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Using cosmic voids to probe the growth rate of cosmic structure, and hence the nature of dark energy, is
particularly interesting in the context of modified gravity theories that rely on the “screening mechanism.”
In this work we improve the modelling of redshift-space distortions around voids in the dark matter density
field, and thus reduce systematic errors in the derivation of cosmological parameters. We also show how
specific types of voids can be used to better probe the growth rate, using a flexible void finder. We apply our
results to test for a “quintessence” type of dark energy vs. a ΛCDMmodel, and find a good agreement with
the fiducial cosmology after implementing an analytical correction to the radial velocity profiles around
voids. We additionally outline characteristic imprints of dark energy in the dark matter velocity
distributions around voids.

DOI: 10.1103/PhysRevD.96.083506

I. INTRODUCTION

Several cosmological observations have provided essen-
tial insights into the formation of the cosmic web within the
ΛCDM concordance model (e.g. [1–5]). However, a
physical interpretation of dark energy is still missing,
prompting investigation into alternative cosmological
models (e.g. “dynamical dark energy” [6,7]), as well as
modified gravity theories [8–10]. Because these alternative
interpretations of dark energy are required to have a similar
expansion history of the universe to what has been
observed, it is often difficult to distinguish them from a
simple cosmological constant. In this context, cosmic voids
could provide complementary constraints on dark energy.
Indeed, over the last decade, efforts have been made to

use cosmic voids in order to challenge the ΛCDM model
(e.g. [11–14]), by looking at Alcock-Paczynski tests
[15,16], the integrated Sachs-Wolfe effect (e.g. [11,17]),
lensing around voids (e.g. [18,19]), and measuring their
abundance, their density profiles (e.g. [13,14,20,21]), or
looking at the clustering of matter in underdense environ-
ments [22,23].
Redshift space distortions (RSD) are sourced by the

peculiar velocities of galaxies, and are sensitive to the linear
growth rate, f ≡ d ln δmðaÞ

d ln a , with δmðaÞ the growing mode of
matter density fluctuations and a the scale factor. On large
scales the linear growth rate can be measured by probing
the coherent infall or outflow of galaxies, sourced by the
gravitational potential, while at smaller scales we can
observe the elongation of the clustering signal of galaxies
along the line-of-sight (i.e., finger of god). The linear

growth rate is a powerful cosmological probe, sensitive to
both cosmic expansion and to the gravitational interactions
that shape the formation of cosmic structures. It has been
inferred using galaxy clustering in redshift space, from
many data sets, including the 6 degree Field Galaxy Survey
6dFGS [24,25], the 2 degree Field Galaxy Redshift
Survey (2dFGRS) [26–28], the Sloan Digital Sky Survey
(SDSS) [29], the WiggleZ Dark Energy Survey [30], the
Baryon Oscillation Spectroscopic Survey (BOSS) [31]
and the VIMOS Public Extragalactic Redshift Survey
(VIPERS) [32].
However, it was only recently that the growth rate was

probed via RSD around voids, in galaxy surveys at low and
high redshift (BOSS-CMASS [33] sample, 6dFGS [25] and
VIPERS [34]). In fact, probing the growth rate in under-
dense regions is particularly interesting when we consider
modified gravity models (e.g. fðRÞ models [8,9]), which
rely on “screening mechanisms.” Such mechanisms allow
for departures from general relativity in underdense
regions, meaning that cosmic voids could play a central
role to reveal the signature of modified gravity theories
[13,14,35–37]. Similarly, quintessence dark energy or
coupling dark energy models can impact not only the
cosmic expansion but also the formation of cosmic struc-
tures [38–41] which includes cosmic voids. In addition, a
comparison of the growth rate measurement within under-
dense regions and within the average density of the universe
([25]) can reveal nonstandard cosmological models.
The theoretical framework used to model RSD around

voids (e.g. [25,33,34]) relies on the Gaussian streaming
model (e.g. [42–44]) with a linear approximation between
the radial peculiar velocity and the underlying density
contrast ([45]). However, this simple model has been*iachitouv@swin.edu.au
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shown to lead to systematic errors in the inferred growth
rate (e.g. [37,46,47]). This is why, in this work, we study
how to improve the modeling of RSD around voids in order
to reduce systematic errors in the inferred cosmological
parameters. In particular, by introducing a semiempirical
correction to the mean velocity profile around voids, which
depends on the local density contrast, and by using a
velocity dispersion that is not constant, we show how we
can alleviate systematic errors in the derivation of the
growth rate.
We additionally study how the type of void (particularly

the density contrast at the ridge of the void) impacts the
derived cosmological parameters (e.g. [37,47,48]). Bearing
this in mind, particular attention has to be given to the void
finder, and the effect of the bias, when identifying voids
with different tracers (e.g. [49]). To differentiate bias-
induced systematic errors from others, when probing
RSD in galaxy surveys, we consider in this work the
derivation of the growth rate using dark matter mock
catalogues.
This paper is organized as follows: in Sec. II, we describe

how we build our mock catalogues and identify cosmic
voids. In Sec. III, we propose a correction to the radial
velocity profiles around voids, as a function of the local
density contrast, and we test this correction within our
mocks. In Sec. IV, we apply this correction to infer the
growth rate from the clustering around voids in the redshift
space mocks. Finally, in Sec. V, we test our framework on a
quintessence dark energy model and highlight its imprints
in the peculiar velocity distribution within voids. In Sec. VI
we present our conclusions.

