ð83Þ

Furthermore, we also have

_h ¼ −
8

3

χ2;θ
χ2

; ð84Þ

yielding

ϵ1 ¼
8χ2;θχ

2

κ2
: ð85Þ

From this and the condition ϵ1 ≃ 1 at the end of inflation,
we obtain

χ2f ¼
�

κ2

8n2

�
n=ð2n−1Þ

; ð86Þ
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hf ¼
κffiffiffi
3

p
�

κ2

8n2

�
−n=ð2n−1Þ

; ð87Þ

where by hf we denote and hðθfÞ. Then, using (81)–(83) we
find

_θf ¼
ffiffiffi
2

3

r
; θ̈f ¼

2n − 1ffiffiffi
6

p
n

hf ;

θ
:::

f ¼
1

4

ffiffiffi
2

3

r
ð4n − 3Þð2n − 1Þ

n2
h2f : ð88Þ

From this and Eqs. (78) and (79), we obtain

F ¼ j2n − 1j1=2j46n − 17j1=2
2 · 33=2n

Hf ; ð89Þ

where Hf ≡ hfk is the physical Hubble rate at the end of
inflation. It is worth noting that the cosmological particle
creation vanishes exactly for n ¼ 1=2. This power precisely
equals the critical power at which the tachyon cosmology
changes from dust to quasi-de Sitter [8,22].
To estimate the tachyon energy density we can use the

expression (68) with σ estimated by the inequality (72) in
which χ;θ is set to 1 yielding

ρtach ≳ 9 × 1010

24πð8.31Þ2 H
4
f : ð90Þ

Finally, we obtain the estimate of the ratio

ρrad
ρtach

≲ ð2n − 1Þ2ð46n − 17Þ2ð8.31Þ2
2537n4π

× 10−10: ð91Þ

Hence, the cosmologically created radiation in the
standard tachyon cosmology is negligible.

B. Reheating in the BWC tachyon inflation

Next, we proceed by estimating the radiation density in
the BWC tachyon inflation. At the end of inflation we can
neglect the quartic term κ2=χ4f with respect to χ;θ. Then,
using Eqs. (60) and (62) and the condition (63) at the end of
inflation we find

hf ¼
κffiffiffi
3

p χ1=2f;θ

χ2f
; _θf ≃ 4ffiffiffi

3
p χfχ

1=2
f;θ

κ
;

θ̈f ≃ 16χfχ
2
f;θ

κ2

�
1 −

1

12

κ2

χ2f χf;θ

�
;

θ
:::

f ≃ 32

3
ffiffiffi
3

p χfχ
7=2
f;θ

κ3

�
26 −

3κ2

χ2f χf;θ
þ χ2f χf;θθθ

χ3f;θ

�
: ð92Þ

Consider first the exponential potential V ¼ σe−θ., i.e.,
χðθÞ ¼ eθ=4. Then, from (63) we find

χ3f ¼
2

3
κ2: ð93Þ

Using this and (98) in the limit n → ∞, it follows

h ¼ 1ffiffiffi
8

p ð94Þ

and from (103) we obtain

ρrad ≃ 104k4

314π2
ln
Λ
F
¼ ≃0.01356H4

f : ð95Þ

This has to be compared with the tachyon energy density

ρtach ≃ σ

χ4f
≳ 3 · 31=3 · 1010

27 · 21=3 · 8.312π

k4

κ2=3
; ð96Þ

yielding an estimate of the ratio

ρrad
ρtach

≲ 212 · 54 · 8.312 × 10−10

315 · 31=3π

�
κ

2

�
2=3

¼ 2.719 × 10−10
�
κ

2

�
2=3

: ð97Þ

Since the parameter κ can can be arbitrary large, this ratio
can, in principle, be made close to unity. However, this
would require an unnaturally large value of κ.
Next, consider the general power law potential, i.e.,

χðθÞ ¼ θn. In this case, we find

hf ¼
�

n
6ð3nþ 1Þ

�
1=2 κ2

χ3f
; ð98Þ

_θf ¼
�

8n
3ð3nþ 1Þ

�
1=2

; ð99Þ

θ̈f ¼
2nð3n − 1Þ
3ð3nþ 1Þ2

κ2

χ3f
; ð100Þ

θ
:::

f ¼
4n3=2ð3n − 1Þð3n − 2Þ

3
ffiffiffi
6

p ð3nþ 1Þ7=2
�
κ2

χ3f

�
2

: ð101Þ

Using this and Eqs. (78) and (79), we find

F ¼ 23nj3n − 1j1=2j150n3 þ 85n2 − 3j1=2
33=2ð3nþ 1Þ3 Hf ; ð102Þ

and from (77), we find

ρrad≃28n4ð3n−1Þ2ð150n3þ85n2−3Þ2
36π2ð3nþ1Þ12 H4

f ln
Λ
Hf

: ð103Þ
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Note that the limit n → ∞ the right-hand sides of (98)–
(103) approach finite nonzero values corresponding to the
exponential potential V ¼ σe−θ. It is worth mentioning that
the radiation density described by Eq. (103) is, up to the
multiplicative constant, equal to that obtained in the
conventional calculation of particle creation [36]. Note
that the cosmological particle creation vanishes exactly for
n ¼ 1=3. Again, this power precisely equals the critical
power at which the tachyon cosmology changes from dust
to quasi-de Sitter [22].
From (63) we find

