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Ultralight scalars have been predicted in a variety of scenarios and advocated as a possible component
of dark matter. These fields can form compact regular structures known as boson stars, or—in the presence
of horizons—give rise to nontrivial time-dependent scalar hair and a stationary geometry. Because these
fields can be coherent over large spatial extents, their interaction with “regular” matter can lead to very
peculiar effects, most notably resonances. Here we study the motion of stars in a background describing
black holes surrounded by nonaxially symmetric scalar field profiles. By analyzing the system in a weak-
field approach, we find that the presence of a scalar field gives rise to secular effects akin to ones existing in
planetary and accretion disks. Particularly, the existence of resonances between the orbiting stars and the
scalar field may enable angular momentum exchange between them, providing mechanisms similar to
planetary migration. Additionally, these mechanisms may allow floating orbits, which are stable radiating
orbits. We also show, in the full relativistic case, that these effects also appear when there is a direct
coupling between the scalar field and the stellar matter, which can arise due to the presence of a scalar core
in the star or in alternative theories of gravity.
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I. INTRODUCTION

A. Motivation

Scalar fields are ubiquitous models to describe complex
phenomena and are frequently used as effective descrip-
tions or to capture what is thought to be the essentials of
new interactions. The examples are too many to describe in
any useful detail and include models of dark matter halos
[1,2], fields assisting inflation during the early stages of the
Universe, or even strong-gravity effects such as scalariza-
tion in the interior of compact stars [3].
Among the consequences of the existence of scalar fields

are self-gravitating structures, like boson stars and oscilla-
tons which exist when the field is complex or real,
respectively. These structures have been used extensively
as models for dark matter and of compact objects [4–12],
usually requiring the scalar field to be massive (in order not
to disperse to infinity), and time-dependent (in order to
create enough pressure to sustain from collapsing). Massive
scalar real fields around black holes (BHs) or collapsing stars
can lead to very long-lived—for all purposes stationary—
configurations [13–17], while complex fields may form truly
stationary configurations [18–21], also dubbed as clouds,
which are kept from being absorbed by the horizon through a
process known as superradiance [22]. In fact, these hairy BH
solutions are smoothly connected to spinning boson stars,
such that they can be thought of as a spinning boson star, at
the center of which a spinning BH (with carefully designed
angular velocity) was placed. Notwithstanding, all of the

above features can be generalize to massive vector fields
instead of scalar ones [10,13,23,24].
Structures such as boson stars or scalar-hairy BHs are

usually compact, and therefore apt to emit copious amounts
of gravitational waves upon collisions or other interactions,
which could in turn be used as a tool to discriminate them.
Among some of the smoking-gun effects for long-range
scalars, it was found that

(i) BHs should have “holes” in the spin-mass plane
(also known as Regge-plane), corresponding to the
regions where the superradiant instability is effective
[22,25–29]. Thus, observations of BHs and accurate
estimates of their mass and spin could provide clear
indications of the existence of light fields.

(ii) Single BHs can act as sources of monochromatic
gravitational waves, potentially detectable by LIGO
or LISA, either as resolved events or as a stochastic
background [22,25–29]

(iii) Stars or planets carrying scalar charge, or otherwise
interacting non-minimally with it, will probe reso-
nances in the spacetime, where energy extraction
from the horizon compensates for losses through
gravitational radiation: the orbiting object floats
at a fixed angular velocity for large timescales
[30,31]. The imprint on gravitational waves may
be detectable [32].

In addition, possible signs of scalar fields might be
imprinted in the way that they affect the bending of
light, i.e., in their shadows [33–35] or in x-ray reflection
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spectrum from surrounding accretion disks [36]. Finally,
any kind of perturbation around compact objects is likely to
excite proper oscillation modes (the quasinormal modes),
which can also be used to test the nature of the object [37].
This program however requires detailed knowledge of the
response of the scalar field structure to external perturba-
tions, which is still lacking.
Intuitively, it is expected that a spinning BH onto