II. VOID FINDER AND DARK MATTER MOCKS

In what follows we employ the DEUS N-body simu-
lations, which have been used for several purposes (e.g.
[50–54]) and were realized using the RAMSES code [55] for
a ΛCDM model with ðΩm;σ8;ns;hÞ¼ð0.26;0.79;0.96;0.7Þ
and a Ratra-Peebles quintessence dark energy model
(RPCDM), i.e., ðΩm; σ8; ns; hÞ ¼ ð0.23; 0.66; 0.96; 0.7Þ,
where the dark energy equation of state is given by
wðaÞ ¼ −0.87þ 0.08ð1 − aÞ. The simulation setup is such
that the box length is 5250 Mpch−1 and 5184 Mpc h−1 for
the ΛCDM, and RPCDM, respectively, both having a total
a number of particles equal to 20483. From each simulation
we built 20 dark matter mocks of length 656.25 Mpc h−1,
randomly subsampling the dark matter particles until the
density in each mock equals n̄ ¼ 0.001 Mpc−3 h3. We also
highlight that these simulations have initially the same
density fluctuation normalization, and are consistent with
cosmological constraints from WMAP-5 yrs (realistic
models). Any differences measured in the statistical proper-
ties of the dark matter field at z ¼ 0 are due to the
dynamical aspect of the quintessence type of dark energy,
which changes the background expansion of the universe

but also leaves imprints in the non-linear regime, where
cosmic structures form [50–52].
We identify voids using the algorithm presented in [37]

(their Sec. II). This void finder has two main advantages.
First, unlike void finders based on the watershed concept
(e.g. [56,57]), our resulting void density profiles are not too
sensitive to the number density of the tracers. This is
essential to calibrate the real space (dark matter—void)
correlation function, since this quantity should only be
sensitive to the fiducial cosmology. This robustness to the
number density is due to the algorithm, which seeks for
conditions on the density contrast, in a limited number of
bins Ri. Second, this void finder allows for flexibility in the
type of voids that we want to select. This is an important
point, as it was discussed in [37], since the amplitude of the
density contrast at the ridges can lead to a systematic error
in the growth rate inference when using RSD clustering.
In what follows we will consider 3 different samples of

voids (S1, S2, S3) that have a different density perturbation
at the ridge, δðR ¼ RvÞ, where Rv is the void radius.
The voids are defined to satisfy the following con-
ditions: ξv−DMðRvÞ>δthresh, ξv−DMðRvþdRÞ>ξv−DMðRvÞ,
ξv−DMðRv þ dRÞ < δmax, ξv−DMðR < RcoreÞ < δcore. The
steps of the algorithm to obtain these conditions are
described in Sec. II of [37], and the values of the parameters
for the 3 different samples of voids are listed in Table I. In
the case of overlapping voids, we only select the larg-
est one.
In each of the mocks we found voids with a range of radii

between Rv ∼ ½10–80� Mpch−1. Given the mean density in
each of our mocks, we focus our study on voids with a
fiducial radius of Rv ¼ 40 Mpc h−1, finding a total of
400,512,160 voids of 40 Mpc h−1 in all mocks, for samples
S1, S2 and S3, respectively.
Once we have our void catalogues for each sample, and

for our two cosmologies, we employ the Landy-Szalay
estimator ([58]) to compute the galaxy-void correlation
function, or in our case, the dark matter-void correlation
function

ξv−DMðRÞ ¼
DvDg

RvRg

NRanNRan2

NDMNVoid
−
DvRv

RvRg

NRan

NVoid

−
DgRg

RvRg

NRan2

NVoid
þ 1; ð1Þ

TABLE I. Density criteria that defined our 3 different void
samples.

Void Samples δthresh δmax δcore Rcore½Mpc h−1�
S1 0 0.3 −0.3 9
S2 −0.1 0.2 −0.3 9
S3 0.15 0.4 −0.3 9
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where NVoid corresponds to the number of voids identified
with the required density criteria, and NRan2 corresponds to
the number of random set positions that overlap with the
voids. The number of pairs separated by a distance R is
labelled by Dg, Dv for the dark matter particles and void
data, respectively, while Rg, Rv correspond to dark matter
particles and void pairs computed from the random dis-
tributions. In Fig. 1 we show the cumulative density
profiles [i.e., Eq. (14)] for the 3 different void samples,
by stacking void profiles in all the real space mocks. As
expected, by increasing δthresh, the amplitude at the ridge
follows suit. Note that we implicitly assume spherical
symmetry to compute the 1-dimensional density profiles.
Finally, we use the same dark matter density mocks to

build the redshift space (RS) mock catalogues, and we
repeat our void identification process for our 3 samples of
voids. To do so we shift the real space dark matter particle
positions, r, to s, using the flat sky approximation:

s ¼ rþ vpðrÞ
H0

ur; ð2Þ

where ur is the unitary vector along the line the sight (here
the z-coordinate), and vp ≡ v:ur is the peculiar velocity of
the particles along the z-direction.

