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Axions arise in many theoretical extensions of the Standard Model of particle physics, in particular the
“string axiverse.” If the axion masses, ma, and (effective) decay constants, fa, lie in specific ranges, then
axions contribute to the cosmological dark matter and dark energy densities. We compute the background
cosmological (quasi)observables for models with a large number of axion fields, nax ∼Oð10–100Þ, with
the masses and decay constants drawn from statistical distributions. This reduces the number of parameters
from 2nax to a small number of “hyperparameters.” We consider a number of distributions, from those
motivated purely by statistical considerations to those where the structure is specified according to a class
of M-theory models. Using Bayesian methods, we are able to constrain the hyperparameters of the
distributions. In some cases, the hyperparameters can be related to string theory, e.g., constraining the
number ratio of axions to moduli, or the typical decay constant scale needed to provide the correct relic
densities. Our methodology incorporates the use of both random matrix theory and Bayesian networks.
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I. INTRODUCTION

The Standard Model of particle physics is an overwhelm-
ing triumph of 20th Century physics. Combined with the
general theory of relativity (and a model for neutrino
masses), it is able to describe all terrestrial phenomena over
a vast range of energy scales, and it has been verified with
exquisite precision in the 21th Century by the work con-
ducted at the Large Hadron Collider [1]. The Standard
Model fails spectacularly, however, when applied on cos-
mological scales. Observations of the cosmic microwave
background (CMB) temperature and polarization anisotro-
pies, for example, imply that the present-day energy density
of the Universe is dominated by dark matter (DM) and dark
energy (DE) [2]. The particle content of the StandardModel
contains no candidate for DM [3], and the value of the DE
density, if assumed to be solely due to the cosmological
constant, Λ, cannot be explained [4].1

These problems at the heart of particle and cosmological
physics today force us to explore a wide range of theories
beyond the Standard Model. Many such theories invoke

ideas combining a combination of extra dimensions of
spacetime and supersymmetry (SUSY), with the leading
such theory being string/M-theory (e.g., Ref. [5]). The extra
dimensions are compact in these models, which in turn
leads, in the low-energy, (3þ 1)-dimensional description,
to the existence of massless pseudoscalar axionlike fields
(which, for simplicity, we now refer to as simply “axi-
ons”) [6,7].2

The number of axions depends on the topology of the
compact dimensions. In realistic compactifications of string
theory, this can easily be in the range of Oð10Þ to Oð100Þ,
or more (e.g., Ref. [8]). The axions generically acquire
masses, ma, due to nonperturbative quantum effects (e.g.,
instantons [9,10]), and as such, the masses depend expo-
nentially on parameters of the UV theory, such as the size of
extra dimensions. In the context of string theory, there are
many effects which can be used to generate potentials
for the axion fields such as world sheet or brane instantons.
On the other hand, the axion “decay constants,” fa, are
expected to be of order of the UV scale [11]. Large decay
constants lead to suppressed couplings between axions
and the Standard Model. This leads to the theoretical
expectation that there should exist some large number of
light, stable, axions given the potential complexity of the
extradimensional manifold, an idea known as the “string
axiverse” [12].
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1Cosmology, of course, also presents two other huge problems

for the Standard Model: the baryon asymmetry and the generation
of initial conditions (inflation). We will not discuss these
problems in detail.

2There is also the presence of scalar moduli to account for. We
will discuss moduli stabilization in due course.
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Light, stable axions are excellent DM candidates and can
also contribute to the DE density, with a rich phenomenol-
ogy (for a review of axion cosmology, see Ref. [13]).
However, a large number of axion fields brings with it
2n2ax parameters coming from the kinetic and mass matrices
present in an effective field description, making a brute force
treatment of the cosmology difficult. Natural questions
which arise are as follows. What is the typical DM and
DEcosmologywhich emerges froma string axiversemodel?
Under what conditions do string axiverse models give rise to
realistic cosmologies? In order to address these problems,
we present an initial study in the context of string axiverse
cosmology for simplified axiverse models relating to both
the problems of DM and DE, utilizing the frameworks of
Bayesian networks and randommatrix theory (RMT). In this
study, we present five different models, characterized by
their corresponding distributions for the elements of both the
kinetic matrix (which is related to the Kähler metric) and
mass matrix of a multiaxion field theory. The distributions
for fa andma, after rotation of the matrices to the canonical
diagonal basis, determine the cosmology of string axiverse
theories, and we present constraints on the hyperparameters
of these distributions from the DM and DE densities.
One of our models, inspired by the Jeffreys prior,

incorporating scale invariance of the physical quantities,
is a statistical straw man: log-flat eigenvalue distributions,
“maximally ignorant” of any underlying fundamental
theory. Another straw man assumes a trivial kinetic matrix,

with the mass matrix eigenvalue distribution derived from
the Marčhenko-Pastur law for random matrices (loosely
related to axion models [14,15]). The other three models
assume nontrivial distributions in the kinetic matrix, giving
rise to nontrivial distributions for the axion decay constants,
fa, in the diagonal basis. Our most physically motivated
model for the matrix distributions is derived from consid-
ering the string axiverse arising in M-theory compactified
on G2-manifolds [16]. The distributions of the decay
constants for these models are shown (in arbitrary units)
in Fig. 1 [we define the decay constants before accounting
for “alignment” (see Sec. II D)]. The form of the resulting
mass distributions after rotations of the matrices differ from
the straw-man models and are discussed throughout this
paper. Table I describes each of the models we consider in
this study and their associated location in the paper.
We make no discussion in this work of the possible

couplings between axions and the Standard Model, or any
production modes for axions other than vacuum realign-
ment. This is the simplest possible model-independent
approach to the axiverse in a cosmological context. See
Refs. [13,17] for discussion of other axion production
modes and detection of axions through nongravitational
interactions. In this work, we focus on very long-lived, light
axions, as candidates for DM and DE. Heavier, unstable
axions have long been considered as good candidates to
drive inflation, embedding natural inflation [18] in the
string landscape. A top down approach to the issues of

FIG. 1. String axiverse RMT model axion decay constant spectra: Probability density plots displaying the spectra for the axion decay
constants, fa, defined as the eigenvalues of the kinetic matrix in Eq. (8) constructed using 7500 iterations with nax ¼ 100. The shape of
the spectrum determines the initial axion field range as well as affects the axion mass distribution after rotating to the canonical basis.
The highlighted (black rectangle) values demonstrate the enhancement of the eigenvalue spectra width when using nonzero mean, non-
Gaussian distributions (log-flat RMT (LF RMT) model, Sec. III C 3) for the kinetic matrix. For visual clarity, we include an arbitrary
normalization offset on the distribution mean. In practice, the normalization is given by the Planck scale, Mpl, and the mean is
determined by a free model parameter of the order of the fundamental scale.

MATTHEW J. STOTT et al. PHYSICAL REVIEW D 96, 083510 (2017)

083510-2



cosmic inflation was tackled in Ref. [18] by incorporating
the potential effects of the presence of two axion fields.
This was achieved via an alignment mechanism known as
the Kim-Nilles-Peloso (KNP) mechanism, which served to
increase the effective field range, with each individual
axion maintaining a consistent sub-Planckian range. The
KNP alignment mechanism was later extended to nax ≥ 2
axions for multinatural inflation, providing a more gener-
alized approach applicable to the string landscape in both
Refs. [19,20]. Recent work on the vacuum decay rate
statistics in N-dimensional field space, with landscapes
well suited for inflationary model building, subject to
possible alignment effects was explored in Refs. [21,22],
where the authors identified the potential stability of such
random axionic landscapes.
The paper is organized with the following structure.

Section II presents an initial look at axions in string theory
as well as detailing our effective model for string axiverse
cosmology, introducing the key concepts of the kinetic
matrix, Kij, and mass matrix, Mij, along with the initial
field conditions. Section III presents a set of random matrix
theory models for Kij and Mij. We also present in this
section a random matrix approach to G2 compactifications
of M-theory. Our results begin in Sec. IV, where we present
example cosmologies for all of our models with either fixed
values of the underlying parameters or gridded scans of
multidimensional parameter space. Section V presents
constraints on the random matrix parameters from a
Markov chain Monte Carlo (MCMC) analysis of the
quasiobservables from the CMB using Bayesian networks;
we cover only a subset of the possible models, with a
complete treatment left for future work. We conclude with
discussions of our study in Sec. VI.

Appendix A presents details of our scheme for the
numerical solutions to the equations of motion and more
details about the assumed cosmology. Appendix B reviews
the form of the superpotential arising in both M-theory and
Type-IIB string theory along with details of the possible
connection between random matrix theory and Type-IIB
string theory on Calabi-Yau manifolds. Appendix C intro-
duces the principle concepts of random matrix theory we
incorporate in our RMT models as well as the basics of the
Marčhenko-Pastur density function for sample covariance
matrices and potential extensions/deviations from this law
for different matrix ensembles. Finally, Appendix D con-
tains some novel examples of outlier cosmologies.
Our numerical code, AXIONNET, is written in PYTHON

and is available to download from https://github.com/
DoddyPhysics/AxionNet.

II. AXIONS

A. String axions: A single field example

Axions respect a perturbative shift symmetry,
θ → θ þ const, of Goldstone bosons. For geometric axions,
this symmetry comes from the higher-dimensional gauge
symmetries of supergravity. Nonperturbative effects generi-
cally break this shift symmetry down to a discrete sub-
group. Axions are characterized using two parameters: the
axion decay constant, fa, and the energy scale of the
associated nonperturbative physics, Λa. The effective four-
dimensional Lagrangian for the dimensionless axion field
with a spacetime metric signature, ð−;þ;þ;þÞ, is

L ¼ −
f2a
2
∂μθ∂μθ − Λ4

aUðθÞ; ð1Þ

where UðθÞ is some periodic potential of the dimensionless
fields, θ. In the dilute instanton gas approximation, the field
potential is given by

VðθÞ ¼ Λ4
aUðθÞ ¼ Λ4

að1 − cos θÞ: ð2Þ
The nonperturbative physics present an exponential
dependence on the instanton action S,

Λ4
a ¼ μ4e−S: ð3Þ

The parameter μ is a mass scale determined by the geo-
metric mean of the SUSY breaking scale and the “funda-
mental” scale such as the string or Planck scale. The
canonically normalized axion field is

ϕ ¼ faθ; ð4Þ

from which we see that the axion decay constant, fa, sets
the scale of periodicity in the potential. For small field
displacements θ < 1, performing a local Taylor expansion
about the vacuum θ ¼ 0 up to quadratic order yields the
axion mass term

TABLE I. String axiverse models used throughout this
study with their corresponding short-hand notation. Also detailed
are their sections of appearance in the text giving the properties
of their construction as well as their DM/DE cosmology
considerations.

Model Label Section

I. Scale invariant SI Sec. III B
i. Dark matter SI DM "
ii. Dark energy SI DE "

II. Marčenko-Pastur MP RMT Sec. III C 1/C 2
i. Dark matter MP DM Sec. IVA 1/ V B 1
ii. Dark energy MP DE Sec. IVA 2/ V B 1

III. Wishart/Wishart WW RMT Sec. III C 2/C
i. Dark matter WW DM Sec. IV B 1
ii. Dark energy WW DE Sec. IV B 2

IV. Log-flat/log-flat LF RMT Sec. III C 3/C 3
i. Dark matter LF DM Sec. IV C 1
ii. Dark energy LF DE Sec. IV C 2

V. M-theory MT RMT Sec. III D/B 1
i. Dark matter MT DM Sec. IV D 1/V B 2
ii. Dark energy MT DE Sec. IV D 2
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ma ¼
Λ2
a

fa
: ð5Þ

For small field displacements, fa disappears as an explicit
parameter in the Lagrangian. However, because of its role
in the periodicity of the potential, it still appears as the
natural range of field values for ϕ. In the ensuing dis-
cussion, we use fa as the scale of the initial conditions.

B. String axiverse: An effective theory

For multiple fields arising in typical string axiverse
models, we must consider cross-couplings in the field
kinetic terms present in the nontrivial axion field space
metric Kij. In SUSY theories, this is related to the Kähler
metric, which, for axions paired with Kähler moduli, is
given by ∂2K

∂τi∂τj, where K is the Kähler potential and τi
represent the moduli fields (see Ref. [5] for a more general
description). In supergravity, the basis for the axion fields is
such that the kinetic matrix is both nondiagonal and not
canonically normalized, where the general Lagrangian
takes the form

L ¼ −M2
plKij∂μθi∂μθj −M2

plMijθiθj: ð6Þ
The mass matrix is determined as usual from the Kähler
potential and the superpotential, W. For simplicity, we
expand the potential to the mass term and will not use the
full general form of the cosine potential, which expresses
the entries of Mij in terms of the instanton charge matrix,
Q. We discuss this briefly later, and a full treatment will be
the subject of future work.
We diagonalize the Lagrangian by beginning with the

diagonalization of Kij,

K ¼ UTdiagðKÞU ¼ 1

2
UTdiagðfaÞdiagðfaÞU; ð7Þ

where we define the axion decay constants, fa, from the
eigenvalues of Kij in the original (nondiagonal) basis. We
discuss how this choice relates to the axion initial con-
ditions in the next subsection. The decay constants thus
defined are (in Planck units)

f⃗a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2eigðKÞ

p
: ð8Þ

We next define the canonically normalized field:

~ϕ ¼ MpldiagðfaÞUθ: ð9Þ
Inserting this definition, we find the Lagrangian for the
canonical fields:

L ¼ −
1

2
∂μ

~ϕi∂μ ~ϕj −
1

2
~ϕi

~Mij
~ϕj: ð10Þ

The new mass matrix is given by

~M ¼ 2diagð1=faÞUMUTdiagð1=faÞ: ð11Þ
The new mass matrix is diagonalized by

~M ¼ VTdiagðm2
aÞV: ð12Þ

Defining the mass-eigenstate fields,

ϕ ¼ V ~ϕ ¼ MplVdiagðfaÞUθ: ð13Þ
The fully diagonalized Lagrangian is

L ¼ −
1

2
∂μϕi∂μϕi −

1

2
diagðm2

aÞϕiϕi: ð14Þ

Equation (14) is the canonical mass-eigenstate basis with
the mass spectrum dependence coming from the initial
forms of Kij, Mij, and the various rotations in field space.
As is the case in the single axion example, the axion decay
constants coming from diagonalization of Kij now only
play a role in setting the natural initial displacements of the
axion fields.

C. Axion cosmology

We work in a homogeneous and isotropic universe
with a flat Friedmann-Lemaître-Robertson-Walker (FLRW)
geometry,

ds2 ¼ −dt2 þ a2ðtÞdx⃗2; ð15Þ
where aðtÞ is the cosmological scale factor, normalized
to unity today, defining the cosmological redshift aðzÞ¼
1=ð1þzÞ. The equations of motion for the axion fields
follow from the canonical action for matter,

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ð16Þ

with g the FLRW metric determinant. Axions obey the
Klein-Gordon equation of motion,

ϕ̈i þ 3H _ϕi þm2
a;iϕi ¼ 0; ð17Þ

where the dot denotes the derivative with respect to the
cosmic time. The Friedmann constraint for the Hubble
parameter, H ¼ _a=a, is

3H2M2
pl ¼

X
i

ρi; ð18Þ

where the sum over i extends over all axions, ordinary
matter, dark matter, radiation, and the cosmological con-
stant. See Appendix A for more details.
We solve the axion field equations in cosmic time and

use the Friedmann constraint to find aðtÞ, which determines
the evolution of the standard fluid components via their
equation of state. The combined equation of state for the
axions is given by
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wa ¼
Pa

ρa
¼

1
2

P
N
i
_ϕ2
i − V

1
2

P
N
i
_ϕ2
i þ V

: ð19Þ

The total equation of state today determines the acceler-
ation parameter, ä.
Figure 2 shows the collective equation of state for

example multifield evolutions involving nax ¼ 10 axions
for both dark matter and dark energy cosmologies in
different RMT models. The dashed and dotted lines detail
our approximations where we show the effect on the

collective equation of state for the axion population when
we restrict the individual equations of state for each field to a
fixed number of oscillatory crossings used as an accuracy
parameter we denote as ncross. The amplitude of the total
equation of state is damped from the effects ofmultiple fields
with nondegenerate associated scales in the population,
oscillating between the values of ≤ 1 and ≥ −1. In the limit
nax ¼ 1, the equation of state will continue to oscillate
between −1 and 1. We find that ncross ¼ 5 captures a
significant proportion of the total field behavior as compared
to increased values of ncross. SeeAppendixes A 3 andA 4 for
details of our process used and the choice of approximation.
The axion fields are initially overdamped setting the fields

in slow roll, _ϕi ≈ 0, with an almost constant equation of
state,wa ≈ −1. This type of field evolution demonstrates the
ability of axions to behave as candidates in quintessence or
inflationary models. As the Hubble rate, H, decreases, the
fields overcome the Hubble friction present as a damping
term in their equations of motion, at a time tiosc ≈H−1

satisfying the condition ma;i ≈H. The ith axion field now
begins to coherently oscillate about the minimum of its
potential with an amplitude determined by its initial mis-
alignment angle. In this phase, the axionswill begin to dilute
slower and scale as pressurelessmatterwhere the equation of
state begins to oscillate about wa ¼ 0 and a phase of
underdamping begins. The axion pressure now averages
to zero, and the energy density begins to scale as ρa ∝ a−3,
leaving the axion as a suitable dark matter candidate. The
left-hand panel of Fig. 3 details an example evolution of the
components of the energy density through numerical inte-
gration of the equations of motion for nax ¼ 10 fields in the

FIG. 2. Evolution of the collective axion equation of state: The
collective axion equation of state, wa, as a function of the cosmic
scale factor, a, for axions behaving as either the total dark matter
or total dark energy in different RMT models. ncross referrers to
the numerical precision; see Appendix A.

