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We study the violation of Bell-Mermin-Klyshko (BMK) inequalities in initial quantum states of scalar
fields in inflation. We show that the Bell inequality is maximally violated by the Bunch-Davies vacuum
which is a two-mode squeezed state of a scalar field. However, we find that the violation of the BMK
inequalities does not increase with the number of modes to measure. We then consider a non-Bunch-Davies
vacuum expressed by a four-mode squeezed state of two scalar fields. Remarkably, we find that the
violation of the BMK inequalities increases exponentially with the number of modes to measure. This
shows that the BMK inequalities are useful to classify the initial quantum state of the Universe.
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I. INTRODUCTION

Einstein’s famous phrase as a critique of quantum
mechanics “spooky action at a distance” is recently referred
to as “quantum nonlocality.” It implies that one particle of
an entangled pair instantaneously knows what measure-
ment has been performed on the other irrespective of their
separation even beyond the light cone [1]. Several scientists
studied local classical hidden variable theories in an attempt
to explain the probabilistic nature of quantummechanics by
underlying inaccessible variables. Then Bell derived an
inequality that provides a testable difference between the
predictions of quantum nonlocality and local classical
hidden variable theories [2,3]. Through sophisticated
Bell test experiments, local classical hidden variable
theories have been almost ruled out [4,5].
The Bell inequality is originally formulated for a pair of

spins, that is, for a two-partite system. This inequality is
violated in the presence of quantum nonlocality. Then, how
much can the Bell inequality be violated? To answer this
question, Tsirelson derived an upper bound on the quantum
nonlocality later [6]. The inequality is extended to a
multipartite system which is referred to as Bell-Mermin-
Klyshko (BMK) inequalities [7–9]. The quantum upper
bound was also generalized for the multipartite system
[10,11]. In order to gain some insight into quantum field
theories, the BMK inequalities are generalized with con-
tinuous quantum variables [12,13]. In recent years, more
interest has been paid to classifying the multipartite system
and quantifying how much we can make use of quantum
nonlocality in quantum information by using the BMK
inequalities [14,15].
The quantum nonlocality should play an important role

in cosmology. One of the cornerstones of inflationary
cosmology is that primordial density fluctuations have a
quantum mechanical origin. Hence, the initial state of the

Universe produced by inflation is highly entangled. It is
desired to find compelling evidence for their quantum
nature. Several studies have been made on quantifying the
initial state entanglement by using some measure of
entanglement such as the Bell inequality [16], entangle-
ment entropy [17–20], entanglement negativity [21] and
quantum discord [22–24]. Recently, Maldacena considered
an inflationary scenario where one can prove the quantum
origin of density fluctuations by performing the Bell
inequality violating experiment during inflation [25,26].
In inflationary cosmology, the Bunch-Davies vacuum

which is a two-mode squeezed state, is usually assumed as
the simplest initial state of quantum fluctuations of the
Universe. This is because spacetime looks flat at short
distances and then quantum fluctuations are expected to
start in a minimum energy state. However, the latest Planck
data show the possibility of deviation from the Bunch-
Davies vacuum [27]. Motivated by this, there have been
several attempts to find some observational signatures on
the cosmic microwave background (CMB) when the initial
state is a non-Bunch-Davies vacuum due to entanglement
between two scalar fields [28,29], between two universes
[30], and due to scalar-tensor entanglement [31,32]. The
non-Bunch-Davies vauum is expressed by a four-mode
squeezed state in those studies. If we apply the BMK
inequalities violating experiment to cosmology, we may be
able to prove the quantum origin of density fluctuations and
find the nature of the initial state of the Universe.
In this paper, we evaluate the BMK inequalities for the

Bunch-Davies vacuum and a non-Bunch-Davies vacuum in
inflation. We find that both vacua violate the BMK
inequalities. Remarkably, as for the non-Bunch-Davies
vacuum, the violation increases exponentially with the
number of modes to measure. This implies that the
BMK inequalities are useful to classify the initial quantum
state of the Universe.

PHYSICAL REVIEW D 96, 083501 (2017)

2470-0010=2017=96(8)=083501(11) 083501-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.083501
https://doi.org/10.1103/PhysRevD.96.083501
https://doi.org/10.1103/PhysRevD.96.083501
https://doi.org/10.1103/PhysRevD.96.083501


The paper is organized as follows. In Sec. II, we review
Bell and Mermin-Klyshko inequalities and explain how to
classify the quantum nonlocality by using the BMK
inequalities. We then introduce pseudospin operators in
order to extend the BMK inequalities to quantum field
theories. In Sec. III, as cosmological initial states, we
explain the Bunch-Davies vacuum expressed by a two-
mode squeezed state and the non-Bunch-Davies vacuum
expressed by a four-mode squeezed state. In Sec. IV, we
evaluate the BMK inequalities for those cosmological
initial states. Finally we summarize our result and discuss
the implications in Sec. V.

II. BELL-MERMIN-KLYSHKO INEQUALITIES

In this section, we review Bell inequality with the
simplest example of a pair of spins (a two-partite system)
and Mermin-Klyshko (BMK) inequalities for a multipartite
system [2,3]. The BMK inequalities are violated by
quantum nonlocality and provide a criterion for discrimi-
nating the quantum nonlocality from any local classical
hidden variable theories [7,8]. The upper bound of the
violation increases with the number of partite states [10,11]
and the entangled states are classified by using the upper
bound [15]. The pseudospin operators are introduced for
continuous quantum variables [12].