III. ACCURATE MODELING
OF RSD AROUND VOIDS

A. Theory

In the Gaussian streaming models (GSM) (e.g. [42–44])
the void-matter correlation function in the local universe
can be expressed as a convolution between the real space
correlation function and the probability density distribution
of the velocities of dark matter particles/galaxies around
voids:

ξvgðσ; πÞ ¼
Z

ð1þ ξ1Dv−DMðyÞÞ

× P

�
v − vgðyÞ

�
π −

v=H0

y

��
dv − 1; ð3Þ

where vgðrÞ≡ hδvvi is the mean radial velocity profile of
darkmatter around voids δv, π is the line of sight coordinate,
y¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2þðπ−v=H0Þ2Þ

p
, with σ the perpendicular direction

to the line of sight, and PðvÞdv is the stochastic velocity
distribution of matter within a group (reproducing the small
scale elongation along the line of sight). The velocity
distribution can be approximate by a Gaussian1:

PðvÞdv ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσv

p exp

�
−

v2

2σv

�
dv; ð4Þ

where σvðRÞ is the velocity dispersion parameter. Previous
works that have probed the growth rate with RSD around
voids in galaxy surveys (e.g. [25,33,34]) have used, for the
radial mean velocity profile, the linear approximation ([45])
given by vgðRÞ ¼ −1=3H0RΔðRÞf, while σv is described
as a constant parameter. The cumulative density contrast for
spherical symmetry is defined as

ΔðRÞ ¼
R
dVδg

4=3πR3
¼ 3

R3

Z
R

0

dr r2δgðrÞ; ð5Þ

where δg ∼ bδDM is the galaxy density contrast at a given
scale, and is approximately equal to the linear bias b times
the dark matter density contrast δDM. In what follows we
use the notation ξvg for the 2D voids-dark matter particles
correlation function.
In this work we will show that the linear approximation

is not good enough to accurately describe the radial
velocity of dark matter particles (hence galaxies) around
voids, vg, especially when these voids have a high
amplitude at the ridge. More importantly, we will discuss
how this linear approximation, and how choosing a con-
stant velocity dispersion, can lead to systematic errors in
the derivation of the growth rate. Hence, in what follows,
we will improve the modelling of the radial velocities of
dark matter particles around voids based on a semiempir-
ical formula that we introduce.
We start by reviewing the well known Zeld’dovitch

approximation to derive the mean velocity profile around
voids. Using the standard notation (e.g. Eq. (98) in [59]),
we have

xðqÞ ¼ q −D1∇qϕ
ð1Þ þD2∇qϕ

ð2Þ; ð6Þ

with x the Eulerian position of a galaxy (or the dark matter
particle), q the initial position, ϕð1Þ, ϕð2Þ the Lagrangian

FIG. 1. Cumulative density profiles measured in the real space
mocks, for the 3 different void samples.

1In [25] the authors have shown that an exponential distribu-
tion would lead to similar constraints of the growth rate.
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potentials up to second-order, D1 the usual growth factor,
and D2 the second order growth factor, which for 0.01 ≤
Ωm ≤ 1 can be approximated by D2 ≃ −3=7D2

1Ω−1=143 to
better than 0.6% ([60]) and in what follows we take
Ω−1=143 ≃ 1. For the velocity field (e.g. Eq. (99) in [59]),

vq ¼ −D1f1aH∇qϕ
ð1Þ þD2f2aH∇qϕ

ð2Þ; ð7Þ

where f1 ≡ f is the standard linear growth rate that can be
approximate for a flat universewith a cosmological constant
by f1 ≃Ω5=9

m , f2≡ d lnD2=d ln a can be approximated by
f2 ≃ 2Ω6=11

m [60], and aH is the conformal expansion rate.
The Poisson equations of the potentials also give ∇2

qϕ
ð1Þ ¼

δð1Þ and ∇2
qϕ

ð2Þ ¼ −1=2
P

i;j½ð∇i;jϕ
ð1ÞÞ2 − ð∇2ϕð1ÞÞ2� (e.g.

Eqs. (29)–(30) of [61] or Eq. (103) of [59]).

