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Compensated isocurvature perturbations (CIPs) are primordial fluctuations that balance baryon and
dark-matter isocurvature to leave the total matter density unperturbed. The effects of CIPs on the cosmic
microwave background (CMB) anisotropies are similar to those produced by weak lensing of the CMB:
smoothing of the power spectrum and generation of non-Gaussian features. Here, an entirely new CIP
contribution to the standard estimator for the lensing-potential power spectrum is derived. Planck
measurements of the temperature and polarization power spectrum, as well as estimates of CMB lensing,
are used to place limits on the variance of the CIP fluctuations on CMB scales, Δ2

rmsðRCMBÞ. The resulting
constraint of Δ2

rmsðRCMBÞ < 4.3 × 10−3 at 95% confidence level (CL) using this new technique improves
on past work by a factor of ∼3. We find that for Planck data our constraints almost reach the sensitivity of
the optimal CIP estimator. The method presented here is currently the most sensitive probe of the amplitude
of a scale-invariant CIP power spectrum, ACIP, placing an upper limit of ACIP < 0.017 at 95% CL. Future
measurements of the large-scale CMB lensing-potential power spectrum could probe CIP amplitudes as
low as Δ2

rmsðRCMBÞ ¼ 8 × 10−5 at 95% CL (corresponding to ACIP ¼ 3.2 × 10−4).

DOI: 10.1103/PhysRevD.96.083508

I. INTRODUCTION

The standard cosmological model has been established
using a wide range of observations: estimates of the
primordial light element abundances predicted by standard
big bang nucleosynthesis (BBN) [1,2], the observed isot-
ropy and structure of the acoustic peaks in the cosmic
microwave background (CMB) [3–7], increasingly restric-
tive upper limits to the level of non-Gaussianity in the CMB
[8], the large-scale clustering of galaxies [9], and upper
limits to nonstandard initial conditions [10,11]—just to
name a few. In addition to these successes, there are some
inconsistencies that have been pointed out, such as the
current mismatch between supernovae and CMB determi-
nations of the Hubble constant [12], a slight hemispherical
power asymmetry in the CMB [13], tension between low-
redshift weak lensing measurements from the CFHTLenS
and CMB estimates of the current matter density, Ωm, and
density fluctuations on 8 h−1 Mpc scales, σ8 [14]. These
examples are not meant to be exhaustive but instead to
make the point that it is by looking for deviations from the
standard cosmological model that we increase our knowl-
edge of, and focus our questions about, the physical nature
of the universe.
In this work we search for compensated isocurvature

perturbations (CIPs) using observations of the CMB made
by the Planck satellite [15]. The standard cosmological

model predicts that the initial perturbations in the early
universe are adiabatic (i.e., isentropic). Several other types
of initial perturbations may be established by nonstandard
processes (such as axion physics [16], or alternatives to
single-field slow-roll inflation such as the curvaton scenario
[17–19]). The most general set of these nonstandard
perturbations, called isocurvature perturbations, describe
the “normal modes” of the early universe and as such
evolve independently from each other and the standard
adiabatic perturbations. Most previous studies have placed
constraints on the amplitude of pure isocurvature modes,
finding that their amplitude cannot be larger than a few
percentage points of that of the standard adiabatic pertur-
bations [11]. On the other hand, CIPs are not pure modes,
but are instead composed of a linear combination of baryon
and cold dark matter (CDM) isocurvature. The amplitudes
of these two modes are set so as to leave the total matter
perturbation unchanged. CIPs are only weakly constrained
by current data since the effects of CIPs on scales k≲
200 Mpc−1 appear at second order in the CIP amplitude
[20–22]. This makes the search for CIPs in current
data sets, which probe scales k≲ 10 Mpc−1, particularly
challenging.
Previous studies have placed constraints on CIPs. A CIP

leads to fluctuations of the baryon-to-dark-matter ratio
which may be observed in the baryon fraction of galaxies
[23] or in the detailed structure of the baryon acoustic
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oscillations [24]. It also generically leads to fluctuations in
the primordial light element abundances [23]. These effects
can be used to place constraints on CIPs for a variety of
length scales, from ∼1–100 Mpc.
In the CMB, CIPs cause a modulation of the photon-

baryon sound speed leading to second-order effects in both
the CMB power spectrum and trispectrum. Given that both
CIPs and the weak lensing of the CMB higher-order effects
[25], it is unsurprising that the mathematical expressions
for their effect on the CMB are structurally similar. In
particular, both cause smoothing of the small-scale CMB
power spectrum [26,27], and generate a (non-Gaussian)
connected CMB trispectrum [21,22].
An optimal estimator of CIPs using the CMB trispectrum

was derived inRefs. [18,21,22]. To evaluate this estimator on
the Planck data would be computationally intensive, requir-
ing careful treatment of sky cuts and many simulations of
mock CMBmaps to obtain the relevant covariance matrices.
Instead, in this work we note that the standard estimator for
the lensing-potential power spectrum [28], already imple-
mented in the publicly available data products from Planck
[29], has sensitivity to the CIP field on large angular scales.
We thus use current estimates of the lensing-potential power
spectrum from Planck to search for CIPs and obtain limits to
a scale-invariant CIP spectrum that are a factor of ∼3 better
than the limit from the CMB power spectrum alone: the CIP
variance on CMB scales is Δ2

rmsðRCMBÞ≲ 4.3 × 10−3 at
95% confidence level (CL). Using standard forecasting
techniques, we find that we have extracted nearly all the
information onCIPs that can be extracted fromPlanckmaps.
For a future nearly cosmic variance–limited experiment like
theCMBStage 4 (CMB-S4), we find that an optimal analysis
of the full trispectrum improves on the lensing-potentialþ
CMB power spectrum analysis by a factor of ∼4, driven
mainly by polarization measurements.
Throughout this paper we use a fiducial cosmology that is

spatially flat with parameters [7]: Ωbh2¼0.0222, Ωch2¼
0.1203, Ωνh2 ¼ 0.00064 (corresponding to two massless
neutrinos and one massive neutrino with m¼ 0.06 eV),
H0¼67.12kms−1Mpc−1, As¼ 2.09×10−9, ns ¼ 0.96,
and τ ¼ 0.065. We begin with a summary of the physics
of compensated isocurvature perturbations in Sec. II, and then
review the effects of CIPs on the observed CMB fluctuations
in Sec. III. Previous constraints to CIPs are summarized and
explained in Sec. IV. Our new CIP constraints, using a
combination of the observed Planck lensing potential and
CMB primary spectra, are presented in Sec. V.We discuss the
promise of more optimal estimators and future experiments in
Sec. VI, and conclude in Sec. VII. We also include several
appendices that present the details of our calculations.

II. COMPENSATED ISOCURVATURE
PERTURBATIONS

Solutions to the linearized Einstein and Boltzmann
equations, which describe perturbations to an otherwise

isotropic and homogeneous universe, can be divided up
into a set of normal modes, each of which evolve
independently (see, e.g., Ref. [30]). For example, a given
Fourier mode of the density contrast (δi ≡ δρi=ρ̄i) of a
species i can be written as

δiðk⃗; τÞ ¼
X
n

ξnðk⃗ÞAnTn
i ðk; τÞ;

¼ δadi þ δb;isoi þ δc;isoi þ � � � ; ð1Þ

where n denotes the type of initial conditions (i.e., adiabatic
would be n ¼ 0, baryon isocurvature n ¼ 1, and so forth),
An gives the relative amplitude of the modes, ξnðk⃗Þ is a
stochastic amplitude with zero mean, and Tn

i ðk; τÞ is the
transfer function for each species and each type of initial
condition. As is standard, we further assume that ξnðk⃗Þ is
pulled from a Gaussian probability distribution and is
statistically isotropic with some primordial power spec-

trum, hξnðk⃗Þξ�n 0 ðk⃗ 0Þi ¼ ð2πÞ3Pnn0 ðkÞδð3ÞD ðk⃗ − k⃗ 0Þ. Similar
equations can be written for the other perturbed moments
of the stress-energy tensor of each species. The linearized
Einstein and Boltzmann equations determine the behavior
of the transfer functions Tn

i ðk; τÞ.
For any set of initial conditions the relative entropy

perturbation between any species and photons is given by

Si ≡ 3ðζi − ζγÞ ¼ −3H
�
δρi
ρ0i

−
δργ
ρ0γ

�
; ð2Þ

where ζi is the curvature perturbation in a gauge where that
species, i, is uniform, H≡ a0=a, and the prime indicates a
derivative with respect to conformal time, τ. We can
simplify this expression by noting that the continuity
equation applied to the background density is

ρ0i ¼ −3Hρið1þ wiÞ; ð3Þ

so

Si ¼
1

1þ wi
δi −

3

4
δγ: ð4Þ

We consider a universe filled with photons (γ), neutrinos
(ν), baryons (b), and cold dark matter (c) (we also consider
a cosmological constant, Λ, which does not cluster). The
total matter (m) is the sum of the baryons and CDM. The
standard adiabatic initial conditions have Si ¼ 0 for all
species; initial conditions which have Si ≠ 0 for some
species, as well as leave the Ricci scalar curvature of the
universe unperturbed, are called isocurvature perturbations
and are set independently of the adiabatic mode [31–33].
A compensated isocurvature perturbation is a linear

combination of baryon and CDM isocurvature which
has Sν ¼ Sm ¼ 0. The evolution of the perturbations is
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then determined by the initial values of the linear
combinations [33]

δγ ¼ δadγ ; ð5Þ

δν ¼ δadν ; ð6Þ

δc ¼ δadc þ δCIPc ; ð7Þ

δb ¼ δadb þ δCIPb ; ð8Þ

δm ¼ Rbδb þ Rcδc ¼ δadm ; ð9Þ

where

Rc ≡ ρc
ρc þ ρb

; ð10Þ

Rb ≡ ρb
ρc þ ρb

: ð11Þ

As first pointed out in Ref. [20] on scales larger than the
baryon sound horizon, k≲ 200 Mpc−1, the CIP modes do
not evolve in time and can be treated as a function of
position only. On these scales, we define the stochastic CIP
field as Δðk⃗Þ≡ δCIPb ðk⃗Þ so that δCIPc ðk⃗Þ ¼ −Δðk⃗ÞΩb=Ωc.
Since the CIP modes do not evolve in time, the baryon and
CDM densities are spatially modulated by Δ as follows:

ρbðx⃗Þ ¼ ρ̄b½1þ Δðx⃗Þ�; ð12Þ

ρcðx⃗Þ ¼ ρ̄c

�
1 −

ρ̄b
ρ̄c

Δðx⃗Þ
�
; ð13Þ

where ρ̄b=ρ̄c ¼ Ω̄b=Ω̄c ≃ 0.2 is the unperturbed (homo-
geneous) ratio of the baryon to cold dark matter density.
The CIP field can have an arbitrary correlation with

the primordial curvature perturbation [18,20]. Most of the
previous work on CIPs has assumed Δ is uncorrelated
with the primordial curvature perturbation (e.g.,
Refs. [21,22,26,34]). This assumption greatly simplifies
the effects of a CIP since in this case only autocorrelations
of Δ are nonzero. On the other hand, fully correlated CIPs
are a natural prediction of the curvaton scenario [18,19].
The additional correlations present in this case lead to a
greater sensitivity to the CIP field [18,35], and in future
work we will leverage this sensitivity to obtain forecasts
and constraints to curvaton-inspired CIPs. For the rest of
this paper, we consider only CIPs which are uncorrelated
with the primordial curvature perturbation.