A. Bell inequality

We consider two sets of noncommuting operators A, A0
and B, B0. Those operators correspond to measuring the
spin along various axes and have eigenvalues �1. They are
expressed by the Pauli matrices σi and unit vectors ni such
as A ¼ niσi. The Bell operator B is defined as

B ¼ 1

2
ðA ⊗ Bþ A0 ⊗ Bþ A ⊗ B0 − A0 ⊗ B0Þ; ð2:1Þ

where the variables A, A0 and B, B0 are represented by
Hermitian operators which act on the Hilbert spaces HA
and HB respectively. If we rewrite it as a factorized form

B ¼ 1

2
A ⊗ ðBþ B0Þ þ 1

2
A0 ⊗ ðB − B0Þ; ð2:2Þ

then we see that the first (second) term becomes �1 while
the second (first) one vanishes because we can have either
B ¼ B0 or B ¼ −B0. In local classical hidden variable
theories, the expectation value of B then gives jhBij ≤ 1.
In quantum mechanics, however, this Bell inequality can be
violated for the expectation value of the quantum operator.
It is easy to check that its square becomes1

B2 ¼ I −
1

4
½A; A0�½B;B0�; ð2:3Þ

where we used the fact that the square of each operator is
one, A2 ¼ I, A02 ¼ I, etc. and I is the identity operator.
Since the commutators of the Pauli matrices are nonzero2

and each gives 2i, we find that hB2i ≤ 2 or jhBij ≤ ffiffiffi
2

p
.

Thus the maximal violation of Bell inequality in quantum
mechanics has the extra

ffiffiffi
2

p
factor in the case of a pair of

spins [6].

B. Mermin-Klyshko inequalities

The Bell inequality is generalized for a multipartite
system, which is called Mermin-Klyshko inequalities. We
write the operators fA;B;C;…g by fO1;O2;O3;…g
below for later convenience. Defining B1 ¼ O1 and
B0
1 ¼ O0

1, the Mermin-Klyshko operator is defined recur-
sively as

Bn ¼
1

2
Bn−1ðOn þO0

nÞ þ
1

2
B0
n−1ðOn −O0

nÞ;
n ¼ 2; 3; 4;… ð2:4Þ

where B0
n−1 is obtained from Bn−1 by interchanging primed

and nonprimed operators On. Thus, given the initial terms
B1 ¼ O1 and B0

1 ¼ O0
1, each subsequent term is deter-

mined by this relation. Explicitly, the recurrence yields
operators

B2 ¼
1

2
O1ðO2 þO0

2Þ þ
1

2
O0

1ðO2 −O0
2Þ;

B3 ¼
1

2
B2ðO3 þO0

3Þ þ
1

2
B0
2ðO3 −O0

3Þ; ð2:5Þ

and so on. In local classical hidden variable theories, the
Mermin-Klyshko inequalities read

jhBnij ≤ 1; n ¼ 1; 2; 3;…; ð2:6Þ

because we can have On ¼ O0
n or On ¼ −O0

n. In quantum
mechanics, this inequality is violated and the expectation
value of Bn can be bigger. In fact, the Mermin-Klyshko
inequalities shows [10,11]

jhBnij ≤ 2
n−1
2 ; n ¼ 1; 2; 3;…: ð2:7Þ

Thus, in quantum mechanics, the upper bound can be
exponentially bigger for multipartite states ðn > 2Þ.
For later purposes, it is useful to note that the Mermin-

Klyshko operators have the following relation [9]:

1The tensor product ⊗ is omitted below for simplicity unless
there may be any confusion.

2The Pauli matrices satisfy ½σa; σb� ¼ 2iεabcσc where εabc is
antisymmetric tensors. For local classical hidden variable theo-
ries, the commutators are zero and hB2i ≤ 1 or jhBij ≤ 1.
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Bn ¼
1

2
Bn−pðBp þ B0

pÞ þ
1

2
B0
n−pðBp − B0

pÞ;
n ¼ 2; 3; 4;…; ð2:8Þ

where p is an integer in the range 1 ≤ p ≤ n − 1. This
can be proved by induction from the definition (2.4).
For example, we use the following relations later in
Sec. IV B:

B8 ¼
1

2
B4ðB4 þ B0

4Þ þ
1

2
B0
4ðB4 − B0

4Þ;

B12 ¼
1

2
B8ðB4 þ B0

4Þ þ
1

2
B0
8ðB4 − B0

4Þ: ð2:9Þ

C. Classification of entanglement
with BMK inequalities

What kind of entangled state makes the violation of
BMK inequalities bigger? The upper bound of the BMK
inequalities is classified as follows [14,15]. If we introduce
the quadratic form of Mermin-Klyshko inequalities, the
violation of BMK inequalities Eq. (2.7) is written as

hBNi2 þ hB0
Ni2 ≤ 2E; ð2:10Þ

whereN is the total number of partite states (Hilbert spaces)
and

E ¼ N − K1 − 2Lþ 1; ð2:11Þ

where K1 is the number of single separated partite states
which is not entangled with other N − 1 partite states. Let
Kp be the number of groups consisting of p entangled
partite states. Then L is the sum of Kp defined by L ¼P

M
p¼2Kp where different groups are not entangled by each

other, and M is the largest number of entangled partite
states in a group. The total number of partite statesN is then
divided into N ¼ P

M
p¼1 pKp.

If we use the quadratic form of Bell’s inequality,
the violation of Bell’s inequality of a pair of spins,
jhB2ij ≤

ffiffiffi
2

p
, is expressed as hB2i2 þ hB0

2i2 ≤ 2 where
N ¼ 2, L ¼ 1, K1 ¼ 0. As we mentioned in Eq. (2.7), it
is expected that the upper bound can be exponentially
increased for multipartite states n > 2. Let us increase the
number of pairs up to m pairs of partite states, N ¼ 2m,
L ¼ m, K1 ¼ 0. Then we see hB2mi2 þ hB0

2mi2 ≤ 2 still
holds and the upper bound of the violation does not
increase. This is because both cases hold N − 2L ¼ 0. If
we try to consider the case N − 2L ≠ 0, we may get large
violation of BMK inequalities.

