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We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space
distribution associated with the real scalar field is modeled by statistical equal-time two-point functions
and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in this work we
neglect vector and tensor gravitational perturbations). Inspired by the commonly used Newtonian Vlasov-
Poisson system, we firstly identify a suitable combination of equal-time two-point functions that defines
the phase-space distribution associated with the scalar field and then derive both a kinetic equation that
contains relativistic scalar matter corrections as well as linear gravitational scalar field equations whose
sources can be expressed in terms of a momentum integral over the phase-space distribution function. Our
treatment generalizes the commonly used classical scalar field formalism, in that it allows for modeling of
(dynamically generated) vorticity and perturbations in anisotropic stresses of the scalar field. It also allows
for a systematic inclusion of relativistic and higher-order corrections that may be used to distinguish
different dark matter scenarios. We also provide initial conditions for the statistical equal-time two-point
functions of the matter scalar field in terms of gravitational potentials and the scale factor.
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I. INTRODUCTION AND OVERVIEW

The standard model of cosmology attributes roughly one
third of the Universe’s energy to dark matter, a particle or
field whose nature is mostly unknown except for the effect
that it interacts with gravity [1]. There has been success in
studying large-scale structures of the Universe by modeling
dark matter as nonrelativistic particles that can be described
by a pressureless fluid. Linear perturbation theory can be
used up to the scale of nonlinearity k > knl ∼ 0.3 Mpc−1 to
predict the distribution of galaxy clusters and the perturba-
tion theorymay be used to study higher-order effects [2]. On
the other hand, interest has recently [3,4] been shown
in the study of axion or fuzzy dark matter [5–10] which
in the end is a real scalar field with a certain mass range
minimally coupled to gravity with self-interaction terms
playing a minor role. Common to most minimal scalar field
dark models is that the mass is much bigger than the Hubble
rate. It has been studied in linear perturbation theory in
different gauges [11,12]. The nonrelativistic limit of the
Klein-Gordon equation of a classical scalar field yields the
Schrödinger equation. By defining energy density and fluid
velocity via the so-calledMadelung transformation, one can
reproduce nonrelativistic, nonlinear hydrodynamic equa-
tions in Friedmann-Lemaître-Robertson-Walker (FLRW)
space-time for real [3] and complex [13] classical scalar
field theories. From a quantum field theory point of view, we
think of the classical fields entering these models as Bose

condensates that are obtained by coherent quantum states
whose one-point function defines the classical field. In view
of the semiclassical Einstein equations, it is natural to extend
the analysis to the statistical limit of the full two-point
functions where the additional degrees of freedom can
account for all features of a fluid of massive collisionless
particles in the classical limit. In fact, it is the expectation
value of squares of (noncomposite) field operators at equal
times that couples to the Einstein tensor in semiclassical
gravity. Thus, we should think of these two-point functions
as building blocks of the fluid. In the classical limit these
equal-time two-point functions reduce to the statistical or
Hadamard two-point function. It is a priori not clear why
they should reduce only to the product of classical fields, i.e.
expectation values of one field operator insertion. Despite
that one has to argue on how such condensates are generated
in a quadratic potential in late-time cosmology, working
only with classical fields cuts down degrees of freedom that
might be important for cold dark matter models. We
underpin the later point by deriving that statistical two-
point functions are in a gradient approximation related to
phase-space densities whose position and momentum
dependence is initially generic by means of the connected
piece of the two-point function, i.e. the part which does not
reduced to a product of expectation values. This makes it
clear that they contain more features of the scalar field fluid
than the one-point functions or classical fields are able to
describe. From the perspective of a classical particle that is
coupled to gravity, the studies of phase-space dynamics are
inevitable when a single-stream fluid Ansatz breaks down
due to what is called shell-crossing. The kinetic theory
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underlying dark matter is summarized in the Vlasov
equation [14], which represents a phase-space description
that does not break down in the nonlinear regime since there
is no shell-crossing in phase-space. Phase-space densities
and the corresponding Vlasov equation have previously
been derived by using the Wigner transformation of the
nonrelativistic Schrödinger-Poisson system [15–17] and
also for a relativistic scalar field [18]. Once again, only
one-point functions have been considered and the richness
of the connected part of the statistical two-point function
is lost.
In this paper, we want to put forward the discussion

about real scalar field dark matter from the perspective of
phase-space dynamics which is according to us still
incomplete at the moment. We show that instead of using
classical fields, the more natural objects are statistical two-
point functions which via the additional space-time-
dependence can be used to derive a momentum dependence
as it occurs in kinetic theory. Integrating out this momen-
tum dependence still leaves us with a nonhomogeneous
space-time dependence that is induced by the stochastic
gravitational fields. Furthermore, two-point functions nat-
urally arise in quantum field theory, whose broad apparatus
might even be used to simplify nonlinear calculations once
a mapping to observables in cosmology is established as we
do in this paper. Defining phase-space densities from two-
point functions is a known business in Minkowski space
[19]; it is a generalization of nonrelativistic Wigner trans-
formation [20] to special relativity. The idea is to change
the coordinates to a collective and difference coordinate
and to Fourier-transform with respect to the difference
coordinate to obtain a momentum dependence. However,
there are few publications on a generalization of this idea to
curved space-times. Two independent works in [21] and in
[22] postulate off-shell curved space-time Wigner trans-
formations in a mathematical complicated expansion by
using geodesics and Riemann normal coordinates, respec-
tively. The transformation is done with respect to a
coordinate-independent physical distance between the
two points on the space-time manifold. A similar approach
has again been discussed by [23]. However, in this paper
we make use of a simpler transformation that allows us to
write down exact equations in a one-step transformation.
The idea is to think of the two-point function as an object
that depends on one point of the space-time manifold and
on another point that belongs to the tangent space over
that point on the space-time manifold. Consequently, the
momentum is a variable of the cotangent space over that
point on the space-time manifold. This approach was used
in [24] to define particle densities in an unperturbed FLRW
universe where the authors started with off-shell equations
and projected them onto on-shell quantities via integration.
A similar approach was already proposed in [25] for
general space-times and its implications were studied for
Fermionic systems; however, no on-shell projection was

discussed. As far as we know, none of the previous works
makes an attempt to clearly derive a set of equations that
reduce in the classical limit to the Newtonian on-shell
Vlasov-Poisson system that is used in kinetic theory of dark
matter. We consider this as an important gap in the theory of
scalar field or axion dark matter and it is the task of our
paper to close it. Once we have a clear pictures on how the
dynamics of dark matter is embedded in quantum field
theory on curved space-time, we might discover more
ways to calculate cosmological quantities in the nonlinear
regime.
We call the approach in this paper a hybrid approach for

the reason that we start in principle from a quantum field
theory for the real scalar field but do not properly integrate
out the gravitational constraint. Thus, we approximate the
self-interaction terms that would be generated by this
procedure in terms of the gravitational potentials treated
as external sources which are by means of the semiclassical
Einstein equations related to the statistical two-point
functions themselves. The source of stochasticity is in part
in the quantum origin of scalar field fluctuations and in part
in the fact that making an initial Gaussian state Ansatz
neglects interactions of dark matter with other matter fields
and with gravity, which in general will create higher-order
(non-Gaussian) correlations that are neglected (coarse
grained) in our formalism.
The paper is structured as follows. We start by deriving a

dynamical system of on-shell two-point functions that is
converted from a pure space-time dependence to a depend-
ence on phase-space variables. We specialize to a scalar
linearized longitudinal gauge without vector perturbations
and without gravitons. But we keep the gravitational slip
(defined as the difference between the two gravitational
potentials), which induces high-order corrections in the
fluid dynamics of scalar field dark matter that have not been
captured so far in the one-point function approach. We
derive Einstein’s equations in that gauge and rewrite the
energy-momentum tensor as momentum integrals over
two-point functions. This allows us in turn to define scalar
hydrodynamic variables like energy density, rest-mass
density, and pressure. However, hydrodynamic variables
containing the four-velocity can only be defined as
composite operators leaving space for anisotropy. We then
consider a gradient expansion by introducing a variety of
perturbation parameters on top of the linearization in the
gravitational potentials and show that we indeed recover
the generalization of the continuity and Euler equation in
the FLRW space-time. We also use the energy momentum
to identify even and odd phase-space densities which brings
us finally to the derivation of the on-shell Vlasov equation
by making use of the unintegrated dynamical equations for
the statistical two-point functions.
In the hybrid approach that we put forward in this paper

we have two types of two-point functions involved. We
have a statistical two-point function (also called Hadamard
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function) which consists of the expectation value of
anticommutators of the scalar field operators evaluated
with respect to some initial density matrix. In our hybrid
approach, this initial density matrix is taken to depend on
the stochastic gravitational potentials as they appear in the
context of cosmological perturbation theory. This depend-
ence makes the Hadamard two-point function (which is a
c-number) itself a stochastic quantity arising from the initial
conditions. Thus, we can now take the expectation value of
the product of Hadamard two-point functions with respect
to the stochastic initial conditions and integrated versions
thereof will correspond for example to density-density
correlators in cosmological perturbation theory. Unless,
we do not make a clear distinction, we mean statistical or
Hadamard two-point functions whenever we speak generi-
cally of two-point functions.

II. PHASE-SPACE DISTRIBUTION
FROM 2-POINT FUNCTIONS

A. Microscopic theory in the operator formalism

Let us start by writing down the microscopic theory that
captures the fundamental dynamics. It is a real scalar
quantum field theory that indirectly self-interacts via a
minimal and semiclassical coupling to gravity.
We work in units where c ¼ 1 and write down the action

for the system

S½ϕ; gμν� ¼ Sg½gμν� þ Sm½ϕ; gμν�; ð1Þ

where

Sm½ϕ; gμν� ¼ −
1

2

Z
dDx

ffiffiffiffiffiffi
−g
p �

gμν∂μϕ∂νϕþ
m2

ℏ2
ϕ2

�
; ð2Þ

is the matter action and

Sg½gμν� ¼
M2

P

2ℏ

Z
dDx

ffiffiffiffiffiffi
−g
p

R ð3Þ

is the classical gravity action with R being the Ricci scalar.
We will work with a metric for linearized scalar perturba-
tions in Newtonian (longitudinal) gauge which is specified
by the two gravitational potentials ΦG and ΨG,

g00ðη; xiÞ ¼ −a2ðηÞ½1þ 2ΦGðη; xiÞ�;
gijðη; xiÞ ¼ a2ðηÞδij½1 − 2ΨGðη; xiÞ�: ð4Þ

We drop all quadratic terms Φ2
G, Ψ2

G, ΦG ·ΨG as higher-
order corrections from the very beginning. We also drop
vector and tensorial perturbations for simplicity although in
general we expect them to be generated due to nonlinear
evolution. Inflation generates gravitational potentials that
can be to a good approximation treated as classical
stochastic fields that are at large redshifts approximated

by a Gaussian distribution. We note that the metric (4) is
particularly useful to study the Newtonian limit of general
relativity. It generalizes the longitudinal metric that has
been used in the classical real scalar field theory approach
to dark matter in [3] by allowing for a nonzero gravitational
slip that we define in D space-time dimensions as

gravitational slip ≔ ΦG − ðD − 3ÞΨG: ð5Þ

The quantum theory in the operator formalism is specified
by the time-evolution or Hamilton operator Ĥ which is a
functional of the field operator ϕ̂ and its canonical momen-
tum field operator Π̂. We work in the Heisenberg picture and
the canonical momentum operator evaluates to

Π̂ðxÞ ¼ aðD−2ÞðηÞ½1 −ΦGðη; xiÞ
− ðD − 1ÞΨGðη; xiÞ�ϕ̂0ðη; xiÞ; ð6Þ

where

x ≔ ðη; xiÞ and ð:Þ0 ≔ ∂
∂η ð:Þ: ð7Þ

The field operators obey equal-time commutation relations

½ϕ̂ðη; xiÞ; Π̂ðη; ~xiÞ� ¼ iℏδD−1ðxi − ~xiÞ;
½ϕ̂ðη; xiÞ; ϕ̂ðη; ~xiÞ� ¼ 0;

½Π̂ðη; xiÞ; Π̂ðη; ~xiÞ� ¼ 0: ð8Þ

Since we are working in semiclassical gravity the
Hamiltonian Ĥ additionally depends on the gravitational
potentials ΦG, ΨG that act as external, stochastic fields,

Ĥðϕ̂; Π̂; gμνÞ≡
Z

dD−1xΠ̂ϕ̂0 −
Z

dD−1xL̂m½ϕ̂; ϕ̂0; gμν�

¼ −
1

2

Z
dD−1x

Π̂2ffiffiffiffiffiffi−gp
g00

þ 1

2

Z
dD−1x

ffiffiffiffiffiffi
−g
p �

gij∂iϕ̂∂jϕ̂þ
m2

ℏ2
ϕ̂2

�
:

ð9Þ

Using the Heisenberg equations we find the following time
evolution of the canonical operators,

ϕ̂0ðxÞ ¼ a−ðD−2ÞðηÞ½1þΦGðxÞ þ ðD − 1ÞΨGðxÞ�Π̂ðxÞ;
ð10Þ

Π̂0ðxÞ ¼ aD−2ðηÞδij∂i½½1þΦGðxÞ− ðD− 3ÞΨGðxÞ�∂jϕ̂ðxÞ�

−
m2

ℏ2
aDðηÞ½1þΦGðxÞ − ðD− 1ÞΨGðxÞ�ϕ̂ðxÞ:

ð11Þ
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We stress that the constraint fields ΦG, ΨG do not evolve
independently. Thus, we are not fully fixing the gauge by
integrating out the constraint fields. We do this in order to
make the connection to the Einstein-Vlasov system clearer.
This means, at the same time that we are approximating
scalar interactions that are induced via gravity by stochastic
two-point functions. However, examining the fully gauged
fixed theory at the quantum level is planned for the future.

B. Why a quantum field formalism
for a classical problem?

One might object that the quantum field theory frame-
work we presented so far is a completely exaggerated tool
to describe effects that arise in the classical treatment of
late-time cosmology. However, this description has on the
one hand the advantage of being based on a fundamental
theory which permits a Lagrangian description and in
which in our simple model contains one parameter, the
scalar field mass m. On the other hand, it is related to the
typical classical nonrelativistic particle description by
imposing conditions that approximate a classical stochastic
rather than a quantum description as well as a gradient
expansion that contains relativistic corrections. We note
that quantum path integrals generalize classical stochastic
path integrals where the quantum commutators (8) are
replaced by Poisson brackets [26]. For us it is important to
inherit the stochastic correlations of two-point functions
from the quantum field theory framework since late-
time cosmology is a classical stochastic theory whose
stochastic seeds are given by the gravitational potentials.
That quantum effects are potentially present in this
approach is a completely negligible add-on rather than a
crucial ingredient. Still, this perspective has the advantage
that we always keep the bridge to nonequilibrium quantum
field theoretic techniques as for example the Schwinger-
Keldysh formalism [27,28] that might be useful when
studying nonlinear evolution. Our formalism is a hybrid
formalism in the sense that we use a mixture of 2-PI
formalism [29] for the scalar field matter and 1-PI formal-
ism for gravity and do not fully fix gravitational gauge in
the sense that we do not fully solve (gravitational) con-
straints of the theory, but instead we leave the gravitational
potentials as external stochastic sources (keeping in mind
that they are eventually fixed by the linear Einstein
equations).
The condition of being in the classical stochastic regime

of a quantum field theory rather than in the quantum regime
can be formulated as follows: the (classical) correlators that
contain anticommutators (and no time ordering) are much
larger than the quantum correlators defined in terms of
anticommutators with or without time ordering (examples
of which include the causal or spectral two-point function
h½ϕ̂ðxÞ; ϕ̂ð~xÞ�i, retarded and advanced propagators, etc.).
We therefore assume that our two-point functions obey