III. CIPS AND THE CMB

The main effect of CIPs on the CMB is the spatial
modulation in the photon/baryon sound speed [18]. In
particular, in the presence of a CIP the acoustic waves that

generate the structure of the observed CMB anisotropies
propagate through an inhomogeneous medium with a
sound speed that varies as

c2sðx⃗Þ ¼
1

3

�
1þ 3

4

ρ̄b½1þ Δðx⃗Þ�
ρ̄γ

�
−1
;

≃ ðc̄sÞ2
�
1 −

3ρ̄b
3ρ̄b þ 4ρ̄γ

Δðx⃗Þ
�
: ð14Þ

Additionally, the modulation of ρb leads to a spatial
variation in the visibility function at decoupling. For CIP
scales smaller than the acoustic horizon at decoupling
(L≳ 100), the effects of the CIP modulation are suppressed
[18], and so we only include CIP multipoles at scales larger
than the acoustic horizon. Writing the Fourier transform of
the CIP field as

Δðx⃗Þ ¼
Z

d3k
ð2πÞ3Δðk⃗Þe

ik⃗·x⃗; ð15Þ

its power spectrum is given by

hΔðk⃗ÞΔ�ðk⃗ 0Þi ¼ ð2πÞ3δð3ÞD ðk⃗ − k⃗ 0ÞPΔΔðkÞ; ð16Þ

and we can compute the CIP variance over some length
scale R as

Δ2
rmsðRÞ ¼

1

2π2

Z
k2dk½3j1ðkRÞ=ðkRÞ�2PΔΔðkÞ; ð17Þ

assuming a spherical top-hat window function (of radius R)
for density fluctuations in real space. Finally, the CIP
angular distribution at the last-scattering surface will be
given by

ΔLM ¼ 4πiL

ð2πÞ3=2
Z

d3kΔðk⃗ÞjLðkχ�ÞY�
LMðk̂Þ; ð18Þ

which gives rise to an angular power spectrum

CΔΔ
L ¼ hΔLMΔ�

LMi ¼
2

π

Z
k2dkPΔΔðkÞj2Lðkχ�Þ;

¼ ACIP

πLðLþ 1Þ ð19Þ

if we assume that the CIP power spectrum is scale invariant:
PΔΔðkÞ ¼ ACIP=k3. This allows us to write

Δ2
rmsðRCMBÞ ¼

X100
L¼1

2Lþ 1

4π
CΔΔ
L ≃ ACIP

4
; ð20Þ

where we have truncated the sum at L ¼ 100 since, as
stated before, the CIP modulation damps away on scales
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smaller than the acoustic horizon at decoupling. Finally, we
find the expression

CΔΔ
L ≃ 4

π

Δ2
rmsðRCMBÞ
LðLþ 1Þ : ð21Þ

The effects of a CIP modulation on the anisotropies of
the CMB are most clearly understood using a flat-sky
approximation. For the discussion here we only present
results for the temperature anisotropies. When searching for
CIPs, we use both temperature and polarization with the
full-sky expressions found in Appendix B.
Weak gravitational lensing and CIPs can be thought of as

a modulation of a “background” CMB anisotropy Tðn̂Þ
yielding an observed anisotropy Tobsðn̂Þ. In the presence of
both weak gravitational lensing and CIPs the temperature
anisotropies are given by

Tobsðn̂Þ¼T½n̂þ∇⃗ϕðn̂Þ;Δðn̂Þ�;
≃Tðn̂Þþ∇iϕ∇iTþΔðn̂Þ∂T∂Δðn̂Þ

���
Δ¼0

þ1

2

�
∇iϕ∇jϕ∇i∇jTþΔ2ðn̂Þ∂

2T
∂Δ2

ðn̂ÞjΔ¼0

�
þ��� ;

ð22Þ

where the terms proportional to derivatives of ϕðn̂Þ are
standard lensing contributions as first derived in
Refs. [36,37] and described in Ref. [38]. Additionally,
one must include a noise term, so then the total observed
temperature at each point on the sky can be written
Ttðn̂Þ ¼ Tobsðn̂Þ þ TNðn̂Þ, where we assume that we are
using beam-deconvolved maps. This leads to an estimated
power spectrum for the beam-deconvolved map

CTT;t
l ¼ CTT;obs

l þ CTT;N
l ; ð23Þ

where the inverse variance–weighted sum over all channels
i gives

CTT;N
l ¼

�X
i
w−2
T;ie

−l2σ2b;i

�
−1
; ð24Þ

where σb;i ≡ θi=
ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p
, θi is the full-width half-maxi-

mum, and wT;i is the weight per solid angle for each
channel.
Taking the Fourier transform of the temperature map we

have

Tobsðl⃗Þ≡
Z

d2n̂Tobsðn̂Þe−il⃗·n̂;

¼ Tðl⃗Þ þ δTð1Þðl⃗Þ þ δTð2Þðl⃗Þ; ð25Þ

where the first- and second-order terms are given by

δTð1Þðl⃗Þ ¼
Z

d2l 0

ð2πÞ2 Tðl⃗
0Þϕðl⃗ − l⃗ 0ÞLð1Þ

ϕ ðl⃗; l⃗ 0Þ

þ ∂Tðl⃗ 0Þ
∂Δ

����
Δ¼0

Δðl⃗ − l⃗ 0Þ; ð26Þ

δTð2Þðl⃗Þ ¼ 1

2

Z
d2l 0

ð2πÞ2
d2l00

ð2πÞ2 Tðl⃗
0Þϕðl⃗ 00Þ

× ϕðl⃗ − l⃗ 0 − l⃗ 00ÞLð2Þ
ϕ ðl⃗; l⃗ 0; l⃗ 00Þ

þ ∂2Tðl⃗ 0Þ
∂Δ2

����
Δ¼0

Δðl⃗ 00ÞΔðl⃗ − l⃗ 0 − l⃗ 00Þ; ð27Þ

and for simpler notation we define

Lð1Þ
ϕ ðl⃗; l⃗ 0Þ≡ −½ðl⃗ − l⃗ 0Þ · l⃗ 0�; ð28Þ

Lð2Þ
ϕ ðl⃗; l⃗ 0; l⃗ 00Þ≡ −½l⃗ 00 · l⃗ 0�½ðl⃗ 00 þ l⃗ 0 − l⃗Þ · l⃗ 0�: ð29Þ

The observed power spectrum is found by

hTobsðl⃗ÞTobsðl⃗ 0Þi≡ ð2πÞ2δð2ÞD ðl⃗þ l⃗ 0ÞCTT;obs
l : ð30Þ

From these expressions it is straightforward to show that in
the presence of both lensing and a CIP the observed power
spectrum becomes

CTT;obs
l ¼ ~CTT

l

�
1 −

Z
d2L
ð2πÞ2 C

ϕϕ
L ðL⃗ · l⃗Þ2

�

þ
Z

d2L
ð2πÞ2

~CTT
jl⃗−L⃗jC

ϕϕ
L ½ðl⃗ − LÞ · L⃗�2

þ
Z

d2L
ð2πÞ2 C

dT;dT
jl⃗−L⃗j C

ΔΔ
L

þ CT;d2T
l

Z
d2L
ð2πÞ2 C

ΔΔ
L ; ð31Þ

≡ ~CTT
l þ δCTT;ϕ

l þ δCTT;Δ
l ; ð32Þ

where ~CTT
l is the primordial CMB temperature power

spectrum (without the CIP modulation and gravitational
lensing) and we have defined

hϕðl⃗Þϕðl⃗ 0Þi≡ ð2πÞ2Cϕϕ
l δð2ÞD ðl⃗þ l⃗ 0Þ; ð33Þ

�∂Tðl⃗Þ
∂Δ

∂Tðl⃗ 0Þ
∂Δ

	
≡ ð2πÞ2CdT;dT

l δð2ÞD ðl⃗þ l⃗ 0Þ; ð34Þ

�
Tðl⃗Þ ∂

2Tðl⃗ 0Þ
∂Δ2

	
≡ ð2πÞ2CT;d2T

l δð2ÞD ðl⃗þ l⃗ 0Þ; ð35Þ
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δCTT;ϕ
l ≡

Z
d2L
ð2πÞ2

~CTT
jl⃗−L⃗jC

ϕϕ
L ½ðl⃗ − LÞ · L⃗�2

− ~CTT
l

Z
d2L
ð2πÞ2 C

ϕϕ
L ðL⃗ · l⃗Þ2 ð36Þ

δCTT;Δ
l ≡

Z
d2L
ð2πÞ2 C

dT;dT
jl⃗−L⃗j C

ΔΔ
L

þ CT;d2T
l

Z
d2L
ð2πÞ2 C

ΔΔ
L : ð37Þ

Since the CIP field modulates the baryon density, it follows
that CdT;dT

l is only significant on scales smaller than the
acoustic horizon, l≳ 100. Furthermore, for a scale-invariant
power spectrum CΔΔ

L ∝ 1=L2, which peaks at small L. This
separation in scales allows us to write the CIP contribution to
the observed CMB power spectrum as

δCTT;Δ
l ≃ 1

2
Δ2

rmsðRCMBÞ
∂2CTT

l

∂Δ2

����
Δ¼0

; ð38Þ

where in the flat-sky approximation Δ2
rmsðRCMBÞ≡R

100
1 d2L=ð2πÞCΔΔ

L . The last approximation is still good
for the full-sky expressions, as discussed in Appendix B.
Both weak lensing and the CIP modulation cause a

smoothing of the CMB power spectra on scales smaller
than the acoustic horizon [26]. We show the residual of the
fiducial ΛCDM power spectrum with the CIP-modulated
CMB power spectra, ΔDXX0

l ≡ lðlþ 1ÞΔCXX0
l =ð2πÞ with

X ¼ fT; Eg, along with the Planckmeasurements in Fig. 1.
This figure makes it clear how the measurements of the
CMB power spectrum are sensitive to the presence of a CIP
mode. In the residuals the additional smoothing of the
peaks leads to an oscillatory structure, which is most
apparent in the temperature power spectrum.