D. Pseudospin operators

In order to discuss BMK inequalities in the context of
cosmology later, we need to express it in terms of

continuous quantum variables. In this section, we introduce
pseudospin operators that behave in the same manner as the
usual spin 1=2 operators but the pseudospin operators can
be used for continuous quantum variables [12]. The
pseudospin operators distinguish between even parity
and odd parity.
The pseudospin operators are defined as follows. The

eigenvectors of the pseudospin operator Sz are j2nþ 1i and
j2ni. The corresponding eigenvalues are þ1 and −1. The
states j2nþ 1i and j2ni are orthogonal to each other,
h2nþ 1j2ni ¼ 0. Thus we define

Sz ¼
X∞
n¼0

ðj2nþ 1ih2nþ 1j − j2nih2njÞ; ð2:12Þ

Sþ ¼
X∞
n¼0

j2nþ 1ih2nj ¼ S†−; ð2:13Þ

where Sþ and S− are the parity-flip operators. The other
two components of pseudospin satisfy Sx � iSy ¼ 2S�.
The commutation relations are ½Sþ;S−�¼Sz and ½Sz; S�� ¼
�2S�. Note that S2z ¼ S2x ¼ S2y ¼ I. Then we have

Szj2ni ¼ −j2ni; Szj2nþ 1i ¼ j2nþ 1i;
Sþj2ni ¼ j2nþ 1i; Sþj2nþ 1i ¼ 0;

S−j2ni ¼ 0; Sþj2nþ 1i ¼ j2ni: ð2:14Þ

In this way, pseudospin operators act on the Hilbert spaces.
As we will see in Sec. IVA, the BMK inequalities are
generalized with continuous quantum variables of pseudo-
spin operators.

III. COSMOLOGICAL INITIAL STATES
AND PARTICLE CREATION

In order to run the Bell experiment, one repeats the
experiment many times on the same quantum state. Thus, to
perform a Bell type experiment in cosmology, we need to
choose a quantum state in the Universe. In this section, we
review the Bunch-Davies vacuum expressed by a two-
mode squeezed state and a non-Bunch-Davies vacuum
expressed by a four-mode squeezed state as cosmological
initial states.

A. Two-mode squeezed state

In quantum field theory, vacuum is not empty and is in
fact full of virtual particles, which are created and annihi-
lated continuously in entangled pairs. As the Universe
expands, those virtual particles are released as ordinary
particles. This process is calculated by the Bogoliubov
transformation between different vacua. To see how particle
creation can occur in this process, we consider a simple
example with a free massless scalar field in an expanding
universe. The metric is

INFINITE VIOLATION OF BELL INEQUALITIES IN … PHYSICAL REVIEW D 96, 083501 (2017)

083501-3



ds2 ¼ a2ðηÞ½−dη2 þ δijdxidxj�; ð3:1Þ

where η is the conformal time, xi are spatial coordinates,
aðηÞ is the scale factor, and δij is the Kronecker delta.
The indices ði; jÞ run from 1 to 3. If we decompose the
scalar field ϕðη; xiÞ in terms of the Fourier modes as
ϕðη; xiÞ ¼ P

kϕkðηÞeik·x, the scalar field is expanded as

ϕkðηÞ ¼ akukðηÞ þ a†−ku
�
kðηÞ; ½ak; a†p� ¼ δk;p; ð3:2Þ

where k is the magnitude of the wave number k and �
denotes complex conjugation. The mode function uk
satisfies

u00k þ
�
k2 −

a00

a

�
uk ¼ 0; ð3:3Þ

where a prime denotes the derivative with respect to the
conformal time. As the Universe expands, it goes through a
transition from de Sitter space to a radiation-dominated era.
Suppose that the transition occurs at η ¼ ηr > 0, then the
scale factor changes as

aðηÞ¼
(
− 1

Hðη−2ηrÞ ; for −∞< η< ηr;
η

Hη2r
; for ηr < η:

ð3:4Þ

Note that a00 ¼ 0 for the radiation-dominated era.
Equation (3.3) gives the normalized modes which behave
like the positive frequency modes in the remote past uink and
in the radiation-dominated era uoutk respectively of the form8<
:
uink ðηÞ≡ 1ffiffiffiffi

2k
p ð1− i

kðη−2ηrÞÞe−ikðη−2ηrÞ; for −∞< η< ηr;

uoutk ðηÞ≡ 1ffiffiffiffi
2k

p e−ikη; for ηr < η:

ð3:5Þ
Then the scalar field Eq. (3.2) is expanded as the following
two ways:

aðηÞϕk ¼

8><
>:

R
d3kffiffiffiffiffiffiffiffi
ð2πÞ3

p ½aink uink þ ain†−ku
� in
k �eik·x;R

d3kffiffiffiffiffiffiffiffi
ð2πÞ3

p ½aoutk uoutk þ aout†−k u� out
k �eik·x:

ð3:6Þ

Since the positive frequency modes uink and uoutk are
different, the creation and annihilation operators are differ-
ent. Then the Bunch-Davies vacuum (in-vacuum) j0ini and
a vacuum (out-vacuum) j0outi are defined as

aink j0ini ¼ 0; aoutk j0outi ¼ 0: ð3:7Þ

The initial Bunch-Davies vacuum looks different from
the point of view of the out-vacuum. The relation between
these different vacua is expressed by a Bogoliubov
transformation:

uink ¼ αkuoutk þ β�ku
out†
−k ; ð3:8Þ

or equivalently

aink ¼ α�ka
out
k − βka

out†
−k ; ð3:9Þ

where αk and βk are Bogoliubov coefficients with
jαkj2 − jβkj2 ¼ 1. The Bogoliubov coefficients are calcu-
lated as

αk ¼ ðuoutk ; uink Þjη¼ηr
¼ −

1

2k2η2r
e2ikηrð1 − 2k2η2r − 2ikηrÞ;