FIG. 3. Evolution of the cosmological densities and cosmological density parameters: Left panel: Plot for the evolution of
cosmological densities, ρ, as a function of the cosmic scale factor, a, for nax ¼ 10 axions behaving as the total dark matter in the MP
RMT model. Right panel: Plot for the evolution of the contributions to the critical density, Ωi ¼ ρi=3H2, as a function of the cosmic
scale factor, aðtÞ. Each panel details the evolution of the MP RMT axions plus the standard ΛCDM parameters Ωr, ΩΛ and Ωb. Left
figure upper inset: Enhanced view of the effect of multifield oscillations on the total axion density, ρax. Left figure lower inset:
Comparative matter-radiation equality with crossings of ρm ¼ ρb þ ρax and ρr at zeq ¼ 3393 defined in Table II. Right figure inset:
Enhanced view of the effect of multifield oscillations on the axion density parameter ΩDM contributing to the critical density.
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universe as well as the remaining standard ΛCDM param-
eters. The evolution of the associated density parameters is
plotted in the right-hand panel.
At any given time, fields with H ≳ma;i will behave as a

contribution to the total effective dark energy density, ΩDE,
and fields withH ≲ma;i behave as a contribution to the total
darkmatter density,ΩDM.We classify axions as eitherDMor
DE components of the energy density of the universe
according to the description in Appendix A. We use this
to determine Ωm ¼ Ωb þΩDM and ΩDE;tot ¼ ΩΛ þΩDE.
The evolution of ρm with redshift determines the redshift of
matter-radiation equality, zeq.

D. Initial conditions

The role of the axion decay constants, for our purposes,
is to fix the natural initial field displacements and thus the
axion relic density from vacuum realignment [23–25]. In
the (generic) case of multiple axions where the number of
instantons providing the axion masses is larger than the
number of axions, the notion of a single “axion decay
constant” is not well defined.3

Expanding the potential to the mass term alone, the
dimensionful scales that control the evolution and relic
densities are the initial displacements of the canonical fields.
In all cases,we set our initial conditions on the axion fields as

ϕini
i ¼ F ijϑj; ð20Þ

for some (random) matrix F ij, where ϑ is a random vector
with elements in the range ½0; π� (as expected for an initially
massless field with a discrete shift symmetry and a sym-
metric potential).
We set the initial conditions on ϑi to uniformly sample

the field space in some basis. We do this by noting that
there is some basis where the ϑi forms a cubic lattice. We
uniformly sample in this cubic basis, since this is opera-
tionally very simple. However, we note that this is not a
uniform sampling of the field space in the “charge basis”
defined by the charge matrix,Q, an integer matrix of which
the entries reside in a charge lattice in the cosine potential,
VðθÞ ¼PX;iΛX½1 − cos ðQX

i θiÞ�. We leave investigations
of this interesting question, which is intimately related to
the notions of alignment and charge quantization, for future
work. For other discussions of this point, and sampling of
initial conditions in general, see Refs. [15,26–29]. We
define the matrix F ij for two different possibilities for the
cubic basis. Consider the set of transformations that turn the
initial fields, θ, into the canonically normalized fields, ϕ, in
index notation:

ϕi

Mpl
¼ VijdiagðfaÞjkUklθl: ð21Þ

In general, we should expect that in the cubic basis bothKij

and Mij are off diagonal, and so ϑi ¼ θi. On the other
hand, it could be the case that the cubic basis is the same
basis as the one in which Kij is diagonal. In that case, it is
natural to set ϑi ¼ Uijθj. We allow for both possibilities in
our numerical explorations (though for the MP and MT
models, where Kij is diagonal by construction, the two
choices are the same).
For completeness of discussion, we still seek to define a

measure on the initial field displacements that is somewhat
equivalent to the usual notion of a “decay constant,” We
define such a measure by the following vector for the
general case,

~φi ≔ jVijdiagðfaÞjkUklhϑilj; ð22Þ

where hϑi is the vector of π=2 values representing the
average of ϑ. For the case of the cubic basis with diagonal
Kij, we define our measure as

φi ¼ jVijdiagðfaÞjkhϑikj: ð23Þ

The overall scale of our initial conditions is set by the
eigenvalues of Kij giving the elements fa. However,
rotations can shift these values onto different canonical
fields, allowing for N-flation type enhancement by the
Pythagorean sum. The initial field conditions coming from
fa to ϕ, ~φ and φ are shown in Fig. 4. In the upper and lower
left-hand panels, we show the initial field displacements of
the form in Eq. (4) for both the WW RMT and LF RMT
models where the bulk of the spectrum is initially limited to
sub-Planck scale values (upper and lower left panels). ϕ is
defined using Eq. (20) where F ij ¼ diagð

ffiffiffiffiffiffiffiffi
2f2a

p
Þij such

that ϕi ¼ diagð ffiffiffi
2

p
faÞijhϑij. In the upper panels, we see

that the initial field displacements quickly converge to a
negatively skewed distribution on a logarithmic scale when
using a white Wishart matrix for Kij (see Sec. III C 2).
Selecting a new basis identified by a further rotation acting
on F ij does not alter the initial field displacements where
we observe a degeneracy across all values of βK.
When a spiked Wishart matrix is used for Kij (see

Sec. III C 3), the repulsed eigenvalues shown for ϕ
“enhance” the potential initial field conditions when
selecting a new basis for sampling. Said alternatively,
the convergence of the spectra via the unitary rotations
is “slower” in this model maintaining features of the initial
matrix spectra for Kij. The spectra for each choice of basis
are distinct in their output as shown in the central and right
lower panels. In the basis for φ, lower values of βK maintain
the hard edge of the nonrotated spectra (lower left panel)
with values of βK → 1 providing larger probability den-
sities for field displacement transcending theMpl limit. The
two models converge when finally selecting ~φ as the choice
of basis.3We thank Thomas Bachlechner for discussion on this point.
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III. STRING AXIVERSE

A. Random matrix approach to the string axiverse

1. Generalities

A simplified approach to modeling the string axiverse is to
use randommatrix theory to encode the structure of the kinetic
matrix and mass matrix appearing in the effective model
description in the Lagrangian of Eq. (6), without detailed
knowledge of the underlying Kähler potential and super-
potential. Thepower of randommatrix theory is the notion that
large, complicated systems present the properties of univer-
sality, depending only on the symmetry classes of these
systems. A key observation can be made that when the
dimensional order of these matrices is increased their spectra
begin to stabilise with their properties determined by one of
several limiting laws such as Wigner’s celebrated semicircle
law. At a very basic level, random matrix theory and the
universality that emerges from it can be considered a gener-
alization of the central limit theorem. See Appendix C for
further discussion on the generalities of randommatrix theory.
Accessible introductions to these topics can be found on Terry
Tao’s blog4 and in the book by Mehta [30].

In each class, the matrices we consider will all have
elements drawn from the same statistical distribution. Our
matrices are not block diagonal, with blocks containing
different scales. Physically, therefore, there are no separate
sectors; all the axions we consider receive their masses
from effects of the same order. Universality then dictates
that our distributions will, up to outliers, be classified by a
single (mean) scale and spread (variance and other
moments). The lack of bimodality means that the mass
distributions are unlikely to furnish us simultaneously with
axions classified as DM [ma ≳HðzeqÞ ∼ 10−27 eV] and DE
[ma ≲Hðz0Þ ∼ 10−33 eV], while at the same time having
no cosmologically problematic axions at the intermediate
scale [31].
Given these considerations, we will restrict ourselves to

only considering two classes of random matrices con-
structed in the form of Eq. (C2) without any loss of
generality for our concerns. First is the well-motivated
case of matrices residing in the Wishart ensemble of real
sample covariance matrices. The limiting spectrum of
normalized Wishart matrices W ¼ 1

p X
TX, where X is a

(n × p) rectangular matrix and p ≥ n is given by the
Marčhenko-Pastur law (see Appendix C 2) with spectral
properties determined by an aspect ratio, n=p ∈ ð0; 1� (see

0

FIG. 4. String axiverse RMT model initial field displacement spectra: Probability density plots for the initial axion field displacements
defined in each basis outlined in Eqs. (8), (22) and (23) for 5000 iterations using nax ¼ 75. Upper panels: Zero centered mean, Gaussian
distributions used for the elements of the kinetic matrix Kij [WW RMT model (Sec. III C 2)]. Lower panels: Nonzero centered mean,
non-Gaussian distributions used for the elements of the kinetic matrix Kij [LF RMT model (Sec. III C 3)]. The highlighted (black
rectangle) values demonstrate the enhancement of the spectral width in the LF RMT model.

4https://terrytao.wordpress.com/
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below). The universality of the Marčhenko-Pastur law
deems it will hold for arbitrary distributions of zero mean
and unit variance. When constructing our kinetic and mass
matrices in this form, we shall designate them as a white
Wishart matrix parametrized by β ¼ 1 in the standard beta
ensemble for random matrices (see Appendix C 1). (White)
Wishart matrices often occur in many applications of
random matrix theory and can play a key role in areas
such as multidimensional Bayesian analysis [32,33]. The
generalized construction of Wishart matrices via higher
order convulsions have spectra described by the Fuss-
Catalan distributions which could prove an interesting
extension in future work [34]. See Appendix C for further
discussion.
Second, we will investigate the properties of nonuni-

versality and extremal fluctuations in the asymptotic
behavior of singular values in random matrix models using
a non-Gaussian distribution for the entries of the subma-
trices, X. Matrices constructed in this manner are subject to
an eigenvalue repulsion in the form of singular eigenvalues
away from a bulk region of the distribution. The bulk of
these distributions is governed by the Marčhenko-Pastur
density function. Further discussion can be found in
Appendix C or Refs. [35–38] of spiked Wishart covariance
models with these properties. We will not consider in detail
the finer properties of the analysis associated to the largest
eigenvalues for sample covariances matrices with spiked
populations through their moments or the nature of the
Baik, Ben Arous and Pèchè phase transition which can lead
to such phenomena [39]. We will treat our models at the
level of the statistical distributions used to construct our
submatrices only highlighting the features and spectral
properties their eigenvalue distributions may exhibit. We
will designate a matrix constructed in this way as a spiked
Wishart matrix.
To summarize, for any given random matrix model, we

construct both Kij andMij as normalized positive-definite
matrices in the following way,

Ahj; Bhj ∈ Rn×p; ð24Þ

Kij ¼
1

p
AT
ihAhj ∈ Rn×n; ð25Þ

Mij ¼
1

p
BT
ihBhj ∈ Rn×n; ð26Þ

where the entries of the submatrices Ahj and Bhj in Eq. (24)
are random entries drawn from a given statistical distribu-
tion, Ωðμ; σÞ.
In our models of the string axiverse, by construction, Kij

and Mij are square matrices with a dimension determined
by the number of axions, ðnax; naxÞ. By definition, the
submatrices in our RMT models, Ahj and Bhj, need not be
square. This defines the incorporation of our aspect ratio

shaping parameters βK and βM where the submatrices Ahj

and Bhj are both rectangular with the defined dimensions
ðnax; nax=βKÞ and ðnax; nax=βMÞ, respectively. The shaping
parameters are explicitly defined as

βK ¼ nax=pK; ð27Þ

βM ¼ nax=pM; ð28Þ

where pK;M ≥ nax. When we select the two shaping
parameters to be the same value determined by pK ¼
pM (which we will in general through this study), we shall
refer to this using the notation βK;M. See Appendix B 3 for
a discussion on the role of these parameters in the context
of realizations of the axiverse in string theory along with
the likely values they take.

B. Scale-invariant measure on eigenvalues

For a straw-man model, and as a baseline with which to
compare our physically motivated models, we consider a
log-flat prior using the motivations of scale invariance on
the positive, real, physical and dimensionful parameters
coming fromKij andMij, that is, on the decay constants in
the diagonal basis along with normalization factors of

ffiffiffi
2

p
and masses in the canonical diagonal basis. Such a prior is
well motivated in the in context of axiverse literature [12]
and is inspired by the Jeffreys prior. The axion decay
constants could also span several decades [40,41]. We use
the log-flat prior for both of these unknown dimensionful
quantities as a maximally ignorant approach.
We begin in the mass-eigenstate basis [Eq. (14)] where

both Kij and Mij are diagonal and consider only the
eigenvalues of both the kinetic and mass matrix in this
basis. The axion parameters are drawn from

log10ðeigðKijÞÞ ∈ U½kmin; kmax�; ð29Þ

log10ðeigðMijÞÞ ∈ U½mmin; mmax�: ð30Þ

The uniform distribution is unnormalized and is only a
proper prior for our considerations once the end points of
the distribution are fixed by the controlling limits. By
definition, this breaks the scale invariance of our prior;
however, we retain motivations for bounded limits in
concordance with the literature. The values

eigðKijÞ ¼ f2a;i; ð31Þ

eigðMijÞ ¼ m2
a;i ð32Þ

represent the elements of the diagonalized kinetic and mass
matrix, respectively. The limits kmin and kmax in general are
associated with lower and upper bounds on nonperturbative
physics scales. The upper and lower bounds, mmin and

MATTHEW J. STOTT et al. PHYSICAL REVIEW D 96, 083510 (2017)

083510-8



mmax, represent a portion of the axion mass window suited
for extracting fields behaving as either DE or DM. In the
left-hand panel of Fig. 5, we show the KDE plot in the
context of axions behaving as DE with the following
parameter priors:

nax ¼ Oð1Þ → Oð100Þ; ð33Þ

log10ðeigðKijÞ=MplÞ ∈ U½−4.0;−0.5�; ð34Þ

log10ðeigðMijÞ=MHÞ ∈ U½−2.0; 2.0�: ð35Þ

Correspondingly, the right-hand panel of Fig. 5 shows
the KDE plot for axions behaving as DM using the
following priors:

nax ¼ Oð1Þ → Oð10Þ; ð36Þ

log10ðeigðKijÞ=MplÞ ∈ U½−4.0;−0.5�; ð37Þ

log10ðeigðMijÞ=MHÞ ∈ U½6.0; 16.0�: ð38Þ

The requirement for axion population sizes with at least
nax ≈Oð10Þ, in order to give a realistic chance of finding
cosmologies returning values of ΩDE sitting in the rough
window ΩDE ¼ ð0.6 → 0.8Þ, is evident in the left-hand
panel of Fig. 5. The right-hand panel of Fig. 5 shows that an
increase in the field population size quickly leads to the
domination of axion DM when utilizing a significant mass
window. We use the information in both panels of Fig. 5 to
indicate the potential for multiple axions giving the
required values of ΩDM and ΩDE while maximising the
size of the population. In general, our RMT models will
consider more localized scale windows, and as such, we

select a population size of nax ¼ 20 to serve as a good
common ground between both types of cosmology.

C. Random matrix theory models

For a more physically realistic approach, we should
expect our axion parameters to be encoded in some kind of
matrix structure, with a nontrivial role played by the
rotations between different bases. This is due to the fact
there is some physical meaning to the basis in which Dirac
quantization occurs, which in general is not the same as the
diagonal basis. In general, this RMT structure will give
localized physical parameter distributions, where we shall
suspend the exploration of coupled dark sector cosmologies
as a focus of future work beyond the simple example above.
The following sections detail the introduction of random
matrices for the string axiverse, highlighting the potential
random matrix theory has to consider a more complete
picture of the axion landscape
Our study consists of three models with their foundations

in the universal behavior of asymptotic RMT plus an
approach to realizations of the string axiverse in G2
compactified M-theory. Below, we outline our treatment
of both the kinetic and mass matrix and associated
parameters in these models. In the right-hand panels of
Fig. 6, we present the eigenvalue spectra of the mass matrix
in the mass-eigenstate basis for each model using arbitrary
prior configurations. In the left-hand panels, we show an
approximated theoretical density function fit for the form of
the finite-dimensional matrix spectra in our models.