which a scalar field is “fastened” will drag the scalar field,
and neighboring matter as well. In other words, there
should be correlations between the characteristics of the
scalar field and the behavior of stars and planets in its
immediate neighborhood. We shall look for these correla-
tions in extreme-mass-ratio-inspirals (EMRIs)—binary
systems composed of a central super massive black hole
(SMBH) orbited by a much lighter object (a white dwarf,
neutron star or solar mass BH)—which constitute one of
the most promising sources of gravitational radiation to be
analyzed by upcoming facilities [38–40]. By considering
that the SMBH supports a non-axially symmetric scalar
field configuration, we explore the gravitational effects that
the presence of the scalar field imposes on the motion of
the orbiting body. We argue that the angular momentum
imparted in the orbiting body by the scalar field may
balance the angular momentum lost by gravitational radi-
ation, given an additional mechanism to enable floating
orbits [30,41]. In addition, we also take into account more
speculative channels of interaction between the orbiting
body and the scalar field, namely the possibility of it having
a scalar charge or of being acted by friction forces. The final
aim of the study we initiate here is to fully understand the
theoretical aspects of the dynamics of EMRIs in order to
use them as probes to the existence of long-lived scalar field
configurations surrounding SMBH.

B. Summary

In what follows we focus on an EMRI in which the
SMBH supports an ultralight scalar field—we shall abbre-
viate it to black hole–scalar field system (BHSFS). We
study the impact of the scalar field on the orbital structure
of the orbiting body with special emphasis on circular
orbits. Our main findings are
(1) General orbits of the EMRI precess at a rate that

depends on the parameters governing the scalar
field. This effect adds to the precession caused by
general relativistic terms and, therefore, could be
probed by measuring carefully any additional
amount in rates of precession of satellites;

(2) The existence of the scalar field configuration
around the BH gives rise to resonant orbits when
its rotation frequency is equal to one of the charac-
teristic frequencies of the system; there are three
resonances:
(a) One corotation resonance where, in the absence

of other perturbing effects, large numbers of

orbiting bodies (such as stars) will tend to pile up
at the resonant radius;

(b) Two Lindblad (inner and outer) resonances
where, at first order, the scalar field can exchange
angular momentum with the orbiting particle, an
effect which is associated with orbital migration.

The BHSFS system is introduced with detail in Sec. II,
where we discuss the weak field limit and the parameters
used in the description of the system. We analyze the stellar
orbits around the BHSFS in Sec. III. We also discuss the
possibility of adding a non-minimal coupling and friction
forces to the system in Sec. IV. Finally, Sec. V fixes an
exploratory route for the possibility of using systems of this
sort to develop the understanding of the potential influence
of scalar structures in astrophysical systems. We shall use,
unless stated otherwise, natural units (G ¼ c ¼ ℏ ¼ 1).

II. FRAMEWORK

A. The black hole–scalar field system

We are interested in a massive scalar Φ minimally
coupled to gravity, and described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
gμνΦ�

;μΦ;ν −
μ2Φ�Φ

2

�
: ð1Þ

We focus on massive, non self-interacting fields. The mass
mB of the boson under consideration is related to the mass
parameter above through μ ¼ mB=ℏ, and the theory is
controlled by the dimensionless coupling

G
cℏ

Mμ ¼ 7.5

�
M

108M⊙

��
mBc2

10−17 eV

�
; ð2Þ

of a massive scalar field on a curved background given by
the metric gab.
We will focus on real scalar from now onwards.1 It

can be shown that real scalars on a Kerr background admit
nearly-stationary profiles. To a good approximation, which
we will take for granted here, the scalar field is described
by [22,25]

Φ ¼ A0gðrÞ cosðϕ − ωRtÞ sin θ; ð3Þ

with

g ¼ Mrμ2e−Mrμ2=2; ð4Þ

and

1Complex scalars admit solutions where the metric is axisym-
metric [18,19], hence most of our results do not apply to complex
fields. However, most of our results do generalize should matter
couple non-minimally to the scalar, for example if one considers
matter which is charged under the scalar. See Sec. IV.
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ωR ∼ μ −
M2μ3

8
: ð5Þ

In principle, from the linear analysis of the problem, the
amplitude A0 in Eq. (3) can not be constrained. However,
the amplitude of the scalar cloud A0 is not arbitrary. We
note that it should be set such that it obeys the nonlinear
solutions of the Einstein-Klein-Gordon system. In general,
we can express it in terms of the scalar field cloud total
energy-mass MS [25]. For a cloud with MS ∼ 20%M and
ω ∼ μ, we have A0 ∼ 0.05ðMμÞ2. We take this as our
reference value.
In the limit Mμ ≪ 1, the maximum value of the radial

profile gðrÞ is attained at r ¼ Rpeak given by (cf. discussion
around Eq. (7) in Ref. [25])