ð3:10Þ

β�k ¼ −ðu� out
k ; uink Þjη¼ηr

¼ −
1

2k2η2r
; ð3:11Þ

where the Klein-Gordon inner product is defined by
ðf; gÞ ¼ iff�g0 − gf�0g. An observer in the out-vacuum
will observe particles defined by the operators aoutk . The
expected number of such particles is given by

h0injaout†k aoutk j0ini ¼ jβkj2: ð3:12Þ

This is the creation of particles as a consequence of the
cosmic expansion.
Plugging the aink into the definition of j0ini in Eq. (3.7)

and by using ½aoutk ; aout†p � ¼ δk;p, then the Bunch-Davies

vacuum j0ini can be written in terms of aout†k , aout†−k and the
vacua associated to each mode, j0outk i and j0out−ki

j0ini ¼ N̄ exp

�X
k

βk
α�k

aout†k aout†−k

�
j0outi; ð3:13Þ

where N̄ is the normalization factor, and j0outi ¼
j0outk i ⊗ j0out−ki. This describes a two-mode squeezed state
of n pairs of particles since the exponent in Eq. (3.13) is
expanded as

j0ini ¼
Y
k

X∞
n¼0

tanhnrk
cosh rk

jnoutk i ⊗ jnout−ki; ð3:14Þ

where N̄ ¼ Q
k cosh

−1 rk and a new parameter rk known as
the squeezing parameter is defined as

tanh rk ¼
���� βkα�k

���� ¼
���� 1

1 − 2k2η2r − 2ikηr

����: ð3:15Þ

Note that rk ≫ 1 corresponds to the end of inflation
(kηr ≪ 1). We see that the Bunch-Davies vacuum is
expressed by a two-mode squeezed state of the modes k
and −k.
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B. Four-mode squeezed state

The Bunch-Davies vacuum is usually assumed as the
simplest initial state of quantum fluctuations of the
Universe. This is because spacetime looks flat at short
distances and then quantum fluctuations are expected to
start in a minimum energy state. However, the latest Planck
data show the possibility of deviation from the Bunch-
Davies vacuum [27]. Here, we discuss a four-mode
squeezed state as a simple example of non-Bunch-Davies
vacua. This state is discussed in [28,29] with two scalar
fields, and also discussed in the context of the multiverse
[30].According to the studies in [28–32], the spectrumof the
CMB could be distinguished by oscillatory behaviors.
However, since the amplitude of the oscillation is small
enough, they claimed that the four-mode squeezed state is
compatible with the current data.
We consider two free massive scalar fields ϕðxμÞ

and χðxμÞ in de Sitter space. In Fourier space, they are
expanded as

ϕk ¼ aink u
in
k ðηÞ þ ain†−ku

� in
k ðηÞ; ð3:16Þ

χk ¼ bink v
in
k ðηÞ þ bin†−kv

� in
k ðηÞ: ð3:17Þ

The Bunch-Davies vacuum state is annihilated by both ak
and bk

aink j0ini ¼ bink j0ini ¼ 0: ð3:18Þ

If we denote the vacuum for ϕk by j0iniϕ and for χk by
j0iniχ , then the Bunch-Davies vacuum for the total system
is expressed as j0ini ¼ j0iniϕ ⊗ j0iniχ where each j0iniϕ
and j0iniχ is also the Bunch-Davies vacuum.
Now we consider a state jψi defined by Bogoliubov

transformations that make a correlation between the two
scalar fields by mixing the operator ak with bk,

~ak ¼ Γkaink þ Δkb
in†
−k ; ~bk ¼ Γkbink þ Δka

in†
−k ; ð3:19Þ

where Γk and Δk are Bogoliubov coefficients with
jΓkj2 − jΔkj2 ¼ 1 and

~akjψi ¼ ~bkjψi ¼ 0: ð3:20Þ

This state jψi is a non-Bunch-Davies vacuum expressed by
a four-mode squeezed state:

jψi ¼ ~N exp

�
−
X
k

Δk

Γk
ðain†k bin†−k þ ain†−kb

in†
k Þ

�
j0ini; ð3:21Þ

where ~N is the normalization factor, j0ini ¼ j0iniϕ ⊗ j0iniχ
and each Bunch-Davies vacuum state j0iniϕ and j0iniχ is
written by a two-mode squeezed state

j0iniϕ ≡
Y
k

j0ink iϕ ¼
Y
k

X∞
n¼0

tanhnrk
cosh rk

jnoutk iϕ ⊗ jnout−kiϕ;

j0iniχ ≡
Y
k

j0ink iχ ¼
Y
k

X∞
n¼0

tanhnrk
cosh rk

jnoutk iχ ⊗ jnout−kiχ :

ð3:22Þ

Since the four-mode squeezed state Eq. (3.21) consists of
an infinite sum of states, let us take up to the first order of
the Taylor series of Eq. (3.21) for simplicity, which is
expressed as jψi ¼ Q

kjψki with

jψki ¼ Akj0ink iϕ ⊗ j0ink iχ þ
Bkffiffiffi
2

p ðj1ink iϕ ⊗ j1in−kiχ
þ j1in−kiϕ ⊗ j1ink iχÞ; ð3:23Þ

where the conservation of probability jAkj2 þ jBkj2 ¼ 1
holds. Note that the degree of entanglement Ak and Bk
corresponds to the Bogoliubov coefficients Γk and Δk with
the relations Ak ¼ ~N;Bk=

ffiffiffi
2

p ¼ ~NΔk=Γk. Note also that
this four-mode squeezed state jψi can be obtained as a
result of interaction between two scalar fields ϕk and χk as
explained in the Appendix. The single particle excitation
state is calculated by operating ~a†k (or ~b†k) on Eq. (3.21),

j1ink i ¼
X∞
n¼0

tanhn rk
cosh2 rk

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jðnþ 1Þoutk i ⊗ jnout−ki;

j1in−ki ¼
X∞
n¼0

tanhn rk
cosh2 rk

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p jnoutk i ⊗ jðnþ 1Þout−ki; ð3:24Þ

where we omitted the subscripts ϕ or χ of j1i fzbe any
confusion. Although we truncated the four-mode squeezed
state Eq. (3.21), we can obtain the large enough violation of
BMK inequalities as we will see in Sec. IV C.