1. MP RMT model (unit Kij=white Wishart Mij)

This model is based on the N-flation model presented in
Ref. [15] (see Appendix B 2) whereby we encode our
uncertainty using a spectrum of masses governed by the

FIG. 5. Dark energy and dark matter cosmologies with scale-invariant measure on physical parameters: Left panel: kernel density
estimation plot for the axion dark energy density parameter, ΩDE, with nax ¼ Oð1Þ → Oð100Þ with log-flat priors on both the physical
parameters,m2

a and f2a, sampled in the window detailed in Eqs. (33) to (35). Right panel: kernel density estimation plot for the axion dark
matter density parameter, ΩDM, with nax ¼ Oð1Þ → Oð10Þ with log-flat priors on both the physical parameters, m2

a and f2a, sampled in
the window detailed in Eqs. (36) to (38).
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FIG. 6. Theoretical mass squared value spectra density function fits and associated Mij eigenvalue probability densities for RMT
models: Left-hand panels: Theoretical density function fits for each of the RMT models outlined in Secs. III C 1–III C 3 for 250 values
of βK;M ∈ ð0; 1�. Right-hand panels: Probability density plots for the eigenvalue spectrum of the rotated mass matrix,Mij, constructed
using 1000 iterations and an axion population size nax ¼ 50.
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Marčhenko-Pastur density function for a population of N
uncoupled axions. We need only to consider the matrix
structure for the mass matrix,Mij, where, unlike our other
models in the subsequent sections, we begin in the
following basis,

L ¼ −
1

2
∂μϕi∂μϕj −

1

2
ϕiMijϕj; ð39Þ

where our mass matrix is constructed as

Mij ¼
�
nax
βM

�
BT
ihBhj; ð40Þ

Bhj ∈ σM ×N ð0; 1Þ: ð41Þ

Our parameters in this model forMij consist of the scaling
factor σM which sets the value of hm2

ai and distribution
shaping index βM. In this basis, the role of the kinetic
matrix is such that Kij is unitary providing only trivial
rotations to the fields (Ukl ¼ 1) and mass matrix following
the process outlined in Sec. II B. Following the consid-
erations in Ref. [15] when setting the initial field con-
ditions, the treatment of the kinetic terms is replaced by
considering the axion vacuum expectation values (vevs) in
the mass-eigenstate basis using an equal field condition
scale parameter, f̄, along with the initial misalignments.
The initial field conditions in this model are defined as

ϕi ¼ Vijf̄1θl: ð42Þ

Figure 6(a) shows the theoretical eigenvalue spectrum of
Mij, following the Marčhenko-Pastur density function for
250 varying values of βM. In Fig. 6(b), we show the
probability density convergence of the eigenvalue spectrum
to the Marčhenko-Pastur law for a large number of fields
(nax ¼ 1000). The MP RMT model parameters are

nax; σM; βM; f̄:

2. WW RMT model (white Wishart Kij=white
Wishart Mij)

It has also been suggested that the kinetic matrix, Kij,
may too be well approximated by a matrix belonging to the
Wishart ensemble on the basis of universality and sym-
metry [26,42,43]. For the purposes of alignment, the
fundamental domain of such a matrix benefits from proper-
ties of eigenvector delocalization and has well-motivated
features for inflationary models. In this model, we include a
kinetic matrix constructed with the same approach for the
mass matrix in Sec. III C 1, where

Kij ¼
�
nax
βK

�
AT
ihAhj; ð43Þ

Ahj ∈ σK ×N ð0; 1Þ; ð44Þ

which in turn introduces the distribution shaping parameter
βK. We begin in the basis defined in Eq. (6). In this basis,
the matrix structure for Kij gives an axion decay constant
spectrum governed by the Marčhenko-Pastur law up to
canonical normalization factors. The mass matrix, Mij, is
now subject to nontrivial unitary rotations used to diago-
nalize Kij. In Fig. 6(d), we show the rotated mass matrix
spectrum for fixed values of βK;M. We use Fig. 6(c) to
display the approximate reduction of the spectral width for
250 different values of βK;M ∈ ð0; 1� via a log-normal
density function fit on the mass spectra.
In the limit βK;M ¼ 1, the mass probability distributions

are well modelled by a log-normal density function. When
βK;M ≠ 1, the mass spectrum is better approximated by
truncated log-normal density functions as the edges of the
distribution are hardened, simultaneously reducing the
spectral width of the distribution. In the limit βK;M → 0,
we observe the convergence to a semicircular distribution
within a significantly more localized mass window. The
WW RMT model parameters are

nax; σM; σM; βK; βM:

3. LF RMT model (spiked Wishart Kij=spiked
Wishart Mij)

Our final RMT model will focus on the case in which we
relax the condition that our submatrices Ahj and Bhj are
formed using statistical distributions defined with zero
mean, where

Ahj; Bhj ∈ σK;M ×Ωð=0; σÞ: ð45Þ

Our choice statistical distribution takes a log-flat prior on
the elements of the submatrices in Eq. (45), using the
motivations of scale invariance highlighted in Sec. III B, as
displayed in Eqs. (46) and (47). The random matrices Kij

and Mij now fall under a class of matrices which exhibit
the properties of a rank-1 spiked Wishart matrix (see
Appendix C). The eigenvalue spectrum of these matrices
presents a bulk distribution governed by the Marčenko-
Pastur law with one single outlier of the order λmax ∼
OðnaxÞ for a nax × nax dimensional matrix. Figure 7 shows
the normalized mass spectrum before basis selection
rotations using nax ¼ 300, demonstrating these features
in the spectrum. The axion decay constants in this model
present a distribution of the form in Fig. 1 (log-scale) and 7
(linear scale) up to canonical normalization factors. An
interesting feature of this model could be the realization of
an eigenvalue repulsion manifesting itself in the form of a
single large decay constant traversing fundamental scales
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while the bulk of the distribution is contained in the
subfundamental limit.
In order to construct our matrices, we choose that each

submatrix is parametrized by two upper and lower limit
parameters for the elements in each matrix, denoted by kmin,
mmin and kmax, mmax. The elements of each submatrix Ahj

and Bhj are drawn from

log10Ahj ∈ U½kmin; kmax�; ð46Þ

log10 Bhj ∈ U½mmin; mmax�: ð47Þ

In accordance with the previous WW RMT model, the
eigenvalue spectrum of Kij is subject to nontrivial rotations
from the unitary rotations acting on Kij where we also
observe a log-normal distribution convergence of the mass
spectrum in the mass-eigenstate basis in the limit
βK;M ¼ 1. Unlike the WW RMT model when βK;M ≠ 1,
the outlying eigenvalues present in the mass matrix in the
initial basis cause the formation of two outlying regions
with eigenvalues separated from the bulk region of the
spectrum in the mass-eigenstate basis. The total spectral
width of the eigenvalues is not reduced for values of
βK;M ≠ 1 as displayed in Fig. 6(d), demonstrating the
importance of the outlying eigenvalues in the initial basis.
This model retains a nonzero probability density for fields
with masses away from the bulk of the spectrum as shown
in Fig. 6(f).
Following the treatment used in Fig. 6(c), we show the

theoretical log-normal density function fit for 250 values
of βK;M ∈ ð0; 1� for the LF RMT model in Fig. 6(e).

The separation of the distribution into three populations, a
bulk and two repulsed regions when βK;M ≠ 1, induces a
skew in the log-normal density functions. This does not
provide a very accurate theoretical fit for the total form of the
mass spectrum; however, we use this as an approximated
measure of the effect of singular repulsed eigenvalues in the
initial basis to compare to models without the properties of
spiked population spectra. The skew in these distributions
when βK;M ≠ 1 gives an indication of the potential magni-
tude of divergence away from the cosmologies obtained
when modeling both Kij and Mij with standard Wishart
matrices. The LF RMT model parameters are

nax; kmin; kmax; mmin; mmax; βK; βM:

D. M-theory axiverse

In this section, we present a special type of RMT model
motivated by the M-theory axiverse [16]. As we will see
shortly, the matrix structure in the M-theory framework is
constructed in a manner similar to the previous RMT
models, guaranteeing positive definiteness in the axion
masses. Since the moduli stabilization under the framework
of G2 compactified M-theory has already been extensively
studied in Refs. [44–46], we choose to explore the
probability distribution of mass matrix eigenvalues and
axion decay constants in the context of this framework. For
technical details, see Appendix B 1.
To formulate the structure ofKij andMij, we begin with

a continuation of the discussion in Appendix B 1, starting
with an expansion up to quadratic order of the super-
potential given in Eq. (B5) which gives the mass terms with
the following mass matrix,

Mij ¼
Xnax
k¼1

XN
r¼1

4F ~Λ3
rbrNk

r

M3
S

e−br
P

nax
m

Nm
r smbrNi

rbrN
j
r ð48Þ

¼
XN
r¼1

4F ~Λ3
rCr

M3
S

e−Sr ~Ni
r
~Nj
r; ð49Þ

where ~Nj
i ¼ biN

j
i is a rectangular matrix of size ðnax; NÞ,

Cr ¼
Pnax

k
~Nk
r and Sr ¼

Pnax
m ~Nm

r sm. The dimensions of
the ~Nj

i are controlled by the axion population size, nax, and
the number of instantons, N. This expression allows us to
parametrize the mass matrix term as the product of two
rectangular matrices,

Mij ¼
1

N
AirAjr: ð50Þ

This leaves us with the following form for the submatrix,

Air ¼
 
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ~Λ3

rCr

M3
S

s !
e−Sr=2 ~Ni

r; ð51Þ

FIG. 7. LF RMT model nonrotated mass spectrum: Eigenvalue
spectrum of m2

a values for a 300 × 300 matrix, Mij, before basis
selection rotations in the LF RMT model demonstrating the
spiked Wishart spectral properties of the initial mass matrix. The
bulk of the eigenvalue spectrum is governed by the Marčenko-
Pastur law (left inset), which is partnered with one single outlying
eigenvalue of OðNÞ (right inset).
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where i; j ¼ 1;…; nax and r ¼ 1;…; N. Note that Air is a
rectangular matrix of size ðnax; NÞ where the normalization
factor 1=N is introduced to provide a consistent construc-
tion structure compared to the generalized form of the
matrices we consider in our RMT models. Since N > nax,
this implies that the shape parameter, βM, should take
values of βM < 1.
An analysis of the kinetic terms allows us to find the

axion decay constants, fa. In the moduli sector, the Kähler
potential takes the form

K ¼ − lnðVXÞ; ð52Þ

where VX is a homogeneous function of the moduli si, of
degree α depicting the volume of the hidden manifold in
11-dimensional Planck length. One important feature of
the Kähler potential is that it leads to a nontrivial Kähler
metric (which in this case is also the axion kinetic matrix)
Kij ≡ ∂2K

∂zi∂zj which is a homogeneous function of degree

minus 2. We can assume the simplest form parametrizing
the nontrivial kinetic matrix is

Kij ¼
aiaj
sisj

; ð53Þ

where ai are constants and si represent the moduli fields.
However, a generic matrix usually contains negative
eigenvalues. To avoid such an issue, we will allow for
the further simplification of the kinetic matrix such thatKij

is diagonal,

K ¼ diag½ða=sÞ�: ð54Þ

It has been shown that such a form for the kinetic matrix
can relieve tensions arising from dark radiation constraints
in string axiverse models [47]. For convenience, we
introduce a rescaling of the parameters so that all the
physical parameters we consider are dimensionless,

F → F=M2
H; ð55Þ

~Λi → ~Λi=MS; ð56Þ

Mij → Mij=M2
H; ð57Þ

ð58Þ

such that

Mij ¼
XN
r¼1

4F ~Λ3
rCre−Sr ~N

i
r
~Nj
r; ð59Þ

where we note that the moduli and axion fields are
expressed with respect to the string scale.

The results of moduli stabilization in M-theory show that
the moduli vacuum expectation value should range between
values of ∼ð10 → 100Þ in units of the string scale [44–46].
It is then natural to assume that our choice of prior should
be a uniform distribution where

PðsiÞ ¼ Uðsmin; smaxÞ; ð60Þ

with smin ≈ 10, smax ≈ 100. We also explore the values of
the moduli vevs using a Gaussian distribution in some of
our example cosmologies in Sec. IV D:

PðsiÞ ¼ N ðs̄; σsÞ: ð61Þ

There is no assumption made on the topology of
the manifold such that the Kähler metric parameters are
fixed to

ai ¼ 1: ð62Þ
The axion decay constants are then distributed between

fa;i ¼
ffiffiffi
2

p
ai=si ∼ ð10−2–10−1Þ: ð63Þ

The shape of the M-theory axion decay constant spectrum
using arbitrary limits of the moduli vev distribution in
Eq. (60) is shown in Fig. 1. The volume of the correspond-
ing 3-cycles is calculated from

Vi
X ¼ ImðFiÞ ¼

Xnax
k¼1

Nk
i sk ¼

1

2π

Xnax
k¼1

~Nk
i sk; ð64Þ

whereFi are the gauge kinetic functions (see Appendix B 1)
and in the final step we make the assumption that the
membrane instanton integers are equal to unity (bi ¼ 2π).
Since we are considering M-theory models which are
grand unified theories (GUTs) in their low-energy limits,
at least one of the gauge kinetic functions must give rise to
the expected value of the grand unified coupling con-
stant αGUT ¼ 1=VX ≈ 1=25.
The distribution of ~Nk

i is uniform from 0 to ~Nmax such
that

Pð ~Nk
i Þ ¼ Uð0; ~NmaxÞ: ð65Þ

For some of our example cosmologies in Sec. IV D, the
values of ~Nk

i are sampled using a Gaussian distribution:

Pð ~Nk
i Þ ¼ N ðN̄; σNÞ: ð66Þ

In Fig. 8, we show the enhanced probability density for
retrieving values of VX ≈ 25 when using ~Nmax ≈ 0.6.
Increasing the value of ~Nmax serves to increase the spread
of the distributions for VX at values centered around
VX > 25 which are too high for GUT coupling constant
unification. Due to the uniform nature of the distributions,
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we can chose to parametrize the axion mass distribution
using the average value of 3-cycle volume distribution hVXi
instead of ~Nmax as they are related by

hVXi ¼
nax ~Nmaxhsi

4π
: ð67Þ

The values of the other mass scales and coefficients coming
from the form of the mass matrix defined in Eq. (59) are
taken as the following values,

~Λi ¼ Λ ¼ Oð1Þ; ð68Þ

F ¼ 5.4 × 10104
�

m3=2

1 TeV

�
; ð69Þ

where the large value of F is imposed by our choice of
units. The mass scales in the mass matrix, Mij, are
measured in units of MH, and the scale of the quantities
which give the value of F come naturally from a
SUSY/high-energy physics/string theory perspective.
These choices are made to account for the fact that
nonperturbative scales are expected to show up around
the string scale. The SUSY breaking order parameter is
approximated using m3=2MPl=M2

H where the gravitino
mass is assumed to be of order 1 TeV from naturalness
arguments. In practice, we will use a single scale
parameter, FΛ3 ∼Oð10105Þ, which we allow to vary
in our MCMC analysis.
In each panel in Fig. 9, we construct the probability

density plots for the axion mass spectrum using 10,000
points in the parameter space. The left-hand panel of
Fig. 9 shows the effect of varying βM for fixed values
of hVXi. As βM → 0, it shifts to the mass spectrum to
be centered around higher mass scales while also
decreasing the spread of the masses. In the right-hand
panel of Fig. 9, we show the expected result that larger
values for the average volume lead to the axion masses
centered about smaller values with a wider spread. For
both of these configurations, we see axion masses
covering many orders of magnitude, which is a key
result common to many string axiverse models.

FIG. 8. MT RMT model 3-cycle volume distribution spectra:
Probability density plots for the 3-cycle volume using
~Nmax ¼ 0.6, 0.8, 1.0 with an axion population size, nax ¼ 10.
The moduli vev is uniformly distributed between 10 to 100 in
units of the string scale, PðsiÞ ¼ Uð10; 100Þ. The probability
density of retrieving the GUT value, VX ¼ 25, is found to be
enhanced for values of ~Nmax ≈ 0.6.