1. The linear regime

The linear regime corresponds to the Zel’dovitch
approximation, δðx; tÞ ¼ DðtÞδðxÞ, and the Lagrangian
time derivative of the peculiar velocity is equivalent to
the Eulerian time derivative. Hence, Eq. (7) becomes in
Eulerian space, at first order (1PT) and for z ¼ 0, (see e.g.
[45,59]):

vð1Þ ¼ −f1H0∇ϕð1Þ; ð8Þ

with ∇2ϕð1Þ ¼ δð1Þ. Taking the divergence of Eq. (8) and
using spherical coordinates, we deduce the radial peculiar
velocity of galaxies, or dark matter particles, to be

1

r2
∂r2vðrÞ

∂r ¼ −f1H0δ
ð1Þ; ð9Þ

which can be integrated to

vð1ÞðRÞ ¼ −f1H0

1

R2

Z
R

0

r2δð1ÞðrÞdr: ð10Þ

Hence, the average radial velocity profiles of galaxies/
dark matter around voids becomes

hδvvð1Þi≡ vgðRÞ ¼ −f1H0

1

R2

Z
R

0

r2hδð1Þδvidr; ð11Þ

with hδð1Þδvi≡ ξDM−v. Using the cumulative density con-
trast, we recover vgðRÞ ¼ −1=3H0RΔðRÞf, where ξDM−v
replaces δg in Eq. (5), and vgðrÞ is the radial velocity profile
of dark matter particles around voids.

2. Semiempirical correction of the radial velocity profile

The second order correction in Eulerian space, starting
from Eq. (7), involves more computation (see for instance
[45,62,63]). Essentially, the divergence of the second order
Eulerian peculiar velocity is a sum of three terms: one

proportional to the original perturbation ½D1δ
ð1ÞðqÞ�2, one

nonlocal term that involves the initial perturbation
ð∇ϕð1Þ:∇Þδð1Þ, and one is the velocity shear contribution.
In particular see Eq. (43) of [63] for a derivation of the 3
different terms.
However, we stress that this derivation is for a density

perturbation δg at a given point in space. As we want to
apply this derivation to galaxies or dark matter around
voids, we need to take into account the average
vgðrÞ ¼ hδvvi. In principle, it is possible to implement
such corrections to peculiar velocities of galaxies around
voids, but it would be challenging, especially the velocity
shear contribution. In addition, the resulting corrections
would be rather unwieldy.
This is why instead we propose a semiempirical expres-

sion for the velocity profile around voids:

vgðRÞ ¼ −fH0

R
3
ΔðRÞ þ ε

3

7
f2H0

R
6
Δð2Þ; ð12Þ

with

Δð2Þ ≡ 3

R3

Z
R

0

r2ξ2vgdr; ð13Þ

Δ≡ 3

R3

Z
R

0

r2ξvgdr; ð14Þ

and ε ¼ þ1whenΔ > 0, and ε ¼ −1whenΔ < 0, in order
to improve the linear prediction of the velocity profiles
(as we will see shortly). This expression is motivated by the
spherical evolution of a perturbation [64] where the second
order correction with an extra-factor 1=2 corresponds to
one of the terms of the full Eulerian second order
perturbation [63]:

∇:vð2Þ ¼ −
3

7
f2H0ðδð1ÞÞ2 þ other terms: ð15Þ

However in our case, we approximate hδ2gδvi ∼ hδgδvi2, to
use the correlation function ξvg in our proposed semi-
empirical velocity profile around voids.
In Fig. 2, we compare our prediction for the 3 different

void samples. The prediction for vgðRÞ using in the linear
regime corresponds to the dashed curves, while the solid
curves correspond to our proposed semiempirical correc-
tion Eq. (12) and the measured velocity profiles are shown
by the squares. This correction avoids large systematic
errors in the modelling of the velocity profiles around
voids. We also note that the agreement for the void sample
S3 is not as good as for the samples S1 and S2. This is
directly due to the fact that the assumption of the pertur-
bation theory: jΔð2Þj < jΔj ≪ 1 is more accurate for voids
S1 and S2.
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B. Velocity dispersion behaviour

We now turn to the other assumptions of the Gaussian
streaming model. As we have already mentioned, previous
cosmological constraints made on the growth rate with
RSD around voids [25,33,34] have used a Gaussian
distribution with a constant velocity dispersion, described
as a nuisance parameter. As we will outline in Sec. V, the
velocity dispersion in fact carries the imprint of dark
energy.
In Fig. 3 we show the probability density function (PDF)

of the dark matter particles around voids, for our different
voids samples S1, S2, S3 (black, blue and red, respectively)
and at different radii (diamonds, triangles and squares). In
the inner part of the voids (R=Rv < 1, triangles, middle
panel), the mean value of the PDF is negative since matter
is being pushed toward the ridge of the voids. Beyond the
ridge (R=Rv > 1, diamonds, top panel) the average of the
distribution is positive since voids S1 have a ridge, causing
a positive bump in the velocity profiles (i.e., vgðRÞ∝ΔðRÞ).
If we consider all scales (R=Rv < 3, squares, lower panel),
then we recover a mean value which is approximately zero:
ΔðR ≫ RvÞ ¼ 0Þ. For each distribution we measure the
mean and the standard deviation σv. The solid curves
show Gaussian distributions with a mean sets by the
average of the PDF measurement, and a standard deviation
σeff ¼ 0.9σv. This effective standard deviation is because
the measured PDFs are leptokurtic (excess kurtosis), while
the skewness is negligible. This is a direct consequence of
using several voids to build these PDFs, each void
contributing vg values that are Gaussian-distributed, with
standard deviation σvðRÞ. Hence, the combination of these