IV. COSMOLOGICAL VIOLATION
OF BMK INEQUALITIES

According to Eq. (2.7), we naively expect the violation
of the BMK inequalities increases with the number of
modes k to measure. However, the upper bound in Eq. (2.7)
is only attained by maximally entangled states. Since the
cosmological initial states are not maximally entangled
states, in this section, we see how much the Bunch-Davies
vacuum and the non-Bunch-Davies vacuum violate the
BMK inequalities.

A. Two-mode squeezed state

Let us check the BMK inequalities for the Bunch-Davies
vacuum expressed by a two-mode squeezed state
Eq. (3.14). Here, we use the pseudospin operators corre-
sponding to measuring the parity along various axes in the
Hilbert space [12]. The pseudospin operators S have
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eigenvalues�1 and the inner product with a unit vector n is
expressed as

n · S ¼ Sz cos θ þ sin θðeiφS− þ e−iφSþÞ; ð4:1Þ
where the unit vector is chosen as n ¼ ðsin θ cosφ;
sin θ sinφ; cos θÞ and ðn · SÞ2 ¼ I. Since the pseudospin
operators act on j2nþ 1i and j2ni differently, it is
convenient to divide the states n into even and odd parity
for computation. Focusing on the Hilbert space for a single
Fourier mode k, Hk, Eq. (3.22) is written by

j0ink i≡
X∞
n¼0

tanhn rk
cosh rk

jnoutk i ⊗ jnout−ki

¼
X∞
n¼0

tanh2n rk
cosh rk

j2noutk i ⊗ j2nout−ki

þ
X∞
n¼0

tanh2nþ1 rk
cosh rk

jð2nþ 1Þoutk i ⊗ jð2nþ 1Þout−ki:

ð4:2Þ
For the two-mode squeezed state, we need two sets of
noncommuting pseudospin operators as demonstrated in
Eq. (2.1). Since we consider two unit vectors for nonprimed
operators, we need a plane containing those two vectors.
Thus, without any loss of generality, we can take φ ¼ 0 (x,
z plane), then Eq. (4.1) is simplified as

n · S ¼ Sz cos θ þ Sx sin θ: ð4:3Þ
By using Eq. (2.5), the expectation value of the Bell
operator in the Bunch-Davies vacuum is then written by
the psedospin operators as

h0ink jB2j0ink i ¼
1

2
½Eðθ1; θ2Þ þ Eðθ1; θ20 Þ

þ Eðθ10 ; θ2Þ − Eðθ10 ; θ20 Þ�; ð4:4Þ
where O1 ≡ n1 · S, O2 ≡ n2 · S, O0

1 ≡ n01 · S, O
0
2 ≡ n02 · S

in Eq. (2.5). And Eðθ1; θ2Þ is

Eðθ1; θ2Þ ¼ h0ink jðSz cos θ1 þ Sx sin θ1Þ
⊗ ðSz cos θ2 þ Sx sin θ2Þj0ink i;

¼ cos θ1 cos θ2 þ tanh 2rk sin θ1 sin θ2: ð4:5Þ
Here, we used Eqs. (2.14) and (4.2). Choosing θ1 ¼ 0,
θ10 ¼ π=2, θ2 ¼ −θ20 we get

h0ink jB2j0ink i ¼ cos θ2 þ tanh 2rk sin θ2: ð4:6Þ
For θ2 ¼ tan−1 tanh 2rk, we get the maximal violation
which has the extra

ffiffiffi
2

p
factor:

h0ink jB2j0ink i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tanh2 2rk

q
≤

ffiffiffi
2

p
; ð4:7Þ

where the maximal value is obtained in the infinite
squeezing limit rk → ∞. We reproduced Bell inequality
of a pair of spins in Sec. II A by using continuous quantum
variables [12] and found that the Bell inequality is
maximally violated by the Bunch-Davies vacuum accord-
ing to Eq. (2.7) with n ¼ 2. As we see in Sec. II C, this two-
mode squeezed state corresponds to the case of N ¼ 2,
L ¼ 1, K1 ¼ 0. Thus we get hB2i2 þ hB0

2i2 ≤ 2. Although
we focused on a single Fourier mode k (a pair of spins or a
two-partite system), the Bunch-Davies vacuum consists of
infinite products of k as in Eq. (3.14). So, if we increase the
number of modes to measure, saym-pairs ðm ¼ 2; 3; 4 � � �Þ,
it appears the violation increases by Eq. (2.7) with n ¼ 2m.
However, this case corresponds to N ¼ 2m, L ¼ m,
K1 ¼ 0, which holds N − 2L ¼ 0 in the classification
Eq. (2.11). Thus, the violation of BMK inequalities does
not increase anymore.

B. Four-mode squeezed state

Let us see the BMK inequalities for a non-Bunch-Davies
vacuum expressed by the four-mode squeezed state
Eq. (3.23) next. In this case, we can expect the violation
increaseswith the number ofmodes k tomeasure because the
four-mode squeezed state realizes N ¼ 4m, L ¼ m, K1 ¼ 0
and then N − 2L ≠ 0 in the classification Eq. (2.11).