FIG. 9. MT RMT model mass spectra: Left panel: Probability density plots for axion masses using the fixed value hVXi ¼ 25 for
βM ¼ 1.00, 0.75, 0.50, 0.25, 0.05. Right panel: Probability density plots for axion masses with fixed βM ¼ 0.5 for hVXi ¼ 30, 35, 40,
45, 50, 55. Both panels are constructed using 10,000 iterations in the case of an axion population size, nax ¼ 10.
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IV. RESULTS I: DARK SECTOR COSMOLOGIES

We define two example cosmologies via contributions to
the total energy density at the present time:

(i) Dark matter cosmology.—We will refer to the
effective dark matter density as ΩDM coming from
a population of axions. The total matter density
parameter is therefore Ωm ¼ Ωb þ ΩDM where we
decompose the total density into four components
Ω ¼ Ωb þ ΩDM þ ΩΛ þΩr. We initially look for
values of ΩDM falling in the very rough bounds,
0.2 ≤ ΩDM ≤ 0.4, in our example cosmologies with
proper constraints addressed later.

(ii) Dark energy cosmology.—We will refer to the
effective dark energy density as ΩDE coming from
a population of axions. We set ΩΛ ¼ 0 where we
decompose the total density into three components
Ω¼ΩDEþΩmþΩr. We initially look for values of
ΩDE falling in thevery rough bounds0.6≤ΩDE≤0.8.

We define the rough limits of the axionmasses we require
for each cosmology as the following. If axions are to account
for the total dark matter, axion field oscillations should
roughly begin in the radiation dominated era. This requires
at least one axion with a mass larger than the Hubble rate at
matter-radiation equality, which defines the mass limit,

ma ≳ 10−27 eV: ð70Þ
The energy density of fields above this limit scales just as
nonrelativistic matter throughout the matter dominated era,
fixing them as plausible dark matter candidates. Axions
behaving as dark energy are limited tomasses defined by the
upper mass bound,

ma ≲ 10−32 eV; ð71Þ
as motivated by Ref. [31].

Our example figures in Secs. IVA to IV C contain data
for 2500 example cosmologies. Our contour density plots
are constructed using 50 × 50 gridded scans in multidi-
mensional parameter space with Gaussian filtering and
cubic spline interpolation. The M-theory examples in
Sec. IV D use 10 × 10 (Figs. 17 and 19) and 20 × 20
(Fig. 18) gridded scans with cubic spline interpolation,
consisting of ten samples at each point, giving a total of
1000 and 4000 cosmologies respectively.

A. MP RMT model

In Figs. 10 and 11, we present our first example
cosmologies in the simplest RMT model containing the

FIG. 10. MP RMT model DE cosmology examples: Left panel: Probability density plots for nax ¼ Oð1Þ → Oð100Þ with fixed values
of σ2M according to the approximation in Eq. (72) with further fixed parameter values βM ¼ 0.5 and f̄ ¼ 1. Right panel: Approximate
degeneracy for values of βM ∈ ð0; 1� for the axion dark energy density parameter ΩDE using nax ¼ 20 axions with fixed parameter
values σ2M ¼ 0.05 and f̄ ¼ 1.

FIG. 11. MP RMT model DM cosmology example: Contour
density plots for the axion dark matter density parameter ΩDM for
σ2M and nax ¼ Oð1 → 10Þ using different fixed values of the
initial field displacement scaling, f̄.
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smallest number of parameters to consider. The matrix
eigenvalues have a bounded spectral width governed by
the Marčenko-Pastur distribution law. When fixing our
mass spectrum shape with βK;M ¼ 0.5, this sets a
configuration where each field provides approximately
degenerate contributions to the total energy density up to
variations in both the initial fields misalignment and
random rotations from our choice of basis due to the
absence of any treatment of Kij. The scale of the mass
distribution defining the nature of the fields, fixed by
σ2M, acts as a free scaling parameter to switch between
each type of cosmology.

1. MP DM

In Fig. 11, we display contour density plots for
different mass distribution scales against the axion
population size at fixed values for the initial field
condition scaling. We demonstrate the emergence of
axion dark matter density domination at the present time
with large initial field displacement scalings, f̄ ≈Mpl
for nax ≳ 1. See Appendix D for a visual example of
the evolution of the cosmological densities in these
configurations.
In each of our RMT models, the form of the mass matrix

is such that a population of axions behaving as the total
dark matter requires initial field oscillations onset at a scale
where the requirements on the heaviest axion mass in the
population set the order of the total mass scale, σ2M ≫ MH.
The equal field conditions, f̄, along with the uniform
sampling of θ restrict the total number of axions, nax,
allowed in the population at any given mass scale. Only
when nax ≈ 1 do we recover the potential for values ofΩDM
consistent with expectations presenting an approximate
degeneracy along the total mass scale interval we consider.
Larger population numbers feel both the linear sum of field
density contributions along with the convergence of the
initial misalignments in our prior sampling to their aver-
aged value, hθi ≈ π=2, giving the large region of parameter
space returning values of ΩDM ≳ 0.8.
A significant increase in the potential for larger pop-

ulation sizes returning values of 0.2 ≤ ΩDM ≤ 0.4 is seen
by relaxing the scaling of the initial field displacements to
f̄ ¼ Oð0.1MplÞ as demonstrated in the lower panels. The
degeneracy relationship between the number of fields
allowed in the population and the mass distribution scale
becomes more apparent in the second and third panels. As
expected, larger values of nax quickly return values of ΩDM
far in excess of what is required as the mass distribution
scale is increased. Our simple example highlights this when
f̄ ¼ 0.1Mpl, mass distributions with σ2M ≈ 1012 require a
population size, nax ≈ 10 whereas Distributions with σ2M ≈
1017 require nax ≈ 1for acceptable values of ΩDM. The
lower panels shift the preferred values of σ2M as we reduce
the scaling for the initial field displacements.

2. MP DE

It is easy to find parameters of the MP model that give
rise to DE as the requirements are simple. Our MP DE
cosmologies begin with the approximation that the mass
scale at which axion field oscillation begins follows the
simple limiting constraint, hm2

ai≲M2
H. We maximize the

range of the initial field conditions by fixing f̄ ¼ Mpl as
well as fixing the shape of the distribution with βM ¼ 0.5.
When searching for a population of nonoscillating fields,
we approximate the value of σ2M for a significant number of
low mass axions driving a phase of acceleration using

σ2M ≈
σ2MH

nax
≈

1

ð5 → 100Þ ≈ 0.2 → 0.01: ð72Þ

In the left-hand panel of Fig. 10, we display the probability
densities for nax ¼ Oð1 → 100Þ for corresponding values
of σ2M determined by Eq. (72). Seemingly larger values of
nax tailor the potential for desirable values of ΩDE by
reducing the spread. A population size of nam ¼ 100
returns a high probability density of cosmologies with
values of ΩDE contained in the window of interest. As
nax → Oð100Þ, the initial field misalignments in the pop-
ulation will converge to their averaged value hθi where
the linear combination of the field density contributions
cause the probability density of the dark energy density
parameter to converge toward the modal value. Decreasing
the value of nax increases the chance of returning cosmol-
ogies failing the acceleration criterion, ä > 0 at z ¼ 0 used
in Sec. V B.
Using the relationship in Eq. (72), we address the role of

the final parameter in this model, βM. The right-hand panel
of Fig. 10 shows the spread of ΩDE values for fixed values
of βM, distributed about σ2MH

=nax ¼ 1=20. We highlight
the approximate degeneracy across our five fixed values of
βM. Given the statistical sampling of βM with either a
uniform distribution or Gaussian sampling as shown in
Appendix B 3, only extremal values will induce limited
variations to the spread of ΩDE as compared to βM ¼ 0.5
with each value retaining a mean value of ΩDE ≈ 0.65.

B. WW RMT model

In Fig. 12, we display contour density plots for intervals
of two-dimensional parameter space for each parameter in
the WW RMT model.

1. WW DM

The parameters in this model which we allow to run are
scanned over the following intervals,

log10ðσ2KÞ ∈ ½−4.0;−1.0�; ð73Þ

log10ðσ2MÞ ∈ ½12.00; 17.0�; ð74Þ
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βK;M ∈ ½0.01; 1.0�; ð75Þ

nax ∈ ½1; 20�; ð76Þ

where we use the following values if parameters remain
fixed:

log10ðσ2KÞ ¼ −2.60; ð77Þ

log10ðσ2MÞ ¼ 5.70; ð78Þ

βK;M ¼ 0.5; ð79Þ

nax ¼ 20: ð80Þ

In the top row of panels, we show the banding of dark
matter density while increasing the distribution scale of our
kinetic matrix, σ2K. As seen in the upper left panel, the
probability density for axion dark matter domination
widens as the distribution scale of the initial mass matrix,
σ2M, leaves the lower dark matter mass limit. Indeed, it is
expected that the limited spectral width of the matrix

FIG. 12. WW RMT model DM and DE cosmology examples: Contour density plots for two-dimensional slices of the model
parameter space for each parameter in the WW RMT model. Upper-triangle panels: Example contours for excluded regions of
parameter space for the axion dark matter density parameter, ΩDM, using the intervals outlined in Eqs. (73)–(75) along with fixed values
in Eqs. (77)–(80). Lower-triangle panels: Example contours for excluded regions of parameter space for the axion dark energy density
parameter, ΩDE, using the intervals outlined in Eqs. (81)–(83) along with fixed values in Eqs. (85)–(88).
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spectra in these models is such that we should not expect
large amounts of freedom to reposition ourselves in the
parameter space before traversing into the bounds of the
contours with nondesirable quantities of dark matter.
The limited widths of the purple and mauve bands indicate
the freedom we have to center the decay constant spectra at
fixed mass scales. The gradient of the bands corresponds to
the notion that in general one would expect dark matter
densities far-in excess of the value required when consid-
ering axion populations at the mass scale limit detailed in
Eq. (A9), unless we compensate the distribution scales for
Kij. Indeed, we would expect, sub-GUT scales for our
kinetic matrix distributions in this model when addressing a
significant population size, nax.
The convergence of the contour bands to values

of ΩDM ≲ 0.9 is shown in the upper right panel for a
spectrum of high scale decay constants when nax ≲ 5.
Correspondingly, the panel below details the convergence
in the same regard as the mass matrix scale increases. The
bands widen when considering a larger number of fields
nax ≈Oð10Þ, at lower mass scales in the approximate
regions (purple and mauve) for fixed σ2K. Likewise, at
lower values of σ2K, we see a widening when nax ≈Oð10Þ.
The simplicity of the matrix structure we use will provide
very comparable results between the WW RMT and MP
RMT models, with approximate comparisons to be drawn
from the middle right-hand panels of Fig. 12 and the panel
second from the top in Fig. 11. Indeed, it is expected the
averaging of the field contributions with nax ≳Oð10Þ will
give comparable results when using the equal initial field
conditions for the field vevs in Eq. (42), given the bounded
spectra for fa when partnered with the random rotations
and sampling on the misalignments.

2. WW DE

Our WW DE examples reside in the lower triangle
of panels in Fig. 12. Unlike this model’s dark matter
counterpart, the requirement for nonoscillating fields with
the limiting upper mass bound in Eq. (71) at the approxi-
mate scale σ2M ≈MH will be more susceptible to both
the freedom in the distribution for fa and the shape of the
rotated mass spectra. Our parameters allowed to run are
scanned over the following intervals,

log10ðσ2KÞ ∈ ½−2.0; 0.0�; ð81Þ

log10ðσ2MÞ ∈ ½−2.0; 1.0�; ð82Þ

βK;M ∈ ½0.01; 1.0�; ð83Þ

nax ∈ ½1; 100�; ð84Þ

where if parameters remain fixed we use the following
values:

log10ðσ2KÞ ¼ −0.60; ð85Þ

log10ðσ2MÞ ¼ −1.65; ð86Þ

βK;M ¼ 0.5; ð87Þ

nax ¼ 20: ð88Þ

In the upper left, lower left and lower central panels, we
show the relationship between the population size and the
scale of each of the distributions for the physical param-
eters. In general, we do require scaling parameters of the
order σ2K ≈Mpl and σ2M ≈MH (upper left panel) with the
regions of parameter space with either σ2K ≲ 0.1Mpl or
σ2M ≲ 0.1MH quickly providing insufficient dark energy
density unless the population size is increased to nax →
Oð100Þ (lower left and central panels).
In the upper and left central panels,we show the preference

for the incorporation of the full tail of the distributions
corresponding to values of βK;M → 1 as the defining scales
of the distributions are increased. The reduction of the
spectral width gives a degeneracy in the contours for values
of βK;M ≲ 0.5 which can be seen more prominently in the
upper central panel following fixed values for σ2M. The
preferential defining shape of the submatrices is dependent
on the distribution scales. In the left central panel, we see the
recovery of a full degeneracy across all values of βK;M when
the initial conditions for the fields are at insufficient scales
required for any form of axion dark energy presence at the
current time.
Finally, in the lower right panel, we show the relationship

between the shape of the distribution and the axion
population size. Fixed population sizes give a degeneracy
for values βK;M ≲ 0.5. The contour curvature as nax →
Oð100Þ potentially corresponds to a spreading of the mass
spectrum, increasing the probability density of lighter
fields. It could also potentially correspond to the inclusion
of heavier oscillating late time dark matter-like fields at
z ¼ 0 as the tails of the distributions are sampled for
large nax.

C. LF RMT model

The LF RMT model examples in this section investigate
potential differences in our example cosmology outputs
from the OðnÞ enhanced eigenvalues present in each of the
spectra for our physical quantities when compared to the
limited bulk spectra in the previous models. It is worth
noting by construction our examples should see very little
variation compared to the WW RMT models output due to
the order of magnitude of our axion population number we
select. We will leave the study of large population numbers
where our largest eigenvalues could obtain significant
enhancements in the form of both large singular decay
constants and a widening of the spectral width of the mass
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distribution for future study. We choose to limit the number
of parameters we consider in our examples in this model by
fixing the values of our lower bounds on our distributions
controlled by kmin and mmin throughout. The values of hfai
and hmai are scaled by changing the values of kmax and
mmax accordingly.

1. LF DM

We are interested in the role of a spectrum of high
scale decay constants in the low mass axion window for LF
DM, to explore the possible effects of the largest eigen-
values in both spectra. Our LF DM parameter intervals are
defined as

kmax ∈ ½−2.5; 0.0�; ð89Þ

mmax ∈ ½4.5; 8.5�; ð90Þ

βK;M ∈ ½0.01; 1.0�; ð91Þ

nax ∈ ½1; 30�; ð92Þ

with the defined fixed values

kmin ¼ −5.0; ð93Þ

kmax ¼ −1.0; ð94Þ

mmin ¼ 4.0; ð95Þ

mmax ¼ 6.0; ð96Þ

nax ¼ 20; ð97Þ

βK;M ¼ 0.5: ð98Þ

The values in Eq. (93) are chosen to fix the lowest
scale for hfai for the bulk of the spectrum to sub-GUT
values when kmax is at its lowest value. The upper limit
of kmax corresponds to the decay constant scale,
hfai ¼ Oð0.1MplÞ. Our lower limit on mmin in Eq. (95)
is to ensure we have fields oscillating with masses
ma > 106MH. The maximum fixed value of mmax corre-
sponds to fields drawn about mass distribution centered
around hmai ≈Oð107MHÞwith the upper limitmmax giving
a mass distribution scale, hmai ≈Oð109MHÞ.
Figure 13 details regions of two-dimensional parameter

space for each model parameter against values of βK;M
defined in the interval in Eq. (91). In each of the panels
we reproduce the approximate degeneracy across all
values of βK;Mas shown in the corresponding panels in
Fig. 12. It is clear that the this model will offer little
deviation from the previous model considerations for dark
matter cosmologies given the low number of fields we are
considering and the mass scales we are considering. In the
middle panel, we see the clustered heat density for large
values of ΩDM as we scale the distribution for fa toward
Mpl, once again indicating a preference away from values
of fa ≈Mpl. The left-hand panel shows a measure of the
potential, at fixed physical parameter scales, to find
acceptable quantities of dark matter as the population
size increases via the “speckled” nature of the probability
densities.

2. LF DE

In both Figs. 14 and 15, we introduce a small step into
the three-dimensional parameter space for ΩDE contour
densities. We initially focus on the configuration where the
scales of our dimensional quantities are determined by
mmin ¼ kmin andmmax ¼ kmax. This ensures that our rotated
mass spectrum is centered about hmai ¼ MH with a
spectral width determined by the value we fix for kmax.