FIG. 1. A comparison between the difference between the standard ΛCDM CMB power spectra and one which has been modulated by
a CIP mode. Each panel shows the binned residuals ΔDXX0

l ≡ lðlþ 1ÞΔCXX0
l =ð2πÞ from the Planck satellite (see Ref. [7] for details on

the binning procedure). Two CIP-mode amplitudes are shown: the red curve shows the CIP mode which saturates the 95% CL upper
limit using both the Planckmeasurements of the temperature and polarization CMB power spectra, Δ2

rmsðRCMBÞ ¼ 1.4 × 10−2; the cyan
curve (only visible in the top panel) shows the CIP mode which saturates the 95% CL upper limit using both the Planckmeasurements of
the CMB power spectra as well as the lensing-potential power spectrum, Δ2

rmsðRCMBÞ ¼ 4.3 × 10−3. Note that the horizontal scale is
logarithmic up to l ¼ 29 and then is linear; the vertical scale on the left- and right-hand sides are different.
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The CIP modulation also produces a contribution to
correlations beyond the CMB power spectrum. In particu-
lar, Refs. [18,21,22,34] construct an optimal estimator for
ΔLM from the connected part of the CMB four-point
correlation, the trispectrum. The analysis of the CMB
trispectrum is far from trivial, so here we utilize the fact
that estimates of the lensing-potential power spectrum, ϕ,
are also built out of the connected part of the CMB
trispectrum [28,29,39]. In the presence of CIPs, the
estimator used to reconstruct the lensing-potential power

spectrum gains an additional contribution proportional
to Δ2

rmsðRCMBÞ.
Both weak gravitational lensing and CIPs introduce a

non-Gaussian connected trispectrum

hTðl⃗1ÞTðl⃗2ÞTðl⃗3ÞTðl⃗4Þic
¼ T ðl⃗1; l⃗2; l⃗3; l⃗4Þδð2Þðl⃗1 þ l⃗2 þ l⃗3 þ l⃗4Þ: ð39Þ

The dominant contributions to the connected trispectrum
are given by [40]

T ðl⃗1; l⃗2; l⃗3; l⃗4Þ≃ Cϕϕ

jl⃗1þl⃗2j
fTTðl⃗1; l⃗2ÞfTTðl⃗3; l⃗4Þ þ CΔΔ

jl⃗1þl⃗2j
hTTðl⃗1; l⃗2ÞhTTðl⃗3; l⃗4Þ

þ Cϕϕ

jl⃗1þl⃗3j
fTTðl⃗1; l⃗3ÞfTTðl⃗2; l⃗4Þ þ CΔΔ

jl⃗1þl⃗3j
hTTðl⃗1; l⃗3ÞhTTðl⃗2; l⃗4Þ

þ Cϕϕ

jl⃗1þl⃗4j
fTTðl⃗1; l⃗4ÞfTTðl⃗2; l⃗3Þ þ CΔΔ

jl⃗1þl⃗4j
hTTðl⃗1; l⃗4ÞhTTðl⃗2; l⃗3Þ; ð40Þ

where the lensing and CIP TT response functions are given,
respectively, by

fTTðl⃗1; l⃗2Þ≡ ½ðl⃗1þ l⃗2Þ · l⃗1� ~CTT
l1 þ½ðl⃗1þ l⃗2Þ · l⃗2� ~CTT

l2 ; ð41Þ

hTTðl⃗1; l⃗2Þ≡ CT;dT
l1

þ CT;dT
l2

; ð42Þ

and we have defined CT;dT
l through the correlation

�
Tðl⃗Þ ∂Tðl⃗

0Þ
∂Δ

	
≡ ð2πÞ2CT;dT

l δð2ÞD ðl⃗þ l⃗ 0Þ: ð43Þ

Related expressions for the other correlated CMB maps
using the flat-sky approximation are given in Appendix A.
We can construct an estimator for the lensing-potential

power spectrum, Cϕϕ
L , out of the four-point correlation

function of the temperature, E- and B-mode polarization of
the CMB. A nearly optimal, inverse variance–weighted,
estimator has been derived in Ref. [28] and applied to the
Planck CMB maps in Ref. [29]. As shown in Eq. (40), in
the presence of a CIP modulation this estimator includes
contributions from the CIP field.
In the flat-sky approximation, a minimum-variance

estimator for the weak-lensing deflection field, dðL⃗Þ≡
LϕðL⃗Þ can be built out of off-diagonal correlations of the
CMB temperature fluctuations, and is given by [28,29,41]

d̂TTðL⃗Þ≡ ATTðLÞ
L

Z
d2l1
ð2πÞ2 Tðl⃗1ÞTðl⃗2ÞFTTðl⃗1; l⃗2Þ; ð44Þ

where

l⃗2 ≡ L⃗ − l⃗1; ð45Þ

FTTðl⃗1; l⃗2Þ≡ fTTðl⃗1; l⃗2Þ
2CTT;t

l1
CTT;t
l2

; ð46Þ

ATTðLÞ≡ L2

�Z
d2l1
ð2πÞ2 fTTðl⃗1; l⃗2ÞFTTðl⃗1; l⃗2Þ

�−1
: ð47Þ

The lensing-potential power spectrum is estimated from the
power spectrum of the deflection field estimator in Eq. (44),

Ĉϕϕ
L ≡ 1

2π

Z
2π

0

d̂TTðL⃗Þd̂�TTðL⃗Þ
L2

dφL⃗ − BðLÞ; ð48Þ

where φL⃗ is the angular coordinate of L⃗ and BðLÞ (the bias)
is a sum of the standard Gaussian and non-Gaussian
contributions to the full four-point correlation [29,39,40].
Given that the estimator is inverse variance–weighted, the
Gaussian variance is given by its normalization [41],

Nð0Þ
TT;TTðLÞ ¼ ATTðLÞ: ð49Þ

In addition to this, Ref. [40] showed that there is a “non-

Gaussian” bias, Nð1Þ
TT;TTðLÞ, arising from additional corre-

lations between the lensing potential when computing the
expectation value of Eq. (48).
In the presence of a CIP modulation, the expectation

value of Eq. (48) gains another, CIP-induced, bias,

hĈϕϕ
L i ¼ Cϕϕ

L þ CΔΔ
L ½QTTðLÞ�2

þ Nð0ÞCIP
TT;TTðLÞ=L2 þ Nð1ÞCIP

TT;TTðLÞ=L2; ð50Þ

where the last two terms are the CIP-induced Gaussian and
non-Gaussian bias, and
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QTTðLÞ≡
R d2l1

ð2πÞ2 hTTðl⃗1; l⃗2ÞFTTðl⃗1; l⃗2ÞR d2l1
ð2πÞ2 fTTðl⃗1; l⃗2ÞFTTðl⃗1; l⃗2Þ

: ð51Þ

The factors of L−2 in Eq. (50) arise due to the conversion
from the deflection field to the lensing potential [40].
Since the total temperature power spectrum has a CIP

contribution given in Eq. (38), the CIP field contributes to
the Gaussian bias of the standard estimator. In addition to
this, along with the deflection field, the CIP field generates
a non-Gaussian bias [40]. We compute the CIP non-
Gaussian bias by replacing fΘΘ with hTT [Eq. (42)] and
Cϕϕ
l with CΔΔ

l in Eq. (25) of Ref. [40]. These biases are, to
leading order in the CIP amplitude,

Nð0ÞCIP
TT;TTðLÞ ¼

1

2
Δ2

rmsðRCMBÞ
�
ATTðLÞjΔ2

rms¼0

L2

�
2
Z

d2l1
ð2πÞ2 f

2
TTðl⃗1; l⃗2Þ

�
1

CTT
l1
jΔ2

rms¼0

∂2CTT
l1

∂Δ2
þ 1

CTT
l2
jΔ2

rms¼0

∂2CTT
l2

∂Δ2

�
; ð52Þ

Nð1ÞCIP
TT;TTðLÞ ¼

A2
TTðLÞ
L2

Z
d2l1
ð2πÞ2

d2l01
ð2πÞ2 FTTðl⃗1; l⃗2ÞFTTðl⃗1 0; l⃗2 0Þ½CΔΔ

jl⃗1−l⃗1 0jhTTð−l⃗1; l⃗1
0ÞhTTð−l⃗2; l⃗2 0Þ

þ CΔΔ
jl⃗1−l⃗2 0jhTTð−l⃗1; l⃗2

0ÞhTTð−l⃗2; l⃗1 0Þ�: ð53Þ

In practice, the Planck lensing analysis uses a combi-
nation of observed and simulated CMBmaps to subtract off
the Gaussian bias [29]. Since the simulated maps do not
include a CIP contribution, some fraction of the CIP
contribution to the Gaussian bias may not be fully sub-
tracted. Additionally, the CIP non-Gaussian bias is not
subtracted off in the standard analysis.
The full Planck lensing analysis [29], which includes

both CMB temperature and polarization maps, computes a
minimum-variance (mv) estimator from all possible CMB
map auto and cross correlations, as discussed in detail in
Appendixes A and B. The Planck lensing estimator relies
on maps constructed from the 143 GHz and 217 GHz
channels. We furthermore note that the Planck analysis uses
a bandpass filter in harmonic space to restrict the power
spectrum multipoles to 100 ≤ l ≤ 2048.
The full CIP contribution to the lensing-potential esti-

mator for the Planck satellite (computed using the full-sky
expressions discussed in Appendix B) is shown in the solid
red curve in Fig. 2 for Δ2

rmsðRCMBÞ ¼ 4.3 × 10−3. We can
see that both the Gaussian and non-Gaussian CIP contri-
butions to the lensing estimator (dotted red and dotted-
dashed purple curves) are negligible compared to the
lensing-potential power spectrum (solid yellow); the only
significant CIP contribution is given by L2CΔΔ

L ½QTTðLÞ�2.
The dashed green curve shows the Gaussian noise in a
minimum-variance estimator using Planck.
Next we develop an approximate expression for the CIP

contribution in order to explore its dependence on L and the
cosmological parameters. We remind the reader that
none of our detailed results/constraints are subject to these
approximations, which are developed merely to build
intuition for scalings and degeneracies. Since hTT is
composed of a sum of CT;dT

l , we know that it is only
significant on scales smaller than the horizon at decoupling,
i.e., l≳ lhor ≃ 100. Therefore, for values of L ≪ lhor the

integrand in the numerator of Eq. (51) is dominated by
l1 ≫ L. In this limit hTTðl⃗1; l⃗2 ≡ L⃗ − l⃗1Þ is nearly inde-
pendent of L and, using the roughly sinusoidal solutions for
wave amplitudes in the baryon-photon plasma, can be
approximately written as

hTTðl⃗1; l⃗2Þ≃ 2CT;dT
l1

≃ 2
As

πl21

∂ ln cs
∂Δ ½1 − cos ðl1=lhorÞ�;