Rpeak

M
∼

4

ðMμÞ2 ∼ 600

�
10−18 eV
mBc2

�
2
�
4 × 106 M⊙

M

�
2

: ð6Þ

This value can be used as a measure of the size of the
“scalar cloud.” This region is far from the BH, meaning that
the curvature of spacetime is low and it is valid an analysis
of the scalar field using a flat background metric [42].
Accordingly, we expect that in this limit one can summarize
the gravitational effects by a Newtonian gravitational
potential given by a Keplerian potential

Ψ0 ¼ −
M
r
; ð7Þ

due to the BH, plus a small distortion

Ψ1 ∼ Ψ0
1 þ Ψ1

1 cosð2ðϕ − ωRtÞÞ; ð8Þ

sourced by the scalar field in Eq. (3).
The gravitational potential Ψ1 is one of the effects that

can be distilled after a linear analysis of Einstein’s field
equations (see Appendix A). To isolate the gravitational
potential, one assumes that far from the BH, the metric is
given by2

ds2 ¼ −ð1 − 2Ψ1Þdt2 þ ð1 − 2ξÞδijdxidxj; ð9Þ

where ξ is other scalar potential which is irrelevant for
nonrelativistic dynamics (more details in Appendix A). The
stress energy tensor for the scalar field is given by3

Tμν ¼
1

2
½Φ�

;μΦ;ν þΦ�
;νΦ;μ − ημνðηρσΦ�

;ρΦ;σ þ μ2jΦj2Þ�;
ð10Þ

and upon substitution in the Einstein’s equation, the
dominant contribution yields, in the nonrelativistic regime
of Appendix A,

∇2Ψ1 ¼ −4πðρþ 3P − 3_SÞ; ð11Þ

where ρ, P and S are components of the stress energy tensor
defined in Appendix A. We solve Eq. (11) in Appendix B
and we obtain that the total gravitational potential due to the
presence of the BH and the scalar field is given by

Ψ ¼ Ψ0 þ Ψ1 ¼ −
M
r
þΨ0

1 þΨ1
1 cosð2ðϕ − ωRtÞÞ; ð12Þ

where (see Appendix B for all the details)

Ψ0
1 ¼ P1ðrÞ þ P2ðrÞcos2ðθÞ; ð13Þ

and

Ψ1
1 ¼ P3ðrÞsin2ðθÞ: ð14Þ

In the equatorial plane, θ ¼ π=2, the potential is given by

Ψ ¼ Ψ0 þ Ψ1 ¼ −
M
r
þ P1ðrÞ þ P3ðrÞ cosð2ðϕ − ωRtÞÞ;

ð15Þ

where ðr;ϕÞ are inertial polar coordinates in the plane
and the functions P1ðrÞ and P3ðrÞ are defined in the
aforementioned appendix. A schematic representation of
the scalar field profile is shown in Fig. 1. We shall also see
that a similar subsides when the orbiting object has a
nonminimal coupling with the scalar cloud, leading, how-
ever, to different quantitative results.
The above potential has two distinctive features. First, it

has a radial dependence, which can modify the structure of
bound orbits of the background field, for instance changing
Kepler’s law.4 Second, it has a periodic angular dependence
on ϕ and ω, breaking the axial symmetry of the gravita-
tional potential. This second feature also appears in
planetary motion around disks and galactic formation,
and therefore can enrich the kinematics of particles around
BHs. For convenience, we will organize the potential in
Eq. (12) specialised to the equatorial plane as

Ψðr;ϕÞ ¼ ΨrðrÞ þ δΨðr;ϕÞ; ð16Þ

making an explicit separation between the angular and
nonangular dependent components.

2Other works have employed this choice of metric—see
Refs. [43,44].

3Notice that the background metric is flat, as mentioned before
in the text.