FIG. 13. LF RMT model DM cosmology example: Density heat maps for the axion dark matter density parameter, ΩDM, for values of
βK;M ∈ ð0; 1� along with the remaining model parameters. We use nax ¼ ½1 − 30� axions and varied limits on both the decay constant
spectra parametrized by kmax and the mass spectra parametrized by mmax.
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Our LF DE parameters which we allow to run are scanned
over the following intervals,

kmax ∈ ½−3.0; 0.0�; ð99Þ

mmax ∈ ½−1.0; 0.5�; ð100Þ

βK;M ∈ ½0.01; 1.0�; ð101Þ

nax ∈ ½1; 100�; ð102Þ

with the following values of the fixed model parameters:

kmin ¼ mmin ¼ −5.0; ð103Þ

kmax ¼ mmax ¼ 0.0; ð104Þ

nax ¼ 20; ð105Þ

βK;M ¼ 0.5: ð106Þ

Figure 14 shows the contour densities for βK;M against
nax for stacked decay constant distribution scales, empha-
sizing the previously determined preference for high scale
decay constants for sufficient ΩDE when using mass
centered distributions about MH. Lower values of kmax
slowly recover the degeneracy across all values of βK;M

providing little dark energy density. For kmax ¼ 0.0, as the
population number nax increases significantly, a preference
is made for the inclusion of the full tail of the mass
spectrum as βK;M → 1, maximizing the spread of mass
values fields can take. Values of kmax minimally offset from
this value require βK;M → 0 to ensure a large population of

fields have approximately degenerate and sufficient mass
values (≈MH), in order to furnish our cosmologies with a
sufficient quantity of dark energy density at the cur-
rent time.
Correspondingly, Fig. 15 presents contour density plots

for βK;M against nax for stacked mass distribution scales
offset with respect to the scale hmai ≈MH fixed by mmax.
Each configuration uses a fixed distribution of high scale
decay constants [Eq. (104)]. It is clear in the upper panel
that distributions offset toward the upper mass limit in
Eq. (71) quickly produce high probability densities for
cosmologies with axion dark energy domination. Scales
centered about hmai ≈MH increase the width of the
contour bands with acceptable values of ΩDE (green and
light green). Large population sizes where ðnax ≈Oð100ÞÞ
at this scale display a preference for a wider bulk in the
mass distribution for values of βK;M → 1, a feature con-
sistent with the previous model’s behavior. Mass scales
offset below MH (mmax ¼ −0.5) give a preference for
βK;M → 0 while also requiring large population sizes. A
further increase in the offset below the mass scale of MH
recovers approximate degeneracies across all values of
βK;M with significantly reduced probability densities for
the required values of ΩDE.

D. MT RMT model

In this section, we look at cosmologies returning the
required values of ΩDM and ΩDE drawn from the M-theory
landscape where we fix the number of fields in our
examples to nax ¼ 10 throughout. Our choice of initial
scales we use consists of the values given in Eqs. (68) and
(69). In order to account for gauge couplings consistent
with the known elementary particles, we chose to sample

FIG. 14. LF RMT model DE cosmology example for kmax
limits: Contour density plots for the axion dark energy density
parameter, ΩDE for βK;M and nax ¼ Oð1 → 100Þ for different
fixed values of kmax.

FIG. 15. LF RMT model DE cosmology example for mmax
limits: Contour density plots for the axion dark energy density
parameter, ΩDE for βK;M and nax ¼ Oð1 → 100Þ for different
fixed values of mmax.
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the average values for the 3-cycle volume in the interval
hVXi ¼ ½25; 60�. In Figs. 17–19, we make use of narrow
prior windows incorporating Gaussian distributions in our
sampling (see Sec. IV D 3).

1. MT DM

For our initial look at how axions in the M-theory
axiverse model could give rise to dark matter, we begin by
fixing the average value of the 3-cycle volume distribution,
hVXi to maximize the probability density of retrieving
axions with masses in the window

10−32 eV ≤ ma ≤ 10−25 eV; ð107Þ
which is done by selecting the following values:

hVXi ¼ 45; 50; 55; 60: ð108Þ

Figure 16 gives the probability density plots for the axion
dark matter density parameter, ΩDM, for each of our
selected values of hVXi in Eq. (108).
In the upper panel of Fig. 16, we show the high

probability density to return values of ΩDM ≲ 0.05. The
lower panel of Fig. 16 details the spread of these values on a
logarithmic scale with an enhanced probability density of
returning values of ΩDM ¼ Oð10−2Þ. The low quantities of
dark matter arise from the M-theory mass spectrum con-
sistent with the many axiverse model spanning many
decades giving a significantly lower percentage of cosmol-
ogies with values of ΩDM falling in the window 0.2 ≤
ΩDM ≤ 0.4 as compared to the localized scale RMT models
of the string axiverse with far more localized spectra.
The spread of the axion masses is such that for the average
3-cycle volume distribution values, hVXi ¼ 45 and
hVXi ¼ 60, we only see an increase in the number of

cosmologies with values of ΩDM falling in the window
above go from ≈3% to ≈8.5%.

2. MT DE

Initial searches for axions with the properties of dark
energy in the M-theory model show that there is no mass
distribution which gives any form of satisfactory proba-
bility density for values of the dark energy density
parameter, ΩDE, falling in the bounds 0.6 ≤ ΩDE ≤ 0.8.
This feature arises due to the nature of the axion decay
constants in the model which are typically too small,
fa ∼ a=si ∼ 10−2Mpl. The dark energy density can be
increased using a significantly larger number of axions
or utilizing the alignment mechanism which could poten-
tially sufficiently enhance the decay constants; however,
our assumption on the diagonal form of the kinetic matrix
in Eq. (54) does not allow for the inclusion of any such
alignment mechanism. Therefore, we postpone an initial
look into the possibility of sampling the M-theory axiverse
models for dark energy to a topic of interest for future work.

3. M-theory toy model

In order to paint a better picture of the potential of the
dark sector in the M-theory model, we consider a toy model
with narrow prior probability densities of the associated
hyperparameters in order to address some of the issues
highlighted in previous sections. In particular, if the priors
on the moduli vev s and the instanton index parameter
~Nj
i , which control the volume function, are narrow, our

M-theory mass distributions will generically only spread
over a few orders of magnitude instead of the many decades
we would typically expect. As a result, the axion dark
sector density parameters, ΩDM and ΩDE, will also be
concentrated around particular values. This configuration
allows us to study correlations between mean values of the
M-theory model parameters in a relatively simple manner.
We restrict the sampling of the parameters by fixing the

priors distributions for s and ~Nj
i to be drawn from a

Gaussian distribution, N ðμ; σÞ. We limit the width of the
prior sampling by fixing to the distribution standard
deviation for s and ~N to σs ¼ 1 and σ ~N ¼ 0.01 respectively.
For our dark matter examples, we simulate cosmologies for
a range of mean values of s and ~Nj

i as shown in Fig. 17. The
contour density plot shows a trend of hyperbolic constraint
as expected from the relation VX ∼ s̄ × N̄. Our example
cosmologies where we allow for variations in βM are given
in Fig. 18.
When considering dark energy, this toy model gives us

quick insight on how much enhancement the decay con-
stants could require in the M-theory model. We study this
effect by parametrizing the enhancement by the factor
~f ¼ f0a=fa. Figure 19 shows that the enhancement factor
necessary to accomplish the observed dark energy is of the
order fa ∼ ½10–100�.

FIG. 16. MT RMT model DM cosmology example: Probability
density plots for the axion dark matter density parameter,ΩDM for
hVXi ¼ 45, 50, 55, 60 presented in both linear and logarithmic
scales.
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V. RESULTS II: THE STRING AXIVERSE AS A
BAYESIAN NETWORK

A. Bayesian networks

We present here some brief examples treating the string
axiverse as a Bayesian network, following the Bayesian
networks approach to inflation in Ref. [48]. A complete
treatment will be presented in a forthcoming paper. A
generic Bayesian network for axion cosmology is shown

in Fig. 20. We apply the Bayesian network using MCMC
techniques. For this purpose, we use the affine-invariant
ensemble sampler [49] implemented in EMCEE [50]. Plots
detailing the constraints for model hyperparameters are
made using CORNER [51].
The cosmological parameters are p⃗ ¼ ðΩrh2;Ωmath2;

ΩΛh2Þ. In principle, the cosmological parameters are deter-
mined stochastically from the hyperparameters of a higher
level distribution, though in practice here we take these as
fixed Dirac delta distributions determined by the model
under consideration. The matter density Ωmat ¼ Ωb þΩc
contains ordinary cold dark matter (CDM) and baryons,
and the total matter density includes in addition the
contribution from axions that have begun oscillations:
Ωm ¼ Ωmat þ Ωosc

a . The axion model parameters fixed by
the theory are fmig and fϕig. Given the complete set of
model parameters, the quasiobservables are found deter-
ministically by solving the equations of motion. For more
details on the numerics, see Appendix A.
The level 1 (L1) theory hyperparameters stochastically

determine the model parameters fϕig and fmig. Model
selection (theory L2) sets the model, the number of axions
and the prior distributions for the L1 hyper parameters. The
theoretical modeling from L1 to the model parameters
accounts for treating the axion potential as a pure mass
matrix and in fixing the moduli. Theoretical modeling and
cuts going from L1 to the quasiobservables includes a cut
on the maximumma and the choice of cosmological model.
The quasiobservables are the fractional densities in each

part of the dark sector, the Hubble parameter, the redshift of
matter-radiation equality and the acceleration of the scale
factor. In principle, we could consider also the evolution of
the background quantitieswith redshift. For simplicity in the

FIG. 17. MT RMT model DM cosmology example with narrow
priors: Contour density plot for the axion dark matter density
parameter, ΩDM, with narrow priors for the moduli vev, s, and

instanton index parameter, ~̄N.

FIG. 18. MT RMT model DM cosmology example with narrow
priors: Contour density plots for the axion dark matter parameter,
ΩDM for βM and using narrower priors on the instanton index

parameter ~̄N.

FIG. 19. MT RMT model DE cosmology example with narrow
priors: Contour density plot for the axion dark energy parameter,
ΩDE using narrower priors for ~N along with an enhancement
factor on decay constant fa.
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examples shown, we simply apply a Gaussian likelihood to
Ωm, h, and zeq, assuming the Planck (2015) TTþ lowP
results [2] presented in Table II. We assign axions to the
matter or DE density according to whether the equation of
state has begun oscillating. We also apply a cut demanding
an accelerating expansion of the universe, ä > 0.
Our treatment of the quasiobservables should be con-

sidered only as giving approximate constraints on the
models. Our models can have nontrivial effects on the
equation of state for dark energy, wðzÞ, and for light DM
axions also on structure formation and the CMB power
spectrum [31], which are not accounted for in the simplified
quasiobservables with Gaussian likelihood.
In ordinary ΛCDM, Ωm, zeq and h are not independent.

However, in axion models, the change in the equation
of state at late times can alter these relationships by the
creation of additional matterlike axion density after zeq. Our
use of zeq as an independent quasiobservable from the
matter density and h serves as an approximation of the
constraints of Ref. [31], which disfavor large energy

densities of ultralight axions that begin oscillating after
equality. We ignore covariance between the quasiobserv-
ables for the same reason that dependences are not the same
in axion models as in ΛCDM.
Our quasiobservables are particularly simple. A more

advanced compression of the CMB, baryonic acoustic
oscillation and growth data appropriate for DE models is
given by the treatment of Refs. [53,54]. In this treatment, the
CMBdata are compressed into a vector of measurements for
the matter densities, matter power spectrum amplitude and
the angular size of the sound horizon, including covariance.
Use of a wide variety of data sets will be possible by
integrating our random axion models into COSMOSIS [55].

B. Constraints on the string axiverse

All the constraints shown hold the number of axions
fixed at nax ¼ 20. Numerical accuracy settings are defined
in Appendix A. All EMCEE walkers are initialized from the
priors, and chains are run to convergence as evaluated
according to the spectral method of Ref. [56].

FIG. 20. A Generic Bayesian network for axion cosmology: Arrows indicate the direction of dependence, with dashed arrows
indicating stochastic dependence and solid arrows indicating deterministic dependence.
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1. MP RMT model for DM and DE

The first set of example constraints we show is the
simplest both in model and computational terms. We take
the Marčenko-Pastur Law model and tailor it to provide
DE with a fixed number of axions nax ¼ 20. We fix the
matter density to Ωmath2 ¼ 0.148, including dustlike CDM
and baryons.

The L1 hyperparameters have the following priors (fixed
L2 parameters):

f̄ ∈ U½0.0; 5.0�; ð109Þ
σM ∈ U½0.0; 10.0�; ð110Þ

βM ∈ Uð0.0; 1.0�: ð111Þ

TABLE II. The full range of parameters used in this study including the cosmological input parameters along with the model-
dependent RMT parameters and theoretical M-theory parameters. Our cosmological density and parameter data come from the Planck
2015 TT+lowP likelihood’s in Ref. [2] with our CMB temperature defined using COBE data in Ref. [52].

Parameter Definition Prior/value Eq. Ref.

Cosmological

nax Number of axion fields Oð1–100Þ � � �
fa Axion decay constant Oð10−4Mpl −MplÞ Eq. (8)
ma Axion mass ½10−35 eV; 10−15 eV� Eq. (12)
θi Initial field misalignment U½0; π� Eq. (4)
ϕi Initial axion field conditions F ijθj Eq. (20)
_ϕi Initial field derivative 0 Eq. (17)
F ij Decay constant matrix Model dependent Eq. (20)
a Cosmic scale factor ð10−8 → 1Þ � � �
H0 Present-day Hubble rate hMH � � �
MH Hubble mass scale, 100 km s − 1Mpc−1 2.13 × 10−33 eV � � �
Mpl Reduced Planck mass, 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
2.435 × 1027 eV � � �

ΩDM Axion dark matter density parameter (0,1) � � �
ΩDE Axion dark energy density parameter (0,1) � � �

Planck 2015 TT+lowP parameters

Used as quasiobservable data
h Present-day Hubble rate 0.6731� 0.0096 [2]
Ωm Total matter fraction 0.315� 0.013 [2]
zeq Redshift of matter-radiation equality 3393� 49 [2]

Fixed in a given model
Ωbh2 Physical baryon density (all) 0.022 [2]
Ωch2 Physical dark matter density (DE models) 0.12 [2]
ΩΛh2 Physical dark energy density (DM models) 0.31 [2]
TCMB CMB temperature (COBE, all) 2.725 K [52]

Random matrix theory models
σ2K Kinetic matrix distribution scale ½10−3Mpl; 1Mpl� Eq. (44)
σ2M Mass matrix distribution scale ½10−4MH; 1036MH� Eq. (41)
βK;M Submatrix dimension parameter (0.0, 1.0] Eq. (27)/(28)
f̄ MP RMT model equal field condition scale ½10−9Mpl; 1Mpl� Eq. (42)
kmin LF RMT model kinetic matrix element distribution lower bound −5.0 Eq. (46)
kmin LF RMT model kinetic matrix element distribution upper bound ½−3.0; 0.0� Eq. (46)
mmin LF RMT model mass matrix element distribution lower bound −5.0 (DE), 4.0 (DM) Eq. (47)
mmax LF RMT model mass matrix element distribution upper bound ½−1.0; 8.5� Eq. (47)

M-theory model
F=ðM2

HÞ SUSY order parameter, m3=2Mpl 5.4 × 10104ðm3=2=1 TeVÞ Eq. (55)
m3=2 Gravitino mass 10 TeV � � �
Λ Instanton mass scale, string units [10−5, 1] Eq. (55)
s Averaged value for moduli vevs, string units U½10; 100�=N ðs̄; σsÞ Eq. (60)/(61)
~Nmax Instanton index parameter [0.6,1.6] Eq. (65)
a0 Axion decay constant scale 1 Eq. (62)
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After applying Gaussian likelihoods to h, zeq and Ωm and a
cut for ä > 0, we find the constraints shown in Fig. 21. The
mass parameter and f̄ are constrained to values consistent
with the DE density. The cut on acceleration with the
requirement Λ ¼ 0 leads to a maximum allowed value of
σM. This model shows no preference on βM; with a linear
prior on σM near MH, the width of the mass distribution is
not important.
The degeneracies in the MP DE are demonstrated in

Fig. 22. We show random samples drawn for different
values of ðf̄; σMÞ with βM ¼ 0.5 and demonstrate how the
quasiobservable distributions shift. The models moving
along the degeneracy direction give accelerated expansion
and consistent values of ΩDE which change relatively little.
Perpendicular to this direction, the DE density is too low if
the mass is too large (oscillations begin before z ¼ 0), or
the decay constant is too low (the field displacement is too
small). This has a knock effect of making the acceleration
parameter negative in these models.
Next, we consider the computationally more challenging

but physically more interesting case of the Marčenko-
Pastur Law model for DM. The model is more computa-
tionally challenging than the DE model due to the required
switch in the equations of motion and following of axion
field oscillations before the switch [an average run of
AXIONNET for this model takesOð20sÞ in wall-clock time].
We fix the (nonaxion) matter density to the baryon density,

FIG. 21. Constraints on the MP RMT model for DE: Contours
1 and 2σ in the posterior distribution after imposing likelihoods
and cuts on the quasiobservables. Demanding acceleration with
Λ¼ 0 gives the bound σM < 0.9MH ¼ 1.9×10−33 eV (95% C.L.)
from requiring the total equation of state w < −1=3 with the
fields in slow roll at z ¼ 0.