ð54Þ

FIG. 2. The CIP contribution to the expectation value of the
lensing-potential power-spectrum estimator for Planck with
Δ2

rms ¼ 4.3 × 10−3. The solid orange curve shows the lensing-
potential power spectrum. The blue curves show the Gaussian
noise from the TT estimator (solid) and the TE estimator (dotted-
dashed). The dashed green curve shows the noise of the
minimum-variance estimator. The dashed red curve shows the
residual CIP contribution to the Gaussian noise if it is not
subtracted from the signal and the purple dot-dashed curve shows
the non-Gaussian (i.e., connected part of the trispectrum) CIP
contribution. The solid red curve shows the dominant CIP
contribution to the estimator.
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where

∂ ln cs
∂Δ ¼ −

3Ωb

6Ωb þ 8ð1þ zdecÞΩγ
ð55Þ

is the derivative of the photon-baryon sound speed at
decoupling, and As is the amplitude of the primordial scalar
perturbations. In the same limit we have

fTTðl⃗1; l⃗2Þ ¼ L⃗ · l⃗1ðCTT
l1

− CTT
jl⃗1−L⃗j

Þ þ L2CTT
jl⃗1−L⃗j

;

≃ L2CTT
l1
; ð56Þ

which gives,

FTTðl⃗1; l⃗2Þ≃ L2

2CTT
l1

; ð57Þ

where we used the fact that since l1 ≫ L we have
CTT
jl⃗1−L⃗j

≃ CTT
l1
. Combining these expressions, we then find

that for L ≪ lhor the numerator of Eq. (51) can be
approximated by

Z
d2l1
ð2πÞ2 hTTðl⃗1; l⃗2ÞFTTðl⃗1; l⃗2Þ≃ ∂ ln cs

∂Δ L2
l2max

4π
: ð58Þ

We will now compute the integrand in the denominator of
Eq. (51) using an approximate form for the CMB power
spectrum, CTT

l ¼ As=ðπl2Þ. From this simplified power
spectrum we are able to compute the denominator of
Eq. (51) and find

Z
d2l1
ð2πÞ2 fTTðl⃗1; l⃗2ÞFTTðl⃗1; l⃗2Þ≃ L4

l2max

16π
: ð59Þ

Note that the L4 scaling in Eq. (59) is apparent in the fact
that the Gaussian noise curves [given by Eq. (49)] in Figs. 2
and 3 are relatively flat. Combining these expressions we
have that

QTTðLÞ≃ 4

L2

∂ ln cs
∂Δ : ð60Þ

Finally, the CIP contribution to the expectation value of the
lensing estimator normalized as in Figs. 2 and 3 is given by

L4hĈϕϕ
L i≃ L4Cϕϕ

L þ 16ACIP

L2

�∂ ln cs
∂Δ

�
2

: ð61Þ

This shows that the CIP contribution to the normalized
lensing-potential power-spectrum estimator scales as 1=L2,
which agrees with the CIP contribution shown in Fig. 5 as
well as the values given in Table II.
The approximate expression for the CIP contribution to

the lensing-potential power-spectrum estimator in Eq. (60)
allows us to estimate the extent to which this contribution
varies with cosmological parameters. Given that d ln cs=dΔ
in Eq. (55) depends only on the baryon density, we can see
that variation of Ωb causes the largest variation in the CIP
contribution. In particular, we expect a variation of QTTðLÞ
of order

δQTTðLÞ
QTTðLÞ ≃

�
1

Ωb
−

1

Ωb þ 4ð1þ zdecÞΩγ=3

�
δΩb: ð62Þ

When using the lensing-potential power-spectrum esti-
mates to constrain the CIP amplitude, we find that Ωb ¼
0.0486� 0.0014 at 95% CL uncertainty and Ωγ ≃ 10−4

and zdec ≃ 1100. With this we find that the variation in
QTTðLÞ due to the allowed range of Ωb is about 2%; as a
result, we evaluate QTTðLÞ on the fiducial cosmology
stated in the Introduction. Also note that the CIP contri-
bution is nearly independent of the noise properties of the
experiment.
We show the QXX0

L computed with the exact expression
detailed in Appendix B in Fig. 4. The optimal tempera-
ture and polarization estimator is a weighted sum of
each correlated map, as described in more detail in
Appendixes A and B [28,40,41]. The weights are roughly
given by the inverse of the Gaussian noise intrinsic to each
map. For example, the Gaussian noise shown in Fig. 2
implies that for the Planck satellite the TT CMB map
dominates the optimal estimator.
For a futuristic experiment we consider the CMB-S4

experiment, which has the noise properties described in
Table I leading to a significantly improved measurement of
the polarization of the CMB. CMB-S4 is expected to be

FIG. 3. The CIP contribution to the expectation value of the
lensing-potential power-spectrum estimator for a cosmic vari-
ance-limited estimate of Cϕϕ

L with Δ2
rmsðRCMBÞ ¼ 4.3 × 10−3.

The expected Cϕϕ
L is shown in solid orange. The Gaussian noise

associated with the TT, TE, TB, EB, and EE estimators is shown
in the solid blue, dotted-dashed blue, dotted red, solid cyan, and
dashed purple lines, respectively. The minimum-variance esti-
mator is the dotted green curve, and the solid red curve shows the
CIP contribution.
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sensitive to the primordial polarization anisotropies up to
lP;max ≃ 5000 and to temperature lT;max ≃ 3000; since it is
a ground-based telescope, it will probe multipoles down to
lmin ≃ 30 [35]. As shown in Fig. 3, in this case the EB
cross-correlated CMB map dominates the optimal lensing-
potential estimator. Figure 4 shows, however, that the CIP
contributions of QEB

L are much smaller than any other
combination. As a result, the CIP contribution to CMB-S4
is less than that for Planck (see Fig. 5). Of course, CMB-S4
is significantly more sensitive to CIPs than Planck
when using the optimal CIP estimator, as we explain
in Sec. VI.
We can understand the qualitative behaviors of the QXX0

L
shown in Fig. 4 by noting that, in the absence of any
primordial B-mode polarization, the CIP modulation indu-
ces contributions to the temperature and polarization of the
form (see Appendix A for a derivation)

δTΔðl⃗Þ ¼
Z

d2l1
ð2πÞ2

∂Tðl⃗1Þ
∂Δ ΔðL⃗Þ; ð63Þ

δEΔðl⃗Þ ¼
Z

d2l1
ð2πÞ2

∂Eðl⃗1Þ
∂Δ ΔðL⃗Þ cos 2φl⃗1 l⃗

; ð64Þ

δBΔðl⃗Þ ¼
Z

d2l1
ð2πÞ2

∂Eðl⃗1Þ
∂Δ ΔðL⃗Þ sin 2φl⃗1 l⃗

; ð65Þ

where L⃗≡ l⃗ − l⃗1 and φl⃗1 l⃗
is the angle between the flat-sky

wave vectors l⃗1 and l⃗. Since ΔðL⃗Þ is drawn from a scale-
invariant power spectrum, its largest contribution will come
from the smallest values of L. This implies that for large
values of l, since the three vectors l⃗, l⃗1, and L⃗
form a triangle, we must have l⃗1 and l⃗ nearly parallel.
In particular, it is straightforward to show that in this
limit sin 2φl⃗1 l⃗

≃ 2ðL=lÞ sinϕ, where ϕ is the angle

that l⃗1 makes with the x axis. Similarly, in this limit we
have cos 2φl⃗1 l⃗

≃ 1. The lensing contributions to the CMB
anisotropies have the same dependence on φl⃗1;l⃗

. Therefore,

given that QXX 0 ∼ hXX0fXX0 (these functions are given in
Table V in Appendix A), we expect the following scalings
for the CIP contributions to the standard lensing estimator
with L: QXEðLÞ ∝ QTTðLÞ and QXBðLÞ=QXEðLÞ ∝ L2. In
addition, because j sin 2φl⃗1 l⃗

j ≪ 1, we expect that for small

values of L, QXBðLÞ will be much smaller than any other
CIP contribution. Finally, in Fig. 4 we can see that QTE

L
changes slope at roughly the acoustic horizon, L≃ 100.
This change occurs because the two terms that make up this
contribution, CT;dE

l þ CE;dT
jl⃗−L⃗j, are of opposite sign and out of

phase by half of a periodΔl≃ 100 (see Fig. 8 of Ref. [22]).
Therefore, while L < 100 the CIP response remains con-
stant, leading to a decrease in QTE

L ∝ L−2, but for L≳ 100

the CIP response grows, leading to QTE
L ≃ constant (also

see Sec. III. D of Ref. [18]).
We show the first ten values of the exact CIP contribution

to both Planck and CMB-S4 in Table II. We stress that

TABLE I. Planck sensitivity in the 143 and 217GHz channels to
temperature and polarization at the two frequencies used to
estimate the lensing potential [29,42]. The last line gives the
sensitivity for CMB-S4, a proposed next generation CMB tele-
scope [35].

Channel θ (arcmin) wTðμK arcminÞ wPðμK arcminÞ
143 GHz 7 30 60
217 GHz 5 40 95
CMB-S4 3 1 1.4

FIG. 5. The CIP contribution to the estimator for the lensing-
potential power spectrum for both Planck (dashed red) and
CMB-S4 (dotted-dashed blue) for Δ2

rmsðRCMBÞ ¼ 4.3 × 10−3.
For comparison, the lensing-potential power spectrum is shown
in the solid orange curve.

FIG. 4. The CIP contribution to the estimator for the lensing-
potential power spectrum,QXX0

L . To produce these curves we used
the multipole ranges applicable to CMB-S4 [35].
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when computing the values and scalings given in Table II
we have made no approximations, as opposed to the
rough estimate given in Eq. (60). In order to compute
the specific CIP contribution, the values in Table II
need to be multiplied by Δ2

rmsðRCMBÞ. For 11 ≤ L ≤ 40
both the Planck and CMB-S4 CIP contributions
to ½LðLþ1Þ�2Ĉϕϕ

L =ð2πÞ are well-fit (to within a few
percent) by a power law of the form ðL=L0Þ−α with
ðL0;αÞ¼ð0.053;2.0Þ for Planck and ðL0;αÞ¼ ð0.032;1.92Þ
for CMB-S4.
Figure 6 gives a sense of the sensitivity of the Planck

lensing measurements to CIPs. We can see that it is the
lowest-L data that provides the constraint on Δ2

rmsðRCMBÞ.
Although in principle the Planck measurements can be
extended to even lower L values, in practice estimates
of the lensing-potential power spectrum are not robust for
L < 8 [29].