2Fðx; ~xÞ≡ hfϕ̂ðxÞ; ϕ̂ð~xÞgi ≫ jh½ϕ̂ðxÞ; ϕ̂ð~xÞ�ij; ð12Þ

where fϕ̂ðxÞ; ϕ̂ð~xÞg and ½ϕ̂ðxÞ; ϕ̂ð~xÞ� denote anticommu-
tator and commutator operation, respectively. Rigorously
speaking, the classicality condition (12) is never satisfied
for all space-time points. By assuming (12) we are saying
that we restrict ourselves to those space-time points
where (12) is amply satisfied. Rather than rigorously
going through a procedure that would achieve that in
practice, here we just sketch how such a procedure can be
exacted. In the case of interest for dark matter, the
condition (12) will be met for sufficiently large spatial
separations. One can make use of a suitable window
(smearing) function, which projects out of the full two-
point function its classical part. When the complementary
(“quantum”) part of the two-point function is integrated
out, one will generate local geometric divergent contri-
butions (that can be renormalized by adding suitable
local geometric counterterms). Apart from renormalizing
the Newton and cosmological constant to its observable
values, the remaining geometric terms will have a
negligible effect on the evolution of late time two-point
functions, and we shall neglect them here. The remaining
infrared parts of the two-point functions will satisfy the
classicality condition (12).
To get a better feeling on what classicality really means,

it is helpful to assume adiabaticity with respect to gradient
expansion (discussed in more detail below), in which case
one can perform a Wigner transform with respect to the
relative spatial coordinate, xi − ~xi, resulting in the statistical
two-point function, FðXi; pi; t; t0Þ, Xi ≡ ðxi þ ~xiÞ=2. When
FðXi; pi; t; t0Þ½∂t∂t0FðXi; pi; t; t0Þ�t0¼t ≫ ðℏ=2Þ2 is satis-
fied, then one is in the classical regime.1 More concretely,
in the case at study we expect the classicality condition
(12) to be satisfied for two-point functions that are
smeared on distances larger than the comoving distance
corresponding to the end of inflation, which is of the
order ∼1 m. Since the two-point functions we use to
describe dark matter are on the scales of large-scale
structures, they are in a deeply classical regime and the
condition (12) is royally satisfied.
The second important condition to get into the regime of

nonrelativistic particles is related to validity of the gradient
expansion. Roughly speaking, the expansion is valid when
the following two conditions are met:

∥ℏ∂X⃗ · ∂p⃗∥ ≪ 1; ∥ℏ∂η∂E∥ ≪ 1; ð13Þ

where the norm is to be understood in the sense that one
derivative acts on one test function (such as a two-point
function) and the other on another object (such as a

1An alternative (and related) criterion for classicality of a state
is given by the von Neumann entropy of the Gaussian part of the
density matrix being much larger than one [30–32].
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gravitational potential).2 Assuming that two-point func-
tions vary on scales of momentum (energy) given by the
momentum (energy), i.e. ℏ∂E ∼ ℏ=E ∼ ℏ=ðmc2Þ ∼ λC=c,
and ℏ∂p⃗ ∼ ℏ=∥p⃗∥ ∼ ℏ=ðmvÞ ∼ λdB, where λC and λdB
denote the Compton and de Broglie wavelength, respec-
tively, the conditions (13) can be recast as

L ≫ λdB; T ≫
λC
c
; ð14Þ

where L and T represent the characteristic length and time
scales over which gravitational potentials or two-point
functions vary. L can be as small as the smallest
large-scale structures we are interested in (which is of
the order ∼kpc) which implies that T must be much
larger than the time light crosses about one mega-parsec
which is about a million years or so [this estimate follows
from the observation that λdB∼103λC as v∼ð10−3–10−2Þc].
To get a feeling of how good that approximation is, note
that the inequalities are amply satisfied for a dark matter
whose mass is of the electroweak scale ∼102 GeV.
However, when one considers an ultralight scalar such
as in Refs. [3,4], the scalar mass is of the order
m ∼ 10−22–10−24 eV, the Compton and de Broglie wave
lengths are λC ∼ 10−4–10−2 kpc, λdB ∼ 10−2–10 kpc, the
quantities in (14) can become comparable for smallest
scales of interest, and hence one expects significant higher-
order gradient corrections. One is typically interested in
modeling dark matter at an accuracy better than 1% (as it
will be tested by upcoming observations), which then
defines the order in gradient expansion that one ought to
keep. The corrections of the gradient expansion can be
subsumed by the following perturbation parameters:

εℏ ∼
�
εk ∼ ℏ

∂X

ma
; εk=p ∼ ℏ

∂X

p
∼ ℏ∂X∂p;

εH ∼ ℏ
H
ma

; ε∂η ∼ ℏ
∂η

ma

�
: ð15Þ

Next, there are relativistic corrections due to the rela-
tivistic nature of dark matter. The fact that the energy is not
equal to the rest energy can fully be captured in our
formalism as long as we keep the on-shell energy resulting
from the field theoretic description equal to the quasipar-

ticle value, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

ph

q
, where p2

ph ¼ gijpipj denotes

the physical momentum squared (for simplicity we do not
include all of the metric corrections in here). To study these

corrections one can systematically include them order by
order if

εp ∼
pcom

ma
≪ 1 ð16Þ

where pcom denotes the comoving momentum today.
These corrections occur e.g. as relativistic corrections to
the energy-momentum tensor whose most important com-
ponents are energy density and pressure which source the
generalized Poisson-like equations for the gravitational
potentials.
Furthermore, there are relativistic corrections induced

by the relativistic nature of the scalar field Klein-Gordon
equations, and these appear as higher-order time derivatives
in the Vlasov (or collisionless Boltzmann) equation. These
corrections are small if the second condition in Eqs. (13)
and (14) is met and if ∥∂η∥ ≪ H, where H denotes the
Hubble expansion rate in conformal time.
Next, there are relativistic corrections arising from

general relativity being different from Newton’s gravity.
These corrections occur as higher time derivative correc-
tions to gravitational potentials and as the corrections
induced by the Universe expansion. The latter are sup-
pressed by the Hubble rate H and they are small if

T ≪
1

aH
: ð17Þ

Furthermore, since general relativity has more degrees of
freedom than Newton’s gravity, there are general relativistic
corrections expressed as a nonvanishing gravitational slip.
Finally, we expect that as a result of nonlinear interactions
between matter and gravity, gravitational vector and tensor
perturbations will be (dynamically) generated (even if they
are not present at the initial time). In this paper we neglect
these types of perturbations, but they can be easily included
in our formalism by including them in the Ansatz for the
metric tensor.
Of course, there are also higher-order gravitational

perturbations. However, since on the large scales we are
interested in gravitational potentials do not grow much
beyond their initial value,

ε2g ∼ΦG; ΨG ∼ 10−5 ≪ 1; ð18Þ

we can safely neglect terms of the formΦ2
G andΨ2

G; higher-
order vector and tensor perturbations can be also neglected
since vectors and tensors remain smaller than gravitational
scalars throughout the evolution. Wewill also encounter the
parameter

εH=k ∼H∂−1
X ð19Þ

that controls whether we are on sub- or superhorizon scales.

2The validity of this expansion depends on the initial density
matrix which ought to be classical enough. The initial density
matrix can for example be taken to be Gaussian, containing initial
one-point functions and connected two-point functions. In
particular, without any coarse graining, only the connected part
of the two-point function can satisfy the conditions of gradient
expansion.
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C. Phase-space distributions from
Wigner transformation

The concept of the Wigner transformation (see for
example [19] or [33]) was introduced to extract phase-
space distributions and its Boltzmann equation from
particle wave functions, then generalized to field theory
in Minkowski space-time and even later to field theory in
curved space-time to yield a covariant Boltzmann or Vlasov
equation. However, the generalization of the Wigner trans-
formation to arbitrary curved space-times must still be
considered as an active research field since there are as far
as we know merely four major contributions to this area
[21–23,25] which agree only in the limit where ℏ goes to
zero. Apart from the proposal by [25], all approaches are
based on perturbative expressions. On the other hand, all
of these papers cover almost entirely off-shell phase-space
distribution fðXμ; pνÞ in the sense that the momentum
conjugate to the time difference Δη in the two-point
function, p0, is still an independent variable that needs
to be put on shell by integrating it out since the starting
point for theWigner transformation is a nonequal-time two-
point function, Δη ≠ 0. As it was to our knowledge first
pointed out by [34] for electrodynamics in Minkowski
space-times, going on-shell requires more than one moment
in p0 space, i.e.

R dp0

2πℏp
n
0fðXμ; pνÞ. This approach of taking

several moments and relating them has been applied to
homogeneous cosmological backgrounds by [24] to define
a particle number density. Our goal is to obtain candidates
for on-shell phase-space distributions fðXμ; piÞ and their
dynamics for the nonhomogeneous linearized longitudinal
metric (4) we provided in the beginning. We seek them by
computing the dynamics of two-point functions on-shell or
at equal times in the operator formalism and then perform-
ing a (D − 1)-dimensional Wigner transformation of these
equal-time two-point functions. Apart from our interest in
scalar field dark matter, we want to use the linearized
longitudinal metric as a guideline to gain some intuition for
on-shell Wigner transformation in curved space-time and
generalize it in future work to arbitrary nonperturbative
metrics.
Let us start by looking at the four equal-time two-point

functions whose combination might provide candidates
for phase-space distributions after a (D − 1)-dimensional
Wigner transformation

F00ðη; xi; ~xiÞ ≔ hϕ̂ðη; xiÞϕ̂ðη; ~xiÞi
¼ Tr½ρ̂ini½ϕ̂; Π̂;ΦG;ΨG�ϕ̂ðη; xiÞϕ̂ðη; ~xiÞ�;

ð20Þ

F10ðη; xi; ~xiÞ ≔ hΠ̂ðη; xiÞϕ̂ðη; ~xiÞi
¼ Tr½ρ̂ini½ϕ̂; Π̂;ΦG;ΨG�Π̂ðη; xiÞϕ̂ðη; ~xiÞ�;

ð21Þ

F01ðη; xi; ~xiÞ ≔ hϕ̂ðη; xiÞΠ̂ðη; ~xiÞi
¼ Tr½ρ̂ini½ϕ̂; Π̂;ΦG;ΨG�ϕ̂ðη; xiÞΠ̂ðη; ~xiÞ�;

ð22Þ

F11ðη; xi; ~xiÞ ≔ hΠ̂ðη; xiÞΠ̂ðη; ~xiÞi
¼ Tr½ρ̂ini½ϕ̂; Π̂;ΦG;ΨG�Π̂ðη; xiÞΠ̂ðη; ~xiÞ�;

ð23Þ

where the expectation values are taken with respect to some
initial density matrix ρ̂ini which functionally depends on the
operators ϕ̂ and Π̂ at some initial time ηini. Note that in the
context of cosmology the initial density matrix ρ̂ini depends
also functionally on the stochastic gravitational potentials
ΦG, ΨG at this initial time ηini, and in its general form it
allows for implementation of effects of coherent states,
squeezing and state mixing. In this way, two-point func-
tions can be stochastic quantities,

F00ðη; xi; ~xiÞ ≠ hF00iðΦG;ΨGÞðη; xi; ~xiÞ
≔ hhϕ̂ðη; xiÞϕ̂ðη; ~xiÞiρ̂iðΦG;ΨGÞ

≔
Z

DΦGDΨGP½ΦG;ΨG�Tr½ρ̂ini
× ½ϕ̂; Π̂;ΦG;ΨG�ϕ̂ðη; xiÞϕ̂ðη; ~xiÞ�; ð24Þ

where P is a probability distribution for the gravitational
potentials. The reason to introduce this formalism lies in its
application to cosmology in the sense that we want to
bridge a gap from semiclassical quantum field theory
to cosmological perturbation theory.3 Thus, ΦG and ΨG
are stochastic, homogeneously distributed fields that evolve
into non-Gaussian fields due to the evolution of large-scale
structures. We want to think of this model more as a
conceptional test case on how to relate full quantum
microscopic theories to models in cosmological perturba-
tion theory as for example the cold dark matter model.
Once we find that this is a fruitful Ansatz, we will provide
generalizations for arbitrary metrics and even wave the
semiclassical approach by integrating out the gravitational
constraint fields ΦG, ΨG, which at the moment act as
approximate self-interactions of the scalar field theory since
the Einstein equations constrain them to be related to the
scalar field’s two-point functions. We also want to point out
that the reducible and connected pieces of the two-
point functions entering (20) to (23) do not decouple in
general which is due to the gravitational fields since the

3We remark that this might be closely related to the stochastic
gravity framework proposed in [35] although we did not inves-
tigate this further. For us, the stochasticity of two-point functions
is more an ad hoc Ansatz that turns out to be very convenient in
relation to cosmological perturbation theory.
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semiclassical Einstein equation will constrain them to be
related to both one-point functions as well as the connected
matter field two-point function. On the other hand, this
makes clear that setting initially either the one-point
functions of the matter field or connected parts of the

matter field two-point function to zero removes them
from (20) to (23) for all times. Before we turn to the
Wigner transformation itself, we write down the dynamics
of the equal-time two-point functions (20) to (23). Let us
therefore define the differential operator

Dðη; xiÞ ≔ aD−2ðηÞδij½½∂iΦG�ðη; xiÞ − ðD − 3Þ½∂iΨG�ðη; xiÞ�
∂
∂xj þ aD−2ðηÞ½1þΦGðη; xiÞ − ðD − 3ÞΨGðη; xiÞ�Δx

−
m2

ℏ2
aDðηÞ½1þΦGðη; xiÞ − ðD − 1ÞΨGðη; xiÞ�; ð25Þ

where we used the Laplace operator Δ which on con-
formally flat cosmological spaces equals δij∂i∂j. We also
define the following function as a shorthand:

hðη; xiÞ ≔ a−ðD−2ÞðηÞ½1þΦGðη; xiÞ þ ðDþ 1ÞΨGðη; xiÞ�:
ð26Þ

Then, based on the Hamilton’s equation for the canonical
operators (10) and (11), we get the following system of
equations:

F000ðη; xi; ~xiÞ ¼ hðη; xiÞF10ðη; xi; ~xiÞþF01ðη;xi; ~xiÞhðη; ~xiÞ;
ð27Þ

F010ðη;xi; ~xiÞ¼Dðη;xiÞF00ðη;xi; ~xiÞþF11ðη;xi; ~xiÞhðη; ~xiÞ;
ð28Þ

F001ðη;xi; ~xiÞ¼Dðη; ~xiÞF00ðη;xi; ~xiÞþhðη;xiÞF11ðη;xi; ~xiÞ;
ð29Þ

F011ðη;xi; ~xiÞ¼Dðη;xiÞF01ðη;xi; ~xiÞþDðη; ~xiÞF10ðη;xi; ~xiÞ:
ð30Þ

This is a system of four first-order differential equations with
four independent initial conditions. However, we have to
keep in mind that these two-point functions obey certain
symmetry properties and we realize by combining F10 and
F01 that we can specify three symmetric functions and one
antisymmetric function as initial conditions. We remark that
this system of equations closes in the sense that we need no
information about higher n-point functions. This is due to the
following reasons: firstly, we neglected manifest self-inter-
actions of the scalar field (e.g. ∼λϕ4) that are not due to
gravity; secondly, we approximate the self-interactions that
are induced via gravity. These interactions are nonlocal in
space but local in time via an inversion of the generalized
Poisson equation. It means that the scalar field couples in this
approximation only to its two-point functions since the
gravitational potentials ΦG, ΨG are—via the semiclassical

Einstein equations—entirely expressible in terms of the scalar
field two-point functions. We call this the hybrid approach.
Thirdly, the scalar field does not interact with the dynamical
parts of gravity, the gravitons, since we put them to zero by
hand as an assumed negligible effect.
Let us continue to manipulate the system of equa-

tions (27) to (30) by switching to collective and difference
coordinates for the spatial parts,

Xi ≔
xi þ ~xi

2
; ri ≔ xi − ~xi: ð31Þ

We define the Wigner transform with respect to covariant
momenta pi and its zeroth moment denoted by a bar as

F�ðη; Xi; piÞ ≔
Z

dD−1re−
i
ℏpiriF�ðη; Xi; riÞ; ð32Þ

F�ðη; XiÞ ≔
Z

dD−1p
ð2πℏÞD−1 F�ðη; Xi; piÞ: ð33Þ

This definition is our equal-time, thus on-shell, version
of the several curved space-time generalizations of the
Minkowski space-time Wigner transformation of course for
our specific choice of a longitudinal linearized metric
without gravitons. It is a direct generalization of the
Ansatz in [24] from the homogeneous FLRW space-time
to its nonhomogeneous perturbed form. This definition
identifies the time coordinate η and spatial collective
coordinates Xi as a single point on the curved space-time
manifold, whereas the spatial difference coordinates ri and
the momenta pi belong to the tangent and cotangent space,
respectively, that is associated with that point. We neither
make use of any geodesic expansion nor do we use
Riemannian coordinates. This implies also that our equa-
tions are exact apart from the linearization in the gravita-
tional potentials. We also would like to mention that the
on-shell operator formalism for curved space-times we are
using resolves the problem of perturbatively solving the
off-shell constraint equation which always accompanies the
off-shell Vlasov equation by providing a manifest closure
for on-shell correlators [21–23,25].
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It will turn out that upon Wigner transforming Eqs. (27)
to (30), two other correlators are much more useful than
F01 and F10. Thus, we define the following combination of
equal-time two-point functions:

Fþðη; xi; ~xiÞ ≔
1

2
½F10ðη; xi; ~xiÞ þ F01ðη; xi; ~xiÞ�

¼ 1

4
hfΠ̂ðη; xiÞ; ϕ̂ðη; ~xiÞg
þ fϕ̂ðη; xiÞ; Π̂ðη; ~xiÞgi; ð34Þ

F−ðη; xi; ~xiÞ ≔
i
2
½F10ðη; xi; ~xiÞ − F01ðη; xi; ~xiÞ�

−
ℏ
2
δD−1ðxi − ~xiÞ

¼ i
4
hfΠ̂ðη; xiÞ; ϕ̂ðη; ~xiÞg

− fΠ̂ðη; ~xiÞ; ϕ̂ðη; xiÞgi; ð35Þ

where f:; :g denotes the anticommutator. The calculation of
transforming the two-point function dynamics into Wigner
space is shown in Appendix A. We remark that this
calculation is exact up to the linearization in the gravita-
tional potentials. Since we want to identify phase-space
distributions we have to treat the problem by utilizing the
gradient approximation. Therefore, we consider again the
perturbation parameters in (15) to (18) and solve perturba-
tively for Fþ and F11 which are determined in terms of F00

and F−,

Fþ ¼
�
1

2
½1 −ΦG − ðD − 1ÞΨG�aD−2F000

−
ℏ
2

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi

F−

�
× f1þOðε2ℏ · ε2gÞ þOðε4ℏÞg; ð36Þ

F11 ¼ aD−2
�
1

2
½aD−2F000�0 −

�
ℏ
2

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi

F−

�0
−
ΔX

4
½aD−2F00� þ

p2

ℏ2
½1 − 2ðD − 2ÞΨG�½aD−2F00�

þm2

ℏ2
a2½1 − 2ðD − 1ÞΨG�½aD−2F00�

�
× f1þOðε2ℏ · ε2gÞ þOðε4ℏÞg; ð37Þ

where

p2 ≔ δijpipj: ð38Þ

The dynamics of F00 and F− is given by the following coupled equations:

F0− ¼
�
1

ℏ
∂

∂Xk ½ΦG þΨG�
∂

∂pk
½p2½aD−2F00�� −

p
ℏ
· ∂X½ΦG − ðD − 3ÞΨG�½aD−2F00�

− ½1þΦG − ðD − 3ÞΨG�
pk

ℏ
∂

∂Xk ½aD−2F00� þ
m2a2

ℏ
∂
∂XiΦG

∂
∂pi
½aD−2F00�

�
× f1þOðε2ℏ · ε2gÞ þOðε4ℏÞg; ð39Þ

�
1

2
½aD−2F000�00 þ ðD − 2ÞH

2
½aD−2F000�0 þ

p2

ℏ2
½1 − 2ðD − 2ÞΨG�0½aD−2F00� þ

�
m2

ℏ2
a2½1 − 2ðD − 1ÞΨG�

�0
½aD−2F00�

þ 2
m2

ℏ2
a2½1 − 2ðD − 1ÞΨG�½aD−2F00�0 −

ΔX

2
½aD−2F00�0 þ 2

p2

ℏ2
½1 − 2ðD − 2ÞΨG�½aD−2F00�0

− 2
p2

ℏ
∂

∂Xk ½ΦG þΨG�
∂

∂pk
F− þ 2½1þΦG − ðD − 3ÞΨG�

p
ℏ
· ∂XF− − 2

m2a2

ℏ
∂
∂XiΦG

∂
∂pi

F−

�
× f1þOðε2ℏ · ε2gÞ þOðε4ℏÞg ¼ 0: ð40Þ

We conclude that to this order in the gradient approximation, we still keep all degrees of freedom that were contained on the
original first-order system (27) to (30). Dropping the third-order time derivative would leave us with the degrees of freedom
of a symmetric and an antisymmetric function. Before we try to recover a Vlasov equation from these equations let us pause
a bit and make it clear how this equation reflects the difference between products of one-point functions and connected two-
point functions. We will also realize that the higher-order time derivatives correspond to oscillatory degrees of freedom. For
simplicity, we set D ¼ 4 and focus on the homogeneous part of Eq. (40) in the large mass limit (p ≪ m), where we denote
the homogeneous approximation of F00 by Fhom

00 ,
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1

2
½a2½Fhom

00 �0�00 þH½a2½Fhom
00 �0�0 þ 2H

m2

ℏ2
a2½a2Fhom

00 �

þ 2
m2

ℏ2
a2½a2Fhom

00 �0 ≈ 0: ð41Þ

Expanding this equation, we arrive at

½a3Fhom
00 �000 − 3H½a3Fhom

00 �00

þ
�
4
m2

ℏ2
a2 −H2 − 7H0

�
½a3Fhom

00 �0

þ 3½H3 þHH0 −H00�½a3Fhom
00 � ≈ 0: ð42Þ

In order to make progress, we also have to provide the
Einstein equations, which we derive in Appendix B in
Eqs. (B26) to (B27). The spatially homogeneous equations
with neglected momenta p ≪ m read in D ¼ 4 dimensions
(all terms p2m−2 are dropped)

−2H0 −H2 ≈
ℏ

2M2
P

�
a−4Fhom

11 −
m2a2

ℏ2
Fhom
00

�
; ð43Þ

3H2 ≈
ℏ

2M2
P

�
a−4Fhom

11 þ a2
m2

ℏ2
Fhom
00

�
; ð44Þ

and from (37), we have

Fhom
11 ≈

a2

2
½a2½Fhom

00 �0�0 þ
m2

ℏ2
a6Fhom

00 : ð45Þ

Equations (42) to (45) admit three independent solutions.
We can guess them quickly by noting once more that Fhom

00

is constructed out of one-point functions and a connected
piece

Fhom
00 ¼ hϕ̂ihomhϕ̂ihom þ hϕ̂ ϕ̂ihomconnected: ð46Þ

In the limit H ≪ ℏ−1ma, the solutions for the one-point
functions are through the Klein-Gordon equations approx-
imately given by

hϕ̂ihom;sol1 ≈ a−3=2 cos
�Z

dηma
�
;

hϕ̂ihom;sol2 ≈ a−3=2 sin

�Z
dηma

�
: ð47Þ

Had we used only one-point functions hϕ̂i to construct
Fhom
00 , our analysis would be complete at this stage since

we can only impose two initial conditions for hϕ̂i and they
would completely determine Fhom

00 which in this case has
always an oscillatory contribution. However, let us forget

about the one-point functions and focus on the connected
part of Fhom

00 . We see that the following functions are two
independent solutions to (42)4:

Fhom;sol1
00 ≈ a−3cos2

�Z
dηma

�
;

Fhom;sol2
00 ≈ a−3sin2

�Z
dηma

�
; ð48Þ

Fhom;sol1
11 ≈

m2

ℏ2
a3sin2

�Z
dηma

�
;

Fhom;sol2
11 ≈

m2

ℏ2
a3cos2

�Z
dηma

�
: ð49Þ

The corresponding solutions for the Hubble rate are given
by the following leading-order terms:

½H2a�sol1;2 ≈ const; ð50Þ

½2H0 þH2�sol1;2 ≈�3H2 × cos

�
2

Z
dηma

�
; ð51Þ

½H00 þHH0�sol1;2≈ ∓ 3maH2 sin

�
2

Z
dηma

�
: ð52Þ

We then choose a linear combination of these solutions
which is not oscillatory and can only be provided by means
of the connected part of Fhom

00 . It is to leading order simply
given by

Fhom;non-osc
00 ¼ 1

2
½Fhom;sol1

00 þ Fhom;sol2
00 � ≈ a−3;

Fhom;non-osc
11 ≈

m2

ℏ2
a3: ð53Þ

The corresponding solutions for the Hubble rate are given
by the following leading order terms:

½H2a�non-osc ≈ const; ð54Þ

½2H0 þH2�non-osc ≈ 0: ð55Þ

We of course get this solution by dropping all higher-order
time derivatives on Fhom

00 in the limit H ≪ ℏ−1ma. To
summarize, we have shown that—by means of the con-
nected part—the two-point function formalism allows one

4Being ignorant about any p dependence for the moment, the
initial density matrix for homogeneous two-point functions
contains five initial conditions (see e.g. [26]): the one-point
functions hϕ̂i and hΠ̂i, and the connected parts of the two-point
functions F00, F11, and Fþ or equivalently F00, F000, and F

00
00. The

fourth condition for the connected part of F− is trivially satisfied
in the homogeneous case.
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to overcome the oscillatory behavior of time derivatives of
the Hubble rate, and equivalently of pressure, without
any averaging procedure. It is in this respect significantly
richer in comparison to the approach based on classical real
scalar fields.

III. GENERALIZED ON-SHELL
VLASOV EQUATION

A. Identification of scalar field on-shell
phase-space distributions

We now compare the real scalar field energy-momentum
tensor expressed in terms of scalar field two-point func-
tions [see (B34) to (B38) in Appendix B] with a general
energy-momentum tensor in kinetic theory. This will allow
us to identify phase-space distributions based on the scalar
field. The phase-space distribution fcl of classical colli-
sionless particles in general relativity obeys the Vlasov
equation [36]

� ∂
∂ηþ

pi
cl

p0
cl

∂
∂Xi þ Γα

iβ
pcl
α p

β
cl

p0
cl

∂
∂pi

cl

�
fclðη; Xj; pcl

k Þ ¼ 0:

ð56Þ

The energy-momentum tensor in kinetic theory is then
given by

Tkin
μν ðη; XiÞ ¼

Z
dD−1pcl

�
γ−1=2

pcl
μ pcl

ν

Ecl

�
× ðη; Xi; pcl

i Þfclðη; Xi; pcl
i Þ: ð57Þ

Here, the quantity γ is the determinant of the spatial metric.
The particle energy Ecl and the temporal momentum pcl

0 are
related to the on-shell condition

pcl
μ p

μ
cl ¼ −m2

cl; ð58Þ

which gives in longitudinal gauge

pcl
0 ¼ g00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

cl þ gijpcl
i p

cl
j

q
; g0i ¼ 0; ð59Þ

Ecl ¼ −jg00j1=2pcl
0 : ð60Þ

Of course we want to identify similar quantities through the
covariant Wigner momenta pi. By using a tilde from now
on, we want to clearly distinguish between the covariant
Wigner momentum pi, which is an integration variable and
derived quantities that are related to it via the metric,

Eðη; Xi; piÞ ¼
�
m2 þ p2

a2ðηÞ
�
1=2

×

�
1þ p2

m2a2ðηÞ þ p2
ΨGðη; XiÞ

�
; ð61Þ

~p0ðη; Xi; piÞ ¼ a−1ðηÞ½1 −ΦGðη; XiÞ�Eðη; Xi; piÞ; ð62Þ

~p0ðη;Xi;piÞ¼−a2ðηÞ½1þ2ΦGðη;XiÞ� ~p0ðη;Xi;piÞ; ð63Þ

~pkðη; Xi; piÞ ¼ a−2ðηÞ½1þ 2ΨGðη; XiÞ�δkipi: ð64Þ

In particular, we emphasize that there is no independent
integration variable p0 which is encountered in off-shell
Wigner transformations; we have only the on-shell quantity
~p0ðpiÞ. As we derive in Appendix B, the 00 and 0i
components of the real scalar field energy-momentum
tensor are to leading order in ℏ given by [see
Eqs. (B34) and (B35)]

hT̂00iðη; XiÞ ¼ T00ðη; XiÞ

¼
�
m2a2

ℏ2
½1þ 2ΦGðη; XiÞ�F00ðη; XiÞ

þ ½1þ 2ΦGðη; XiÞ þ 2ΨGðη; XiÞ�

×
Z

dD−1p
ð2πℏÞD−1

p2

ℏ2
F00ðη; Xi; piÞ

�
× ½1þOðε2ℏÞ�; ð65Þ

and

hT̂0iiðη; XiÞ ¼ T0iðη; XiÞ
¼ −a−ðD−2Þ½1þΦGðη; XiÞ
þ ðD − 1ÞΨGðη; XiÞ�

×
Z

dD−1p
ð2πℏÞD−1

pi

ℏ
F−ðη; Xi; piÞ

× ½1þOðε2ℏÞ�: ð66Þ

We realize that according to Eq. (65) a phase-space density
candidate in the classical particle limit would be given by

fevencl → fevenϕ

≔
Eγ1=2

ð2πℏÞD−1
F00

ℏ2

¼ ðm
2a2 þ p2Þ1=2
ð2πℏÞD−1

�
1− ðD− 1ÞΨG þ

p2

m2a2 þ p2
ΨG

�

×
aD−2F00

ℏ2
: ð67Þ

However, when looking at the T0i Eq. (66), we would
rather come to the conclusion that the classical phase-space
density should be given by

foddcl → foddϕ ≔
1

ð2πℏÞD−1
F−

ℏ
: ð68Þ
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In Eqs. (A12) and (A13) in Appendix A we sum-
marize that according to their fundamental definitions the
two-point function F00 is of even parity in pi whereas
the two-point function F− is an odd parity function in pi.
Thus, up to a rescaling and corrections in our perturbation
parameters, the quantity F00 seems to play the role of the
phase-space-density for even moments and F− seems to
play the role of the phase-space-density for odd moments
in pi.

B. Dynamics of on-shell phase-space distributions

Based on the identifications in the previous paragraph,
we rewrite (39) and (40) in terms of the definitions (67) and
(68). We find

�
~p0

∂
∂η f

odd
ϕ þ ~pk ∂

∂Xk f
even
ϕ − ~pipi

∂
∂Xk ½ΦG þ ΨG�

∂
∂pk

fevenϕ

−m2
∂

∂Xk ΦG
∂

∂pk
fevenϕ

�
× ½1þOðε2ℏ · ε2gÞ þOðε4ℏÞ� ¼ 0; ð69Þ

�
~p0

∂
∂η f

even
ϕ þ ~pk ∂

∂Xk f
odd
ϕ − ~pipi

∂
∂Xk ½ΦG þ ΨG�

∂
∂pk

foddϕ

−m2
∂

∂Xk ΦG
∂

∂pk
foddϕ þ

ℏ2

4
a−2ðD−1Þ

�
aD−2 ∂

∂η
�
3

× ½a−ðD−2Þðm2a2 þ p2Þ−1=2fevenϕ �

− ℏ2a−2
ΔX

4

∂
∂η ½ðm

2a2 þ p2Þ−1=2fevenϕ �
�

× ½1þOðε2ℏ · ε2gÞ þOðε4ℏÞ� ¼ 0: ð70Þ

We emphasize again that ~p0 is on-shell. We set5

fϕ ≔ fevenϕ þ foddϕ ¼ ð2πℏÞ−ðD−1Þ
�
Eγ1=2

F00

ℏ2
þ F−

ℏ

�
;

ð72Þ

and find

��
~p0

∂
∂ηþ ~pk ∂

∂Xk − ~pipi
∂

∂Xk ½ΦG þ ΨG�
∂

∂pk

−m2
∂

∂Xk ΦG
∂

∂pk

�
fϕ þ

ℏ2

4
a−2ðD−1Þ

�
aD−2 ∂

∂η
�
3

× ½a−ðD−2Þðm2a2 þ p2Þ−1=2fevenϕ �

− ℏ2a−2
ΔX

4

∂
∂η ½ðm

2a2 þ p2Þ−1=2fevenϕ �
�

× ½1þOðε2ℏ · ε2gÞ þOðε4ℏÞ� ¼ 0: ð73Þ

Equation (73) is the main result of this paper. It tells us that
we can obtain a corrected on-shell Vlasov equation from
statistical two-point functions of a scalar field theory. It
includes a third-order time derivative such that we keep
all degrees of freedom from the initial first-order system
(27) to (30) originating from the relativistic Klein-Gordon
equation. However, dropping these third-order time deriv-
atives as small corrections, we are left with the degrees of
freedom of a one-particle phase-space distribution. We
note, that dropping these third-order time derivatives can be
justified by either using certain initial conditions in the case
that F00 is given only in terms of the connected two-point
functions (concretely Fþ ∼HF00). In the case where F00 is
only given by a product of oscillatory one-point functions,
we can drop those contributions only after an averaging
procedure. Apart from the third-order time derivatives the
generalized Vlasov equation (73) contains corrections in
the gradient expansion. Dropping the later, we find the
same form as for the classical, collisionless on-shell Vlasov
equation given in (56). We note that since we used a spin
zero field, we expect corrections due to nontrivial spin in
other quantum field theoretical settings. We also note that
the degrees of freedom of the system containing all time
derivatives might be constrained by conserved quantities.
We remark that conserved quantities have been identified
in homogeneous settings [24] and we plan to investigate
this issue for our nonhomogeneous case in the future.
A few more comments are in order. We acknowledge

that an off-shell version of this equation has been derived
much earlier by [21,22] for arbitary metrices. As we
pointed out above and explicitly derived here, the on-shell
Vlasov cannot be derived from a single on-shell two-point
function which became apparent from the derivation of
real scalar field particle densities by [24] in homogeneous
FLRW space-time and which was pointed out earlier by
[34] for a QEDVlasov equation in Minkowski space-time.
However, we remark that integrating out off-shell energies
implies a renormalization procedure that is avoided by
using a pure on-shell formulation up to this point. An
equation similar to (73) may be derived by employing a
quasiparticle approximation that is restricted to positive
off-shell energies which are then integrated over [37,38].
However, this quasiparticle picture does not need to hold
and it is a priori not settled why negative off-shell