4The new potential will not be proportional to r−1 and
therefore, according to Bertrand’s theorem [45], not all bound
orbits will be closed.
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B. Validity of the approximation
for the orbital motion

In the spirit of Ref. [46], we will be using Newtonian
mechanics to study the motion of a body orbiting a BH
supporting a scalar field. Before doing that, we start by
comparing the effective radial potential created by a
Keplerian potential with the equivalent coming from a
Schwarzschild BH.5 This approach is supposed to provide
an approximate measure of the validity region of the
Newtonian approximation.
In the Newtonian approximation, the effective

radial potential governing the motion (through _r2 ¼
E2 − VNewton) of a particle orbiting a mass M is given by

VNewton ¼ −
M
r
þ L2

2r2
: ð17Þ

Here E, L are the energy and angular momentum per unit
rest mass. A counterpart in the relativistic case is hard to
define. We will define the analog radial potential in the
Schwarzschild case by a straightforward extension using
geodesics [47], taking dots to have the same meaning as in
flat spacetime and r to be the radial coordinate. One finds

VSch ¼ −
M
r
þ L2

2r2
−
ML2

r3
: ð18Þ

To estimate the error of neglecting relativistic effects, we
look at the magnitude of the relativistic corrections with
respect to the Newtonian potential. Focusing on circular
orbits of radius R, whose specific angular momentum is
given by L2 ¼ MR, the deviation from the relativistic orbit
is given by

jΔVj
VNewton

¼ jVSch − VNewtonj
VNewton

¼ 2M
R

; ð19Þ

whereM is the mass of the central object. In Fig. 2 we plot
the ratio of the relativistic correction to the total energy
of the classical circular orbit and from there we can see
that the relativistic correction for the potential is less than
10% of the total energy for orbits with radii larger than
R ∼ 20M. On the other hand, as we pointed out the scalar is
exponentially suppressed at distances ≳4=Mμ2. Thus, at
very large distances, the relativistic correction dominates.
Our results will therefore be valid only for orbiting objects

FIG. 1. Schematic representation of the density ρ due to the
presence of the scalar field Φðr; θ;ϕÞ in the equatorial plane
(θ ¼ π=2). The scalar field is responsible for a barlike structure
which peaks at Rpeak. The points ðL1; L2Þ and ðL4; L5Þ represent
the unstable and stable Lagrangian points, respectively. At these
points, the radial forces acting on an orbiting particle cancel out
and its motion is determined by the angular forces alone. Here,
RC is the radial location of the Lagrangian points, known as
corotation radius, and is defined in Eq. (48). More details can be
found in Appendix B.
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FIG. 2. Relativistic and scalar field contributions to the Kepler-
ian potential. The full line represents the ratio of the relativistic
correction to the Keplerian potential, Eq. (19) for circular orbits.
The relativistic correction represents less than 10% of the
Newtonian potential for circular orbits with R ≳ 20M.
The dashed, dotted and dot-dashed lines represent jP1j=jΨ0j,
the ratio of the radial part of the gravitational potential generated
by the scalar field to the Keplerian potential of the BH; the value
of the mass coupling Mμ parameter varies, the scalar cloud
comprises 20% of the total mass. The influence of the gravita-
tional potential due to the scalar field increases with distance, but
overall it is very small.

5Although the BH that supports the scalar field is rotating,
analyzing the nonrotating case is enough because in the limits we
are considering the BH rotation is irrelevant.
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at distances smaller than ∼4=Mμ2. Moreover, in order to
treat the scalar field as a perturbation, the magnitude of its
gravitational potential must be perturbatively smaller than
the magnitude of the potential created by the central BH. In
Figure 2, we also plot the relative magnitude of the radial
part of the scalar field potential with respect to the BH
potential for different values of the mass coupling. It is
sufficient to consider the radial part since the angular part is
even smaller. For those particular values of mass couplings,
the scalar field potential is less than 10% of the BH
potential. Thus, the gravitational potential due to the scalar
field can indeed be treated as a perturbation to the Keplerian
potential sourced by the BH.

III. QUASICIRCULAR ORBITS

To estimate the impact of the presence of the scalar
field on the dynamics of the EMRI, we will quantify the
modifications it causes on circular orbits. These orbits are
the simplest type of orbits in a standard EMRI and
understanding how they change in response to the scalar
field is a first step towards understanding how the global
structure of the EMRI is modified.