IV. PREVIOUS CONSTRAINTS TO
COMPENSATED ISOCURVATURE

PERTURBATIONS

On scales probed by current cosmological observations
(i.e., k≲ 10 Mpc−1) CIPs lead to a spatial fluctuation of the
baryon density beyond the adiabatic prediction. These
fluctuations can affect several different observables, such
as the primordial light-element abundances and the baryon
fraction in galaxies and galaxy clusters [23]. It can also lead
to anomalous angular correlations in observations of the
baryon acoustic oscillations (BAOs).
Any probe of the spatial dependence of the cosmological

baryon fraction has the potential to be sensitive to CIPs.
Past work has concentrated on placing constraints on the
CIP amplitude through off-diagonal contributions to the
CMB four-point correlation function [34], smoothing of
the small-scale CMB power spectra [26,27], fluctuations in
the baryon fraction of galaxy clusters [23], spatial variation
in the primordial deuterium to hydrogen (D/H) ratio
measured in quasar absorption lines [23], and an additional
offset between the large-scale distribution of total mass
from luminous (i.e., baryonic) matter [24]. These con-
straints probe the CIP modulation on a variety of length
scales. We will use Eq. (17) to convert a constraint on the
CIP variance Δ2

rmsðRÞ to a constraint on the scale-invariant
CIP amplitude, ACIP. Since the integral over k formally
diverges at large scales (i.e., small values of k) we take
kmin to be of the order of the current horizon,
kmin ≃ ð10 GpcÞ−1.

A. Nucleosynthesis bounds

The primordial abundance of the light elements is, in
part, determined by the local baryon-to-photon ratio,
η≡ nb=nγ . Under the assumption of adiabatic initial
conditions, η is spatially uniform; in the presence of a
CIP it will be modulated by the CIP field,Δ. Measurements
of the primordial helium abundance (Yp) and the D/H ratio
in several galaxies allow us to place constraints on any
intrinsic scatter in their values. The measurements of Yp

and D/H place upper limits on ΔrmsðRgalÞ, the rms variation
of Δ on galactic scales. In the presence of a CIP the Helium
abundance, Yp, varies as ΔYp ≃ 0.0087ΔrmsðRgalÞ, and
D/H as Δ log½D=H�≃ 0.69ΔrmsðRgalÞ [23]. We will take
Rgal ∼ 1 Mpc to be the typical size of the region that
collapses to form the galaxies in which Yp and D/H are
measured and find that Δ2

rmsðRgalÞ ¼ 3.57ACIP. Upper
limits to the variation in Yp and D/H give (at 95% CL)
ΔrmsðRgalÞ < 0.25 leading to ACIP < 0.13.

B. Baryon-gas fraction bounds

In the presence of a CIP the ratio δb=δc becomes scale
dependent. The gas fraction of a galaxy cluster directly
probes any fluctuation between baryons and dark matter.

FIG. 6. Planck estimates of the lensing-potential power spec-
trum from Ref. [29] along with the expectation value of the
lensing-potential power spectrum for three values of Δ2

rmsðRCMBÞ.
We also show the 68% (yellow region) and 95% (blue region) CL
for a cosmic variance–limited estimate of Cϕϕ

L .

TABLE II. CIP contribution, with Δ2
rmsðRCMBÞ ¼ 1, to the

normalized lensing-potential estimator, ½LðLþ 1Þ�2Ĉϕϕ
L =ð2πÞ,

for Planck and CMB-S4 given by Eq. (B12).

L Planck CMB-S4

1 4.51 × 10−3 1.54 × 10−3

2 6.87 × 10−4 3.46 × 10−4

3 2.94 × 10−4 1.58 × 10−4

4 1.66 × 10−4 9.17 × 10−5

5 1.07 × 10−4 6.00 × 10−5

6 7.55 × 10−5 4.24 × 10−5

7 5.61 × 10−5 3.16 × 10−5

8 4.33 × 10−5 2.45 × 10−5

9 3.44 × 10−5 1.96 × 10−5

10 2.81 × 10−5 1.60 × 10−5

>10 ðL=0.053Þ−2 ðL=0.032Þ−1.92
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Reference [23] found that ΔrmsðRclÞ < 0.08 at 95% CL.
With Rcl ≃ 10 Mpc we have Δ2

rmsðRclÞ ¼ 0.49ACIP and
ACIP < 0.017 at 95% CL. It is also possible to look for
statistical fluctuations in the baryon and dark matter
fluctuations. Using measurements of the baryon acoustic
oscillations on scales R ∼ 100 Mpc, Ref. [24] found an
upper limit of ACIP < 0.064, which translates into
Δ2

rmsðR ¼ 100 MpcÞ < 0.0165.

C. Past CMB bounds

As we saw in Sec. III, the CIP modulation smooths the
CMBpower spectra and contributes to theCMB trispectrum.
Constraints from the first effect (under a Gaussian-likelihood

approximation [26]) yield the constraint ACIP < 0.04 at
95% CL when using both temperature and polarization. In
Ref. [34] the CIP contribution to the full trispectrum was
constrained using WMAP data, yielding ACIP < 0.044 at
95% CL. Recently, using temperature and polarization
power-spectra results from Planck, Ref. [27] found the
constraint Δ2

rmsðRCMBÞ < 0.012 (ACIP < 0.050) at
95% CL. When using the Planck estimates of the lensing
power spectrum, Ref. [27] uses the conservative lensing
likelihood in the range 40 ≤ L ≤ 400 and neglects to include
the CIP contribution to the estimator of the lensing-potential
power spectrum. We use the aggressive Planck lensing
dataset in the range 8 ≤ L ≤ 2048, which breaks the degen-
eracies slightly better than the conservative lensing dataset
and provides direct extra constraining power on CIP at lowL
due to the effect we have studied in this paper. Our full
analysis thus improves upon the constraint in Ref. [27] by a
factor of ∼3.

V. CONSTRAINTS TO CIPS FROM PLANCK
MEASUREMENTS OF THE CMB

To explore Planck’s sensitivity to CIPs we modified the
publicly available Boltzmann solver CAMB

1 to compute the
CIP-modulated CMB power spectra (as described in
Appendix D) and CIP-modified expectation value of the
lensing-potential estimator given by Eq. (B12). In particu-
lar, we modified CAMB to compute the sum of the lensing-
potential power spectrum and the CIP contribution, given in
Table. II. We compared these theoretical predictions to the
Planck data using the publicly available Planck-likelihood
code [7] and the Markov Chain Monte Carlo (MCMC)
code COSMOMC

2 [43].
The Planck data has been divided up into a large angular-

scale data set (low multipole number) and a small angular-
scale data set (high multipole number) [7]. For all constraints
we use the entire range of measurements for the TT power
spectrum as well as the low multipole polarization (TE and
EE) data, which we denote as “Tþ LowP.” We also
compute constraints using the entire multipole range of

TABLE III. Best-fit values and standard deviations for cosmological parameters with the three different Planck
data sets as described in the text. All upper limits toΔ2

rms show 95% CL. The 68% CL uncertainty inΔ2
rms is�0.0055

when using Tþ LowP.

Parameter Tþ LowP Tþ P Tþ Pþ lensing

ωb……… 0.02277� 0.00034 0.02245� 0.00020 0.02234� 0.0016
ωc……… 0.1166� 0.0025 0.1189� 0.0016 0.1186� 0.0014
ns……… 0.979� 0.0085 0.969� 0.0056 0.967� 0.0048
log ð1010AsÞ 3.061� 0.040 3.069� 0.036 3.04� 0.025
τ………: 0.067� 0.02 0.068� 0.018 0.054� 0.014
H0……… 69.2� 1.3 67.8� 0.75 67.83� 0.65
Δ2

rms……. 0.014� 0.011 <0.0139 <0.00434

FIG. 7. The 1D marginalized posterior for Δ2
rmsðRCMBÞ using

the three combinations of data sets discussed in the text. The
vertical dashed line indicates the 95% CL upper limit using the
Tþ Pþ lensing data sets. The vertical dotted line shows the
expected 95% CL upper limit if we were to apply the optimal CIP
estimator to the Planck measurements of the CMB. The prox-
imity of these two limits shows that, when considering a
constraint to the overall amplitude of the CIP modulation, the
analysis presented here is nearly optimal.

1http://camb.info
2http://cosmologist.info/cosmomc/

BARYONS STILL TRACE DARK MATTER: PROBING CMB … PHYSICAL REVIEW D 96, 083508 (2017)

083508-11

http://camb.info
http://camb.info
http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/


polarization measurements, denoted by “Tþ P.” The divi-
sion between these two data sets is the multipole number
l ¼ 29 which approximately corresponds to an angular scale
of ≃5°. In addition to the temperature and polarization
power spectra, we use the Planck estimate of the lensing-
potential power spectrum [29]. Since the CIP contribution to
the standard lensing estimator is largest on the largest
angular scales, we use the “aggressive” estimate of the
lensing-potential power spectrum which extends down to
Lmin ¼ 8. We used the PLIK likelihood [7] and varied all 27
Planck nuisance parameters.

As demonstrated in Fig. 1, polarization data can break
degeneracies present in a temperature-only analysis. The top
panel inFig. 1 shows that the residualTT power spectrumhas
an oscillating structure around l≃ 1000. When comparing
the CIPmodulation of theTT power spectrum,we can see by
eye that a nonzero CIP amplitude can fit these residuals. As
shown in the first column of Table III, this is reflected by the
fact that the Tþ LowP data sets prefer a nonzero CIP
modulation with Δ2

rmsðRCMBÞ ¼ 0.014� 0.011 at 95% CL
(corresponding toACIP ¼ 0.056� 0.044).Whenwe include
the full polarizationmeasurements fromPlanck (i.e., Tþ P),

FIG. 8. A “triangle plot” showing the 2D marginalized posteriors for the standard six cosmological parameters and the CIP rms
variation on cosmological scales, Δ2

rmsðRCMBÞ.
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the upper limit to the CIP mode decreases to < 0.0139 at
95%CL (ACIP < 0.056). Figure 1 indicates this ismainly due
to precise measurements of CEE

l at multipoles between
30≲ l≲ 400. Finally, when including estimates of the
lensing-potential power spectrum (i.e., Tþ Pþ lensing),
the upper limit to the CIP modulation decreases by a factor
of ∼3.2.
The 1D marginalized posterior on Δ2

rmsðRCMBÞ using the
three combinations of data sets is shown in Fig. 7. We can
see how the CIP contribution to the lensing-potential power
spectrum significantly improves the sensitivity to
Δ2

rmsðRCMBÞ. This figure also makes clear how the position
of the maximum of the 1D posterior decreases as we add in
additional data.
In order to explore any degeneracies in these parameters,

we show a “triangle plot” for the standard six cosmological
parameters and Δ2

rmsðRCMBÞ in Fig. 8. As shown by a
comparison between the black and blue contours, the
constraints on the standard six parameters remain fairly
unchanged when we additionally constrain Δ2

rmsðRCMBÞ.
Moreover, going from Tþ P to Tþ Pþ lensing clearly
reduces the overall uncertainties of Δ2

rmsðRCMBÞ, as well as
its correlations with the rest ofΛCDM parameters, since the
information on the CIPs comes from the large-scale lensing
estimator.