χ3−1=nf ¼ κ2

2ð3nþ 1Þ ; ð104Þ

yielding

hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð3nþ 1Þ

3

r �
2ð3nþ 1Þ

κ2

�
1=ð3n−1Þ

: ð105Þ

Using this and (103), we obtain

ρrad ¼
Cnð3n − 1Þ2n6k4

24πð8.31Þ2 ð3nþ 1Þ7nþ1
3n−12

5nþ3
3n−1κ−

8
3n−1; ð106Þ

where the coefficient

Cn ¼
212 · 8.312ð150n3 þ 85n2 − 3Þ2

37πð3nþ 1Þ13
�
3nþ 1

2

�
2n=ð3n−1Þ

ð107Þ

is a smooth function of n for n ≥ 0 assuming the maximal
value of 1.018447 at n ¼ 0.316770.
For the tachyon energy density we obtain the lower

bound

ρtach ≳ 1010nk4

24πð8.31Þ2 ð3nþ 1Þ7nþ1
3n−12

7nþ1
3n−1κ−

2nþ6
3n−1; ð108Þ

yielding an estimate of the ratio

ρrad
ρtach

≲ Cnn5ð3n − 1Þ2 × 10−10
�
κ

2

�ð2n−2Þ=ð3n−1Þ
: ð109Þ

Note that for κ > 2, the reheating is enhanced for n > 1 and
n < 1=3. In the limit n → ∞ the power of κ approaches 2=3
yielding the enhancement as in the exponential case. In the
limit n → 1=3 from below the right-hand side of (109)
diverges, hence the ratio ρrad=ρtach can be arbitrary large for
n sufficiently close to 1=3. Thus, in order to obtain a
significant enhancement we need κ > 2 and n below and
close to 1=3. The inequality κ > 2 implies

hf≷
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð3nþ 1Þ

3

r �ð3nþ 1Þ
2

�
1=ð3n−1Þ

for n≶1=3: ð110Þ

The right-hand side of this inequality is a monotonously
increasing function of n taking the values of 0.921321, 1,
1.099148, at n equal to 1=4, 0.286106, and 1=3, respec-
tively. Roughly, this means that a significant enhancement
requires hf > 1 to wit Hf > k. In Fig. 1, we plot the ratio
ρrad=ρtach as a function of n for various values of κ > 2.

V. SUMMARY AND CONCLUSIONS

We have studied the tachyon inflation model in the
framework of the generalized Randall-Sundrum II brane-
world model with modified Friedmann Eqs. (48) and (49).
We have derived an effective interaction between the
Abelian gauge field and the tachyon as discussed in
Sec. II. The main result of our paper is the detailed
comparison of the efficiency of the particle creation
between the models of tachyon inflation in standard
cosmology and braneworld modified cosmology.
We have investigated the reheating in a braneworld

inflationary scenario based on the coupling of the tachyon
with the Abelian gauge field and the cosmological creation
of massless particles. Assuming the tachyon potential of the
inverse power V ∝ θ−4n, we have shown that the cosmo-
logical creation of massless particles vanishes for critical
power n ¼ 1=2 in the standard cosmology and n ¼ 1=3 in
BWC. Next, we have shown that the reheating due to
cosmological particle creation is insignificant in the stan-
dard cosmology, whereas in BWC, the reheating depends
strongly on the power and can be significantly enhanced for
powers n approaching a critical point n ¼ 1=3 from below.
Unfortunately, this scenario alone cannot solve the

reheating problem of the tachyon inflation. It has been
shown [8,22] that the energy density of the tachyon with an
inverse power potential yields asymptotically either dust or
quasi-de Sitter universe, with the cosmological scale

1010

105

10-5

10-10

10-15

10-20

0.30 0.35 0.40 0.45

FIG. 1. ρrad=ρtach as a function of n for the power law tachyon
potential V ¼ θ−4n for κ ¼ 3 (full black line), 6 (dashed red), and
9 (dash-dotted blue). The vertical line indicates the critical power
n ¼ 1=3.
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dependence as ρtach ∝ a−3 or 1= log a, respectively. Since
the radiation density behaves as ρrad ∝ a−4, sooner or later
ρtach will inevitably dominate the radiation.
It would be of considerable interest to investigate the

effects of cosmological creation in the warm inflation
models [37]. In warm inflation, radiation due to dissipative
effects is produced in parallel with the inflationary expan-
sion, and inflation ends when the Universe heats up to
become radiation dominated. This scenario has been
successfully applied to tachyon inflation models [38,39]
and, in principle, should also work for tachyon inflation in
BWC presented here.
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