5Note, that we could also have considered

ftime−rev
ϕ ≔ fevenϕ − foddϕ ; ð71Þ

which yields phase-space dynamics for reversed momenta or
equally for reversed times. However, the equation for the time-
reversed density amounts only to a flip of the sign of the
momentum pi and thus yields no new information.
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energies should not contribute. Thus, as far as we know,
this is the first explicit derivation of the on-shell Vlasov
equation for a nonhomogeneous metric from a fundamen-
tal theory that is not employing a quasiparticle approxi-
mation i.e. that does not restrict excitation to be lumped in
region of positive off-shell energies. We also acknowledge
that Eq. (73) has been derived on phenomenological
grounds from a Schrödinger equation based on one-point
functions as discussed for example in [17]; however,
without any coarse graining this approach does not allow
for independent moments in momentum space since they
will be related by spatial derivatives and thus, this one-
point function approach cannot model a generic non-
perfect fluid with gravitational interactions without any
coarse-graining.
Let us comment a bit more on the physical meaning of

this real scalar field phase-space distribution fϕ and why
we think that it can model a general fluid with gravitational
interactions. First, we note that it is no surprise that the
definition (72) yields a generalization of the Vlasov
equation since it is related to the Wigner transformation
of the Schrödinger operators ψ̂ in the nonrelativistic limit.
We see this by writing

ϕ̂ðη; xiÞ ∼ ψ̂ðη; xiÞ exp
�
−i

m
ℏ

Z
η
d~ηað~ηÞ

�

þ ψ̂†ðη; xiÞ exp
�
þi m

ℏ

Z
η
d~ηað~ηÞ

�
; ð74Þ

and after some manipulations we find

fϕðη; Xi; piÞ

∼ aD−1
Z

dD−1re−
i
ℏr

ipihψ̂ðη; Xk þ rk=2Þψ̂†ðη; Xk − rk=2Þi

× ½1þOðε2gÞ þOðε2ℏÞ þ oscillatory terms�: ð75Þ

We already remarked in Sec. II C that the oscillatory terms
can be removed by an appropriate initial density matrix.
Thus, we rediscover in the large mass limit the definition of
the nonrelativistic Wigner quasiprobability distribution
based on an initial density matrix [20]. This is another
strong hint that our on-shell approach to construct a phase-
space distribution fϕ has a classical interpretation provided
the classicality condition and the gradient expansion we
discussed in II B apply. This implies a suitable choice
for the initial density matrix, in other words the state it
represents has to be classical enough. We can also for-
mulate the approximate equivalence between a classical
one-particle phase-space model and the classical limit of
the real scalar quantum field theory in the following way:
since the dynamics for the scalar field phase-space dis-
tribution fϕ and the classical distribution fcl agree on
length and time scales that are associated with the classical
limit, the difference between the two quantities is encoded

in the possibility to formulate arbitrary initial conditions.
For any smooth classical phase-space distribution we can
write

fclðηini; Xi; piÞ ¼
Z

dD−1reir
ipifclðηini; Xk; rkÞ

¼
Z

dD−1ðx − yÞeiðx−yÞipi ~fclðηini; xk; ykÞ;

ð76Þ
which in particular means that any moment can be
written as

fðk1;…;knÞ
cl ðηini; XiÞ

¼
Z

dD−1p
ð2πℏÞD−1 pk1 � � �pknfclðηini; Xi; piÞ

¼ ∂n

∂ðx − yÞk1 � � � ∂ðx − yÞkn
~fclðηini; xi; yiÞjðx−yÞi¼0:

ð77Þ
From this we conclude that an arbitrary smooth, classical,
one-particle phase-space distribution is initially specified
by an arbitrary function in two spatial coordinates. How-
ever, we can always provide such a function based on a
Gaussian initial density matrix for the quantum theory
which is encoded in the connected part of the two-point
function,

hψ̂ðηini; xkÞψ̂�ðηini; ykÞi ¼ hψ̂ðηini; xkÞihψ̂�ðηini; ykÞi
þ hψ̂ðηini; xkÞψ̂�ðηini; ykÞiconnected:

ð78Þ

Note that the product of two one-point functions is not
general enough to cover an arbitrary function of two
arguments, so we really need the connected term. We
can provide similar arguments for the fully relativistic
scalar field theory by splitting the classical distribution into
even and odd parts whose arbitrary initial conditions can
always be specified by providing the initial connected parts
of the two-point functions F00 and F− as well as Fþ and
F11 to fix oscillatory behavior.6

6It is worth pointing out that the formalism in which one uses a
single particle wave function resulting from the evolution of a
certain class of initial states may possess no classical limit in the
sense that the phase-space distribution (Wigner) function can
exhibit rapid (space and/or time) oscillations in the limit when
ℏ → 0, thus invalidating the gradient expansion. Since the
Schrödinger equation is the nonrelativistic limit of the Klein-
Gordon equation this argument could in principle also applies to
our scalar field phase-space distribution fϕ. However, the
question whether a spatial gradient expansion does apply or
not is tied to the specification of the initial density matrix: it ought
to be such that it yields two-point functions that satisfy the
classicality criteria spelled out in Sec. II B.
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Finally, let us go to a coarser approximation of Eq. (73)
by pursuing the large mass limit in order to clearly see the
relation to the cold dark matter particle picture,� ∂
∂ηþ

pi

maðηÞ
∂
∂Xi −maðηÞ ∂

∂XiΦGðη;XiÞ ∂
∂pi

�
fϕðη;Xi;piÞ

× ½1þOðε2gÞ þOðε2ℏÞ þOðε2pÞ� ¼ 0: ð79Þ

The last equation is used for a collisionless gas in the
context of cold dark matter as for example in [2] or [39] and
is simply the nonrelativistic limit of (56),� ∂
∂ηþ

pcl
i

mclaðηÞ
∂
∂Xi −mclaðηÞ

∂
∂XiΦGðη; XiÞ ∂

∂pcl
i

�
× fclðη; Xj; pcl

k Þ ¼ 0: ð80Þ

We thus conclude that collisionless dark matter obeying
a smooth phase-space distribution can always be mimicked
by a real scalar field theory based on scales where the mass
dominates. Initial nontrivial moments of the phase-space
distribution can be provided by nontrivial initial density
matrices for the connected parts of the two-point functions.
Taking moments of Eq. (79) shows that this generates in
principle an infinite hierarchy of moments.
Apart from the evolution of the phase-space distribution,

we also have to specify the Einstein equations that
determine the gravitational potentials. The Einstein equa-
tions take a particularly convenient form if we write them in
terms of hydrodynamic quantities. To identify those is the
goal of the next section.

IV. HYDRODYNAMICS BASED ON
TWO-POINT FUNCTIONS

A. Perfect or nonperfect fluid?

A perfect fluid description is suitable for early (linear)
evolution of cold dark matter. However, it stops being
correct in the nonlinear regime, in which gravitational slip,
vorticity, and anisotropic stresses (as well as the corre-
sponding gravitational perturbations) get generated even if
they were not present initially. The question we want to
address in this subsection is whether those nonperfect fluid
components can generically be modeled with the scalar
field two-point function approach we present in this paper.
All two-point functions used to generate different compo-
nents of the energy-momentum tensor discussed in this
section are assumed to arise from suitably smeared
(classical) two-point functions (a more detailed discussion
on this important point can be found in Sec. II B). In the
above section we worked out phase-space distributions
based on real scalar field two-point functions and argued
that a nontrivial initial density matrix can give rise to a
nontrivial hierarchy of moments. We now work out how
this is reflected on the level of hydrodynamic quantities.

In particular we argue that although the energy-momentum
tensor of the real scalar field theory has the apparent form
of the energy-momentum tensor of a perfect fluid it does
not correspond to one7

h∂μϕ̂∂νϕ̂i −
gμν
2

�
h∂αϕ̂∂αϕ̂i þ

m2

ℏ2
hϕ̂2i

�
¼ hTμνi ≠ TPF

μν

¼ ∂μϕcl∂νϕcl −
gμν
2

�
∂αϕcl∂αϕcl þ

m2

ℏ2
ϕ2
cl

�
; ð85Þ

where

ϕcl ≔ hϕ̂i: ð86Þ

Thus, we will in general not speak of a perfect fluid in
the two-point function approach. In our scalar field model
the fundamental reason is that the statistical two-point
functions split into a reducible and an irreducible or
connected piece

hϕ̂ðxÞϕ̂ðyÞi ¼ ϕclðxÞϕclðyÞ þ hϕ̂ðxÞϕ̂ðyÞiconnected; ð87Þ

where the connected piece can initially be an arbitrary
function of xi and yi in position space or equivalently of Xi

and pi in Wigner space. The reducible piece is given by
the product of one-point functions. The question whether
the one-point function or the connected two-point function
or both contribute to the whole two-point function depends
on the dark matter production mechanism which is model
dependent. Here we focus our attention mainly on the
connected piece when discussing statistical two-point
functions of the scalar matter field because the scalar field
in our model (2) does not couple linearly to external

7It is well known (see for example [40]), that the energy-
momentum tensor of a classical real scalar field theory has the
form of a perfect fluid

Tcl
μν ¼ ðecl þ PclÞuclμ uclν þ gμνPcl; ð81Þ

with the following classical energy density ePF, pressure PPF, and
four-velocity uPFμ :

ecl ¼ −
1

2
gμν∂μϕcl∂νϕcl þ

1

2
m2ϕ2

cl; ð82Þ

Pcl ¼ −
1

2
gμν∂μϕcl∂νϕcl −

1

2
m2ϕ2

cl; ð83Þ

uμcl ¼ −½ecl þ Pcl�−1=2gμν∂νϕcl: ð84Þ

This classical viewpoint, based on one-point functions, has been
exploited linearly (see e.g. [41] or [42]) in different gauges and
nonlinearly for real and complex classical fields in the longi-
tudinal gauge [3,13].
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sources, such that one-point functions are generally absent
(unless they are imposed as the initial condition as it is e.g.
done for the inflaton).
In order to make contact with a hydrodynamic descrip-

tion, we define the following energy density e and apparent
pressure P analogously to the one-point function approach:

e ≔ −
1

2
gμνh∂μϕ̂∂νϕ̂i þ

1

2
m2hϕ̂2i; ð88Þ

P ≔ −
1

2
gμνh∂μϕ̂∂νϕ̂i −

1

2
m2hϕ̂2i; ð89Þ

as well as a composite quantity containing a notion of
four-velocity,

½ðeþ PÞuμuν�com ≔ h∂μϕ̂∂νϕ̂i
¼ ∂μϕcl∂νϕcl þ h∂μϕ̂∂νϕ̂iconnected: ð90Þ

We then have

Tμν ¼ ½ðeþ PÞuμuν�com þ gμνP: ð91Þ

We stress that up to now we do not have a definition of an
irreducible four-velocity; we only have a definition of a
composite operator that will contain it.8 We now make the
following identification:

0-th moment ¼̂− ½ðeþ PÞu0u0�com; ð92Þ

1-st moment ¼̂ ½ðeþ PÞu0ui�com; ð93Þ

2-nd moment ¼̂ ½ðeþ PÞuiuj�com; ð94Þ

and define a quantity that we will play the role of the stress
tensor

σij ≔ δik½ðeþ PÞukuj�com − ðeþ PÞ−1½ðeþ PÞu0ui�com
× ½ðeþ PÞu0uj�com: ð95Þ

We will see below that these identifications are justified
based on the continuity and Euler equation. We find
neglecting contributions of the metric

½ðeþ PÞu0u0�comðXÞ ∼ hΠ̂2ðXÞi; ð96Þ

½ðeþ PÞu0ui�comðXÞ

∼
��

1

2
∂X
i − ∂r

i

�
hΠ̂ðX þ r=2Þϕ̂ðX − r=2Þi

�
r¼0

; ð97Þ

½ðeþ PÞuiuj�comðXÞ

∼
��

1

4
∂X
i ∂X

j − ∂r
i∂r

j

�
hϕ̂ðX þ r=2Þϕ̂ðX − r=2Þi

�
r¼0

:

ð98Þ

Since the various two-point functions appearing can be
independently specified, we conclude that the composite
four-velocity objects that we are referring to as moments
are independent. One might object that the equations of
motion enforce certain two-point functions to be propor-
tional to other ones in the classical limit where higher-time
derivatives or spatial derivatives are small. Indeed this is the
case as we find in Eq. (37). So to lowest order in the
gradient expansion in the parameters (15) to (19) we find

½ðeþ PÞu0u0�comðXÞ ≈m2hϕ̂2ðXÞi; ð99Þ

½ðeþ PÞu0ui�comðXÞ
≈ ∂r

i ½hΠ̂ðX þ r=2Þϕ̂ðX − r=2Þi − ðr → −rÞ�r¼0; ð100Þ

½ðeþ PÞuiuj�comðXÞ ≈ ∂r
i∂r

j½hϕ̂ðX þ r=2Þϕ̂ðX − r=2Þi�r¼0;
ð101Þ

or in using the notion of Sec. II

½ðeþ PÞu0u0�comðXÞ ≈m2½F00ðX; rÞ�r¼0; ð102Þ

½ðeþ PÞu0ui�comðXÞ ≈ ∂r
i ½F−ðX; r�r¼0; ð103Þ

½ðeþ PÞuiuj�comðXÞ ≈ ∂r
i∂r

j½F00ðX; rÞ�r¼0: ð104Þ

Thus, in the classical limit even moments in Wigner
momentum space will be related to even numbers of ri

derivatives of the scalar field two-point function F00ðXi; rjÞ
evaluated at zero whereas for odd moments the same is true
for odd numbers of ri derivatives of the function F−ðXi; riÞ,
the two-point functions we already identified as phase-
space densities on the previous section. The zeroth and the
second moment are the first two nonvanishing Taylor
coefficients of the arbitrary function F00ðXi; rjÞ and are
thus independent. The function F00ðXi; rjÞ is arbitrary
since its connected part can be freely specified by the
initial density matrix. In other words, the stress tensor σij is
completely generic and not only related to spatial Xi

derivatives of the zeroth moments as it would be the case
for one-point functions or classical real scalar fields. In
particular, it may contain an additional contribution to the
pressure on top of the apparent pressure P we defined in
(89). But not only this, we realize that the first moment
shows that we can specify a nonvanishing vorticity even at
early times in linear perturbation theory since we have

8We remark that composite fluid quantities can also arise from
genuine perfect fluids by introducing a smoothing scale [43].
However, this origin is conceptually different from the connected
two-point function approach we are advertising here.
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ρ̄ϵijk
∂

∂Xj δvkðXÞ ≈ ϵijk
∂

∂Xj

� ∂
∂rk F−ðX; rÞ

�
r¼0

≠ 0: ð105Þ

In (92) to (94) we labeled components of the composite
energy-momentum tensor as moments such that we are
interpreting them as rest-mass density, momentum den-
sities, and stress tensor of particles in a certain non-
relativistic limit. One might worry that this fluid picture
does not hold since we do not have a conserved rest-mass
density. However, as we show in Appendix C, local energy-

and momentum-conservation reduce to the familiar con-
tinuity and Euler equation in an expanding universe in the
limit of small pressure, weak gravitational fields, and small
velocity. This holds for every energy-momentum tensor
of the form (91). In particular it holds for the real scalar
field energy-momentum tensor. Identifying energy density,
apparent pressure and composite velocities in terms of
the Wigner transformed two-point functions will allow us
to reformulate the aforementioned nonrelativistic limits
clearly as a large mass limit. We find

e ¼ m2

ℏ2
F00 − a−2

∂X

4
½ΦG − ðD − 3ÞΨG�∂XF00 − a−2½1þ 2ΨG�

ΔX

4
F00

þ 1

2
a−D½1 −ΦG þ ðD − 1ÞΨG�

�
aD−2

2
ð1 −ΦG − ðD − 1ÞΨGÞF000

�0
: ð106Þ

For the apparent pressure P we get then

P ¼ 1

2
a−D½1 −ΦG þ ðD − 1ÞΨG�

×

�
aD−2

2
ð1 −ΦG − ðD − 1ÞΨGÞF000

�0
− a−2

∂X

4
½ΦG − ðD − 3ÞΨG�∂XF00

− a−2½1þ 2ΨG�
ΔX

4
F00; ð107Þ

and we realize that the choice of our perturbation param-
eters in (15) to (19) amounts to having a small apparent
pressure. We note that the apparent pressure is due to the
fundamental field theory we started with, i.e. it is built
out of wave phenomena rather than particle phenomena.