A. General treatment

Under our assumptions, the study of the orbital behavior
of a stellar object in the EMRI reduces to the analysis of
the Lagrangian

L ¼ 1

2
ð_r2 þ r2ð _ϕþ ωRÞ2Þ −Ψðr;ϕÞ; ð20Þ

which describes its motion under the influence of the
potential of equation (16) in a system of coordinates that is
corotating with the scalar field. In regions where jP3j

jΨrj ≪ 1,

one can obtain some insight into this system by exploring
the effect of the azimuthal-dependent part on the stable
circular orbits of the Keplerian potential Ψ0. The perturba-
tive approach is set up by considering the evolution of small
deviations r1 and ϕ1 to the radial and angular behavior of a
stable circular orbit of radius R0

rðtÞ ¼ R0 þ r1ðtÞ; ð21Þ

ϕðtÞ ¼ ϕ0ðtÞ þ ϕ1ðtÞ; ð22Þ

where ϕ0ðtÞ ¼ ϕi þ ðΩ0 − ωRÞt with Ω2
0 ¼ Ψ0

0ðR0Þ=R0

and, for convenience, we fix the initial condition to be
ϕi ¼ 0. Neglecting second-order terms in r1 and _ϕ1, the
equations of motion in the corotating frame are written as

̈r1 þ
�∂2Ψ0

∂r2 − Ω2
0

�
r1 − 2Ω0R0

_ϕ1 þ
∂P1

∂r þ ∂ðδΨÞ
∂r ¼ 0;

ð23Þ

ϕ̈1 þ
2Ω0

R0

_r1 þ
1

R2
0

∂ðδΨÞ
∂ϕ ¼ 0; ð24Þ

in which all derivatives are evaluated at r ¼ R0. To study
Eqs. (23) and (24), we consider the additional approxima-
tion ϕ1ðtÞ ≪ ϕðtÞ, i.e., ϕðtÞ ∼ ðΩ0 − ωRÞt, meaning that
we consider the perturbation ϕ1 so small that the angular
velocity of the orbit being perturbed dominates. The
equations are then written as

̈r1 þ
�∂2Ψ0

∂r2 −Ω2
0

�
r1 − 2Ω0R0

_ϕ1

þ ∂P1

∂r þ ∂P3

∂r cosð2ðΩ0 − ωRÞtÞ ¼ 0; ð25Þ

ϕ̈1 þ
2Ω0

R0

_r1 −
2

R2
0

P3 sinð2ðΩ0 − ωRÞtÞ ¼ 0; ð26Þ

where the coefficients are evaluated at r ¼ R0. Integrating
Eq. (26) and substituting the result in (25), one obtains

̈r1 þ
�∂2Ψ0

∂r2 þ 3Ω2
0

�
r1 þ

∂P1

∂r
¼ −BðR0Þ cosð2ðΩ0 − ωRÞtÞ; ð27Þ

whose general solution is given by

r1ðtÞ ¼ A cosðκ0tþ αÞ − BðR0Þ
cosð2ðΩ0 − ωRÞtÞ
κ20 − 4ðΩ0 − ωRÞ2

−
CðR0Þ
κ20

; ð28Þ

ϕ1ðtÞ ¼ −
2Ω0A
R0κ0

sinðκ0tþ αÞ þDðR0Þ sinð2ðΩ0 − ωRÞtÞ

−
CðR0Þ
κ20

t; ð29Þ

with κ20 ¼ Ψ00
0 þ 3Ω2

0 and

A ¼
�
r1i −

B
κ20 − 4ðΩ0 − ωRÞ2

þ C
k20

�
cos−1α; ð30Þ

tan α ¼ _r−11i κ0

�
C
k20

− r1i −
B

κ20 − 4ðΩ0 − ωRÞ2
�
; ð31Þ

B ¼ ∂P3

∂r þ 4Ω0P3

R0ðΩ0 − ωRÞ
; ð32Þ

C ¼ ∂P1

∂r ; ð33Þ
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D ¼ Ω0B
R0ðκ20 − 4ðΩ0 − ωRÞ2ÞðΩ0 − ωRÞ

−
P3

R2
0ðΩ0 − ωRÞ2

;

ð34Þ

where all the quantities are calculated at R0 and ðr1i; _r1iÞ are
the initial conditions for the radial motion. This kind of
solution is long known in problems with nonaxisymmetric
potentials (see, e.g., Refs. [48–52]). We can readily see the
presence of some singularities in Eqs. (28), (30) and (34).
Two of the singularities appear when

κ0 ¼ �2ðΩ0 − ωRÞ: ð35Þ

These are called Lindblad (inner and outer) resonances.
The other singularity, given by

Ω0 ¼ ωR; ð36Þ

is called corotating resonance, because the perturbation is
being made to a circular orbit which is synchronized with
the potential (in this case with the scalar cloud). When a
resonant frequency is approached, the above linear analysis
breaks down. We shall look into these particular orbits in
the following sections. The radii at which the outer (inner)
Lindblack resonance occurs will be termed outer (inner)
Lindblad radius RL�. The radius at which the corotating
resonance occurs is the corotation radius RC.