To obtain the Bell operator B4, we use the Mermin-Klyshiko operator Eq. (2.4) recursively to find3

4B4 ¼ −O1 ⊗ O2 ⊗ O3 ⊗ O4 −O0
1 ⊗ O0

2 ⊗ O0
3 ⊗ O0

4 þO1 ⊗ O2 ⊗ O3 ⊗ O0
4

þO1 ⊗ O2 ⊗ O0
3 ⊗ O4 þO1 ⊗ O0

2 ⊗ O3 ⊗ O4 þO0
1 ⊗ O2 ⊗ O3 ⊗ O4

þO1 ⊗ O2 ⊗ O0
3 ⊗ O0

4 þO1 ⊗ O0
2 ⊗ O3 ⊗ O0

4 þO0
1 ⊗ O2 ⊗ O3 ⊗ O0

4

þO1 ⊗ O0
2 ⊗ O0

3 ⊗ O4 þO0
1 ⊗ O2 ⊗ O0

3 ⊗ O4 þO0
1 ⊗ O0

2 ⊗ O3 ⊗ O4

−O1 ⊗ O0
2 ⊗ O0

3 ⊗ O0
4 −O0

1 ⊗ O2 ⊗ O0
3 ⊗ O0

4 −O0
1 ⊗ O0

2 ⊗ O3 ⊗ O0
4

−O0
1 ⊗ O0

2 ⊗ O0
3 ⊗ O4; ð4:8Þ

3We cannot use Eq. (2.8) with n ¼ 4, p ¼ 2 to calculate the expectation value of B4 in the four-mode squeezed state because in this
formula, the expectation values of Bn−p and Bp are supposed to be unentangled. Thus we use Eq. (4.8) which is derived recursively by
using Eq. (2.4).
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where O1 ≡ n1 · S, O2 ≡ n2 · S, O3 ≡ n3 · S and O4 ≡ n4 · S etc. The expectation value of the above first term in the non-
Bunch-Davies vacuum is computed as follows. We calculate the expectation value of the following operator

E4 ≡ ðn1 · SÞ ⊗ ðn2 · SÞ ⊗ ðn3 · SÞ ⊗ ðn4 · SÞ: ð4:9Þ

Focusing on a single mode k of Eq. (3.23), the expectation value of the above operator in the non-Bunch-Davies vacuum is
written by

hψkjE4jψki ¼ jAkj2ϕh0ink j ⊗ χh0ink jE4j0ink iϕ ⊗ j0ink iχ þ
A�
kBkffiffiffi
2

p ϕh0ink j ⊗ χh0ink jE4ðj1ink iϕ ⊗ j1in−kiχ þ j1in−kiϕ ⊗ j1ink iχÞ

þ AkB�
kffiffiffi
2

p ðϕh1ink j ⊗ χh1in−kj þ ϕh1in−kj ⊗ χh1ink jÞE4j0ink iϕ ⊗ j0ink iχ

þ jBkj2
2

ðϕh1ink j ⊗ χh1in−kj þ ϕh1in−kj ⊗ χh1ink jÞE4ðj1ink iϕ ⊗ j1in−kiχ þ j1in−kiϕ ⊗ j1ink iχÞ
≡ Eðθ1; θ2; θ3; θ4;φ1;φ2;φ3;φ4Þ; ð4:10Þ

where the states j0ki and j1ki are given in Eqs. (3.22) and (3.24) respectively. Note that each term can be factorized into a
product of ϕhIjðn1 · SÞ ⊗ ðn2 · SÞjJiϕ and χhIjðn3 · SÞ ⊗ ðn4 · SÞjJiχ , where I; J ¼ 0k; 1�k. By using Eqs. (2.14) and (4.2),
we find

Eðθ1; θ2; θ3; θ4;φ1;φ2;φ3;φ4Þ ¼ jAkj2fðθ1; θ2;φ1;φ2Þfðθ3; θ4;φ3;φ4Þ

þ A�
kBkffiffiffi
2

p ½gþðθ1; θ2;φ1;φ2Þg−ðθ3; θ4;φ3;φ4Þ þ g−ðθ1; θ2;φ1;φ2Þgþðθ3; θ4;φ3;φ4Þ�

þ AkB�
kffiffiffi
2

p ½g�þðθ1; θ2;φ1;φ2Þg�−ðθ3; θ4;φ3;φ4Þ þ g�−ðθ1; θ2;φ1;φ2Þg�þðθ3; θ4;φ3;φ4Þ�

þ jBkj2
2

½hþþðθ1; θ2;φ1;φ2Þh−−ðθ3; θ4;φ3;φ4Þ þ h−−ðθ1; θ2;φ1;φ2Þhþþðθ3; θ4;φ3;φ4Þ
þ hþ−ðθ1; θ2;φ1;φ2Þh−þðθ3; θ4;φ3;φ4Þ þ h−þðθ1; θ2;φ1;φ2Þhþ−ðθ3; θ4;φ3;φ4Þ�;

ð4:11Þ

where we defined

fðθ1; θ2;φ1;φ2Þ ¼ ϕh0ink jðn1 · SÞ ⊗ ðn2 · SÞj0ink iϕ
¼ cos θ1 cos θ2 þ tanh 2rk cos ðφ1 þ φ2Þ sin θ1 sin θ2;

gþðθ1; θ2;φ1;φ2Þ ¼ ϕh0ink jðn1 · SÞ ⊗ ðn2 · SÞj1ink iϕ
¼ ð−eiφ1 sin θ1 cos θ2 þ tanh rke−iφ2 cos θ1 sin θ2ÞMðrkÞ;

g−ðθ1; θ2;φ1;φ2Þ ¼ ϕh0ink jðn1 · SÞ ⊗ ðn2 · SÞj1in−kiϕ
¼ ð−eiφ2 cos θ1 sin θ2 þ tanh rke−iφ1 sin θ1 cos θ2ÞMðrkÞ;

hþþðθ1; θ2;φ1;φ2Þ ¼ ϕh1ink jðn1 · SÞ ⊗ ðn2 · SÞj1ink iϕ
¼ − cos θ1 cos θ2

¼ h−−ðθ1; θ2;φ1;φ2Þ;
hþ−ðθ1; θ2;φ1;φ2Þ ¼ ϕh1ink jðn1 · SÞ ⊗ ðn2 · SÞj1in−kiϕ

¼ 1þ tanh4 rk
ð1þ tanh2 rkÞ2

exp ð−iφ1 þ iφ2Þ sin θ1 sin θ2
¼ h−þðθ1; θ2;φ1;φ2Þ�; ð4:12Þ
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and fðθ3;θ4;φ3;φ4Þ, g�ðθ3;θ4;φ3;φ4Þ, h�∓ðθ3;θ4;φ3;φ4Þ,
and h��ðθ3; θ4;φ3;φ4Þ are obtained by interchanging θ1, θ2,
φ1;φ2 with θ3, θ3, φ3;φ4, respectively. We also defined