We identify m2F00 as the rest-mass density in the particle
picture and remark that it is consistent with the lowest-order
expression we get in the phase-space language,

ρðη; XiÞ ≔ m
�
m
ℏ2

F00ðη; XiÞ
�
¼ m2

ℏ2
hϕ̂ðη; XiÞϕ̂ðη; XiÞi

¼ m
Z

dD−1pfevenϕ ðη; Xi; piÞγ−1=2ðη; XiÞ

× ½1þOðε2pÞ�: ð108Þ

With this definition we have

e ¼ ρþ P; ð109Þ

as well as

P ¼ ℏ2

2m2
a−D½1 −ΦG þ ðD − 1ÞΨG�

�
aD−2

2
ð1 −ΦG − ðD − 1ÞΨGÞρ0

�0
−

ℏ2

4m2a2
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂Xk ρ −
ℏ2

4m2a2
½1þ 2ΨG�ΔXρ: ð110Þ

The composite fluid-four velocity quantities evaluate to

½ðeþ PÞu0ui�com ¼ −a−ðD−2Þ½1þΦG þ ðD − 1ÞΨG�
Z

dD−1p
ð2πℏÞD−1

pi

ℏ
F− þ

ℏ2

4m2
½1þΦG þ ðD − 1ÞΨG�

×
∂
∂Xi ½½1 −ΦG − ðD − 1ÞΨG�ρ0�; ð111Þ

as well as

½ðeþ PÞuiuj�com ¼ Tij − gijP ¼
ℏ2

4m2

∂2

∂Xi∂Xj ρþ
Z

dD−1p
ð2πℏÞD−1

pipj

ℏ2
F00: ð112Þ

Note that we consistently find

SCALAR FIELD DARK MATTER IN HYBRID APPROACH PHYSICAL REVIEW D 96, 083504 (2017)

083504-15



½ðeþPÞu0u0�com ¼ T0
0 −P¼ −½eþPþ ½ðeþPÞuiui�com�:

ð113Þ

Late us now return to the scheme we presented (93) to (94)
by applying the definition of the scalar field phase-space
distribution we worked out in (72). We find in the large
mass limit

−½ðeþ PÞu0u0�com¼̂ 0-th moment

≈m
Z

dD−1pfϕγ−1=2 ≈ ρ; ð114Þ

½ðeþ PÞu0ui�com¼̂ 1-st moment

≈m
Z

dD−1p
pi

m
fϕγ−1=2; ð115Þ

½ðeþ PÞuiuj�com¼̂ 2-nd moment

≈m
Z

dD−1p
pipj

m2
fϕγ−1=2; ð116Þ

and thus the stress tensor,

σij ≈m
Z

dD−1pδik
~pkpj

m2
fϕγ−1=2

−
m2

ρ

�Z
dD−1p

pi

m
fϕγ−1=2

��Z
dD−1p

pj

m
fϕγ−1=2

�
;

ð117Þ

is an arbitrary quantity since the phase-space distribution fϕ
can freely be specified via the initial density matrix. This is
just a different way of phrasing the independence ofmoments
in position space aswe did in (99) to (101).Weunderpin again
that this is evenvalid on scaleswherema ≫ ∂Xwhere there is
no quantum pressure term involved yet.

B. Einstein equations

Having identified hydrodynamic variables in the last
section, we would like to express the Einstein equations in
terms of these variables. We find

G00 ¼
1

2
ðD − 1ÞðD − 2ÞH2 þ ðD − 2ÞΔΨG − ðD − 1ÞðD − 2ÞHΨ0G ¼ a2

ℏ
M2

P
½1þ 2ΦG þ 2ΨG�½eþ ½ðeþ PÞuiui�com�;

ð118Þ

G0i ¼ ðD − 2Þ ∂
∂XiΨ

0
G þ ðD − 2ÞH ∂

∂Xi ΦG ¼
ℏ
M2

P
½ðeþ PÞuiu0�com; ð119Þ

Gii ¼ −ðD − 2ÞH0 − 1

2
ðD − 2ÞðD − 3ÞH2 þ ðD − 2ÞΨ00G þ

D − 2

D − 1
Δ½ΦG − ðD − 3ÞΨG�

þ ðD − 2Þ½2H0 þ ðD − 3ÞH2�ðΦG þ ΨGÞ þ ðD − 2ÞH½Φ0G þ ðD − 2ÞΨ0G�

¼ a2
ℏ
M2

P

�
Pþ 1

D − 1
½ðeþ PÞuiui�com

�
; ð120Þ

ΔXGkk

D − 1
δij −Gij

¼
�

Δ
D − 1

δij − ∂i∂j

�
½ΦG − ðD − 3ÞΨG�

¼ −
ℏ
M2

P

�½ðeþ PÞukuk�com
D − 1

δij − ½ðeþ PÞuiuj�com
�
:

ð121Þ

In particular, the last equation shows that the gravitational
slip is sourced by terms nonlinear in the fluid velocities
and should be taken into account for higher-order correc-
tions. We also remind the reader that the spatial Einstein
equations with neglected gravitons can be obtained from
the temporal equations via the Bianchi identity and the

energy-momentum conservation. We combine this set of
four redundant Einstein equations into two independent
ones that express the gravitational potentials in terms of the
hydrodynamic fields. For the Hubble rate we find

1

2
ðD − 1ÞðD − 2ÞH2

¼ a2
ℏ
M2

P
heþ δij½ðeþ PÞuiuj�comiΦG;ΨG

≈ a2
ℏ
M2

P
hρiΦG;ΨG

; ð122Þ

where we remark that the expectation value here is taken
with respect to the stochastic variables ΦG and ΨG that are
taken to be Gaussian. Together with the approximated
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dynamical matter equations we recover the usual behavior
of the scalar factor of the cold dark matter scenario. The
gravitational potentials themselves are determined by

ΔX½ΔXΨG − ðD − 1ÞðD − 2ÞH2ΨG�

¼ a2

D − 2

ℏ
M2

P
½ΔXeþ δijΔX½ðeþ PÞuiuj�com

þHðD − 1Þ ∂
∂Xi ½ðeþ PÞuiu0�com�; ð123Þ

Δ2
X½ΦG − ðD − 3ÞΨG�

¼ a2
ℏ
M2

P

�
δij

ΔX

D − 2
½ðeþ PÞuiuj�com

−
D − 1

D − 2

∂2

∂Xi∂Xj ½ðeþ PÞuiuj�com
�
: ð124Þ

One has to be aware that the hydrodynamic fields, if
again expressed in terms of two-point functions, still
contain the gravitational potentials but only with spatial
derivatives. These terms can however be neglected for a
leading-order approximation in the large mass limit. We
clearly see that the gravitational fields enter our calculation

as nondynamical constraint fields, which was of course
expected. Again, using our approximation we see that we
recover the Poisson equation on subhorizon scales

ΔXΨG ≈
a2

D − 2

ℏ
M2

P
½ρ − hρiΦG;ΨG

�: ð125Þ

We also see that the gravitational slip is of higher order.

C. Continuity and Euler equation
for real scalar field fluid

In this section we want to derive nonlinear equations
for the real scalar field fluid based on our two-point
function approach. These equations are identical to local
energy and momentum conservation and can be derived in
a much more general setting as we show it in Appendix C.
However, as a consistency check, we want to explicitly use
the dynamical equations for the two-point functions of the
first part of the paper. The computation may be found in
Appendix D. We obtain two differential equations for
composite operators that are exact up to the linearization
in the gravitational potentials and that correspond to the
Euler and continuity equation

∂η½½ðeþ PÞu0u0�com þ P� þ ½1 −ΦG þ ðD − 1ÞΨG�∂k½½1þΦG − ðD − 1ÞΨG�½ðeþ PÞuku0�com�
þ ðD − 1Þ½H − Ψ0G�½ðeþ PÞu0u0�com − ½H − Ψ0G�½ðeþ PÞukuk�com ¼ 0; ð126Þ

∂η½ðeþ PÞu0ui�com þ ∂k½ðeþ PÞukui�com þ ∂iPþ ½DHþΦ0G − ðD − 1ÞΨ0G�½ðeþ PÞu0ui�com
þ ½∂kΦG − ðD − 1Þ∂kΨG�½ðeþ PÞukui�com − ∂iΦG½ðeþ PÞu0u0�com þ ∂iΨG½ðeþ PÞukuk�com ¼ 0: ð127Þ

We want to see the nonrelativistic limit of these equations.
With the definition of the rest-mass density in (108) which
yields (P ≪ e)

ρ ¼ e − P ≈ eþ P ≈ −½ðeþ PÞu0u0�com − P; ð128Þ

we also need to define the proper fluid velocity

vi ≔ −ρ−1½1þ ΨG þΦG�½ðeþ PÞuiu0�com
× ½1þ ðeþ PÞ−1½ðeþ PÞukuk�com�1=2; ð129Þ

and expand the composite term including spatial velocities
in terms of the stress tensor as we did in (95). We find
approximately

½ðeþ PÞuiuk�com ≈ δij
�
σjk þ ρ · vj · vk þ

ℏ2

4m2a2
∂j∂kρ

�
:

ð130Þ

We now have all ingredients to approximate Eqs. (126)
to (127) as the nonrelativistic continuity equation in an
FLRW universe

∂ηρþ ðD − 1ÞHρþ ∂i½ρ · vi� ≈ 0; ð131Þ

and generalized Euler equation

∂η½ρ · vi� þDH½ρ · vi� þ ρ∂iΦG

þ ∂k

�
δijδkmσjm þ ρ · vi · vk

−
ℏ2

4m2a2
½δikðD − 2ÞH∂ηρþ δik∂2

ηρ�
�
≈ 0: ð132Þ

The higher time derivatives are the only terms remaining
from the apparent pressure P. We remark that Eq. (132)
generalizes the usual form of the classical nonlinear scalar
field dark matter equations as stated, for example, in [3]
or [4] by first, a stress tensor that can be specified in
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accordance with inflationary predictions at initial times and
which is not only given in terms of a quantum pressure9

and second, a fluid velocity which generically allows for
nonvanishing vorticity as was pointed out in Sec. IVA. As
we pointed out earlier, the perfect fluid description is a
suitable one at early times for linear evolution. However,
nonlinear evolution generates nonvanishing stresses and
vorticity although they are negligibly small initially. Our
model is capable of capturing these contributions that get
more and more important at late times, i.e. in the nonlinear
regime.

V. INITIAL CONDITIONS

We derived the correspondence between the approxi-
mated dynamics of the scalar field phase-space distribution
fϕ and a classical one-particle phase-space distribution
in the cold dark matter scenario. Before exploiting this
correspondence in a more detailed analysis, one would
have to specify initial conditions as well. A typical
assumption within the nonrelativistic regime is that only
the first two moments of the phase distribution are present
initially, although higher moments will be generated at late
times in the nonlinear regime

finicl ðXk; piÞ ≈
ρinicl ðXkÞ

m
γ1=2ðXkÞδD−1ðpi − δijmaini

× ½1 −Ψini
G ðXkÞ�½vinicl �jðXkÞÞ; ð133Þ

such that the initial physical rest-mass density is given by

ρinicl ðXkÞ ≈mγ−1=2ini ðXkÞ
Z

dD−1pfinicl ðXk; plÞ; ð134Þ

whereas the initial physical momentum density equals

ρinicl ½vinicl �iðXkÞ ≈ δija−1ini ½1þ Ψini
G ðXkÞ�γ−1=2ini ðXkÞ

×
Z

dD−1ppjfinicl ðXk; plÞ: ð135Þ

Higher-order cumulants and thus the stress tensor are
absent initially. We transfer this setting to the scalar
field phase-space density and make use of the large
mass approximation used in the cold dark matter kinetic
equation (80),

finiϕ ðXk; piÞ ≈ ρiniðXkÞ γ
1=2
ini ðXkÞ
m

δD−1

×

�
pi −m

½ðeþ PÞu0ui�inicomðXkÞ
ρiniðXkÞ

�
: ð136Þ

We rewrote the initial phase-space density such that we can
relate it easier to the gravitational potentials and the scale
factor, i.e. the metric constraint fields that contain initially
the information from previous regimes in the cosmological
evolution due to their relation to other matter that were
dominant in those. Using the Einstein equations from
Sec. IV B, we have

finiϕ ðXk; piÞ

≈
D − 2

ma2ini

M2
P

ℏ
γ1=2ini ðXkÞ

�
D − 1

2
H2

ini þ ΔXΨini
G ðXkÞ

�

× δD−1
�
pi −maini

2

D − 1

∂iΦini
G ðXkÞ
Hini

�
; ð137Þ

where we are sticking to the typical setup in which the
gravitational potentials are initially constant and the
decaying mode is neglected. The gravitational slip is
initially also equal to zero within cosmological perturbation
theory; however, we keep it here to illustrate that the
potentialΨG is sourced by the density perturbation whereas
the potentialΦG is to source to leading order by the velocity
perturbation. We split (137) into even and odd parts in order
to be able to write down initial conditions for the scalar
field two-point functions. We find

Fini
00ðXk; plÞ

≈ ℏ
D − 2

2

M2
P

m2a2ini

�
D − 1

2
H2

ini þ ΔXΨini
G ðXkÞ

�

×
Z

dD−1re−
i
ℏpiri cos

�
2

D − 1

maini
ℏ

ri∂iΦini
G ðXkÞ

Hini

�
ð138Þ

and

Fini
− ðXk; plÞ

≈ imγ1=2ini ðXkÞD − 2

2

M2
P

m2a2ini

�
D − 1

2
H2

ini þ ΔXΨini
G ðXkÞ

�

×
Z

dD−1re−
i
ℏpiri sin

�
2

D − 1

maini
ℏ

ri∂iΦini
G ðXkÞ

Hini

�
:

ð139Þ

Carrying out the linearization in the gravitational potentials,
these expressions reduce to

Fini
00ðXk; plÞ ≈ ℏ

D − 2

2

M2
P

m2a2ini

�
D − 1

2
H2

ini þ ΔXΨini
G ðXkÞ

�
× ð2πℏÞD−1δD−1ðplÞ; ð140Þ

9The quantum pressure term for a pure one-point function
approach may be recovered from the stress σij.
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Fini
− ðXk; plÞ ≈ −maD−1

ini
D − 2

2

HiniM2
P

maini

∂
∂Xi

×Φini
G ðXkÞð2πℏÞD−1 ∂

∂pi
δD−1ðplÞ: ð141Þ

We perform a Wigner transformation to obtain the corre-
lators in coordinate space

Fini
00ðxk; ylÞ ≈

D − 2

2

M2
P

ℏ
ℏ2

m2a2ini

×

�
D − 1

2
H2

ini þ ½ΔΨini
G �

�ðxþ yÞk
2

��
;

ð142Þ

Fini
− ðxk; ylÞ ≈ iaD−2

ini Hini
D − 2

2

M2
P

ℏ

× ðx − yÞi½∂iΦini
G �

�ðxþ yÞk
2

�
: ð143Þ

As we found out earlier, we can express the remaining
two-point functions Fþ and F11 in terms of F00 and F−
[see (36) to (37)],

Finiþ ðxk; ylÞ ≈ −aD−2
ini Hini

D − 2

4

M2
P

ℏ
ℏ2

m2a2ini

�ðD − 1Þ2
2

H2
ini

þ ½ðD − 1ÞΔΨini
G þ ΔΦini

G �
�ðxþ yÞk

2

��
;

ð144Þ

Fini
11ðxk; ylÞ ≈

D − 2

2
a2D−4
ini

M2
P

ℏ

�
D − 1

2
H2

ini

þ ½ΔΨini
G �

�ðxþ yÞk
2

��
: ð145Þ

We have now specified all ingredients of a Gaussian initial
density matrix for the real scalar field theory we started
with in the beginning. Note that this is a very choice that
maps on an initially perfect fluid. We could as well have
taken into account higher cumulants in momentum space.