VI. CIP SENSITIVITY OF FUTURE EXPERIMENTS

We now assess the sensitivity of future CMB experi-
ments to CIPs. As for lensing, the improvements will come
primarily from small scales (in particular, polarization), and
so we focus on the proposed CMB-S4 experiment, as
described in Ref. [44]; CMB-S4 will be a nearly cosmic
variance–limited (CVL) experiment in both temperature
and polarization. Our analysis can be easily implemented
using noise specifications for other future experiments.
We model CMB-S4 as a single-channel experiment, as

described in Table I, observing in the range 30 ≤ l ≤ 3000
for temperature and 30 ≤ l ≤ 5000 for polarization (due to
the smaller relative amplitude of small-scale polarized
foregrounds). Given these characteristics, the lensing noise
can be computed as in Refs. [28,45]. We show the CVL
case in Fig. 6.

A. Lensing-potential bias and
power-spectrum smoothing

The sensitivity of lensing-potential bias and power-
spectrum smoothing to CIPs is estimated using the
Fisher matrix [46–50]

Fij ¼
X
l

2lþ 1

2
fskyTr

�
C−1

l
∂Cl

∂pi
C−1

l
∂Cl

∂pj

�
; ð66Þ

where pi contains the six ΛCDM parameters plus the CIP
variance Δ2

rms, and the CMB covariance matrix is given by

Cl ¼

0
B@

CTT;t
l CTE;t

l CTd;t
l

CTE;t
l CEE;t

l 0

CTd;t
l 0 Cdd;t

l

1
CA; ð67Þ

where all of the power spectra are computed from the
observed maps as in Eqs. (23) and (24), following the noise
properties from Table I with zero noise for any cross-
correlated (i.e., TE) maps. Since the CIP contribution to the
lensing-potential power-spectrum estimator roughly
decreases as L−2, the sensitivity of future estimates to
the scale-invariant CIP amplitude, ACIP, is highly depen-
dent on the minimum observable L value, Lmin, and
therefore highly dependent on the sky coverage.
Assuming that the nonlensing biases contributing to the
lensing-potential power-spectrum estimator can be robustly
subtracted on large angular scales, the minimum multipole
which can be estimated is approximately given by
Lmin ∼ f−1=2sky . Unfortunately, galactic foregrounds [51]
and temperature/polarization leakage [44] could degrade
the largest-scale measurements (L < 30).
We defer analysis of these complications to future work

and obtain forecasts as a function of the minimum Lmin
detectable by the CMB-S4. Using information from the
lensing estimator and power-spectrum smoothing, we
obtain the sensitivity to Δ2

rmsðRCMBÞ for the CMB-S4
experiment as a function of Lmin (shown in Fig. 9). For
Lmin ≥ 10 the majority of the constraint comes from the
CIP modulation of the CMB power spectrum, whereas for
Lmin < 10 the CIP contribution to the lensing-potential
estimator dominates. We note that the CMB-S4 lensing
noise is very close to the cosmic-variance limit, and
therefore the results should be the same for any other

FIG. 9. Projected sensitivity to Δ2
rmsðRCMBÞ for CMB-S4. The

overall sensitivity is shown in the solid blue curve. The sensitivity
can be divided into a contribution from the smoothing of the
CMBmultipoles (dotted black) and from estimates of the lensing-
potential power spectrum (dotted-dashed red). The optimal
estimator is shown in the dashed orange curve. As is clear
from this figure, the CIP lensing-potential contribution is only
important if future experiments can probe Lmin ≲ 5.
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nearly CVL experiment. In particular, a full-sky CVL
measurement of the lensing-potential power spectrum
has the potential to constrain Δ2

rmsðRCMBÞ ≲ 10−5, and
therefore ACIP ≲ 4 × 10−5. We now turn our attention to
additional improvements possible with an optimal estima-
tor of CIPs.

B. Optimal estimator

The constraints obtained in this work from the observed
CMB trispectrum rely on the contribution of CIPs to the
lensing-potential estimator. There is, however, an optimal
CIP estimator which relies on the distinct (from lensing)
off-diagonal CMB multipole correlations induced by CIPs,
as shown in Refs. [18,21,22] and summarized in
Appendixes B and E. This estimator was used to obtain
the WMAP constraints to CIPs in Ref. [34]. The Fisher
information, F, which yields the minimum uncertainty
σΔ2

rms
¼ ffiffiffiffiffiffiffiffiffi

1=F
p

, is given by

F ¼
X
L

ð2Lþ 1Þ
2

fsky

�∂CΔΔ
L

∂Δ2
rms

�
2

ðNΔΔ
L Þ−2; ð68Þ

where NXX0
L are defined in Ref. [34] and computed under

the null hypothesis. We use Eq. (68) to forecast the
sensitivity of Planck and CMB-S4 (although Planck data
are public, we still have to “forecast” its sensitivity given
that a full analysis of the Planck CMB trispectrum for CIPs
does not yet exist) to a scale-invariant angular power
spectrum of CIPs.
For Planck noise parameters, we find that the optimum

estimator has a 2σ sensitivity of Δ2
rmsðRCMBÞ≃ 4 × 10−3,

offering no significant improvement over the constraint
from the CIP contribution to the lensing-potential estimator
(see Fig. 7 for an illustration). In other words, the con-
straints in Sec. V are nearly optimal using Planck data.
On the other hand, for a nearly CVL experiment like

CMB-S4, the optimal estimator improves on the constraint
from the CIP contribution to the lensing estimator by a
factor of ∼4.0 for Lmin ¼ 1 and a factor of ∼4.5 for
Lmin ¼ 30. This difference, illustrated in Fig. 9, is driven

by the constraining power of a nearly CVL polarization
experiment.
Given the fact that the trispectrum is so much more

constraining than the CIP-induced smoothing of the CMB
power spectrum, we neglect primary power-spectrum con-
straints in this Fisher analysis. For futuristic experiments
(like CMB-S4), the reconstruction noise for both lensing
and CIPs may be low enough that lensing could introduce a
significant bias [52] to the estimators described in
Appendix E, requiring either a debiased minimum-variance
estimator (as discussed in Ref. [53]) or a “delensed” CMB
map (as discussed in Refs. [54,55]), in which lensing-
induced correlations have been filtered out. We defer an
analysis that includes these complications to future work,
and simply note that Eq. (68) quantifies the best CIP
reconstruction we could achieve using the CMB.

VII. CONCLUSIONS

We have shown how the presence of a CIP modulation
contributes to the lensing-potential power-spectrum esti-
mator. In particular, we have used the Planck data to place
the most stringent constraints on the amplitude of a scale-
invariant CIP modulation, Δ2

rmsðRCMBÞ < 4.3 × 10−3 at
95% CL, on cosmological scales. The method discussed
here provides a nearly optimal upper limit when using
Planck data. We note that this statement only applies to the
overall amplitude of a scale-invariant CIP power spectrum.
A full trispectrum analysis could additionally probe the
scale dependence of a CIP power spectrum.
We show a comparison of our results to previous

constraints to the amplitude scale-invariant CIP power
spectrum in Table IV [see Eq. (20) for a translation between
Δ2

rmsðRCMBÞ and ACIP]. This table shows that before this
work the most sensitive constraint to the CIP amplitude
came from estimates of the baryon fraction in galaxy
clusters. The results presented here are as sensitive to
ACIP. Furthermore, given that the analysis of the baryon
fraction estimates assumes that the clusters are represen-
tative of the baryon density throughout the universe and
that they are kinematically relaxed [23] the robustness of
these constraints may be in question [26]. On the other
hand, the CMB-related constraints presented here do not
suffer from such complexities and are therefore more
straightforward to interpret.
We note that the constraints presented here do not apply

to curvaton-generated CIPs, which are correlated with
adiabatic fluctuations. In this scenario, the effect of CIPs
on CMB observables is enhanced relative to what is
considered here. Our limits do, however, give us a
conservative upper limit on the sensitivity of our technique
to curvaton-generated CIPs.
As discussed in Sec. V, the upper limit to ACIP found here

is nearly optimal for the measurements from Planck.
Looking towards future experiments with nearly ideal
sensitivity to polarization, we find that the method

TABLE IV. Current constraints on ACIP, the amplitude of the
power spectrum of a scale-invariant CIP modulation field. All
uncertainties and upper limits are at 95% CL.

Method ACIP

Trispectrum, WMAP [34] <0.044
Baryon Acoustic Oscillations [24] <0.064
Baryon Fraction in Galaxy Clusters [23] <0.017
Dispersion in 4He and D/H [23] <0.13
CMB Tþ Pþ high-L lensing [27] < 0.050
This work:
Planck Tþ LowP 0.056� 0.044
Planck Tþ P <0.056
Planck Tþ Pþ lensing <0.017
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presented here is about a factor of 4.5 less sensitive than the
optimal estimator. However, we note that the standard
analysis of future CMB data will include an estimate of the
lensing-potential power spectrum from the CMB trispec-
trum. Therefore, the results presented here show that, in the
presence of a CIP modulation, we may find excess power in
the lensing estimator at large angular scales. This con-
clusion applies to any scale-invariant stochastic field which
modulates the CMB. In particular, processes like patchy
reionization [56] or a spatial variation in the fine structure
constant [57,58] should contribute to the lensing estimator
in a similar way. We leave such extensions of the results
presented here to future work.
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APPENDIX A: CIP MODULATION
OF THE CMB IN THE FLAT-SKY LIMIT

In the presence of a CIP field the CMB is modulated in a
way that is analogous to the effects of gravitational lensing.
In this appendix we present the flat-sky expressions for the
modulated temperature and polarization. Since we are
interested in the leading-order effects on the trispectrum,
we only consider terms to linear order in the lensing-
potential, ϕ, and CIP modulation field, Δ.
In the flat-sky approximation we have [28,40,41]

ðQ� iUÞðn̂Þ¼−
Z

d2l
ð2πÞ2 ½Eðl⃗Þ� iBðl⃗Þ�e�2iφl⃗ eil⃗·n̂; ðA1Þ

where φl⃗ is the polar angle of the wave vector l⃗. Expanding½Q� iU�ðn̂Þ to linear order in the lensing-potential and the
CIP modulation field, we have

½Q� iU�ðn̂þ ∇⃗ϕ;ΔÞ≃ ½Q� U�ðn̂Þ þ∇iϕ∇i½Q� U�

þ Δðn̂Þ∂½Q� U�
∂Δ

����
Δ¼0

: ðA2Þ

Using the fact that ½Q� iU�ðl⃗Þ ¼ ½Eðl⃗Þ � iBðl⃗Þ�e�2iφl⃗ and
writing Xobsðl⃗Þ ¼ Xðl⃗Þ þ δXðl⃗Þ, we have