MðrkÞ ¼
X∞
n¼0

tanh4n rk
cosh3 rk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2

r

¼ Φ
�
tanh4 rk;−

1

2
;
1

2

�
1

cosh3 rk
; ð4:13Þ

whereΦðtanh4 rk;− 1
2
; 1
2
Þ is the Lerch transcendent.Note that

MðrkÞ appears only in the off-diagonal elements which
represent quantum interference. We find that MðrkÞ con-
verges to a finite value in the large squeezed limit rk → ∞ as
shown in Fig. 1.
Thus the expectation value of the Mermin-Klyshko

operator B4 in Eq. (4.8) is given by

hψkjB4jψki ¼
1

4
½−Eðθ1; θ2; θ3; θ4;φ1;φ2;φ3;φ4Þ − Eðθ01; θ02; θ03; θ04;φ0

1;φ
0
2;φ

0
3;φ

0
4Þ þ Eðθ1; θ2; θ3; θ04;φ1;φ2;φ3;φ0

4Þ
þ Eðθ1; θ2; θ03; θ4;φ1;φ2;φ0

3;φ4Þ þ Eðθ1; θ02; θ3; θ4;φ1;φ0
2;φ3;φ4Þ þ Eðθ01; θ2; θ3; θ4;φ0

1;φ2;φ3;φ4Þ
þ Eðθ1; θ2; θ03; θ04;φ1;φ2;φ0

3;φ
0
4Þ þ Eðθ1; θ02; θ3; θ04;φ1;φ0

2;φ3;φ0
4Þ þ Eðθ01; θ2; θ3; θ04;φ0

1;φ2;φ3;φ0
4Þ

þ Eðθ1; θ02; θ03; θ4;φ1;φ0
2;φ

0
3;φ4Þ þ Eðθ01; θ2; θ03; θ4;φ0

1;φ2;φ0
3;φ4Þ þ Eðθ01; θ02; θ3; θ4;φ0

1;φ
0
2;φ3;φ4Þ

− Eðθ1; θ02; θ03; θ04;φ1;φ0
2;φ

0
3;φ

0
4Þ − Eðθ01; θ2; θ03; θ04;φ0

1;φ2;φ0
3;φ

0
4Þ − Eðθ01; θ02; θ3; θ04;φ0

1;φ
0
2;φ3;φ0

4Þ
− Eðθ01; θ02; θ03; θ4;φ0

1;φ
0
2;φ

0
3;φ4Þ�: ð4:14Þ

Now we consider higher order BMK inequalities by
increasing the number of modes to measure. We compute
the expectation value of B8 in the Hilbert spacesHk1 ⊗ Hk2
by using Eq. (2.9) as follows:

hψk1ψk2 jB8jψk1ψk2i

¼ 1

2
hψk1 jB4jψk1iðhψk2 jB4jψk2i þ hψk2 jB0

4jψk2iÞ

þ 1

2
hψk1 jB0

4jψk1iðhψk2 jB4jψk2i − hψk2 jB0
4jψk2iÞ;

ð4:15Þ
where for notational convenience we have defined
jψk1ψk2i ¼ jψk1i ⊗ jψk2i and we assumed there is no
correlation between different groups Bn−p and Bp. Using
the above result, we can further calculate the expectation
value of B12 in the Hilbert spaces Hk1 ⊗ Hk2 ⊗ Hk3 as

hψk1ψk2ψk3 jB12jψk1ψk2ψk3i

¼ 1

2
hψk1ψk2 jB8jψk1ψk2iðhψk3 jB4jψk3i þ hψk3 jB0

4jψk3iÞ

þ 1

2
hψk1ψk2 jB0

8jψk1ψk2iðhψk3 jB4jψk3i − hψk3 jB0
4jψk3iÞ:
ð4:16Þ

We plotted the expectation value of Mermin-Klyshko
operator B4 in Fig. 2 where we see that the violation of

the BMK inequalities exceeds the quantum upper bound for
the Bunch-Davies vacuum. In our truncated four-mode
squeezed state Eq. (3.23), we found the maximum value of

FIG. 1. Plot of the behavior of quantum interference as a
function of rk. The quantum interference remains finite in
inflation. The asymptotic value is about 0.3.

FIG. 2. Plot of the violation of the BMK inequalities. The blue
line is for B4. Ak and Bk have been set to

ffiffiffiffiffiffiffiffiffi
0.95

p
and

ffiffiffiffiffiffiffiffiffi
0.05

p
and

rk ¼ 1.7. The orange line is the classical upper bound and the green
line is

ffiffiffi
2

p
which is the quantum upper bound for the Bunch-Davies

vacuum. The part exceeding the green line grows exponentially as
the number of modes to measure increases according to Eq. (4.19).
Note that the plot is parametrized by only one parameter θ which
can be controlled by setting up an experiment.
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B4 is 1.45 with Ak ¼
ffiffiffiffiffiffiffiffiffi
0.95

p
, Bk ¼

ffiffiffiffiffiffiffiffiffi
0.05

p
, and rk ¼ 1.7.

The violation of the BMK inequalities of B8 in Eq. (4.15)
and B12 in Eq. (4.16) become bigger as explained in the
next subsection. This is because the four-mode squeezed
state holds N − 2L ≠ 0 in the classification Eq. (2.11).