FIG. 22. Degeneracies in the MP RMT model for DE: We show
random samples form four locations in the ðf̄; σMÞ plane at fixed
βM ¼ 0.5, marked in Fig. 21. Along the degeneracy direction,
the quasiobservable distributions do not change much. Across
this direction, models are disfavored, with the quasiobservables
distributions moving in opposite directions on either side.

FIG. 23. Constraints on the MP RMT model for DM: Contours
1 and 2σ in the posterior distribution after imposing likelihoods
and cuts on the quasiobservables. Fixing zeq with only baryons as
additional matter leads to the constraint log10 σM > 6.6 ⇒
σM > 4 × 10−27 eV (95% C.L.) from requiring the fields to be
oscillating with w ¼ 0 prior to this epoch. There is a mild
preference for β ¼ 0.5.
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Ωbh2 ¼ 0.022, and we fix the physical cosmological
constant density to ΩΛh2 ¼ 0.31 (this gives the central
Planck value for ΩΛ ¼ 1 −Ωm when h ¼ 0.673).
The L1 hyperparameters have priors:

log10 f̄ ∈ U½−9.0;−1.0�; ð112Þ

log10 σM ∈ U½0.0; 8.0�; ð113Þ

βM ∈ Uð0.0; 1.0�: ð114Þ

The posterior distributions are shown in Fig. 23. The
constraint on the matter density parameter, Ωm, fixes a
direction in the ðf̄; σMÞ space. The constraint on zeq leads
to a minimum allowed value of σM. Interestingly, this
model shows a mild preference for βM ¼ 0.5. The

preference for βM ¼ 0.5 is possibly driven by the prefer-
ence for a not-too-wide mass distribution. Preventing the
occurrence of axions with ma < HðzeqÞ selects against
βM ¼ 1 and a wide distribution. There is no strongly
preferred mass for DM above this scale, and so βM ¼ 0 is
disfavored to keep the distribution from becoming singular.
The minimum value of f̄ depends on the maximum value of
σM, fixed by obtaining the relic density.
In both the above considered Marčenko-Pastur models,

we observe a constraint on the characteristic axion mass and
decay constant. The location of the constraint on the mass is
fixed by the quasiobservables and the problem under
consideration: either by the condition on ä for h ≈ 0.7 for
axion DE or by the conditions on zeq andΩm for axion DM.
The modal value of f̄ in the Marčenko-Pastur model is
determined by the required energy density in axions and is

FIG. 24. Constraints on MT RMT model DM: Contours 1 and 2σ in the posterior distribution after imposing likelihoods and cuts on
the quasiobservables. One sided constraints on parameters are driven by the simultaneous requirements of not overproducing DM and
maintaining an accelerating universe at z ¼ 0. The constraints are one sided due to the best-fit region being very narrow, with a plateau in
the likelihood away from this region where the axion density drops to zero, zeq is fixed by the baryons alone, and acceleration is
guaranteed by the cosmological constant.
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thus dependent on our fixed parameter nax ¼ 20. In the DE
example, the modal value (after binning on the linear prior)
is f̄ ¼ 0.3Mpl, reduced from the naive value f̄ ¼ Mpl in a
single axion model by the “N-flation” 1=

ffiffiffiffiffiffi
nax

p
effect

(cf. constraints on axions as quintessence [57]). There is
a similar effect in the DM example, where f̄ is lowered from
the value needed in a single field m2ϕ2 model for the DM
relic density (e.g., Ref. [13]). A model with varying nax
would display a degeneracy in the ðf̄; naxÞ plane.

2. Dark matter from the M-theory axiverse

The M-theory axiverse, with its log-normal mass dis-
tribution and very wide spread, means that the constraints
must be read carefully (in a preliminary investigation, we
found the same considerations apply to the log-flat matrix
elements model). The constraints on the M-theory model
parameters for the case of uniform distributions in s and ~N
are shown in Fig. 24.
The constraints on the M-theory model are primarily

derived from not overproducing DM. With decay constants
typically of order the GUT scale, axions with masses
ma ≳ 10−18 eV typically provide too much DM density
(“anthropically constrained” [12]). This leads to minimum
values of smin and smax, with large moduli giving large
instanton actions, low axion masses and correspondingly
lower relic densities. There is also a lower bound on ~N,
which sets the scale of the instanton charges and also leads to
lower axion masses.
The vast majority of the M-theory DM models within the

2σ allowed region in Fig. 24 produce a cosmology with
quasiobservables: ðh;Ωm; zeqÞ ≈ ð0.57; 0.06; 520Þ, with
ä > 0 provided by the cosmological constant and the matter
density provided by the baryons. While this is a bad fit to
the data, it is a better fit than a model with, for example,
total DM domination at z ¼ 0, ä < 0 and zeq ≈ 105, which
results if heavy axions “overclose” the Universe by
providing too much DM. This is not to say that there are
not examples of M-theory models that do provide good fits
to the data. For example, it is easy to find a model in our
chainswith hyperparameters ðlog10FΛ3;smin;smax; ~N;βMÞ≈
ð105;26;54;0.7;0.9Þ and quasiobservables ðh;Ωm; zeqÞ≈
ð0.7; 0.3; 3000Þ. We have checked that this general trend
also applies in the alternative Gaussian priors on s and ~N and
also using the alternative quasiobservableΩdh2 for the axion
DM instead of the total matter content including baryons.
This one-sided behavior in the constraints, and with

many samples being poor fits, can be understood
by considering the results of grid-based sampling in a
simplified model. We took the Gaussian priors model for s
and ~N, holding σs ¼ 1, σN ¼ 0.01 fixed and varying
s̄ ∈ ½20; 21�, N̄ ∈ ½0.5; 0.55� with nax ¼ 20. We sampled
each point in parameter space ten times and interpolated the
average quasiobservables on a linear grid.

Figure 25 shows the results of this sampling. The
contours show the location of x̄� 2σx for quasiobservable
x and the location of ä > 0. We see that there is only a very
narrow region of parameter space where the quasiobserv-
ables all have values near the means. For small N̄, the
likelihood goes to zero due to the cut on ä. On the other
hand, for large N̄, the likelihood plateaus. As the axion DM
density drops to zero, the baryon contribution leads to
minimum values of zeq and h. Thus, the whole region of
parameter space with large N̄ is equally disfavored and has
large prior volume. This leads to a one-sided constraint on
parameters driven by ä > 0, which is in turn driven by the
requirement of not overproducing DM and having zeq
too large.
These observations highlight some limitations of our

methodology when applied to a model with a larger number
of parameters and a very small prior volume in the best-fit
region. It also highlights how our use of quasiobservables
does not equally disfavor all possibilities away from the
best fit.

VI. DISCUSSION AND CONCLUSIONS

The existence of a “dark sector” of particles largely
decoupled from the Standard Model is necessary to explain
the phenomenon of dark matter and could also play a role in
the accelerated expansion of the Universe as dark energy.
String theory and M-theory predict the existence of a
complex, multicomponent dark sector containing (among
other things) many axion fields. Making definite predic-
tions in such a landscape of possibilities seems at present
impossible. However, statistical tools enable us to explore
these possibilities. In the context of inflationary theory,
random matrix models have proven to be a useful

FIG. 25. Grid sampling of MT RMTmodel DM: Solid (dashed)
contours show the mean (�2σ) values of the quasiobservables on
a grid based sampling of ðN̄; s̄Þ for nax ¼ 20. For small N̄, ä < 0

leading to zero likelihood (cut), while for large N̄, ä > 0. For
large N̄, the axion density goes to zero, but the likelihood plateaus
due to the inclusion of the baryons and the cosmological constant.
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simplification, owing to the universality of the eigenvalue
distributions.
In the present work, we have investigated random matrix

models for the axion dark sector and computed the
spectrum of axion masses and initial field values. These
quantities determine the resulting energy densities of dark
matter and dark energy. By treating these as quasiobserv-
ables, we have been able to constrain the parameters of the
random matrix models. This is the first such investigation
(that we are aware of) of random multifield models applied
to the problem of the dark sector. We have used the
adaptable framework of Bayesian networks to perform a
Monte Carlo investigation of this scenario.
We have chosen to investigate axion models for DM and

DE separately. A model for axion DM and DE together
requires a mass splitting at least of OðHðzeqÞ=MHÞ ∼ 106

so as not to generate too much energy density in light states
[31]. Such a hierarchy cannot be generated in the models
we have considered. The structure of the matrices we have
assumed is that all the stable axions acquire their masses
from similar sources. That is, the elements of the matrices
are all drawn from the same distributions. There are no
separate sectors, which would occur for matrices with
mixed distributions and for block-diagonal matrices. In our
models, the only effect that can lead to hierarchies in the
mass spectrum is the existence of large eigenvalues, and we
have not found this to be sufficient to allow axions to
simultaneously provide DM and DE.
An interesting extension of our work would be to

consider a hierarchical model, constraining the fmig
and fϕig distributions separately for DM and DE. With
this information, one could design block-diagonal random
matrix models for an entirely axionic dark sector. In a high-
energy physics context, such a model could be realized if
part of the axion sector was protected from the leading
order instanton effects and received its mass only at some
higher order.
Hierarchies can also be generated in multiaxion models

with nontrivial potentials [58], where isocurvature pertur-
bations (see below) can also be suppressed. This highlights
another major simplification and limitation of our work: the
use of the mass term only in the potential. While it is
technically trivial to replace the mass term with some
general function (such as the instanton expansion), com-
putationally it is more challenging. First, it is necessary to
impose such simplifications after oscillations (for a non-
quadratic minimum, one cannot use wa ¼ 0), and second
by the possibility of metastable minima leading to dynam-
ics on widely separated time scales.
We have found, in the case of DM models, data-driven

lower bounds on axion mass distributions set by the matter
density and zeq. Low mass scales for axions find theoretical
and phenomenological motivation also. Theoretically, as
discussed, the mass scale ma ≈ 10−15 eV emerges from
fixing the GUT scale unified gauge coupling, αGUT ≈ 1=25,

in the M-theory compactifications [16], with a similar
approximate relation in string models [59]. Generation of
ultralight masses has been discussed extensively recently,
in string theory and supersymmetry [60], in QCD-related
theories [61] and through use of discrete symmetries [62].
Constraints on the axion parameter space in the context
of Peccei-Quinn symmetry breaking scales for ultralight
axion cold DM in both standard and nonstandard cosmol-
ogies has been explored in Refs. [63,64] respectively.
Ultralight DM has distinctive effects on cosmic structure
formation that allow it to be distinguished from cold DM,
and it represents a frontier of DM research [13,59]. The
“anthropic window” of axion parameter space for ultralight
masses constituting the total DM has been analyzed in
Ref. [65]. The idea of “catastrophic boundaries” [66] in the
multiverse may lead to a preference for universes “on the
edge” of such a frontier.
Phenomenologically, axion masses in the range we have

constrained [approximately H0 < ma < HðzeqÞ], and up to
10−23 eV, are probed by the CMB power spectrum and
large scale structure [31,67,68]. Higher masses in the range
10−22 eV≲ma ≲ 10−20 eV are motivated by their interest-
ing effects on galaxy formation [13,59,69–71] and are
probed by high redshift galaxy formation [72–75] and the
Lyman-alpha forest flux power spectrum [76,77]. Still more
massive axions in the range 10−20 eV≲ma ≲ 10−18 eV
can be probed purely gravitationally by the 21 cm power
spectrum [78].
Constraints from quasiobservables cannot be easily con-

nected to such detailed constraints as discussed above. To
even begin such a task would require the perturbation theory
of multiaxion models. While technically trivial, this is a
computationally challenging task thatwe havenot attempted
to take on. However, even without perturbation theory, the
range of masses 10−18 eV≲ma ≲ 10−10 eV is constrained
by black hole superradiance [79–83]. Incorporating the
superradiance constraints into the axion mass distribution
will be a relatively simple task given the adaptability of the
Bayesian networks approach.
In addition to axion mass distributions, we have com-

puted the distributions of decay constants, fa, from the
eigenvalues of the kinetic matrix. The “weak gravity
conjecture” [84] (WGC) can be used to place bounds on
combinations of axion decay constants and masses and
broadly speaking can be said to constrain the existence of
super-Planckian values for fa (without the alignment
mechanism). Overcoming this apparent constraint is a
prime motivation for the introduction of multifield models
of axion inflation and has in part motivated the present
work on DM and DE.
We have held nax fixed in our example Bayesian network

constraints. It would be interesting to explore in a future
work how imposing the (weak or strong forms of the) WGC
as a prior could lead to a lower bound on nax required by
providing the correct energy densities in a given DM or DE
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model. In the case of N-flation (and related models), the
necessary minimum number of fields has been argued to be
in conflict with entropy bounds in de Sitter space [85], and
a similar conclusion for axion DE or DM could have
profound implications.
A notable multifield axion model for DE considered

previously in the literature is Ref. [86], with more detailed
cosmological consequences computed in Ref. [87]. The
model considered a simplified distribution for the axion
masses and decay constants, equivalent to log-flat mass
eigenvalues and uniform kinetic matrix eigenvalues. The
model has a 1:100 “chance” of providing the correct DE
density. An interesting extension considered in Ref. [86] is
the use of noncanonical multi-instanton potentials to
facilitate the decay of problematic heavy axion fields that
otherwise provide too large energy densities.
Our random matrix approach provides a more versatile,

and realistic, approach to the distributions. Our Bayesian
forward model is able to quantify and extend the estimates
outlined in Ref. [86] for the mass and decay constant
distributions. Reference [87] considers the observables for
DE models more thoroughly, such as the angular diameter
distance to the CMB and improvements from future baryon
acoustic oscillation measurements by the Square Kilometre
Array. It would be interesting to include these in our
Bayesian network.
The only concrete axiverse construction we have used to

inform our random matrix models has been the M-theory
model of Ref. [16]. An explicit axiverse model has also been
realized in Type IIB [88], where models for N-flation and
“N-quintessence” have also been constructed [89], and our
methodology could easily be applied to these models also.We
note, however, that in the case where these models can have a
low string scale, Ms ∼ 1012 GeV, the DM abundance from
vacuum realignment of light axions will be hard to achieve.
Our discussion in this paper has been set entirely in the late

Universe, in particular during radiation domination post-big
bang nucleosynthesis, and we have made no explicit con-
nection between our models and inflationary theory. This
neglects the very important constraints on axionDM coming
from isocurvature perturbations (e.g., Refs. [90,91]). High
scale inflation, in particular with an observably large tensor-
to-scalar ratio, typically generates large amplitude number
density perturbations in axions,which contribute to theCMB
power spectrum acoustic peaks so as to shift their phase,
inconsistent with observations [92,93]. The Hubble scale
during inflation is constrained, for the QCD axion with
typical fa, to be HI ≲ 108 GeV.
The requirements on HI are significantly loosened for

ultralight axions, with isocurvature perturbations becoming
negligible for ma ≲ 10−26 eV [94,95]. The constraints
become multiplicatively worse, however, in the case of
multiple axion fields [96]. In Ref. [16], it was shown that
the M-theory axiverse requires HI ≲ 1010 GeV. The adapt-
ability of the Bayesian networks approach means that

including the isocurvature amplitude as a quasiobservable
and HI as a model parameter is another easily tackled
problem. Such an investigation would clarify the prior
dependence in the results of Ref. [96].
The study of random matrix multiaxion models has been

popular for some time in inflationary theory. While
inflation is well motivated by cosmological observations,
it is unlikely to be possible to determine the theory
precisely due to the limited information available. Dark
matter, on the other hand, offers far greater prospects for
precision measurement [68], and so by studying multiaxion
models in the late Universe, we might discover more about
physics beyond the Standard Model. In this work, we have
presented the first exploration of a random matrix multi-
axion model for dark matter and dark energy and have used
statistical methods to bound the axion mass and decay
constant distributions.
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APPENDIX A: COMPUTATIONS

We numerically solve the equations of motion for nax
axions with fixed initial conditions and evolve the solutions
forward in time using SCIPY. We rescale the fields in terms
of Planck units. The cosmic time, t, is the independent
variable measured in units of MH. This naturally sets the
axion mass scale in units of MH, and the cosmological
densities in component X appear in the Friedmann con-
straint in terms of their density today as ΩXh2.