δTðl⃗Þ ¼
Z

d2l1
ð2πÞ2WTðl⃗; l⃗1Þ; ðA3Þ

δEðl⃗Þ ¼
Z

d2l1
ð2πÞ2 ½WEðl⃗; l⃗1Þ cos 2φl⃗1 l⃗

−WBðl⃗; l⃗1Þ sin 2φl⃗1 l⃗
�;

ðA4Þ

δBðl⃗Þ ¼
Z

d2l1
ð2πÞ2 ½WBðl⃗; l⃗1Þ cos 2φl⃗1 l⃗

þWEðl⃗; l⃗1Þ sin 2φl⃗1 l⃗
�;

ðA5Þ

where φl⃗1;l⃗
≡ φl⃗1

− φl⃗ and

WXðl⃗; l⃗1Þ≡ Xðl⃗1ÞWϕðl⃗1; l⃗Þ þ
∂Xðl⃗1Þ
∂Δ Δðl⃗ − l⃗1Þ

Wϕðl⃗; l⃗1Þ≡ −ϕðl⃗ − l⃗1Þ½ðl⃗ − l⃗1Þ · l⃗1� ðA6Þ

This allows us to write down an estimator for the lensing
potential in terms of the various correlations [28,40,41] as
follows:

d̂αðL⃗Þ≡AXX 0 ðLÞ
L

Z
d2l1
ð2πÞ2X

tðl⃗1ÞX 0tðl⃗2ÞFXX 0 ðl⃗1; l⃗2Þ; ðA7Þ

where l⃗2 ≡ L⃗ − l⃗1, α ¼ XX 0 and

FXX0 ðl⃗1; l⃗2Þ≡
CX 0X0;t
l1

CXX;t
l2

fXX0 ðl⃗1; l⃗2Þ − CXX 0;t
l1

CXX0;t
l2

fXX0 ðl⃗2; l⃗1Þ
CXX;t
l1

CX 0X0;t
l2

CX0X0;t
l1

CXX;t
l2

− ðCXX0;t
l1

CXX0;t
l2

Þ2 ; ðA8Þ

AXX0 ðLÞ≡ L2


Z
d2l1
ð2πÞ2 fXX0 ðl⃗1; l⃗2ÞFXX 0 ðl⃗1; l⃗2Þ

�−1
: ðA9Þ

We have defined the total CMB power spectrum, CXX0;t
l , which includes detector noise and finite resolution, in Eq. (23), and

we show the fXX0 in Table V. The (Gaussian) noise in each estimator is given by

Nð0Þ
α;βðLÞ ¼

AαðLÞAβðLÞ
L2

Z
d2l1
ð2πÞ2 Fαðl⃗1; l⃗2Þ½Fβðl⃗1; l⃗2ÞCXY;t

l1
CX 0Y 0;t
l2

þ Fβðl⃗2; l⃗1ÞCXY 0;t
l1

CX0Y;t
l2

�; ðA10Þ

with β ¼ ðYY 0Þ.
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Finally, we can combine all of these to form a
“minimum-variance” estimator [28,41]

d̂mvðL⃗Þ≡
X
α

wαðLÞd̂αðL⃗Þ; ðA11Þ

where the weights wα are chosen to minimize the Gaussian
noise,

wαðLÞ≡
P

βðN−1ÞαβP
βγðN−1Þβγ

: ðA12Þ

We can now write a minimum-variance estimator for the
lensing-potential power spectrum,

Ĉϕϕ
L ≡ 1

2π

Z
2π

0

d̂mvðL⃗Þd̂�mvðL⃗Þ
L2

dφL⃗ − BðLÞ; ðA13Þ

where φL⃗ is the angular coordinate of L⃗ and BðLÞ is the
standard Gaussian and non-Gaussian biases to the full
four-point correlation [29,39,40]. Using Eq. (A6), it is
straightforward to show that in the presence of CIPs the
bias-subtracted lensing-potential power-spectrum estimator
has an expectation value [28,40]

hĈϕϕ
L i¼Cϕϕ

L þCΔΔ
L

X
α;β

wαðLÞwβðLÞQαðLÞQβðLÞ; ðA14Þ

where

QαðLÞ≡
R d2l1

ð2πÞ2 ½hXX0 ðl⃗1; l⃗2Þ þ hX 0Xðl⃗1; l⃗2Þ�FXX 0 ðl⃗1; l⃗2ÞR d2l1
ð2πÞ2 ½fXX 0 ðl⃗1; l⃗2Þ þ fX 0Xðl⃗1; l⃗2Þ�FXX 0 ðl⃗1; l⃗2Þ

;

ðA15Þ

where the CIP response functions, hXX0 , are given in
Table V. Note that we have left off the non-Gaussian
and residual CIP Gaussian bias from this expression. As
shown in Sec. III, given the current upper limits to ACIP,
these terms make a negligible contribution to the expect-
ation value of the temperature-only estimator. In addition to
this, Ref. [40] demonstrates that the contribution to these
biases from correlations other than TT are of about the
same order of magnitude and do not change significantly
with an improvement in the instrumental noise.

APPENDIX B: FULL-SKY EXPRESSIONS

The Planck CMB lensing analysis in Ref. [29] used the
full-sky estimators derived in Ref. [28] to compute the
lensing-potential power spectrum. In this appendix we
compute the dominant CIP contribution to that estimator.
Consider an ensemble of CMB fields modulated by both

a fixed deflection field ϕ and a fixed CIP field Δ. These
second-order effects produce an off-diagonal covariance
[21,22,28],

TABLE VI. The lensing and CIP response functions. “Even” and “odd” indicate that the functions are nonzero only when Lþ lþ l0 is
even or odd, respectively. To translate from the conventions of Ref. [18], we need to swap l ↔ l0, which leads to a minus sign for the two
odd responses, EB and TB. Note that the B-mode autocorrelation, BB, vanishes at linear order in the CIP field.

XX0 fXX
0

lLl0 hXX
0

lLl0
lþ l0 þ L

TT ~CTT
l 0Gl0Ll þ ~CTT

l0 0GlLl0 ð ~CT;dT
l þ ~CT;dT

l0 Þ0HlLl0
even

TE ~CTE
l 2Gl0Ll þ ~CTE

l0 0GlLl0
~CT;dE
l 2HlLl0 þ ~CE;dT

l0 0HlLl0
even

TB i ~CTE
l 2Gl0Ll i ~CT;dE

l 2HlLl0
odd

EE ~CEE
l 2Gl0Ll þ ~CEE

l0 2GlLl0 ð ~CE;dE
l þ ~CE;dE

l0 Þ2HlLl0
even

EB i½ ~CEE
l 2Gl0Ll − ~CBB

l0 2GlLl0 � ið ~CE;dE
l þ ~CB;dB

l0 Þ2HlLl0
odd

BB ~CBB
l 2Gl0Ll þ ~CBB

l0 2GlLl0 ð ~CB;dB
l þ ~CB;dB

l0 Þ2HlLl0
even

TABLE V. The lensing and CIP response functions in the flat-sky limit.

XX0
fXX0 ðl⃗1; l⃗2Þ hXX 0 ðl⃗1; l⃗2Þ

TT ~CTT
l1 ðL⃗ · l⃗1Þ þ ~CTT

l2 ðL⃗ · l⃗2Þ ~CT;dT
l1

þ ~CT;dT
l2

TE ~CTE
l1 cos 2φl⃗1 l⃗2

ðL⃗ · l⃗1Þ þ ~CTE
l2 ðL⃗ · l⃗2Þ ~CT;dE

l1
cos 2φl⃗1 l⃗2

þ ~CE;dT
l2

TB ~CTE
l1 sin 2φl⃗1 l⃗2

ðL⃗ · l⃗1Þ ~CT;dE
l1

sin 2φl⃗1 l⃗2

EE ½ ~CEE
l1 ðL⃗ · l⃗1Þ þ ~CEE

l2 ðL⃗ · l⃗2Þ� cos 2φl⃗1 l⃗2
½ ~CE;dE

l1
þ ~CE;dE

l2
� cos 2φl⃗1 l⃗2

EB ½ ~CEE
l1 ðL⃗ · l⃗1Þ − ~CBB

l2 ðL⃗ · l⃗2Þ� sin 2φl⃗1 l⃗2
½ ~CE;dE

l1
− ~CB;dB

l2
� sin 2φl⃗1 l⃗2

BB ½ ~CBB
l1 ðL⃗ · l⃗1Þ þ ~CBB

l2 ðL⃗ · l⃗2Þ� cos 2φl⃗1 l⃗2
½ ~CB;dB

l1
þ ~CB;dB

l2
� cos 2φl⃗1 l⃗2
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hXlmX0
l0m0 ijlens;CIP ¼ ~CXX0

l δll0δm−m0 ð−1Þm

þ
X
LM

ð−1ÞM
�

l l0 L

m m0 −M

�

× ½ϕLMfXX
0

lLl0 þ ΔLMhXX
0

lLl0 �; ðB1Þ

where ϕLM and ΔLM are the multipoles of the lensing
potential and CIP field, respectively, fXX

0
lLl0 and hXX

0
lLl0 are the

lensing/CIP response functions for different quadratic pairs
(see Table VI) and are defined in terms of the unmodulated
power spectrum, ~CXX0

l , and the lensing angular/CIP
response functions

�sGlLl0 ≡ ½LðLþ 1Þ þ l0ðl0 þ 1Þ− lðlþ 1Þ�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

16π

r �
l L l0

�s 0 ∓ s

�
;

ðB2Þ

�sHlLl0 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

4π

r �
l L l0

�s 0 ∓ s

�
:

ðB3Þ

We also define the full-sky power spectrum analogous to
Eq. (43)

CT;dT
l ≡ 2

π

Z
k2dkPΦðkÞTlðkÞ

dTlðkÞ
dΔ

: ðB4Þ

Planck estimates the lensing-potential from observations
of the CMB uses the formalism presented in Ref. [28],
which establishes a minimum-variance estimator for
dLM ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðLþ 1Þp
ϕLM,

d̂αLM ¼Aα
L

X
lm;l0m0

ð−1ÞMXlmX0
l0m0

�
l l0 L

m m0 M

�
Fα
ll0L; ðB5Þ

where Aα
L and Fα

ll0L are

Aα
L ¼ LðLþ 1Þð2Lþ 1Þ


X
l1l2

gαl1Ll2f
α
l1Ll2

�
−1
; ðB6Þ

Fα
lLl0 ≡

CXX;t
l0 CX0X0;t

l fα�lLl0 − ð−1ÞlþLþl0CXX0;t
l CXX0;t

l0 fα�l0Ll
CXX;t
l CXX;t

l0 CX0X0;t
l CX0X0;t

l0 − ðCXX0;t
l CXX0;t

l0 Þ2 ;