VI. CONCLUSION

In this work we developed a formalism for the dynamics
of dark matter in which we started with a tree-level
relativistic action for a real scalar field and obtained an
effective action description that includes leading-order
interactions mediated by gravity. Our formalism is relativ-
istic, in that it allows for a systematic inclusion of both
relativistic matter field effects as well as relativistic
gravitational effects. The nonrelativistic limit of our
dynamical equations could be obtained from a second

quantized scalar field formalism akin to the one used in
condensed matter literature. However, since we are, in
particular, interested in capturing relativistic corrections (that
can be important in the gravitational sector when one is
interested in the scales comparable to the Hubble scale and in
the matter sector e.g. when the scalar field is ultralight),
using such a formalism would restrict its validity too much.
Furthermore, we identify a phase-space distribution fϕ

based on four on-shell, equal-time real scalar field stat-
istical two-point functions (72). The statistical two-
point functions obey a system of first-order differential
equations that closes because we first neglected manifest
self-interactions of the matter field and the dynamical
gravitational fields and second, did not integrate out the
gravitational constraint fields. In the language of Feynman
diagrams this amounts to approximating loop contributions
with external sources whose evolution is determined by the
semiclassical Einstein equation. The evolution of the phase-
space distribution fϕ is determined by a generalized Vlasov
equation including relativistic corrections, third-order time
derivatives, and corrections in a gradient expansion (73).
Dropping the third-order time derivatives as small correc-
tions reduces the degrees of freedom to those of classical
one-particle phase-space distribution. The statistical two-
point functions of the scalar matter field entering the
definition of fϕ are evaluated with respect to an initial
density matrix and thus have generically reducible and
connected pieces; in other words they contain a part given
by one-point functions or classical fields. Focusing on the
connected piece of the statistical matter two-point function
makes the major distinction from previous approaches of
modeling real scalar field fluids that focused on one-point
functions. The reason is that it allows for generic initial
conditions in two arguments without coarse graining, either
in position space or in Wigner space which then translates
into a hierarchy of nonrelated moments in momentum
space and, in particular, enables us to model a fluid that
generically can include vorticity and anisotropy (95). At the
level of hydrodynamics we realized this by facing what
we called a composite term that, written as fluid quantities,
reduces into products of velocities and an irreducible piece
(87) comprising a stress tensor. We derived nonlinear
imperfect hydrodynamic equations (131) and (132) from
the integrated system of statistical matter two-point func-
tions that are exact up the linearized scalar metric with
which we worked.
We note that using statistical two-point functions from

the beginning allows us to treat gravity on a semiclassical
level where we introduced linearized stochastic gravita-
tional potentials that couple to the statistical two-point
functions and thereby make the phase-space distribution fϕ
stochastic. This is what we call the hybrid approach and it
bridges the gap to cosmological perturbation theory since
we now can calculate in a second step two-point function
with respect to the gravitational potentials. The Einstein
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equations relating them were derived in Sec. IV B. We also
provided initial conditions for the statistical matter two-
point functions and thus provided all ingredients to treat
this problem with nonequilibrium quantum field theory
techniques like the Schwinger-Keldysh formalism which
we intend to do in the future.
We once more remark that—to model dark matter on

nonlinear scales at late times—it is necessary to go beyond
the perfect fluid approximation. The perfect fluid descrip-
tion is valid only in the linear regime which is reflected in
the initial conditions and breaks down on scales k > knl ∼
0.3 Mpc−1 primarily due to shell crossing and generation of
other types of perturbations that in the nonlinear regime get
dynamically generated. These perturbations include gravi-
tational slip, vector and tensor metric perturbations, as well
as vorticity and anisotropic stresses at the matter side.
Except for vector and tensor metric perturbations, all of
these can be consistently treated in our formalism, which
models dark matter by utilizing statistical (Hadamard) two-
point functions. In future work we intend to go beyond this
hybrid approach, including a full nonlinear treatment of
gravity that is not restricted to the Newtonian gauge.
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APPENDIX A: WIGNER TRANSFORMATION
OF TWO-POINT FUNCTION DYNAMICS

In this appendix we drop the ubiquitous η dependence to
save some space. We define the following operator:

½fðXi; piÞ� ∂X
 	

· ∂p
	!½gðXi; piÞ�

≔
� ∂f
∂Xk

�
ðXi; piÞ

� ∂g
∂pk

�
ðXi; piÞ: ðA1Þ

By using partial integration, one can show that the
following relation holds up to boundary terms:Z

dD−1ðx − ~xÞe−ipiðxi−~xiÞ
Z

dD−1zAðxi; ziÞBðzi; ~xiÞ

¼ AðXi; piÞeiℏ2ð∂⃖X ·∂⃗p−∂⃖p·∂⃗XÞBðXi; piÞ þ boundary terms:

ðA2Þ

Using the definition

p2 ≔ δijpipj ðA3Þ

we rewrite Eqs. (27)–(30) in Wigner space in the follow-
ing way:

aD−2F000ðXi; piÞ ¼ ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗pF10ðXi; piÞ
þ F01ðXi; piÞe−iℏ2∂⃖p·∂⃗X ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�; ðA4Þ

F010ðXi; piÞ ¼
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗p
��

1

2

∂
∂Xk þ i

pk

ℏ

�
½aD−2F00�ðXi; piÞ

�

þ ½1þΦGðXiÞ − ðD − 3ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗p
��

ΔX

4
þ i

p
ℏ
· ∂X −

p2

ℏ2

�
½aD−2F00�ðXi; piÞ

�

−
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗p ½aD−2F00�ðXi; piÞ

þ ½a−ðD−2ÞF11�ðXi; piÞe−iℏ2∂⃖p·∂⃗X ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�; ðA5Þ

F001ðXi; piÞ ¼
��

1

2

∂
∂Xk − i

pk

ℏ

�
½aD−2F00�ðXi; piÞ

�
· e−i

ℏ
2
∂⃖p·∂⃗X ∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

þ
��

ΔX

4
− i

p
ℏ
· ∂X −

p2

ℏ2

�
½aD−2F00�ðXi; piÞ

�
e−i

ℏ
2
∂⃖p·∂⃗Xf1þΦGðXiÞ − ðD − 3ÞΨGðXiÞg

−
m2

ℏ2
a2½aD−2F00�ðXi; piÞe−iℏ2∂⃖p·∂⃗X ½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ�

þ ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗p ½a−ðD−2ÞF11�ðXi; piÞ: ðA6Þ
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a−ðD−2ÞF011ðXi; piÞ ¼ þ
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� · eiℏ2∂⃖X ·∂⃗p
��

1

2

∂
∂Xk þ i

pk

ℏ

�
F01ðXi; piÞ

�

þ f1þΦGðXiÞ − ðD − 3ÞΨGðXiÞgeiℏ2∂⃖X ·∂⃗p
��

ΔX

4
þ i

p
ℏ
· ∂X −

p2

ℏ2

�
F01ðXi; piÞ

�

−
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ�eiℏ2∂⃖X ·∂⃗pF01ðXi; piÞ

þ
��

1

2

∂
∂Xk − i

pk

ℏ

�
F10ðXi; piÞ

�
· e−i

ℏ
2
∂⃖p·∂⃗X ∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

þ
��

ΔX

4
− i

p
ℏ
· ∂X −

p2

ℏ2

�
F10ðXi; piÞ

�
e−i

ℏ
2
∂⃖p·∂⃗Xf1þΦGðXiÞ − ðD − 3ÞΨGðXiÞg

−
m2

ℏ2
a2F10ðXi; piÞe−iℏ2∂⃖p·∂⃗X ½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ�: ðA7Þ

By using the definitions (34) and (35), we get the following system of equations:

aD−2F000ðXi; piÞ ¼ 2½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

�
FþðXi; piÞ

þ 2½ΦGðXiÞ þ ðD − 1ÞΨGðXiÞ� sin
�
ℏ
2
∂⃖X · ∂⃗p

�
F−ðXi; piÞ; ðA8Þ

F0þðXi; piÞ ¼
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

�
1

2

∂
∂Xk ½aD−2F00�ðXi; piÞ

þ ½1þΦGðXiÞ − ðD − 3ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

���
ΔX

4
−
p2

ℏ2

�
½aD−2F00�ðXi; piÞ

�

− ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� sin
�
ℏ
2
∂⃖X · ∂⃗p

��
p
ℏ
· ∂X½aD−2F00�ðXi; piÞ

�

−
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� sin
�
ℏ
2
∂⃖X · ∂⃗p

�
·
�
pk

ℏ
½aD−2F00�ðXi; piÞ

�

−
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ� cos

�
ℏ
2
∂⃖X · ∂⃗p

�
½aD−2F00�ðXi; piÞ

þ ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

�
½a−ðD−2ÞF11�ðXi; piÞ: ðA9Þ

F0−ðXi; piÞ ¼ −
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� sin
�
ℏ
2
∂⃖X · ∂⃗p

�
1

2

∂
∂Xk ½aD−2F00�ðXi; piÞ

− ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� sin
�
ℏ
2
∂⃖X · ∂⃗p

���
ΔX

4
−
p2

ℏ2

�
½aD−2F00�ðXi; piÞ

�

− ½1þΦGðXiÞ − ðD − 3ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

��
p
ℏ
· ∂X½aD−2F00�ðXi; piÞ

�

−
∂

∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� cos
�
ℏ
2
∂⃖X · ∂⃗p

�
·

�
pk

ℏ
½aD−2F00�ðXi; piÞ

�

þm2

ℏ2
a2½ΦGðXiÞ − ðD − 1ÞΨGðXiÞ� sin

�
ℏ
2
∂⃖X · ∂⃗p

�
½aD−2F00�ðXi; piÞ þ ½ΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�

× sin

�
ℏ
2
∂⃖X · ∂⃗p

�
½a−ðD−2ÞF11�ðXi; piÞ: ðA10Þ
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a−ðD−2ÞF011ðXi; piÞ ¼ −2
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ� cos

�
ℏ
2
∂⃖X · ∂⃗p

�
FþðXi; piÞ

þ 2
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ� sin

�
ℏ
2
∂⃖X · ∂⃗p

�
F−ðXi; piÞ

þ 2f1þΦGðXiÞ − ðD − 3ÞΨGðXiÞg cos
�
ℏ
2
∂⃖X · ∂⃗p

���
ΔX

4
−
p2

ℏ2

�
FþðXi; piÞ

�

− 2fΦGðXiÞ − ðD − 3ÞΨGðXiÞg sin
�
ℏ
2
∂⃖X · ∂⃗p

���
ΔX

4
−
p2

ℏ2

�
F−ðXi; piÞ

�

− 2fΦGðXiÞ − ðD − 3ÞΨGðXiÞg sin
�
ℏ
2
∂⃖X · ∂⃗p

��
p
ℏ
· ∂XFþðXi; piÞ

�

− 2f1þΦGðXiÞ − ðD − 3ÞΨGðXiÞg cos
�
ℏ
2
∂⃖X · ∂⃗p

��
p
ℏ
· ∂XF−ðXi; piÞ

�

þ
� ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

�
cos

�
ℏ
2
∂⃖X · ∂⃗p

�
·

� ∂
∂Xk FþðXi; piÞ

�

−
� ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

�
sin

�
ℏ
2
∂⃖X · ∂⃗p

�
·

� ∂
∂Xk F−ðXi; piÞ

�

− 2

� ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

�
sin

�
ℏ
2
∂⃖X · ∂⃗p

�
·

�
pk

ℏ
FþðXi; piÞ

�

− 2

� ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�

�
cos

�
ℏ
2
∂⃖X · ∂⃗p

�
·

�
pk

ℏ
F−ðXi; piÞ

�
: ðA11Þ

For later discussion, we remark the following important equal time properties:

F00ðXi; piÞ ¼
1

2

Z
dD−1re−

i
ℏpiri


�
ϕ̂

�
Xi þ ri

2

�
; ϕ̂

�
Xi −

ri

2

���
¼ F00ðXi;−piÞ; ðA12Þ

F−ðXi; piÞ ¼
i
4

Z
dD−1re−

i
ℏpiri

�
�
Π̂
�
Xi þ ri

2

�
; ϕ̂

�
Xi −

ri

2

���
−

�

ϕ̂

�
Xi þ ri

2

�
; Π̂

�
Xi −

ri

2

����
¼ −F−ðXi;−piÞ; ðA13Þ

Z
dD−1p
ð2πℏÞD−1 ½pk1…pk2nþ1 �F00ðXi; piÞ ¼ 0; ðA14Þ

Z
dD−1p
ð2πℏÞD−1 ½pk1…pk2n �F−ðXi; piÞ ¼ 0: ðA15Þ

These equations tell us that F00 is even in pi and that F− is odd in pi. After an appropriate rescaling that also accounts for
the right dimensions, these two quantities will play the role of even and odd phase-space densities.

1. Phase-space dynamics including ε2ℏ and ε2ℏ · ε
2
g corrections

In this section we want to manipulate the unintegrated dynamical equations for these two-point functions to see
whether we can reproduce equations that mimic the Vlasov equation. First, write down the phase-space dynamics
perturbatively including ε2ℏ that correspond to the next order in the gradient expansion we described in Sec. II B. We
also include for illustration ε2ℏ · ε

2
g corrections that result from multiplying terms of the gradient expansion with the

gravitational potentials,

PAVEL FRIEDRICH and TOMISLAV PROKOPEC PHYSICAL REVIEW D 96, 083504 (2017)

083504-22



aD−2F000 ¼ 2½1þΦG þ ðD − 1ÞΨG�Fþ −
ℏ2

4

∂2

∂Xi∂Xj ½ΦG þ ðD − 1ÞΨG�
∂2

∂pi∂pj
Fþ

þ ℏ
∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi

F− − ℏ3
1

24

∂3

∂Xi∂Xj∂Xk ½ΦG þ ðD − 1ÞΨG�
∂3

∂pi∂pj∂pk
F−; ðA16Þ

F0þ ¼
1

2

∂
∂Xk ½ΦG − ðD − 3ÞΨG�

∂
∂Xk ½aD−2F00� þ ½1þΦG − ðD − 3ÞΨG�

�
ΔX

4
−
p2

ℏ2

�
½aD−2F00�

þ 1

8

∂2

∂Xi∂Xj ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂pj
½p2½aD−2F00�� −

1

2

∂
∂Xk ½ΦG − ðD − 3ÞΨG�

∂
∂pk

�
pi ∂

∂Xi ½aD−2F00�
�

−
1

2

∂2

∂Xk∂Xi ½ΦG − ðD − 3ÞΨG�
∂
∂pi
½pk½aD−2F00�� −

m2

ℏ2
a2½1þΦG − ðD − 1ÞΨG�½aD−2F00�

þm2a2

8

∂2

∂Xi∂Xj ½ΦG − ðD − 1ÞΨG�
∂2

∂pi∂pj
½aD−2F00� þ ½1þΦG þ ðD − 1ÞΨG�½a−ðD−2ÞF11�

−
ℏ2

8

∂2

∂Xi∂Xj ½ΦG þ ðD − 1ÞΨG�
∂2

∂pi∂pj
½a−ðD−2ÞF11�; ðA17Þ

F0− ¼ −
ℏ
4

∂2

∂Xk∂Xi ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂Xk ½aD−2F00� −
ℏ
2

∂
∂Xk ½ΦG − ðD − 3ÞΨG�

∂
∂pk

��
ΔX

4
−
p2

ℏ2

�
½aD−2F00�

�

−
ℏ
48

∂3

∂Xk∂Xi∂Xj ½ΦG − ðD − 3ÞΨG�
∂3

∂pk∂pi∂pj
½p2½aD−2F00�� − ½1þΦG − ðD − 3ÞΨG�

pk

ℏ
∂

∂Xk ½aD−2F00�

þ ℏ
8

∂2

∂Xi∂Xj ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂pj

�
pk

∂
∂Xk ½aD−2F00�

�
þ 1

2

m2

ℏ
a2

∂
∂Xi ½ΦG − ðD − 1ÞΨG�

∂
∂pi
½aD−2F00�

−m2a2ℏ
1

48

∂3

∂Xi∂Xj∂Xk ½ΦG − ðD − 1ÞΨG�
∂3

∂pi∂pj∂pk
½aD−2F00� þ ℏ

1

2

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi
½a−ðD−2ÞF11�

− ℏ3
1

48

∂3

∂Xi∂Xj∂Xk ½ΦG þ ðD − 1ÞΨG�
∂3

∂pi∂pj∂pk
½a−ðD−2ÞF11�; ðA18Þ

a−ðD−2ÞF011 ¼ −2
m2

ℏ2
a2½1þΦG − ðD − 1ÞΨG�Fþ þ

1

4
m2a2

∂2

∂Xi∂Xj ½ΦG − ðD − 1ÞΨG�
∂2

∂pi∂pj
Fþ

þ 2½1þΦG − ðD − 3ÞΨG�
�
ΔX

4
−
p2

ℏ2

�
Fþ þ

1

4

∂2

∂Xi∂Xj ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂pj
½p2Fþ�

− ℏ
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂pk

��
ΔX

4
−
p2

ℏ2

�
F−

�
−

ℏ
24

∂3

∂Xi∂Xj∂Xk ½ΦG − ðD − 3ÞΨG�
∂3

∂pi∂pj∂pk
½p2F−�

−
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂pk
½p · ∂XFþ� − 2½1þΦG − ðD − 3ÞΨG�

p
ℏ
· ∂XF−

þ ℏ
4

∂2

∂Xi∂Xj ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂pj
½p · ∂XF−� þ

∂
∂Xk ½ΦG − ðD − 3ÞΨG�

∂
∂Xk Fþ

−
ℏ
2

∂2

∂Xk∂Xi ½ΦG − ðD − 3ÞΨG�
∂2

∂Xk∂pi
F− −

∂2

∂Xk∂Xi ½ΦG − ðD − 3ÞΨG�
∂
∂pi
½pkFþ�

− 2
p
ℏ
· ∂X½ΦG − ðD − 3ÞΨG�F− þ

ℏ
4

∂3

∂Xi∂Xj∂Xk ½ΦG − ðD − 3ÞΨG�
∂2

∂pi∂pj
½pkF−�

þm2a2

ℏ
∂
∂Xi ½ΦG − ðD − 1ÞΨG�

∂
∂pi

F− − ℏm2a2
1

24

∂3

∂Xi∂Xj∂Xk ½ΦG − ðD − 1ÞΨG�
∂3

∂pi∂pj∂pk
F−:

ðA19Þ
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2. Phase-space dynamics including ε2ℏ but dropping ε2ℏ · ε
2
g corrections

Let us further drop the ε2ℏ · ε
2
g corrections, which is at least naively consistent with our linearization in gravity, i.e.

consistent with not keeping ε4g terms as we did from the very beginning of this paper. We do not expect the corrections ε2ℏ
from the gradient expansion to become important unless we have a very light scalar field (m ≈ 10−22 eV) as pointed out in
Sec. II B which is considered an extreme case. Thus, for typical masses at scales≳eV, the following equations are perfectly
accurate and we will even drop the ε2ℏ corrections when discussing them further in the main text:

aD−2F000 ¼ 2½1þΦG þ ðD − 1ÞΨG�Fþ þ ℏ
∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi

F−; ðA20Þ

F0þ ¼
ΔX

4
½aD−2F00� −

p2

ℏ2
½1þΦG − ðD − 3ÞΨG�½aD−2F00� −

m2

ℏ2
a2½1þΦG − ðD − 1ÞΨG�½aD−2F00�

þ ½1þΦG þ ðD − 1ÞΨG�½a−ðD−2ÞF11�; ðA21Þ

F0− ¼
1

2ℏ
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂pk
½p2½aD−2F00�� −

p
ℏ
· ∂X½ΦG − ðD − 3ÞΨG�½aD−2F00�

− ½1þΦG − ðD − 3ÞΨG�
pk

ℏ
∂

∂Xk ½aD−2F00� þ
1

2

m2

ℏ
a2

∂
∂Xi ½ΦG − ðD − 1ÞΨG�

∂
∂pi
½aD−2F00�

þ ℏ
1

2

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�

∂
∂pi
½a−ðD−2ÞF11�; ðA22Þ

a−ðD−2ÞF011 ¼ −2
m2

ℏ2
a2½1þΦG − ðD − 1ÞΨG�Fþ þ

ΔX

2
Fþ − 2

p2

ℏ2
½1þΦG − ðD − 3ÞΨG�Fþ

þ 1

ℏ
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂pk
½p2F−� − 2½1þΦG − ðD − 3ÞΨG�

p
ℏ
· ∂XF−

− 2
p
ℏ
· ∂X½ΦG − ðD − 3ÞΨG�F− þ

m2a2

ℏ
∂
∂Xi ½ΦG − ðD − 1ÞΨG�

∂
∂pi

F−: ðA23Þ

APPENDIX B: EINSTEIN EQUATIONS
IN LONGITUDINAL GAUGE

WITH SCALAR PERTURBATIONS

The dynamical equations of the previous section are
supplemented by the Einstein equations. Since we
neglected gravitons with the choice of our metric, the
Einstein equations are constraint equations that will deter-
mine the gravitational potentials in terms of two-point
functions of the scalar field and thereby induce nonlinear
interactions. We write down the metric in this gauge

g00ðη; xiÞ ¼ −a2ðηÞ½1þ 2ΦGðη; xiÞ�;
gijðη; xiÞ ¼ a2ðηÞδij½1 − 2ΨGðη; xiÞ�; ðB1Þ

g00ðη; xiÞ ¼ −a−2ðηÞ½1 − 2ΦGðη; xiÞ�;
gijðη; xiÞ ¼ a−2ðηÞδij½1þ 2ΨGðη; xiÞ�; ðB2Þ

ffiffiffiffiffiffi
−g
p ðη; xiÞ ¼ aDðηÞ½1þΦGðη; xiÞ − ðD − 1ÞΨGðη; xiÞ�:

ðB3Þ
Let us collect the linearized connection coefficients in
longitudinal gauge

Γ0
00 ¼ HþΦ0G; ðB4Þ

Γ0
0i ¼ ∂iΦG; ðB5Þ

Γi
00 ¼ δij∂jΦG; ðB6Þ

Γ0
ij ¼ Hδij − ½2HðΦG þΨGÞ þ Ψ0G�δij; ðB7Þ

Γi
j0 ¼ Hδij −Ψ0Gδij; ðB8Þ

Γi
jk ¼ −∂jΨGδ

i
k − ∂kΨGδ

i
j þ ∂lΨGδ

ilδjk: ðB9Þ

We have the temporal Ricci tensor components

R00 ¼ −ðD − 1ÞH0 þ ΔΦG þ ðD − 1ÞΨ00G
þ ðD − 1ÞH½Φ0G þ Ψ0G�; ðB10Þ

R0i ¼ðD − 2Þ∂iΨ0G þ ðD − 2ÞH∂iΦG; ðB11Þ

as well as the purely spatial part
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Rij ¼ ½H0 þ ðD − 2ÞH2�δij þ ðD − 3Þ∂i∂jΨG − ∂i∂jΦG

þ ΔΨGδij − ½Ψ00G þ 2ðD − 2ÞH2ðΦG þ ΨGÞ
þ 2H0ðΦG þ ΨGÞ þHΦ0G þ ð2D − 3ÞHΨ0G�δij:

ðB12Þ

This leaves us with

a2R ¼ ðD − 1Þ½2H0 þ ðD − 2ÞH2� − 2ΔΦG

þ ð2D − 4ÞΔΨG − 2ðD − 1ÞΨ00G
− 2ðD − 1ÞΦG½2H0 þ ðD − 2ÞH2�
− 2ðD − 1ÞHΦ0G − 2ðD − 1Þ2HΨ0G: ðB13Þ

The 00 and 0i components of the linearized Einstein tensor
then read

G00 ¼
1

2
ðD − 1ÞðD − 2ÞH2 þ ðD − 2ÞΔΨG

− ðD − 1ÞðD − 2ÞHΨ0G; ðB14Þ

G0i ¼ðD − 2Þ∂iΨ0G þ ðD − 2ÞH∂iΦG: ðB15Þ

The ij components of the linearized Einstein tensor read

Gij ¼ −
�
ðD − 2ÞH0 þ 1

2
ðD − 2ÞðD − 3ÞH2

�
δij

þ ðD − 2ÞΨ00Gδij þ Δ½ΦG − ðD − 3ÞΨG�δij
− ∂i∂j½ΦG − ðD − 3ÞΨG�
þ ½ðD − 2Þ½2H0 þ ðD − 3ÞH2�ðΦG þ ΨGÞ
þ ðD − 2ÞH½Φ0G þ ðD − 2ÞΨ0G��δij: ðB16Þ

The energy-momentum tensor operator of the scalar field
theory is given by

T̂μν ¼ ∂μϕ̂∂νϕ̂ −
gμν
2

�
gαβ∂αϕ̂∂βϕ̂þ

m2

ℏ2
ϕ̂2

�
: ðB17Þ

The composite operator (B17) needs to be renormalized by
introducing on the gravity side higher-order geometrical
counterterms (R2, square of the Weyl tensor, Gauss-Bonnet
term) as well as lower order geometrical counterterms
containing a bare Newton constant and a bare cosmological
constant such that after substraction of UV divergencies we
are left with the observable values of the renormalized
Newton constant and the renormalized cosmological con-
stant [44]. Contributions of the renormalized higher-order
geometrical terms are completely irrelevant for the studies
of large scale structures. Regularizing the two-point func-
tions contained in the energy-momentum tensor (B17) is
related to the conditions we spelled out in (12). In order to
regularize the two-point functions we will split them into

infrared and ultraviolet parts by introducing a cutoff in such
a way that the conditions (12) can be satisfied up to that
cutoff. However, for the scope of this paper we will not
have to worry more about renormalization issues.
The semiclassical Einstein equation relates the gravita-

tional potentials to two-point functions of the scalar field in
the coincidence limit

Gμν ¼
ℏ
M2

P
Tμν ¼

ℏ
M2

P
hT̂μνi: ðB18Þ

Let us see how this works by looking at the purely temporal
equation. We find (suppressing the time dependence in the
argument)

G00ðXiÞ ¼ 1

2
ðD − 1ÞðD − 2ÞH2 þ ðD − 2ÞΔΨGðXiÞ

− ðD − 1ÞðD − 2ÞHΨ0GðXiÞ ¼ ℏ
M2

P
hT̂00ðXiÞi;

ðB19Þ

where in our scalar field model

T̂00ðXiÞ ¼ ∂0ϕ̂ðXiÞ∂0ϕ̂ðXiÞ − g00
2
½∂0ϕ̂ðXiÞ∂0ϕ̂ðXiÞ

þ ∂kϕ̂ðXiÞ∂kϕ̂ðXiÞ þm2

ℏ2
ϕ̂ðXiÞϕ̂ðXiÞ�;

¼ 1

2
ϕ̂0ðXiÞϕ̂0ðXiÞ þ 1

2
½1þ 2ΦGðXiÞ

þ 2ΨGðXiÞ�∂kϕ̂ðXiÞ∂kϕ̂ðXiÞ

þ a2

2
½1þ 2ΦGðXiÞ�m

2

ℏ2
ϕ̂ðXiÞϕ̂ðXiÞ; ðB20Þ

and thus taking expectation values yields

hT̂00ðXiÞi ¼ 1

2
a−2ðD−2ÞF11ðXiÞ½1þ 2ΦGðXiÞ

þ 2ðD − 1ÞΨGðXiÞ� þ 1

2
½1þ 2ΦGðXiÞ

þ 2ΨGðXiÞ�
��∂2

X

4
− ∂2

r

�
F00ðXi; riÞ

�����
ri¼0

þ 1

2

m2a2

ℏ2
½1þ 2ΦGðXiÞ�F00ðXiÞ;

where

F̄00ðXiÞ ¼ F00ðXi; ri ¼ 0Þ: ðB21Þ

For the 0i equations we get

ðD − 2Þ∂iΨ0G þ ðD − 2ÞH∂iΦG ¼
ℏ
M2

P
hϕ̂0∂iϕ̂i: ðB22Þ
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For the ij components of the energy-momentum tensor we get

T̂ij ¼ ∂iϕ̂∂jϕ̂þ
1

2
½1 − 2ðΦG þ ΨGÞ�ðϕ̂0Þ2δij −

1

2
∂kϕ̂∂kϕ̂δij −

m2a2

2
½1 − 2ΨG�ϕ̂2δij: ðB23Þ

Projecting on the trace-free part we get

�
Δ

D − 1
δij − ∂i∂j

�
½ΦG − ðD − 3ÞΨG� ¼

ℏ
M2

P



∂iϕ̂∂jϕ̂ −

∂kϕ̂∂kϕ̂

D − 1
δij

�
: ðB24Þ

The equation for the trace reads

Gii

D − 1
¼ −ðD − 2ÞH0 − 1

2
ðD − 2ÞðD − 3ÞH2 þ ðD − 2ÞΨ00G þ

D − 2

D − 1
Δ½ΦG − ðD − 3ÞΨG�

þ ðD − 2Þ½2H0 þ ðD − 3ÞH2�ðΦG þΨGÞ þ ðD − 2ÞH½Φ0G þ ðD − 2ÞΨ0G�

¼ ℏ
2M2

P

�
½1 − 2ðΦG þ ΨGÞ�hðϕ̂0Þ2i −

D − 3

D − 1
h∂kϕ̂∂kϕ̂i −m2a2½1 − 2ΨG�hϕ̂2i

�
: ðB25Þ

We rewrite all Einstein equations in terms of the two-point functions F00, Fþ, F−, and F11:

− ðD − 2ÞH0 − 1

2
ðD − 2ÞðD − 3ÞH2 þ ðD − 2ÞΨ00G þ

D − 2

D − 1
Δ½ΦG − ðD − 3ÞΨG�

þ ðD − 2Þ½2H0 þ ðD − 3ÞH2�ðΦG þ ΨGÞ þ ðD − 2ÞH½Φ0G þ ðD − 2ÞΨ0G�

¼ ℏ
2M2

P

�
½1þ 2ðD − 2ÞΨGÞ�½a−2ðD−2ÞF11� −

D − 3

D − 1

��
ΔX

4
− Δr

�
F00

�
r¼0

−
m2a2

ℏ2
½1 − 2ΨG�F00

�
; ðB26Þ

1

2
ðD − 1ÞðD − 2ÞH2 þ ðD − 2ÞΔΨG − ðD − 1ÞðD − 2ÞHΨ0G

¼ ℏ
2M2

P

(
a−2ðD−2ÞF11½1þ 2ΦG þ 2ðD − 1ÞΨG� þ ½1þ 2ΦGðXÞ þ 2ΨGðXÞ�

��
ΔX

4
− Δr

�
F00

�
r¼0

þ a2
m2

ℏ2
½1þ 2ΦG�F00

)
; ðB27Þ

ðD − 2Þ∂XΨ0G þ ðD − 2ÞH∂XΦG ¼
ℏ

2aðD−2ÞM2
P

½1þΦG þ ðD − 1ÞΨG�f∂XFþ þ 2i∂rF−jr¼0g; ðB28Þ

�
ΔX

D − 1
δij − ∂X

i ∂X
j

�
½ΦG − ðD − 3ÞΨG� ¼

ℏ
M2

P

�∂X
i ∂X

j

4
þ 1

2
∂X
i ∂r

j −
1

2
∂X
j ∂r

i − ∂r
i∂r

j −
δij

4ðD − 1ÞΔX þ
δij

D − 1
Δr

�
F00

����
r¼0

:

ðB29Þ

1. Eliminating the two-point functions F+ and F11 from energy-momentum tensor

Let us set

Tμν ≔ hT̂μνi: ðB30Þ

By integrating the dynamical matter equations over the momenta we can rewrite the energy-momentum tensor in such a way
that it only depends on the two-point functions F00 and F−. We first get

aD−2F̄000ðXiÞ ¼ 2½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�F̄þðXiÞ; ðB31Þ
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F0þðXiÞ ¼ ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� 1

2

∂
∂Xk ½aD−2F00�ðXiÞ

þ ½1þΦGðXiÞ − ðD − 3ÞΨGðXiÞ�
Z

dD−1p
ð2πℏÞD−1

��
ΔX

4
−
p2

ℏ2

�
½aD−2F00�ðXi; piÞ

�

−
m2

ℏ2
a2½1þΦGðXiÞ − ðD − 1ÞΨGðXiÞ�½aD−2F00�ðXiÞ þ ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�½a−ðD−2ÞF11�ðXiÞ;

ðB32Þ

and thus

F11ðXiÞ ¼ m2

ℏ2
a2ðD−1Þ½1 − 2ðD − 1ÞΨGðXiÞ�F00ðXiÞ þ 1

2
aD−2½1 −ΦGðXiÞ − ðD − 1ÞΨGðXiÞ�½aD−2½1 −ΦGðXiÞ

− ðD − 1ÞΨGðXiÞ�F000ðXiÞ�0 − a2ðD−2Þ ∂
∂Xk ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ� 1

2

∂
∂Xk F00ðXiÞ

− a2ðD−2Þ½1 − 2ðD − 2ÞΨGðXiÞ�
Z

dD−1p
ð2πℏÞD−1

��
ΔX

4
−
p2

ℏ2

�
F00ðXi; piÞ

�
: ðB33Þ

We plug this expression into the energy-momentum tensor and get

T00ðXiÞ ¼ m2a2

ℏ2
½1þ 2ΦGðXiÞ�F00ðXiÞ þ a−ðD−2Þ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ�

×

�
aD−2

4
½1 −ΦGðXiÞ − ðD − 1ÞΨGðXiÞ�F000ðXiÞ

�0
−
∂X

4
½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�∂XF00ðXiÞ

þ ½1þ 2ΦGðXiÞ þ 2ΨGðXiÞ�
Z

dD−1p
ð2πℏÞD−1

p2

ℏ2
F00ðXi; piÞ: ðB34Þ

T0iðXiÞ ¼ a−ðD−2Þ½1þΦGðXiÞ þ ðD − 1ÞΨGðXiÞ� ×
� ∂
∂Xi

�
aD−2

4
½1 −ΦGðXiÞ − ðD − 1ÞΨGðXiÞ�F̄000ðXiÞ

�

−
Z

dD−1p
ð2πℏÞD−1

pi

ℏ
F−ðXi; piÞ

�
: ðB35Þ

TiiðXiÞ
D − 1

¼ a−ðD−2Þ½1 − ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ��
�
aD−2

4
½1 −ΦGðXiÞ − ðD − 1ÞΨGðXiÞ�F000ðXiÞ

�0
−
∂X

4
½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�∂XF00ðXiÞ −D − 2

D − 1

ΔX

4
F00ðXiÞ þ 1

D − 1

Z
dD−1p
ð2πℏÞD−1

p2

ℏ2
F00ðXi; piÞ: ðB36Þ

TijðXiÞ − δij
D − 1

TkkðXiÞ ¼
Z

dD−1p
ð2πℏÞD−1

�∂X
i ∂X

j

4
þ pipj

ℏ2
−

δij
D − 1

�
ΔX

4
þ p2

ℏ2

��
F00ðXi; piÞ: ðB37Þ

TijðXiÞ ¼ δijfa−ðD−2Þ½1 − ½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ��
�
aD−2