1. Energy densities

We define our initial and final conditions using the
photon temperature as a clock. The total energy density for
the relativistic degrees of freedom, ρr, is

ρr ¼
π2

30
g⋆ðTÞT4; ðA1Þ

where g⋆ðTÞ counts the relativistic degrees of freedom
(e.g., Ref. [97]). We fix today from the CMB temperature,
TCMB ¼ 2.725 K [52]. Normalizing the scale factor such
that aðTCMBÞ ¼ 1, the scale factor aðtÞ is found by
integrating the Friedmann constraint.

SPECTRUM OF THE AXION DARK SECTOR PHYSICAL REVIEW D 96, 083510 (2017)

083510-29



For simplicity, we treat the total relativistic degrees of
freedom as a constant, and thus we must begin our solutions
after neutrino decoupling. Using the fits from Ref. [98], this
occurs at Ti ≈ 23 keV when the scale factor is ai ≈ 10−8.
After this time, the radiation energy density evolves as

ρrðaÞ ¼ 3M2
HM

2
pl
Ωrh2

a4
; ðA2Þ

where

Ωrh2 ¼ ρrðTCMBÞ=ð3M2
HM

2
PlÞ ¼ 4.16 × 10−5: ðA3Þ

Assuming radiation domination at Ti allows us to set the
initial physical time,

ti ¼ ða2i =2ÞðΩrh2Þ−0.5: ðA4Þ
We allow for the inclusion of a cosmological constant with
fixed physical density ΩΛh2. The total (ordinaryþ CDM)
matter density is

ρmatðaÞ ¼ 3M2
HM

2
pl
Ωmath2

a3
: ðA5Þ

The minimum value for Ωmh2 is given by the physical
baryon density, Ωbh2 ¼ 0.022 [2].
In the homogeneous limit, the energy-momentum

tensor for the axions is described by a perfect fluid with
components T0

0 ¼ −ρ and Ti
j ¼ Pδij. The energy density

and pressure for a single axion are

ρa ¼
1

2
_ϕ2 þ 1

2
m2

aϕ
2; ðA6Þ

Pa ¼
1

2
_ϕ2 −

1

2
m2

aϕ
2: ðA7Þ

The pressure of the matter, radiation and cosmological
constant are determined by the equations of state: Pi ¼
wiρi (no sum on i) with wr ¼ 1=3, wm ¼ 0 and wΛ ¼ −1.
The total pressure appears in the acceleration equation,

_H þH2 ¼ ä
a
¼ −

1

3

X
i

ðρi þ 3PiÞ; ðA8Þ

with an accelerating universe satisfying the condition
ä > 0. We do not solve the acceleration equation, but
we compute ä using the right-hand side on Eq. (A8).

2. Initial conditions and axion mass limits

The Hubble parameter, H, provides a friction term in the
Klein-Gordon equation, in which, as long as the condition
H ≳ma is satisfied, the axion field velocity will remain
small. In the limit that the mass can be entirely neglected,
the attractor solution is _ϕ ¼ 0. We assume this condition is
met for our initial conditions. This assumption sets an
upper limit for the axion masses that we can consistently
consider for any given initial temperature. Demanding that

ma < 3HðTiÞ fixed by neutrino decoupling, we find the
upper limit for the axion mass:

ma < 4 × 10−19 eV: ðA9Þ
In principle, we could extend to higher temperatures, and

thus higher axion masses, by modeling the evolution of g⋆
above neutrino decoupling. We have chosen not to do this
for a number of reasons. First, the particle content is not
known beyond a few TeV. Second, above about 1 MeV [big
bang nucleosynthesis (BBN)], the Universe need not have
been radiation dominated, and there is no observational
necessity to assume so. Third, in string/M-theory, we
expect a nonthermal cosmology at early times dominated
by the energy density of moduli coherently displaced by
vacuum fluctuations during inflation. The matter domi-
nated phase is known to alter the relic densities of axions
that begin oscillating during that period [16,99].
Furthermore, when the moduli are displaced, and before

they have decayed, our entire treatment of the axiverse
effective theory is not valid, since the Kähler metric is
dynamical. For our simple treatment to hold, we must
consider axions still in slow roll after the lightest modulus

field X0 has decayed: ma < ΓX0
¼ Oð1Þm3

X0=M2
pl. For

mX0
≈ 30 TeV, so as to avoid the cosmological moduli

problem [100–102], we can extract a slightly higher
maximum value for the axion mass we could consider:

ma < 1 × 10−15 eV: ðA10Þ
Axions violating these bounds must be removed from the
spectrum for our treatment to be consistent. Numerically,
this is simple to achieve; we locate axions in the spectrum
violating the bound and set the mass to zero. Our initial
conditions then ensure that the realignment energy density
in these fields remains zero.
A simple way to achieve this is to assume a large amount

of entropy production and/or a short period of inflation
caused by the modulus-dominated epoch prior to BBN.
This will dilute the population of heavy axions that began
oscillations prior to BBN. Such a scenario is relatively
natural in the context of a string/M-theory cosmology with
many moduli [16,103–105].
A second possibility is that these heavier axions them-

selves decay rapidly prior to BBN and simply contribute to
setting the correct radiation content and baryon density.
Theoretically, such axion decays are more problematic.
Axion decays through the canonical two photon coupling
are comparatively slow (see, e.g., Ref. [106]), and decays
before BBN requirema ≳ 1 keV. For axions respecting our
bounds to decay, one would require much larger than
expected couplings and rapid decay channels.
Alternatively, we could assume a gapped spectrum

with any axions violating our bounds taken to have their
masses lifted to a much higher scale to allow decays through
standard channels. Another mechanism to remove heavy
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axions is via themulti-instantonpotential,UðθÞ∝ð1−cosθÞ3,
of Ref. [86], which causes the misalignment population to
redshift faster than a−3 due to the nonquadratic potential
minimum. Whether or not the appearance of such a multi-
instanton potential occurs naturally in string/M-theory mod-
els is not clear.
All the above options (removing heavy axions from

the spectrum) are covered by the simple command
removemasses ¼ True in AXIONNET. We also allow for
the option to reject outright (set zero likelihood) all models
with large masses violating our bounds. This is controlled
by a setting inside the likelihood function in AXIONNETand
is operative when removemasses ¼ False is used.
Despite the construction of the mass matrix guaranteeing

positive semidefiniteness mathematically, and thus mass
eigenvalues m2

a ≥ 0, the huge spread in the elements of the
mass matrix in the M-theory model leads to numerical
precision errors and the existence of “tachyonic” m2

a < 0
eigenvalues. We have not been able to overcome this issue of
numerical precisionwithin the confines of NUMPY.We remove
these tachyonic states from the spectrum just aswe remove the
heavy states, and they do not contribute to the energy density.
Fortunately, the negative eigenvalues are guaranteed to be
those for which the true values are smallest in absolute value.
Since the true eigenvalue is ma ≪ H0 and the field displace-
ments ϕini

i ∼OðMplÞ, even with the correct (positive) eigen-
value, these states would not contribute significantly to the
spectrum, and so removing them does not affect the results.
Options for alternative thermal histories and the evolu-

tion of g⋆ in AXIONNET will be the subject of future
developments. The two mass limits, in Eqs. (A9) and
(A10), are both far exceeding axion masses probed by our
simple DM constraints, and thus the model of the Universe
used above a few keV, the treatment of heavy axions and
the use of constant g⋆ does not affect our results. These
effects will be important for treatments going beyond
considerations of the simple quasiobservables.

3. Axion oscillations

As the Universe expands, H decreases monotonically.
When any individual field satisfies the condition ma ≳H,
the field begins to roll toward its potential minimum and
then begins coherent oscillations about it. The solution is
given by

ϕða > aoscÞ ¼ ϕðaoscÞ
�

a
aosc

�
−3=2

cosðmatÞ; ðA11Þ

where aosc occurs at approximately HðaoscÞ ≈ma (we
define it more precisely shortly). As H further decreases,
the time scale of the oscillation induces a very small time
step in the integrator of order ð∼m−1

a Þ (much smaller than
the dynamical time, tdyn ≈H). This is computationally
prohibitive to integrate directly given the hierarchical
nature of the axion mass distribution.

Although the axion field oscillates, the energy density
does not, and it obeys a simple scaling:

ρaða > aoscÞ ¼ ρðaoscÞ
�
aosc
a

�
3

: ðA12Þ

It is a well-known fact that fields oscillating in a quadratic
potential will behave as nonrelativistic matter (e.g.,
Ref. [107]). The pressure oscillates with a frequency
P ∼ cosð2matÞ, leading to a time-averaged equation of state
hwai ¼ 0, and can be safely neglected for our purposes.5

The dynamical time scale in our integration is fixed to be
of order the Hubble scale today, MH. In order to be able to
integrate models withma ≫ MH, we must approximate the
axion evolution for time scales t > tosc. The method we
choose is simply to setwaðt > toscÞ ¼ 0 such that the energy
density in heavy axions evolves exactly as a−3 at late times.
An alternative method uses a change of coordinates in the
axion phase space, as implemented in Ref. [67].
We define tosc by allowing the equation of state in the full

solution to oscillate (cross zero) a fixed number of times
denoted by the parameter, ncross. We then define tosc using
ncross. This is an accuracy parameter in our numerical results,
with larger values of ncross leading to more accurate, but
considerably slower, numerical computations. We find that
results for the quasiobservables converge above ncross ¼ 3,
and we use ncross ¼ 5 in the examples and constraints in the
text. Care must be taken, however, as using too large a value
of ncross, while improving the numerical integration accu-
racy, incorrectly assigns DM axions to the DE density in the
quasiobservables (see below).

4. Computing the quasiobservables

Our quasiobservables are ðΩm; zeq; ä; hÞ. We compute in
physical time, t, up to some maximum time tf ≈Oð10Þ and
output a fixed number of log-spaced time steps. We begin
by locating z ¼ 0 in the output variables. If z ¼ 0 has not
been reached in ten Hubble times (which may occur for
extreme cosmologies), AXIONNET outputs default quasiob-
servables which lead to a very low likelihood (in particular,
failing the acceleration cut). This is equivalent to a cut on
the age of the Universe.
Having located z ¼ 0, computing h is trivial as it is

given by the Friedmann constraint evaluated at z ¼ 0.
Computing the other variables relies on the separation of
axions into DM- and DE-like based on ncross. The split at
z ¼ 0 trivially gives the matter density: Ωm ¼ Ωb þ ΩDM.
The acceleration is computed from the total pressure and
density as

ä ¼ −
a
3

X
i

ðρi þ 3PiÞ; ðA13Þ

5For a selection of interesting astrophysical consequences of
the pressure term, see Refs. [108–111].
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where the index i runs over axions and the ordinary
cosmological components. The pressure for the axions
with a number of crossings less than ncross is computed
directly from the fields using Eq. (A7), while for those with
crossings greater than ncross, we set Pi ¼ 0.
Finally, we compute zeq. At all values of z, the axions are

split into the energy density components, ρDM and ρDE, by
selecting those that have and have not passed the ncross
criterion. We are also in possession of the radiation energy
density ρrðzÞ and baryon energy density ρbðzÞ at every value
of the redshift. We locate zeq by simply finding numerically
the pointwhere ρDM þ ρb ¼ ρr.Wedonot include ρDE in the
definition of equality. We also find equality using the list of
output times, and not using interpolation. Therefore, the
location of equality will depend on the number of output
times used. In our numerical examples, we use 1000 log-
spaced times steps between tini ¼ 8 × 10−15 and tf .

APPENDIX B: CONNECTION TO STRING
THEORY AND M-THEORY

1. Superpotential in M-theory

Axions generically arise in string compactifications as
Kaluza-Klein modes of antisymmetric tensor fields which
are present in all low-energy string/M-theory frameworks.
The topology of such generic theories which can manifest
realistic models in high-energy physics is complex, contain-
ing many cycles which in turn generate a landscape of fields.
This landscape provides a source to many axionlike fields
which could, in the context of cosmology, potentially be of
great interest given the hierarchical nature of their associated
physical parameter scales. The shift symmetries coming from
the higher-dimensional gauge invariance of antisymmetric
tensors leave the resulting scalar fields from string compac-
tifications massless to any perturbative order. There are
always plenty of instanton configurations arising in string
theory models such as world sheet, gauge, gravitational or
membrane instantons that violate the shift symmetries.
In the framework of four-dimensional supergravity, the

superpotential is a holomophic function of the scalar part of
the moduli superfield zi ¼ ti þ isi where ti denote the
axion fields and si denote the geometric moduli fields. We
consider the following general form of the superpotential
generated from nonperturbative effects,

Winst ¼
XN
i¼1

~Λ3
i eibiFi ; ðB1Þ

where ~Λi are the mass scales associated to each of the
nonperturbative effects. Fi represents the gauge kinetic
functions which are linear combinations of the moduli
superfields,

Fi ¼
Xnax
k

Nk
i zk ¼

Xnax
k

Nk
i ðtk þ iskÞ: ðB2Þ

The nonperturbative effects are assumed to be membrane
instantons such that bi ¼ 2πIi, where Ii are positive
integers. In general, the number of nonperturbative effects
such as string/membrane instantons present in any com-
pactification is larger than the number of axions, which, in
turn, allows for the possibility of stabilizing the axion/
moduli potential. Therefore, we will assume that the
number of independent terms in the superpotential is
always greater than or equal to the number of axions,
N > nax. The supergravity potential is calculated using

V ¼ eK
�
Kij DW

Dzi
DW
Dz̄j

− 3jWj2
�
; ðB3Þ

whereK is the Kähler potential andKij is the inverse of the
Kähler metric Kij ≡ ∂2K

∂zi∂zj.
The periodic potentials arise from the interference of the

instanton superpotential and the superpotential from other
SUSY breaking sources, W0. Assuming that the SUSY
breaking scale is

F ∼
DW0

Dzi
; ðB4Þ

this gives rise to the following form for the potential,

V ≈ F

�Xnax
i¼1

∂
∂zi
XN
j¼1

~Λ3
jeibjFj

�
þ c:c:;

≈
Xnax
i¼1

XN
j¼1

2F ~Λ3
jbjNi

j

MS
e−bj

P
nax
k

Nk
jsk cos

�Xnax
k¼1

bjNk
jtk

�
;

ðB5Þ

where MS is the string scale.

2. Superpotential in type-IIB string theory

In this section, we review the original arguments of
Ref. [15], which provide a context for the Marčenko-Pastur
models in Kachru-Kallosh-Linde-Trivedi (KKLT) [112]
comptactifications of Type-IIB string theory. In this setup,
we find motivations for the relationship between the
parameter, βM, and the ratio of axions to moduli. We also
discuss and highlight the potential power random matrix
theory could have in these physical models.
N-flation models are proposed in order to solve the issue

regarding the requirement of trans-Plackian displacements
of inflatons. Given their symmetry properties, axions could
potentially provide a very good candidate in these models.
The original model for N-flation consisted of nax ≫ 1
decoupled axion fields, each with identical masses that
served to drive a period of inflation through the assisted
inflation mechanism [14,113]. The fields have periodic
potentials as expressed in Eq. (2), where the scales Λa;i can
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be significantly lower than the UV cutoff scale of the theory
due to dimensional transmutation. The fields with identical
masses undergo a common initial displacement ϕ0 as they
continue to roll in unison, providing an effective single field
displacement of the order

ffiffiffiffiffiffi
nax

p
ϕ0.