1. Circular orbits

Aside from giving rise to resonant orbits, the angular
part of the scalar field potentialΨ1 plays no other role in the
dynamics of the system due to its small value (recall that the
amplitude of the angular part of the potential is smaller than
the radial part). Indeed, the other effects of the presence of
the scalar field are an exclusive consequence of the radial
part of its gravitational potential. To further explore its
effects, we ignore the presence of the ϕ-dependent part
of the potential Ψ1 in the Eqs. (25) and (26), which means
that the angular momentum is exactly conserved, and the
solution in given by Eqs. (28) to (31) with BðrÞ≡ 0 and
DðrÞ≡ 0. As in the analysis with the angular part of the
potential, the behavior of the perturbations indicates that
the circular stable orbits of the BHSFS are not exactly
Kleperian. We start with initial conditions at r1i ¼ _r1i ¼ 0,
and initial radius such that the orbit would be circular—for
the same central mass—if the scalar cloud did not exist. We
find a solution that deviates from the Keplerian circular
orbit. This, of course, is expected: given a value of the
angular momentum, the corresponding value of the radius
of the circular orbit of the total radial potential Ψr is
different from the radius of the circular orbits of Ψ0.
Quantifying this radial difference is a way of looking into
the influence of the scalar field on the orbital structure
around the SMBH. We will indicate the radii of the circular

orbits of the total potential Ψr by R�
0; their values are given,

for fixed angular momentum L, by

L2

ðR�
0Þ3

¼ dΨr

dr
; ð37Þ

where the derivative is taken at R�
0. The stability of these

orbits is guaranteed as long as

I ≡ dΨr

dr
þ R�

0

3

d2Ψr

dr2
> 0: ð38Þ

This inequality is always verified in the range of the mass
coupling parameter we are considering, thus all circular
orbits of the potential Ψr are stable. Notice, however, that
the amplitude of the scalar field can be larger—for instance
in nonminimal coupling scenarios. Parametrizing the
amplitude of the scalar field as

~A0 ¼ a0A0; ð39Þ

where A0 is the standard amplitude of the scalar field (see
Sec. II A), we observe that for a0 > ainsta0 , unstable orbits
appear. More precisely, for a0 < ainsta0 all circular orbits are
stable and for a0 > ainsta0 a window of unstable circular orbits
with Rmin < R�

0 < Rmax exists. This is shown in Fig. 3,
where it is represented the quantity described in Eq. (38).
Furthermore, it is also observed that after crossing the
boundary imposed by ainsta0 , the range fRmin; Rmaxg increases
with a0.
For small values of the angular momentum and mass

coupling parameter, the difference between the radius of
Keplerian circular orbits, R0, and the radius of circular
orbits of the BHSFS, R�

0, is negligible6; however, this
difference has a nontrivial evolution once we start to
vary those parameters; this can be appreciated in Fig. 4.
As the angular momentum increases, the difference
between the radii has a behavior which is controlled by
the value of the mass coupling parameter: large values of
Mμ imply a large radii difference for a fixed value of the
angular momentum. Notwithstanding, the difference in
radii at large distances is due to the fact that now the
orbiting particle sees a different effective mass (central
object plus the scalar field surrounding it, see Fig. 5). In
Fig. 4 we also see that, for each value of the mass coupling
parameter, there is a value of the angular momentum for
which the radii of the stable circular orbits is equal for both
potentials; the corresponding value was numerically deter-
mined to be

6We keep the angular momentum fixed. This observation
shows that close to the SMBH Keplerian circular orbits are good
approximations for the circular orbits of the whole system. This
reinforces the validity of the results we obtained for the location
of the resonant orbits.
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R0 ¼ R�
0 ¼ Rpeak ∼

4M
ðMμÞ2 : ð40Þ

This value represents the location where the scalar cloud
typically peaks [25].
Another way of looking at the difference between the

circular orbits of an isolated BH and a scalar-surrounded
one is to observe that close to the SMBH a potential
Ψ ¼ −M=r is dominant, while far from the SMBH the
dynamics are dominated by Ψ ¼ −Meff=r in which Meff is
an effective mass value, in units of the mass M of the
SMBH. It was numerically found that our system has
Meff ∼ 1.26, as can be seen in Fig. 5. This number can be
interpreted by looking at Eq. (37) in the form