Gaussian PDFs leads to an excess of kurtosis. Interestingly
the effective standard deviation is insensitive to the type of
voids we choose, and is quasi-independent of the distance
from the void center.
In Fig. 4 we show the measured velocity dispersion

around voids, σvðRÞ, from the real space mocks, for voids
sample S1, S2, S3 (black, blue and red respectively). The
solid lines correspond to the mean value of the velocity
dispersion over the rangeR ¼ ½5; 80� Mpch−1. It is obvious
that the velocity dispersion is not a constant with radius, as
was already observed (e.g. [65]), and so one might wonder
how modeling it as a constant in the Gaussian steaming
model affects the derivation of the growth rate.

C. Impact on the 2D correlation function
and velocity profiles

In this section we test the (dark matter-void) correlation
function in redshift space, as well as the velocity profiles, for
2 cases: case 1, using the linear approximation, and case 2,
using our proposed formula [Eq. (12)], both with the
measured velocity dispersion scaled as σv → 0.9σvðRÞ and
for the fiducial cosmology fσ8 ≈ 0.376, with void sampleS1.
To model the velocity profile in redshift space (along the

line of sight π, and perpendicular to the line of sight σ)
we use:

FIG. 2. Velocity profiles measured around voids (squares) for
the 3 different void samples: S1, S2, S3, from top to bottom
panels, respectively. The dashed curves correspond to the linear
approximation theory (1PT), while the solid curves correspond
to Eq. (12).

FIG. 3. Velocity profile distribution of dark matter particles
measured around voids in the real space mocks, for the 3 different
void samples: S1, S2, S3 (black, blue and red, respectively). The
different panels show different radial ranges relative to the void
centre: at the inner part of the voids (middle panel triangles), after
the ridge of the voids (upper panel diamond) and at all scales
(lower panel squares). The different curves correspond to
Gaussian distributions with a mean value fixed by the mean
distribution of the velocities at that scale. The standard deviation
of the best fitting Gaussian is σeff ¼ 0.9σv, where σv is the
standard deviation measured from the distribution at that scale.
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vRSg ðσ; πÞ ¼
Z

vgðyÞ × P

�
v − vgðyÞ

�
π −

v=H0

y

��
dv;

ð16Þ

where again, vgðRÞ is the averaged velocity profile of dark

matter predicted by Eq. (12), y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ðπ − v=H0Þ2Þ

p
,

and PðvÞdv is the same velocity distribution of Eq. (3).
In Fig. 5 we perform a comparison between our two

cases (case 1—dashed curves and case 2—solid curves)
and the mocks, at fixed bins of π (top plot) and fixed bins of
σ (bottom plot). We observed that the velocity profiles in
redshift space show a clear preference for Eq. (12) com-
pared to the linear approximation. On the other hand, it is
not possible to see a clear preference of the model by
looking at the correlation function. This is why in the next
section we will perform a Markov Chain Monte Carlo to
analyze the correlation functions.

IV. REDUCING SYSTEMATICS ERRORS
OF THE GROWTH RATE MEASUREMENT

To test the derivation of the growth rate from our
void samples, we perform a Metropolis-Hastings Markov
Chain Monte Carlo (MCMC) analysis for the parameters
Θ ¼ ðσv; fσ8Þ. The likelihood of each void sample is
computed from

χ2ðΘÞ ¼
X
σ;π

�
ξmocksðσ; πÞ − ξtheoðΘ; σ; πÞ

σmocksðσ; πÞ
�

2

: ð17Þ

We also compute the standard deviation across the 20
mocks, σmocksðσ; πÞ, assuming no correlation between the
bins. To model our measurement we use Eq. (3), where
ξ1Dv−DM is calibrated using the real space mocks mean
measurement. The χ2 is performed from ranges between
Rcut − 75 Mpc h−1 in ðσ; πÞ, with bins of width 3 Mpc h−1.
Note that for each step, we generate a value of ðσv; fσ8Þ,
not f2. To get the corresponding f2 value, we use the
approximation of [60], i.e., f2 ≃ 2ðf9=5Þ6=11. In principle
this approximation is valid for a nonzero cosmological

FIG. 4. Velocity dispersion profiles of dark matter particles
measured around voids in the real space mocks, for the 3 different
void samples. The solid lines correspond to the mean velocity
dispersion measured over the range R ¼ ½5; 80� Mpc h−1.

FIG. 5. 2D (void-dark matter) correlation function and 2D
velocity profiles around voids, for sample S1 (top plot shows
fixed value along the line-of-sight, bottom plot shows fixed
values across the line-of-sight). In each plot, the squares are the
measured values in the mocks, the solid curves correspond to the
fiducial cosmology prediction with Eq. (12) plugged into Eqs. (3),
(16), while the dashed curves correspond to the linear approxi-
mation of the velocity profile.
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constant but in what follows we will also use it for our
realistic model of quintessence dark energy. This will be
justified in Sec. V by ensuring that the predicted velocity
profile also reproduces the measured one, for the RPCDM
model.