4
½1 −ΦGðXiÞ − ðD − 1ÞΨGðXiÞ�F000ðXiÞ

�0
−
∂X

4
½ΦGðXiÞ − ðD − 3ÞΨGðXiÞ�∂XF00ðXiÞ − ΔX

4
F00ðXiÞ

�
þ
Z

dD−1p
ð2πℏÞD−1

�∂X
i ∂X

j

4
þ pipj

ℏ2

�
F00ðXi; piÞ:

ðB38Þ

In the equation for the traceless spatial energy-momentum tensor we used the fact that F00 is even in pi to eliminate two
terms. By using the Bianchi identities, one can show that the purely spatial constraint equations follow from the constrained
equations involving time components. We thus have two independent constraint equations that relate the gravitational
potentials ΦG and ΨG to momentum integrals over the two-point functions F00 and F−.
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APPENDIX C: ENERGY-MOMENTUM
CONSERVATION FOR
COMPOSITE FLUIDS

In this section we want to derive nonrelativistic fluid
equations by assuming an energy-momentum tensor in a
composite form that is for example due to taking expect-
ation values of two-point functions. We also assume a
linearized scalar metric in longitudinal gauge. We have

~TNPF
μν ≔ ½ð~eþ ~PÞ ~uμ ~uν�com þ gμν ~P; ðC1Þ

where the composite term is basically a placeholder for
any symmetric two-tensor whose indices can be raised and
lowered with the metric. Thus, the quantity ~P is only an
apparent pressure and the real pressure might get contribu-
tions from the composite term. We use a tilde to make a
distinctionbetween a general case and the real scalar field case
we discuss throughout the paper. The superscript NPF refers
to the idea that although the energy-momentum tensor (C1)
has the apparent form of a perfect fluid, it does not need to be
the energy-momentum tensor of such due to its composite
nature. Since the composite term ought to be a generalization
of the noncomposite perfect fluid term, we impose

½ð~eþ ~PÞ ~uμ ~uμ�com ≕ −ð~eþ ~PÞ; ðC2Þ
which acts also as a definition for the energy ~e. Local energy
conservation then gives

0 ¼ ∇μ½ ~TNPF�μ0 ¼ ∂η½½ð~eþ ~PÞ ~u0 ~u0�com þ ~P�
þ ∂i½ð~eþ ~PÞ ~ui ~u0�com þ Γi

i0½ð~eþ ~PÞ ~u0 ~u0�com
− Γi

k0½ð~eþ ~PÞ ~uk ~ui�com þ Γi
ik½ð~eþ ~PÞ ~uk ~u0�com

− Γi
00½ð~eþ ~PÞ ~u0 ~ui�com: ðC3Þ

We raise and lower indices and commute u0ui,

∂η½½ð~eþ ~PÞ ~u0 ~u0�com þ ~P� þ ∂i½ð~eþ ~PÞ ~ui ~u0�com
þ Γi

i0½ð~eþ ~PÞu0u0�com − Γi
k0½ð~eþ ~PÞ ~uk ~ui�com

þ ½Γi
ik − g00Γi

00gik�½ð~eþ ~PÞ ~uk ~u0�com ¼ 0: ðC4Þ

Next we plug in the perturbed metric in longitudinal gauge
and get

∂η½½ð~eþ ~PÞ ~u0 ~u0�comþ ~P�þ ½1−ΦG

þðD− 1ÞΨG�∂k½½1þΦG− ðD− 1ÞΨG�½ð~eþ ~PÞ ~uk ~u0�com�
þ ðD− 1Þ½H−Ψ0G�½ð~eþ ~PÞ ~u0 ~u0�com
− ½H−Ψ0G�½ð~eþ ~PÞ ~uk ~uk�com ¼ 0: ðC5Þ

To find the nonrelativistic limit of this composite equation we
have to define a quantity that should capture the rest mass in
the nonrelativistic limit

~ρ ≔ ~e − ~P; ðC6Þ

as well as a proper fluid velocity

~vi ≔ −~ρ−1½1þ ΨG þΦG�½ð~eþ ~PÞ ~ui ~u0�com
× ½1þ ð~eþ ~PÞ−1½ð~eþ ~PÞ ~uk ~uk�com�1=2: ðC7Þ

We then have the nonrelativistic continuity equation in an
FLRW universe

½∂η ~ρþ ðD − 1ÞH~ρþ ∂i½~ρ · ~vi��
× ½1þOðΦG;ΨGÞ þOð~v2; ~PÞ� ¼ 0: ðC8Þ

The local momentum conservation reads

0¼∇μ½ ~TNPF�μi ¼ ∂0½ð~eþ ~PÞ ~u0 ~ui�comþ ∂k½ð~eþ ~PÞ ~uk ~ui�com
þ ∂iPþ ½DHþΦ0G − ðD− 1ÞΨ0G�½ð~eþ ~PÞ ~u0 ~ui�com
þ ½∂kΦG − ðD− 1Þ∂kΨG�½ð~eþ ~PÞ ~uk ~ui�com
− ∂iΦG½ð~eþ ~PÞ ~u0 ~u0�comþ ∂iΨG½ð~eþ ~PÞ ~uk ~uk�com:

ðC9Þ
Defining the proper composite velocity term

½ ~vi ~vk�com ≔ ~ρ−1½1þΨG −ΦG�½ð~eþ ~PÞ ~ui ~uk�com; ðC10Þ

we find the Euler equation in an FLRW space-time

0 ¼ ½∂η½~ρ · ~vi� þDH½~ρ · ~vi� þ ∂kð~ρ · ½ ~vi ~vk�comÞ
þ ~ρδij∂jΦG þ δij∂j

~P�½1þOðΦG;ΨGÞ þOð ~v2; ~PÞ�:
ðC11Þ

We can now discuss two options.
Option one is simply given by declaring the composite

term of the energy-momentum tensor (C1) and similarly its
nonrelativistic descendant (C10) to be noncomposite
as it would be the case for a perfect scalar field fluid
based classical field theory including nonlinear terms in the
fluid quantities but keeping gravitational potentials linear.
Equations (C8) and (C11) were for example derived in the
scalar field context by [3,13] for real and complex fields,
respectively.
The second option is of course to take into account the

composite nature of the term in (C10) which happens for a
real scalar field fluid based on nonvanishing connected
two-point functions as we discuss it in Sec. IVA. However,
we stress once more that the above derivation made no
reference to the real scalar field theory and we only
assumed local conservation of a fluid energy-momentum
tensor of the form (C1). We will now give an independent
derivation of the fluid equations (C5) and (C9) in the next
section as a cross-check and will explicitly use the scalar
field matter equations.
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APPENDIX D: CONTINUITY AND EULER
EQUATION FOR REAL SCALAR FIELD FLUID

1. Local energy conservation

Let us start with the local energy conservation by
integrating the dynamical equations (A8) and (A9) as well
as (A11). We find

F̄þ ¼
ℏ2

2m2
aD−2½1 −ΦG − ðD − 1ÞΨG�ρ0; ðD1Þ

F̄11 ¼ −a2ðD−1Þ½1 − 2ðD − 1ÞΨG�½ðeþ PÞu0u0�com;
ðD2Þ

Z
dD−1p
ð2πℏÞD−1

p2

ℏ2
Fþ −

∂
∂Xk ½ΦG þ ðD − 1ÞΨG�

Z
dD−1p
ð2πℏÞD−1

pk

ℏ
F−

¼ 1

2
aD−2½1 −ΦG − ðD − 1ÞΨG�½a2½1 − 2ΨG�½ðeþ PÞuiui�com�0

−
ℏ2

8m2
aD−2½1 −ΦG − ðD − 1ÞΨG�ΔXρ

0 −
ℏ2

8m2
aD−2ρ0ΔX½ΦG þ ðD − 1ÞΨG�: ðD3Þ

We also have

a−ðD−2ÞF011 þ 2
m2a2

ℏ2
½1þΦG − ðD − 1ÞΨG�Fþ ¼

ΔX

2
½½1þΦG − ðD − 3ÞΨG�Fþ� − Fþ

ΔX

2
½ΦG − ðD − 3ÞΨG�

− 2½1þΦG − ðD − 3ÞΨG�
Z

dD−1p
ð2πℏÞD−1

p2

ℏ2
Fþ

− 2
∂

∂Xk

�
½1þΦG − ðD − 3ÞΨG�

Z
dD−1p
ð2πℏÞD−1

pk

ℏ
F−

�
: ðD4Þ

We also write down the following relation for the fluid-four velocity for convenience:

½1 −ΦG − ðD − 1ÞΨG�
∂

∂Xk

�
½1þ 2ΦG þ 2ΨG�

Z
dD−1p
ð2πℏÞD−1

pk

ℏ
F−

�

¼ −aD½1 −ΦG − ðD − 1ÞΨG�
∂

∂Xk ½½1þΦG − ðD − 1ÞΨG�½ðeþ PÞuku0�com�

þ aðD−2Þ ℏ2

4m2
½1 −ΦG − ðD − 1ÞΨG�

∂
∂Xk ½½1þ 2ΦG þ 2ΨG�

∂
∂Xk ½½1 −ΦG − ðD − 1ÞΨG�ρ0��: ðD5Þ

We plug everything in and indeed end up after a series of straightforward manipulations with

½½ðeþ PÞu0u0�com þ P�0 þ ðD − 1Þ½H −Ψ0G�½ðeþ PÞu0u0�com
þ ½1 −ΦG þ ðD − 1ÞΨG�

∂
∂Xk ½½1þΦG − ðD − 1ÞΨG�½ðeþ PÞuku0�com�

− ½H −Ψ0G�½ðeþ PÞukuk�com ¼ 0; ðD6Þ

which agrees with the result (C8) of the more general derivation in Appendix C. The definition of the rest mass
in (108) yields

ρ ¼ e − P; ðD7Þ

such that

½ðeþ PÞuμuμ�com ¼ −ðρþ 2PÞ: ðD8Þ

In order to find the nonrelativistic limit of this equation we have to define proper irreducible fluid velocity
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vi ≔ −ρ−1½1þΨG þΦG�½ðeþ PÞuiu0�com½1þ ðeþ PÞ−1½ðeþ PÞukuk�com�1=2: ðD9Þ

We then have the nonrelativistic continuity equation in an FLRW universe

½∂ηρþ ðD − 1ÞHρþ ∂i½ρ · vi��½1þOðε2gÞ þOðε2ℏÞ þOðε2pÞ� ¼ 0: ðD10Þ

2. Local momentum conservation

Now, we continue with the Euler equation by integrating Eq. (A10),�Z
dD−1p
ð2πℏÞD−1

pi

ℏ
F−

�0
¼ 1

4

∂2

∂Xi∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂Xk ½aD−2F00�

þ 1

2

∂
∂Xi ½ΦG − ðD − 3ÞΨG�

Z
dD−1p
ð2πℏÞD−1

�
ΔX

4
−
p2

ℏ2

�
½aD−2F00�

− ½1þΦG − ðD − 3ÞΨG�
Z

dD−1p
ð2πℏÞD−1

pipk

ℏ2

∂
∂Xk ½aD−2F00�

−
∂

∂Xk ½ΦG − ðD − 3ÞΨG�
Z

dD−1p
ð2πℏÞD−1

pipk

ℏ2
½aD−2F00�

−
1

2

m2

ℏ2
a2

∂
∂Xi ½ΦG − ðD − 1ÞΨG�½aD−2F00� −

1

2

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�½a−ðD−2ÞF11�: ðD11Þ

We plug in the expressions for the integrated two-point functions in terms of hydrodynamical variables�
ℏ2

4m2
aD−2 ∂

∂Xi ½½1 −ΦG − ðD − 1ÞΨG�ρ0� þ ½1þΦG − ðD − 1ÞΨG�aD½ðeþ PÞu0ui�com
�0

¼ ℏ2

4m2
aD−2 ∂2

∂Xi∂Xk ½ΦG − ðD − 3ÞΨG�
∂

∂Xk ρþ
ℏ2

2m2
aD−2 ∂

∂Xi ½ΦG − ðD − 3ÞΨG�
ΔX

4
ρ

−
1

2

∂
∂Xi ½ΦG − ðD − 3ÞΨG�

�
aD½1 − 2ΨG�½ðeþ PÞukuk�com − aD−2 ℏ2

4m2
ΔXρ

�

−
∂

∂Xk

�
½1þΦG − ðD − 3ÞΨG�

�
aD½1 − 2ΨG�½ðeþ PÞukui�com − aD−2 ℏ2

4m2

∂2

∂Xi∂Xk ρ

��

−
1

2
aD

∂
∂Xi ½ΦG − ðD − 1ÞΨG�ρþ

1

2
aD

∂
∂Xi ½ΦG þ ðD − 1ÞΨG�½ðeþ PÞu0u0�com: ðD12Þ

Manipulating these expressions finally leads to

½ðeþ PÞu0ui�0com þ ½DHþΦG − ðD − 1ÞΨG�0½ðeþ PÞu0ui�com þ
∂
∂Xi Pþ

∂
∂Xi ΨG½ðeþ PÞukuk�com

−
∂
∂Xi ΦG½ðeþ PÞu0u0�com þ ½1 −ΦG þ ðD − 1ÞΨG�

∂
∂Xk ½½1þΦG − ðD − 1ÞΨG�½ðeþ PÞukui�com� ¼ 0; ðD13Þ

which agrees with the result (70) of the more general derivation in Appendix C. Defining the proper composite velocity term

½vivk�com ≔ ρ−1½1þ ΨG −ΦG�½ðeþ PÞuiuk�com; ðD14Þ
we find

0 ¼ ½∂η½ρ · vi� þDH½ρ · vi� þ ∂k½ρ · ½vivk�com� þ ρδij∂jΦG þ δij∂jP� × ½1þOðε2gÞ þOðε2ℏÞ þOðε2pÞ�: ðD15Þ

We evaluate the apparent pressure term,
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0 ¼
�
∂η½ρ · vi� þDH½ρ · vi� þ ρδik∂kΦG þ ∂k½ρ · ½vivk�com� −

ℏ2

4m2a2

� ∂2

∂Xi∂Xk ρþ δikðD − 2ÞH∂ηρþ δik∂2
ηρ

��
× f1þOðε2gÞ þOðε2ℏÞ þOðε2pÞg: ðD16Þ

As already mentioned above, the composite operators contain information about anisotropy or in other words a
nonvanishing second cumulant. Using the definition in (95) together with the definition (D9) we find the stress tensor in
terms of proper fluid velocities

ρ · ½vivk�com ¼
�
δijδkmσjm þ ρ · vi · vk þ δijδkl

ℏ2

4m2a2
∂j∂lρ

�
× ½1þOðε2gÞ þOðε2ℏÞ þOðε2pÞ�; ðD17Þ

and thus

0 ¼
�
∂η½ρ · vi� þDH½ρ · vi� þ ρδik∂kΦG þ

∂
∂Xk

�
δijδkmσjm þ ρ · vi · vk −

ℏ2

4m2a2
½δikðD − 2ÞH∂ηρþ δik∂2

ηρ�
��

× f1þOðε2gÞ þOðε2ℏÞ þOðε2pÞg ¼ 0: ðD18Þ

The equations we find here are identical to Eqs. (C8)
and (C11), except that we identify the perturbation param-
eters on a more fundamental level and plugged in a concrete
expression for the composite velocity term and the apparent
pressure.
Let us once more point out that a local rest-mass-density

conservation due to some internal symmetry is not neces-
sary to derive typical fluid equations in an FLRW universe
once we impose a large mass limit. This is the reason why a
minimally coupled real scalar field is well suited to model
the fluid dynamics of cold dark matter. It is of course true
that the real scalar field model has no number current that is
locally conserved on all scales (in contrast to a complex
scalar field for example) and thus the probability associated

with a single-particle wave function of a real scalar field in
Minkowski space is a priori not conserved. However, the
energy-momentum tensor is another locally conserved
quantity in the minimally coupled real scalar field theory.
Imposing that the mass m dominates all other scales, the
energy density current coincides with the rest-mass density
current with corrections given by terms that go like
momentum over mass, Hubble rate over mass, and so on
which can be tuned to be small by imposing a certain initial
momentum distribution for instance. It is thus no surprise
that the system we discuss in this paper has a classical limit
for hydrodynamic quantities that mimics fluid equations of
massive particles whose number is locally conserved (cf. the
discussion in [45]).
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