Further expanding on these concepts, Easter and
McAllister incorporated the mathematics of random matrix
theory in a more general framework in which the axion
masses come from distinct spectra in Ref. [15]. In their
framework, the form of the matrix used to determine a
spectrum of axion masses is only dependent on the basic
structure the matrix possesses, which can be extracted by
the supergravity potential,

V ¼ ekðKABDAWDB̄W − 3jWj2Þ: ðB6Þ

The KKLT superpotential from nonperturbative effects
which are generated from the associated moduli and axions
is given as

Wi ¼ ~Λie−2πρie2πiϕi ≡ Cie2πiϕi ; ðB7Þ

where Ci are constants when the moduli are fixed at
their minimum. A Taylor expansion about the origin at
ϕi ¼ 0 along with the F-flatness conditions DAWjϕi¼0 ¼ 0

finds the mass matrix from quadratic order terms in the
axion fields,

Mij ¼ ð2πÞ2eKðKABDACiDBCj − 3CiCjÞ; ðB8Þ

where

V ¼ Mijϕ
iϕj: ðB9Þ

Note that i; j ¼ 1;…; N run over the Kähler moduli, where
the terms A; B ¼ 1;…; N þ L run over the dilaton, com-
plex moduli and Kähler moduli. After the kinetic terms are
bought into their canonical form (see Sec. II B), the mass
matrix can be expressed as

fMij ¼ ð2πÞ2 eK

fifj
Uk

i ðKABDACkDBCl − 3CiCjÞUl
j:

ðB10Þ
Despite the complex form ofMij in Eq. (B10), it can be

shown that the characteristics of the N-flation model can be
extracted from the eigenvalues of a random matrix with
independent and identically distributed (i.i.d) entries.
Numerically and semianalytically, it was shown that,
regardless of the input distributions for K, fi, Uk

i , Ci,
DACi and KAB, the complicated structural form of the mass
matrix above can be simplified by assuming that the
leading contribution to Mij takes the following form,

Mij ¼ BiABAj; ðB11Þ

where BiA is defined as

BiA ¼ 2π
ek=2

fi
UK

i ZAk; ðB12Þ

with ZAk a matrix constructed of Kähler covariant deriva-
tives. The approximation made in Eq. (B11) is subject to the
arguments that the matrix BiA should be a N × ðN þ LÞ-
dimensional matrix constructed from i.i.d variables with
zero mean and variance σ2. The spectral properties of a
matrix of this form are well known from the Marčhenko-
Pastur limiting law in random matrix theory.

3. Axions and moduli in string theory

In the context of string theory, the parameter βK;M in our
study can be related to the relative number of axions to
moduli appearing in the axion mass and kinetic matrices. In
M-theory, βK ¼ 1, while, as discussed in the main text,
0 < βM ≤ 1 is specified by the number of instantons. In
(weakly coupled) Type-IIB string theories compactified on
Calabi-Yau manifolds, βK ¼ 1, while βM is specified by
the ratio of the number of axions (from the Kähler moduli)
to the total number of moduli (Kähler plus complex
structure plus axiodilaton).
The value βK ¼ 1 in Type IIB comes from the large

volume, tree level result for the Kähler potential, which is
sum separable for the Kähler and complex structure moduli
(e.g., Eq. (10.104) in Ref. [5]). Values of βK ≠ 1 can arise
when a mixing between the Kähler and complex structure
moduli occurs. For example, in Ref. [114], the authors
introduce matter fields from D-branes leading to the non-
trivial mixing of all the moduli fields. Such mixing can also
come from quantum corrections in α0 or gs and from non-
Calabi-Yau compactification considerations.
The number of Kähler and complex structure moduli

coming from Calabi-Yau 3-folds are topologically invariant
and are given by the hodge numbers h1;1 (Kähler moduli)
and h1;2 (complex structure moduli) respectively, which can
be used to define the value of βM,

βM ¼ h1;1
ðh1;1 þ h1;2 þ 1Þ : ðB13Þ

Following from a complete construction of reflexive
polyhedra from Kreuzer and Skarke [8], the topological and
geometrical information of the extra dimensions can be
extracted (e.g., Ref. [115]). The data on the Hodge numbers
from the Kreuzer-Skarke database are shown in the left-
hand panel of Fig. 26. In the right-hand panel of Fig. 26, we
show the probability density of βM defined in Eq. (B13) in
KKLT compactifications.
In Type-IIB string theory on a Calabi-Yau manifold,

topologies with βM close to zero or unity (Hodge numbers
of zero or going to infinity) will be rare. Distributions with
values close to βM ¼ 0.5 are more expected in fitting with
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the Kreuzer-Skarke database and mirror symmetry. In the
M-theory limit, however, one has exactly βM ¼ 1, i.e.,
equal numbers of axions and moduli. A final point to note
about the low-energy theory is that Type IIB requires
orientifold projection in order to obtain chiral fermions
leading to the Betti number relation for axions vs moduli.
However, some axions are also “eaten” by gauge bosons
from Green-Schwarz anomaly cancellation, which alters
the number of light axions [116].

APPENDIX C: RANDOM MATRIX THEORY

1. Matrix ensembles

The study of the statistical properties of the spectral
behavior for sample covariance matrices in models involv-
ing high-dimensional data structures has seen prolific
advancements in both their theoretical and practical appli-
cations. The most well-known random matrix ensembles
consistent with modeling physical systems are the Wigner-
Dyson or so-called beta ensembles of Hermitian matrices
classified by the three-fold way [117,118] with elements
distributed according to the probability function

PðXÞDX ¼ Ze−
Nβ
4
TrX†XDX; ðC1Þ

where Z is a distribution normalization constant and DX is
the Haar measure. The parameter β is the Dyson index
determined by the symmetry group of the matrix with
classical values β ∈ f1; 2; 4g, 6each with well-defined
eigenvalue distributions for full matrix Wishart ensembles
which give unitary, orthogonal or symplectic transforma-
tion invariance in matrix space [119–121]. These special

orders of β defining the three division algebras over the real
numbers correspond to correlation functions which can be
explicitly expressed in terms of polynomials orthogonal to
the associated invariant measure.
We are primarily interested in the class of symmetric,

(A → OTAOÞ, positive-definite, real matrices with
orthogonal invariance residing in the Wishart ensemble.
The eigenvalue spectral distribution and limit properties of
Wishart matrices play an important part in many aspects of
multivariate analysis [122]. We begin with the basic matrix
property that it is always possible to take any ensemble of
non-Hermitian matrices and construct a random matrix in
the Wishart form,

Xij ¼ HT
ihHhj; ðC2Þ

whereHhj is a (n × p) dimensional rectangular matrix with
a shaping index, β ¼ n=p7 Xij is defined as a positive-
definite Wishart matrix in the class WRðn;ΣpÞ with n
degrees of freedom and population covariance matrix Σp.
Its eigenvalues, which are our derived physical quantities,
are the positive real values, λi ¼ m2

i or λi ¼ f2i , where
fλi ∈ Rjλi > 0g. When Σp ¼ 1, this is referred to as the
“null” case corresponding to the class of white Wishart
matrices or the β ¼ 1 Laguerre ensemble. The limiting
normalized eigenvalue spectral density function, PðxÞ, of a
white Wishart matrix is given by the Marčhenko-Pastur
distribution (see Appendix C 2). It has also been shown in
the limit that Σp ¼ 1 ensembles will reproduce the
Marčhenko-Pastur distribution with a total invariance over
β ¼ f1; 2; 4g [123]. The asymptotic distribution for the
rescaled largest eigenvalues of a white Wishart covariance

FIG. 26. Database of string compactifications and associated ratio of axions to moduli: Left Panel: Probability density of the hodge
numbers h11 (Kähler moduli) and h12 (complex structure moduli) on Calabi-Yau manifolds from the construction of Ref. [8]. Right
Panel: Probability density of βM on Calabi-Yau manifolds. This is reasonably well fit by a Gaussian distribution with mean β̄M ¼ 0.5
and standard deviation σβ ¼ 0.125 (solid line). (Since the distribution has exactly zero probability density at the boundaries, a Gaussian
fit cannot be perfect.)

6The β parametrization should not be confused with the
submatrix dimension parameters for Kij and Mij denoted as
βK and βM used throughout this paper.

7See Appendix C 2 for physical motivations in the context of
string theory.
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matrix is determined by the Tracy-Widom distribution
[124]. Finite-dimensional analysis of real Wishart matrices,
whereby the properties of the largest eigenvalues can be
extracted, incorporate determining the hypergeometric
functions of matrix arguments [38,125].

2. Marčhenko-Pastur law

The Marčhenko-Pastur law is but one of several
limiting laws in random matrix theory used to describe
the asymptotic behavior of empirical measures of sample
covariance matrices [126]. Matrices of this form can find
a purpose in many areas of physics and have recently
found traction in the context of string theory models. We
provide a brief review of the properties of the
Marčhenko-Pastur law, continuing the arguments made
in Ref. [15] as discussed in Appedix B 2 in the context of
axion mass spectra arising in KKLT compactifications in
Type-IIB string theory.
The elements of BiA in Eq. (B11) are drawn from a

standard Gaussian statistical distribution such that the
axion mass matrix in the canonical basis is defined in the
class of Wishart matrices. Given the mass matrix is
sufficiently large, the eigenvalue spectrum of m2

a values is
governed by the Marčhenko-Pastur distribution law para-
metrized by the two quantities βM ¼ nax=p and σ2M. The
closed form density expression for the Marčhenko-Pastur
distribution of which the shape is encoded by βM is
given as

pðm2
aÞ ¼

(
1

2πm2
aβMσ2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγþ −m2

aÞðm2
a − γ−Þ

p
;

0;
ðC3Þ

where γþ and γ− are defined as

γþ ¼ σ2Mð1þ
ffiffiffiffiffiffiffi
βM

p
Þ2; ðC4Þ

γ− ¼ σ2Mð1 −
ffiffiffiffiffiffiffi
βM

p
Þ2: ðC5Þ

The density function in Eq. (C3) is defined on the
compact interval ½γ−; γþ� such that γ− ≥ m2

a ≥ γþ, where
the probability density drops out to zero outside this region.
The eigenvalues will surely converge to the compact
interval bounds in the asymptotic limit. The rate of
convergence for the real case was found in the work by
Johnstone [124], where he found approximations satisfac-
tory up to dimensions as low as n; p ≈ 10. Wewill therefore
treat our distributions as “safe” and within the asymptotic
understanding of their spectral convergence when using
axion population numbers, nax ≥ Oð10Þ.
It follows that the overall scale of eigenvalues is

controlled by the variance, σ2M, where

hm2
ai ¼ σ2M: ðC6Þ

In the original axiverse models for N-flation, the overall
scale for the axion masses is fixed for inflationary concerns,
i.e., σ ∼ 10−5MPl, in order to enforce that density pertur-
bations from inflation are consistent with observational
limits. However, such constraints are of no interest for
cosmological concerns for axions in the dark sector.

3. Eigenvalue spectra: Nonuniversality and
free multiplicative convolution

a. Generalized Wishart matrices

We have currently only considered the construction of
Kij and Mij in our effective model residing in Eq. (6)
involving matrix products to first order with no level of
decomposition or considerations of the free convolution
of matrix ensembles.8 This study is only concerned with
a focus on the products of fixed ensembles with the
entries constructed from some predefined statistical dis-
tribution; however, there are several areas which could be
interesting for further study in this regard. More general
considerations of the construction of Wishart matrices such
as those appearing in our MP RMT and WW RMT models
involve the product of random independent Gaussian
matrices. See Refs. [128–131] for detailed work regarding
this subject.
Following the approach in this work, a generalized

construction of random matrices residing in the Wishart
ensemble involves the product of S non-Hermitian subma-

trices residing in theGinibre ensemble,Xij ¼ Hð1Þ
ih H

ð2Þ
hl H

ðSÞ
lj .

The study of the singular values of these products corre-
sponding to the root of the associated eigenvalues is of
interest in generalizations of these random matrix ensem-
bles. The spectral density functions, PSðxÞ (where
S ∈ N ¼ f1; 2; 3;…g), for these ensembles involving the
product of an arbitrary number of matrices are asymptoti-
cally described by the Fuss-Catalan distributions with their
moments defined by the Fuss-Catalan numbers [132]. These
distributions can be expressed as the multiplicative free
convolution of the Marčhenko-Pastur spectral density limit,
of the order S such that

PSðxÞ ¼ ½P1ðxÞ⊠S�: ðC7Þ

A powerful two-dimensional parametrization of the
Fuss-Catalan numbers comes in the form of the Raney
sequences. An explicit densityWp;rðxÞ characterized by the
indices p, r ∈ R defines a family of measures incorporating
the multiplicative free measures of the Marčhenko-Pastur
distribution reproducing the both the Fuss-Catalan densities
and Wigner semicircle distribution for specific values of r
and p.

8See Ref. [127] for the potential uses of additive free con-
volutions of matrix ensembles in the context of random Hessian
construction in supergravity.
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b. Spiked Wishart matrices

Recent work involving so-called nonwhite Wishart
matrices or spiked population models has yielded interest-
ing insight into the effects of a phase-transition phenomena
[39] in the fluctuations of the largest eigenvalues of the
population covariance matrix [35–38,133]. These models
can make predictions beyond the traditional ensembles
found in the literature. The presence of large eigenvalues in
the population covariance matrix can have a significant
effect of the total spectral width and limiting distributions
of the sample covariance matrix in the limit n, p → ∞ and
have been incorporated into many interesting areas such as
finance [134].
Figure 7 shows the eigenvalue spectrum for a mass

matrix displaying the features of these models. Singular
eigenvalues in these models will leave the support of the
Marčhenko-Pastur bulk with a value ∼OðNÞ for (N × N)
dimensional data structures. The determination of the
true values of the largest eigenvalues in these models
can be analyzed using various methods such as the
stochastic operator method [135] or using the Painleve
formula [136]. In general, the effects in these models
will be most prevalent when considering high-dimen-
sional data structure or in our case a high population
number of axions.

APPENDIX D: OUTLYING COSMOLOGIES

In this section, we provide a picture of the evolution of
the cosmological densities in the context of example
cosmologies which would not pass the cuts outlined in
Sec. V. In Fig. 27, we show the cosmological evolution for
three example configurations using the MP RMTmodel for

a population of axions behaving as dark matter. We allow
the equal field condition scaling parameter f̄ to approach
the high scale limit, f̄ → Mpl (blue line). The large value
for f̄ causes the population of axions to collectively
“inflate” the universe for a period (10−4 ≲ a ≲ 10−1) with
the collective energy density overshooting the expected
value of zeq before it enters the scaling regime behaving as
nonrelativistic matter. The evolution of the collective axion
field density as dark matter begins to scale accordingly at
an approximate time of z ≈ 0 with a value of zeq far too
early in the cosmic history. Such cosmologies return axion
DM domination with ΩDM ≈ 0.9999.
Decreasing the scale of f̄ to 0.1Mpl (cyan line) causes the

axions to account for the correct total dark matter density at
the current time where ΩDM ¼ 0.2528. The reduced initial
field conditions cause the axions to enter the correct scaling
regime with a significantly reduced redshift. The inset of
Fig. 27 shows the value of zeq falling within acceptable
bounds [crossing of black (ρb þ ρax) and red (ρr) lines].
Further decreasing f̄ ¼ 0.01Mpl (green line) corresponds to
an example configuration in which the total matter density is
insufficient for the universe to reach redshift zero within ten
Hubble times according to our numerical configurations.
The lowest value of z reached corresponded to an axion dark
matter density parameter value ofΩDM ¼ 0.0119. In Fig. 28,
we show potential configurations which do not pass the
acceleration criterion, ä > 0, or give dominant contributions
to the critical density at z ¼ 0 for MP DE cosmologies. The
axion density is set by the initial field displacement and
axion mass,m2

aϕ
2. Without a sufficient scaling of the initial

field displacements (light blue and green lines), the axion
masses need to be higher to account for the acceptable

FIG. 27. MP DM example outlier cosmology density evolution:
Evolution of the collective axion density, ρax, using nax ¼ 20. We
highlight the effect of using different initial field condition scales
set by f̄, where values of f̄ → 1 returning cosmologies which do
not fulfill the criterion for acceptable values of zeq.

FIG. 28. MP DE example outlier cosmology density evolution:
Evolution of the collective axion density, ρax, for nax ¼ 20 We
highlight the effect of using different scales for f̄ where
insufficient values of f̄ lead to outlier cosmologies which do
not fulfil the acceleration criterion, ä > 0.
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amount of dark energy density. However, this generally
causes the axion to start oscillating earlier, following the
condition ma ≤ H, which returns smaller values of ΩDE.
Increasing the value of the scaling f̄ in this configuration
would satisfy an accelerating universe with sufficient dark

energy density. The increased value of f̄ ¼ 0.1Mpl enhances
the final dark energy density at z ¼ 0, returning a value of
ΩDE ¼ 0.1979. Finally, the configuration (blue line) with
f̄ ¼ 1.0Mpl is sufficient for an effective dark energy
cosmology returning a value of ΩDE ¼ 0.7732.
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