A. The linear approximation with constant
velocity dispersion

We start by investigating the derivation of the growth rate
using the standard linear approximation for the mean
velocity profile (1PT), Eq. (12), with Δð2Þ ¼ 0, and a
constant velocity dispersion, as it has been previously used
in [25,33,34].
In Fig. 6 we show the inferred values of fσ8 for our 3

different void samples. The mean value of the best fitting
parameters over the mocks corresponds to the best fitting
value of the mock mean, and we use the scatter of the best
fitting values across the mocks to estimate the uncertainties
on the growth rate. The x-axis shows the cut in the fitting
range Rcut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ π2

p
, when performing the χ2. This is

motivated by [47], who show that linear theory may break
down at the center of the voids, where δvðR → 0Þ ∼ −1.
The solid line corresponds to the fiducial cosmology
fσ8 ≈ 0.376, and the lower panel shows the average of
the reduced χ2 over the mocks.
Overall we see that the different void samples show

systematic errors in the growth rate derivation for
Rcut=Rv < 0.7. This is not surprising, for two reasons.

First, we have seen that the linear approximation for the
velocity profile around voids poorly reproduces the mea-
surements within the inner part of the voids. Second, using
a constant velocity dispersion is itself wrong for
R=Rv < 1.5. In Fig. 7 we show the best fitting values
for the velocity dispersion for the 3 different void samples,
as a function of the fitting range R ¼ ½Rcut − 75� Mpc h−1.
The solid lines show the measured mean value of the

velocity dispersion, measured in the real space mocks, over
the fitting range ½0; 75� Mpc h−1. As we knew from Fig. 4,
as Rcut increases, we expect the best fitting values of σv to
increase as well. This is roughly what we observe for voids
S1, S3. For Rcut=Rv ¼ 0 we should recover the measured
mean values of the velocity dispersion. This is indeed the
case for voids S1, S3, but not for voids S2, which shows a
systematically higher value of σv.

B. Semiempirical correction to the velocity profiles

We now repeat our analysis, but this time applying our
proposed correction to the real space velocity profiles
[Eq. (12)]. In addition, we now use as part of the model
the real space measurement of the velocity dispersion σvðRÞ
(see Fig. 4), and plug it into the Gaussian PDF of Eq. (4),
with the rescaling σv → 0.9σv to account for the leptokurtic
distribution we probed in Sec. III B. Hence, we only fit for
the growth rate factor.
The results of ourMCMCanalysis can been seen in Fig. 8.

We can see that all void samples are now consistent with one

FIG. 6. Best fitting values of fσ8 as function of the fitting range
Rcut=Rv, for the 3 different void samples, using the linear
approximation for the velocity profile and a constant velocity
dispersion. Different void samples are not consistent with one
another at 1-sigma for Rcut=Rv < 0.7, in the inferred values
of fσ8.

FIG. 7. Best fitting values of σv as function of the fitting range
Rcut=Rv, for the 3 different voids samples, using the linear
approximation for the velocity profile and a constant velocity
dispersion. The solid lines show the measured mean value of the
velocity dispersion from the redshift space mocks, over the fitting
ranges ½0; 75� Mpc h−1 where we performed the MCMC analysis.
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another in the inferred values of fσ8, and within 1-σ
agreement with the fiducial cosmology for Rcut=Rv > 0.5.
Finally, in the case of S1, S3, there is a negligible

sensitivity of the inferred growth rate to the fitting range,
compared to voids in S2. The sensitivity of the ridge to the
inferred cosmology was previously pointed out in [37], and
one might take advantage of selecting voids with a
particular shape to avoid systematic errors, without using
a cut in the fitting range Rcut, as it was suggested in [36].
This is why in the next section wewill focus our analysis on
the void sample S1.

V. PROBING QUINTESSENCE DARK ENERGY
WITH RSD AROUND VOIDS

In this section we study the impact of a Ratra-Peebles
“quintessence” type of dark energy [66] on RSD around
voids. This model changes the expansion history of the
universe and the formation of cosmic structures [51–54].
Previous works done with this simulation have not inves-
tigated the impact on the formation of cosmic voids. The
simulations and the model are discussed in [50]. The main
characteristics of our mocks are summarized in Sec. II. We
consider mocks S1 to test the imprint of dark energy (see
Table I). This is motivated by our previous results, showing
that mocks S1 have very small systematic errors in the
derivation of the growth rate (insensitive to Rcut). Hence we
repeat the identification of voids with characteristic S1 in
the RPCDM mocks (real space and redshift space), and

then we compute the real/redshift space void-galaxy
correlation functions.