ðB7Þ

where α ¼ XX0, and yield, in the absence of a CIP
modulation, an optimal estimator

Ĉϕϕ
L ¼ 1

2Lþ 1

X
α;β

XL
M¼−L

wαwβ
d̂αLMd̂

�β
LM

LðLþ 1Þ − BL; ðB8Þ

where [28]

wα ≡ Nmv
L

X
β

ðN−1
L Þαβ; ðB9Þ

Nαβ
L ≡ Aα�

L Aβ
L

LðLþ 1Þð2Lþ 1Þ
X
l1l2

fFα�
l1Ll2

½CXY;t
l1

CX0Y 0;t
l2

Fβ
l1Ll2

þ ð−1ÞLþl1þl2CXY 0;t
l1

CX0Y;t
l2

Fβ
l2Ll1

�g ðB10Þ

Nmv
L ≡

hX
αβ
ðN−1

L Þαβ
i
−1 ðB11Þ

are weights chosen to yield an optimal estimator for the
deflection field and BL are the standard Gaussian and non-
Gaussian contributions to the CMB four-point correlation
[29,39,40]. With a nonzero CIP contribution in Eq. (B1), it
is straightforward to show that the lensing estimator in
Eq. (B8) becomes biased with an expectation value

hĈϕϕ
L i ¼ Cϕϕ

L þ
X
α;β

wαwβQα
LQ

β
LC

ΔΔ
L ; ðB12Þ

where

Qα
L ≡

P
ll0h

α
lLl0F

α
lLl0P

ll0f
α
lLl0F

α
lLl0

: ðB13Þ

APPENDIX C: COMPUTING THE
SECOND-ORDER CIP EFFECTS

We start by noting that in the absence of the CIPs, the
power spectrum,CXX0

l , can be written in terms of an integral
over wave number [59],

CXX0
l ¼ 2

π

Z
k2dkPΦðkÞXlðkÞX0

lðkÞ; ðC1Þ

where the XlðkÞ weighted integrals of the transfer function,
fXðηÞ, along the line of sight are

XlðkÞ≡
Z

dηfXðηÞjl½kðη0 − ηÞ�: ðC2Þ

A CIP causes a modulation of the transfer function,
yielding an observed power spectrum [22]
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CXX0;obs
l ≃ ~CXX0

l jΔ¼0

þ
X
Ll0

CΔ
LC

dX;dX0
l0 ðsXKL

ll0 ÞðsX0KL
ll0 ÞGLl0

þ 1

2
Δ2

rmsðRCMBÞðCX;d2X0
l þ CX0;d2X

l Þ; ðC3Þ

where

CdT;dT
l ≡ 2

π

Z
k2dkPΦðkÞ

�
dTlðkÞ
dΔ

�
2

; ðC4Þ

CT;d2T
l ≡ 2

π

Z
k2dkPΦðkÞTlðkÞ

d2TlðkÞ
dΔ2

; ðC5Þ

GL;l0 ≡ ð2Lþ 1Þð2l0 þ 1Þ
4π

; ðC6Þ

sXK
L
ll0 ≡

�
l L l0

sX 0 −sX

�
; ðC7Þ

and sX ¼ 0 for X ¼ T and sX ¼ 2 for X ¼ E, B.
Throughout this work we have taken the CIP modulation

to be scale-invariant so that CΔ
L ∝ L−2. This means that the

terms in the sum of Eq. (C10) will be dominated by smaller
values of L. Since the variation of the baryon density
mainly affects the physics at the surface of last scattering
and earlier, the CdX;dX0

l0 term is only significant on scales
smaller than the angular scale of the horizon at decoupling
(so l0 ≳ 100); this means that within the sum the terms
which dominate have L ≪ l0. The Wigner 3-j symbol in

sKL
ll0 is only nonzero when l, L, and l0 satisfy the triangle

inequality as follows:

jl − Lj ≤ l0 ≤ lþ L: ðC8Þ

This set of inequalities applies to the three sides of a triangle.
If l0 and L are two sides of a triangle, given that l0 ≫ L, the
onlyway to complete it is to add another sidewith l≃ l0. This
is the case, and it is straightforward to show that the summand
in Eq. (C3) peaks at l0 ¼ l and that we have

X
l0
ðsXKL

ll0 ÞðsX0KL
ll0 Þ≃

1

2l0 þ 1
δl;l0 : ðC9Þ

Therefore, we have

X
Ll0

CΔ
LC

dX;dX0
l0 ðsXKL

ll0 ÞðsX0KL
ll0 ÞGLl0

≃ CdX;dX0
l

X
L

2Lþ 1

4π
CΔ
L ¼ Δ2

rmsðRCMBÞCdX;dX0
l : ðC10Þ

Equation (C1) tells us that the second derivative of the power
spectrum with respect to Δ can be written as

1

2

d2CXX0
l

dΔ2
¼ 2

π

Z
k2dkPΦðkÞ

��
dXlðkÞ
dΔ

�
2

þ 1

2

�
X0
lðkÞ

d2XlðkÞ
dΔ2

þ XlðkÞ
d2X0

lðkÞ
dΔ2

��
:

ðC11Þ

This shows that in the presence of a scale-invariant CIP
power spectrum the full calculation of the Cls in Eq. (C3)
can be replaced with the less computationally intensive
expression

CXX0;obs
l ≃ ~CXX0

l þ 1

2
Δ2

rmsðRCMBÞ
d2CXX0

l

dΔ2

����
Δ¼0

: ðC12Þ

When computing the observedCls in ourMCMC, we use an
efficient double-sided derivative to numerically calculate the
CIP effects. We detail the accuracy of our numerical
derivatives in Appendix D. Note that if the CIP spectrum
had a blue tilt, or additional power at small scales, the above
equation for the observed power spectrum would no longer
be a good approximation.

APPENDIX D: EFFICIENT COMPUTATION
OF THE SECOND-ORDER EFFECTS OF CIPS

ON THE CMB POWER SPECTRUM

Given the number of evaluations of the power spectrum
during an MCMC analysis, it is essential to use a computa-
tionally efficient method to compute the CIP effects on the
CMB power spectrum. As shown in Eqs. (38) and (C12) in
the flat-sky approximation and with the full sky, respec-
tively, the CIP-modulated CMB power spectrum can be
computed by taking the second derivative of the unmodu-
lated power spectrum with respect to the CIP field Δ. As
discussed in Sec. II, the CIP field is a spatial modulation of
the baryon fraction, so this is equivalent to taking the
second derivative of the unmodulated CMB power spec-
trum with respect to Ωb. In this appendix we outline the
numerical techniques we developed to efficiently and
accurately compute this derivative.
We compute the numerical derivative of the power

spectrum using the finite difference as follows:

∂2Cl

∂Δ2
¼ Cl½Δþ ϵ� − 2Cl½Δ� þ Cl½Δ − ϵ�

ϵ2
: ðD1Þ

In order to determine the value of ϵ which yields the most
accurate derivative, we compared Eq. (D1) to the second
derivative computed from a densely sampled polynomial fit
to ClðΔÞ. In particular, we generated 100 evenly spaced
samples ClðΔÞ within a range of −:25 < Δ < :25 and fit a
sixth-order polynomial. We found that increasing the
number of samples and polynomial order beyond these
values lead to less than a 0.1% change in the second-order
derivative across the entire range of 2 ≤ l ≤ 5000.
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Figure 10 demonstrates the effect of the size of the step size
ϵ in the finite difference formula on how closely this
approximation approaches the polynomial-fitting derivative
method as quantified by computing the fractional differ-
ence, χ2, between the finite difference and polynomial-fit
derivatives,

χ2 ≡
P

lðyl − flÞ2P
lðylÞ2

; ðD2Þ

where fl are the finite difference second derivatives of CTT
l

and yl are the polynomial-fit second derivatives. For the
accuracy level that we used (in particular, we used
AccuracyBoost=1 in CAMB), we can see that the percent
difference between our finite difference and polynomial-
fit derivatives achieves a minimum of less than 0.1%
in the range from :1≲ ϵ≲ :15. In the calculations of the
CIP-modulated CMB power spectrum we used a step
size ϵ ¼ 0.1.

APPENDIX E: MINIMUM-VARIANCE
CIP ESTIMATOR

The CIP field ΔLM induces off-diagonal correlations
between CMB multipoles, as shown in Table VI (and
derived in Refs. [18,22]). As with lensing, these

correlations can be used to derive a minimum-variance
estimator for CIPs, which for a single pair of observables
(X;X0 ∈ fT;E;Bg) is

Δ̂XX0
LM ¼ NXX0

L

X
lml0m0

XlmX0
l0m0FXX0;CIP

lLl0 ð−1ÞM

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2lþ 1Þð2l0 þ 1Þ

4π

r �
l l0 L

m m0 M

�
;

ðE1Þ

½NXX0
L �−1 ¼

X
ll0

Gll0hXX
0

lLl0 F
XX0;CIP
lLl0 ; ðE2Þ

Gll0 ≡ ð2lþ 1Þð2l0 þ 1Þ
4π

; ðE3Þ

where the filters FXX0;CIP
lLl0 are as given in Eq. (B7), but using

the CIP response functions hXX
0

lLl0 given in the second
column of Table VI in place of the lensing response
functions fXXlLl0 .
The (Gaussian) reconstruction noise is then

hjΔ̂XX0
LM − ΔLMj2iCMB ¼ NXX0

L : ðE4Þ

Using different observable pairs, one can obtain the
combined total minimum-variance estimator

Δ̂LM ¼
X
α

wα
LΔ̂

α
LM; ðE5Þ

wα
L ¼ NΔΔ

L

X
β

ðM−1
L Þα;β; ðE6Þ

½NΔΔ
L �−1 ≡X

αβ

ðM−1
L Þα;β: ðE7Þ

The estimator covariance-matrix ML is at every L a rank-
two tensor over observable pairs. The indices α and β take
values over labels for pairs of observables, that is,
α; β ∈ fTT; EE; TE; TB; EBg. Using Eq. (E1), and iden-
tities of Wigner coefficients, we obtain an expression for
the matrix elements Mα;β

L as follows:

MXX0;ZZ0
L ¼ NXX0

L NZZ0
L

X
ll0

Gll0gXX
0

Lll0

h
CXZ;t
l0 CX0Z0;t

l gX
0Z0�

Lll0 þ ð−1Þlþl0þLCXZ0;t
l0 CX0Z;t

l gZZ
0�

Ll0l

i
: ðE8Þ

The total-estimator variance is again the inverse normalization factor NΔΔ
L .

FIG. 10. The fractional difference between the polynomial
derivative method and the finite difference [Eq. (D1)] plotted
as a function of the step size ϵ for CTT

l at Δ ¼ 0.
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