C. Infinite violation of BMK inequalities

In the previous subsection, we first focused on the Hilbert
space for a single Fourier mode k, Hk, and extended the
analysis toHk1 ⊗ Hk2 andHk1 ⊗ Hk2 ⊗ Hk3 . However, the
four-mode squeezed state consists of infinite products of k as
inEq. (3.22). Let us see theupper boundof thequadratic form
of Mermin-Klyshko inequalities when we increase the
number of modes k to measure.
If we plug the Mermin-Klyshko operators Eq. (2.8) into

the quadratic form of Bell inequality Eq. (2.10), we obtain

MN ¼ hBNi2 þ hB0
Ni2

¼ 1

2
ðhBN−pi2 þ hB0

N−pi2ÞðhBpi2 þ hB0
pi2Þ

¼ 1

2
MN−pMp; ð4:17Þ

where we assumed that there is no correlation between BN

and BN−p, that is, hBNBN−pi2 ¼ hBNi2hBN−pi2.
For a four-mode squeezed state, we take N ¼ 4nðn ¼

1; 2; 3 � � �Þ where n corresponds to the number of modes k
to measure and p ¼ 4, then we have

M4n ¼
1

2
M4n−4M4

¼
�
1

2

�
n−1

M4n−4ðn−1ÞMn−1
4

¼
�
1

2

�
n−1

Mn
4; ð4:18Þ

where we used the relation Eq. (4.17) recursively. If we
write the maximal violation of M4 by q, we have

M4n ¼
�
1

2

�
n−1

qn ¼ 2ðlog2 q−1Þnþ1; ð4:19Þ

then we see that the violation increases exponentially as n
increases when log2 q − 1 > 1. In our case, we get the
maximum value hB4i ∼ 1.45 for Ak ¼

ffiffiffiffiffiffiffiffiffi
0.95

p
, Bk ¼ffiffiffiffiffiffiffiffiffi

0.05
p

and rk ¼ 1.7, then q ≥ ð1.45Þ2 ≃ 2.1 and then
log2 2.1≃ 1.07 > 1. Thus, we have shown that the violation
of BMK inequalities increases exponentially with the num-
ber of modes to measure n. Note that for the two-mode
squeezed state, we get the same inequality as above and find
the fixed upper bound M2n ¼ 2 because of q ¼ ð ffiffiffi

2
p Þ2.

V. SUMMARY AND DISCUSSION

We studied the violation of the BMK inequalities in
initial quantum states of scalar fields in inflation. We
showed that the Bell inequality is maximally violated by
the Bunch-Davies vacuum which is a two-mode squeezed
state of a scalar field. However, it is found that the violation
of the BMK inequalities does not increase anymore with
the number of modes to measure. We then considered a
non-Bunch-Davies vacuum expressed by a four-mode
squeezed state of two scalar fields. Remarkably, we found
that the violation increases exponentiallywith the number of
modes to measure.4 This result indicates that some evidence
that our Universe has a quantum mechanical origin may
survive in CMB data even if quantum entanglement decays
exponentially afterward due to decoherence in the course of
evolution of the Universe.
We truncated the four-mode squeezed state Eq. (3.21)

and took the form of Eq. (3.23) for simplicity, but we
obtained a large enough violation of the BMK inequalities.
We expect the larger violation of the BMK inequalities if
we use the full form of Eq. (3.21).
Since we found a clear difference in the violation of the

BMK inequalities between the Bunch-Davies vacuum and
a non-Bunch-Davies vacuum, we may be able to find the
nature of the initial state of the Universe. The four-mode
squeezed state can also be realized if our Universe is
entangled with another universe initially [30]. Thus, we
may be able to test the existence of other universes by using
the difference in the violation of the BMK inequalities.
In this paper, we focused only on the two-mode and the

four-mode squeezed states, but it is easy to investigate the
other type of squeezed states in a similar way. As far as
the relation N − 2L ≠ 0 in Eq. (2.11) holds, we can expect
the large enough violation of the BMK inequalities. The
BMK inequalities in a multipartite system are known to be
maximally violated by the Greenberger-Horne-Zeilinger
(GHZ) state [33], so it would be interesting to discuss the
GHZ state in the context of cosmology.
Although some signatures of a quantum mechanical

origin may remain in CMB data, we have not yet found a
way to distinguish them from classical density fluctua-
tions.5 In that case, we might need to find some appropriate
cosmological observables as Maldacena considered to
perform a Bell type experiment during inflation [25]. It
would be interesting to examine Maldacena’s model by
using the BMK inequalities as a multipartite system.
Gravitational-wave astronomy opens up a new window

to explore the Universe, so it would be of interest to
investigate the BMK inequalities by using gravitational

4To increase the number of modes to measure, one can set up
an experiment. For instance, we could increase the number of
modes by considering multipoint correlation functions.

5The measurement with intensity interferometer may be useful
for this purpose Ref. [34].
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waves. In fact, scalar-tensor initial state entanglement is
discussed in [31,32]. To this end, we need to come up with
appropriate cosmological observables associated with
BMK operators.
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APPENDIX: FOUR-MODE SQUEEZED STATE

In the interaction picture, the quantum state is evolved as

jψi ¼ exp

�
−i

Z
η

−∞
HIdη

�
j0i: ðA1Þ

In the preinflationary phase, we can imagine the interaction
between two scalar fields ϕk and χk. As an illustration, we
consider

HI ¼ λðηÞ
Z

dkϕkχ−k; ðA2Þ

where λðηÞ is a coupling constant and each field is
expanded by the mode function respectively such as

ϕk ¼ akukðηÞ þ a†−ku
�
kðηÞ; ðA3Þ

χk ¼ bkvkðηÞ þ b†−kv
�
kðηÞ: ðA4Þ

If we assume the instantaneous interaction λðηÞ ¼ λδðηÞ for
simplicity, the above state (A1) becomes

jψi ¼ exp

�
−iλ

Z
dkϕkχ−k

�
j0iϕ ⊗ j0iχ : ðA5Þ

If we expand the exponent in jψi and truncate it at the one
particle state order, it is identical with the four-mode
squeezed state:

jψi ¼ j0iϕ ⊗ j0iχ − iλ
Z

dku�kð0Þv�kð0Þj1−kiϕ ⊗ j1kiχ :

ðA6Þ

We see that the k dependence of the Bogoliubov coef-
ficients Ak and Bk in Eq. (3.23) originates from the mode
functions and the Ak and Bk should be determined by the
initial condition.
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