A. Imprint of dark energy on the velocity profiles
around voids

Once again we start by measuring the distribution of the
dark matter velocities around voids at different radii from
the center. Figure 9 shows the comparison between the
distribution in the RPCDM mocks (blue distributions) and
the ΛCDM ones (black distributions). The different panels
correspond to different scales relative to the center of the
voids: at the inner part of the voids (middle panel,
triangles), after the ridge of the voids (upper panel,
diamond) and at all scales (lower panel, squares). The
different curves correspond to Gaussian distributions with a
mean value fixed by the mean distribution of the velocities
at that scale. The standard deviation of the curves is
σeff ¼ 0.9σv, where σv is the standard deviation measured
from the distribution at that scale. This is again to account
for the excess kurtosis discussed in Sec. III B.
It is striking to see that the variance of these distributions

carries the imprint of dark energy. Indeed, the RPCDM
variance (∝σ2v) is smaller than that of the ΛCDM PDFs.
This means that the PDFs are more deterministic: there are
less non-linear gravitational interactions occurring in the
RPCDM model. This is because quintessence dark energy
models experience a less efficient deceleration period
during the matter dominated era [50] (q ¼ 1=2ð1þ 3wÞ,
with −1 ≤ w < 0), such that the mass assembly of matter is
overall reduced for a quintessence model of dark energy

FIG. 8. Best fitting values of fσ8 as function of the fitting range
Rcut=Rv for the 3 different voids samples, using Eq. (12) for the
velocity profile and setting the velocity dispersion to the
measurement of the real space mocks: σvðRÞ. Different void
samples are now consistent with one another at 1-sigma in the
inferred values of fσ8.

FIG. 9. Probability density function of velocities of dark matter
particles around voids S1, for ΛCDM, and RPCDM models. The
different panels correspond to the distribution of velocities
beyond the ridge of the voids (top panel), within the voids
(middle panel), and at all scales (bottom panel).
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(and thus is σ8). One may argue that a quintessence dark
energy model with a normalization σ8 at z ¼ 0 matching
the ΛCDM simulation, would lead to similar PDFs of the
velocity profiles. However, in this case, the initial density
perturbation probed by the cosmic microwave background
would rule out this model [1], unlike the model we consider
here [50]. Hence differences in the properties of the cosmic
structures at z ¼ 0, including σ8, compared to ΛCDM are
due to dark energy.
Overall these distributions support again the idea that

studying σvðRÞ could potentially be interesting to probe the
growth rate assuming a particular cosmology.
In Fig. 10 we can see the main characteristics of voids S1

for the ΛCDM=RPCDM models (black/blue squares and
curves). As expected, the averaged 1D correlation functions
ξ1Dv−DMðRÞ (upper panel) measured in the real space mocks,
are indistinguishable from one another, as the averaged
velocity profiles (middle panel). This is due to our void
finder, which selects voids that match the S1 density profile
(see Sec. II). The middle panel shows the measurement of
the velocity profiles for the two cosmologies, as well as the
prediction of Eq. (12). The lower panel shows the velocity
dispersions. Here we clearly see the imprint of the dark
energy model, as we have previously observed in Fig. 9.
The black/blue lines correspond to the averaged values of
the velocity dispersion over the interval S¼½0;90�Mpch−1.
Note that our correction in Eq. (12) also matches the trend
of the simulation for the quintessence model, using the
numerical approximation of [60] for f2.
It is quite interesting that the velocity dispersion carries

the imprint of dark energy. From an observational point of
view, it is quite challenging to obtain direct measurements

of peculiar velocities, and a fortiori of the velocity
dispersion, although upcoming surveys such as TAIPAN
[67] might provide a large sample of peculiar velocities at
low redshift. Nevertheless, it would be interesting to use
RSD to probe both (σv, fσ8) as physical parameters, or
fixing σvðRÞ by calibrating it to the fiducial cosmology, as
we do for ξ1Dv−DMðRÞ, which enters into Eq. (3).

B. Probing the growth rate

We now turn to the derivation of the growth rate for the
RPCDM cosmology. We start by repeating the previous
analysis we performed for the ΛCDM voids S1, S2, S3,
allowing ðfσ8; σvÞ as free parameters in the MCMC
analysis, with the linear approximation for the velocity
profile (1PT). Then we set the velocity dispersion to the
measured one in the real space mocks, and use Eq. (12).
The result of this analysis as a function of the fitting range
Rcut=Rv is displayed in Fig. 11, where the triangles with
dashed error bars correspond to the linear approximation
and the squares with solid error bars correspond to our
model with the calibrated velocity dispersion. Again we
observe that our model reduces the systematic errors when
using the entire fitting range to probe the growth rate. We
also observe that depending on the type of voids, the
derivation of the growth rate is less sensitive to the cutting
range. This is why, in what follow we will again focus on
voids S1.

FIG. 10. From top to bottom: averaged correlation function
measured in real space mocks, mean velocity profiles and
velocity dispersions.

FIG. 11. Best fitting values of fσ8 as function of the fitting
range Rcut=Rv, for the 3 different void samples, using the linear
approximation for the velocity profile and a constant velocity
dispersion (triangles with dashed error bars), and using a velocity
profile model given by Eq. (12), with the velocity dispersion set
to the measured σvðRÞ (squares with solid error bars). The
fiducial value of fσ8 is shown by the black solid line.
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The precise comparison of the best fitting parameters on
the redshift space mocks for ΛCDM=RPCDM using voids
S1 and the fitting range (½0; 75� Mpc h−1), is given in
Table II.
As we have previously found, the semiempirical correc-

tion to the velocity profile, combined with a physical
description of the velocity dispersion (as opposed to a
constant) is essential to recover the fiducial value of the
growth rate. This illustrates that RSD around voids can be a
good complementary test to probe alternative dark energy
models (quintessence in this case).
To date, current constraints on the growth rate error

measurement, using RSD around voids, is ∼6–11%
[25,34,46], depending on the survey samples. This suggests
that we can already test which model of dark energy is
favored by the data, providing the systematic errors
are controlled. With a survey like the upcoming TAIPAN,
the errors on the growth rate measurement should be
≤5% [67].
Finally, we test what would be the effect of using

Eq. (12) and letting σv as a free parameter in the
MCMC, just like we do in the linear approximation. In
Fig. 12, we can see the resulting constraints on ðfσ8; σvÞ for
the ΛCDM model (red ellipses), while the blue ellipses
correspond to the RPCDMmodel. The dotted/solid ellipses
correspond to the linear approximation (1PT)/our proposed
model [Eq. (12)] for the radial velocity respectively. The
red/blue vertical dotted lines show the fiducial values of
fσ8 for ΛCDM=RPCDM models, while the horizontal
lines correspond to the measured value of hσvðRÞi and
σeff ¼ 0.9hσvðRÞi over the fitting ranges ½0; 75� Mpc h−1.
This illustrates how correcting the velocity profile with

Eq. (12) is the crucial ingredient to avoid systematic errors
in the derivation of the growth rate. Without this correction,
the inferred growth rate from the ΛCDM model has a
systematic error that can be misinterpreted as the RPCDM
cosmology. The inferred velocity dispersion is on the other

hand in good agreement with the mean value we measured
in the simulation, in all cases.

VI. CONCLUSION

In this work we investigated the limitation of the
Gaussian streaming model applied to RSD around voids.
We found that the simple linear theory prediction [45], that
has been previously used to probe the growth rate in galaxy
surveys [25,33,34], can not accurately reproduce the
measured velocity profiles around voids. This can lead
to systematic offsets in the derivation of the growth rate, as
observed in [34,37,46].
In this paper, we propose a semiempirical correction

[Eq. (12)] to the velocity profiles, as a function of the
underlying density contrast. This correction, combined
with a calibrated velocity dispersion (not described as a
constant), allows us to derive the growth rate without any
systematic errors in our void samples.
We also tested the characteristics of the velocities of dark

matter particle distributions around voids, for a quintes-
sence type of dark energy. Interestingly, we found that the
critical imprints of quintessence, compared to the ΛCDM
model, are captured by the velocity dispersion. The velocity
dispersion can be seen as proportional to the mass assembly
of matter, which is reduced for the RPCDM model due to a
less decelerated expansion during the matter dominated era
[50]. This warrants the treatment of σvðRÞ as a physical
parameter, rather than a nuisance parameter. However, we
find that even by letting σv as a free parameter, our
proposed semiempirical correction can successfully recover
the fiducial cosmology, in contrast to the linear approxi-
mation, which induces a systematic offset in the growth rate
derivation.

TABLE II. Parameter constraints on (fσ8; σv) for RPCDM=
ΛCDM, obtained from fitting to the redshift space mocks (dark
matter-void correlation function) ξvg with Eq. (3), in the case
where we use the linear approximation (1PT). This work
corresponds to a velocity profile model by Eq. (12) with the
velocity dispersion set to the measured σvðRÞ. The fiducial
cosmology is fσ8 ¼ 0.289, 0.376 and the mean velocity
dispersion measured in the real space mocks is σv ¼
225; 305 km s−1 over the fitted range ½0; 75� Mpc h−1 for the
RPCDM=ΛCDM respectively.

RPCDM ΛCDM

1PT fσ8 0.21� 0.03 0.29� 0.03
1PT σv 156� 45 288� 50
1PT χ2=d:o:f. 717=625 763=625
this work fσ8 0.27� 0.03 0.38� 0.03
this work χ2=d:o:f. 716=625 748=625

FIG. 12. Ellipse constraints on ðfσ8; σvÞ, derived from the dark
matter-void correlation function in our RPCDM=ΛCDM redshift
space mocks (blue/red ellipses, respectively). The dotted ellipses
show the constraints using the 1PT model of the velocity profiles,
while the solid ones correspond to Eq. (16). The semiempirical
correction of the velocity profiles is essential to recover the
fiducial cosmologies.
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Finally, this work can be extended to different
approaches. First, it would be interesting to see if our
semiempirical correction of the radial velocity prediction
can correct the systematic offset in the growth rare
measurement found in [46], at low redshift. Second, in
order to study more precisely the constraints on the growth
rate using RSD around voids, it becomes essential to
decompose the void-galaxy correlation function into multi-
poles (e.g. [36,46]), and use the covariance matrix when
performing the MCMC analysis. We hope to address this
issue in a future work.
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