L2 ¼ R�
0 þ R�

0
3CðR�

0Þ; ð41Þ

and observing that for large values of angular momentum L
and radius R�

0 it can be written as

L2 ¼ R�
0 þ R�

0
3

�
32πa20
R�
0
2

�
; ð42Þ

where the amplitude of the scalar field A0 was again written
as A0 ¼ a0ðMμÞ2. Using the value for a0 prescribed in
Sec. II A we obtain

L2 ¼ 1.25R�
0 ð43Þ

which is close to the value obtained numerically.7 We see,
then, that far from the SMBH the potential governing the
dynamics is still Keplerian, but the mass sourcing it is not
the SMBHmass. This “effective”massMeff corresponds to
the mass of the SMBH plus the total mass contained the
scalar field.

2. Rate of precession

Another expected feature of the potential generated by
the presence of the scalar field is the precession of the
orbits. The apsidal angle of a quasicircular orbit obtained
from a perturbation of a circular orbit of radius R�

0 is

ψ ¼ π

�
3þ R�

0

Ψ00
r ðR�

0Þ
Ψ0ðR�

0Þ
�
−1=2

: ð44Þ

From this expression, we obtain that in each cycle around
the SMBH, the orbit precesses at a rate δ ¼ 2ðψ − πÞ
radians. In this particular case,

δ ¼ 2π

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðR�

0Þ2CðR�
0Þ

2þ 3ðR�
0Þ2CðR�

0Þ þ ðR�
0Þ3C0ðR�

0Þ

s
− 1

!
ð45Þ

where CðrÞ is given by Eq. (33). The dependence of this
precession rate on the mass coupling parameter and on the
radius of the corresponding orbit is represented in Fig. 6.
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FIG. 4. Difference between the radius of a Keplerian circular
orbit with angular momentum L and the radius of a circular orbit
of the potential Ψr [Eq. (16)] with the same angular momentum.
For small values of the angular momentum, the difference is
negligible, becoming negative up to the value L ¼ ffiffiffiffiffiffiffiffiffiffi

Rpeak
p

[see
Eq. (40)], where R0 ¼ R�

0; after this value the difference is
positive and grows indefinitely. This growth means that, far from
the SMBH, a stable circular orbit of the BHSF system with a
given angular momentum has a smaller radius than its Keplerian
counterpart (in which the Kepler potential is generated only by
the SMBH).
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FIG. 3. Representing the instability measure I of Eq. (38) as a
function of the radius of the circular orbit for mass coupling
Mμ ¼ 0.03 and different scalar-field amplitudes. Large scalar
amplitudes give rise to a set of unstable orbits. Notice that the
range of radii in which the instability measure is negative,
depends on the value of the parameter a0.

7Recall that the circular orbit of a Keplerian potential −M=r
with angular momentum L has a radius given by R ¼ L2=M.
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Two features are instantly noticed: (a) the precession rate
changes sign, indicating that orbits can precess both
clockwise and counterclockwise, and (b) there is a maxi-
mum and a minimum value of the precession rate that is
independent of the mass coupling parameter of the system,
indicating that it must be an intrinsic characteristic of the
model—it is the distance from the BH at which these
extrema occur that depend on the mass coupling parameter.
The precession rate changes sign twice: the first time being
from a region of positive precession rate to a region of
negative precession rate (top-right panel of Fig. 6), the
second time being from a region where the precession rate
is negative to a region in which the precession rate is
positive (bottom panel of Fig. 6). As one moves farther
from the SMBH the precession rate stabilizes to zero,
meaning that a Keplerian potential is dominating the
dynamics.8 The existence of these localized regions of

positive and negative precession rate, each of them with
well defined maximum and minimum values offer a good
source of phenomenology that may allow for a characteri-
zation of the system. We found numerically that both zeros
are related with the mass coupling parameter as

Mμ2Rzeroes ¼ ð1; 11Þ: ð46Þ

B. Resonant orbits

For the rest of this section, we will go back to Eqs. (28)
and (29), focusing on the resonant orbits. For a particle near
the resonant orbits, the general perturbative approach
presented in those equations is not adequate since it gives
unphysical behavior for the perturbations.9 Our main
motivation to pursue a more detailed analysis of these
orbits is their important role in the so called angular
momentum transfer mechanisms in the context of galactic
dynamics [55–57]; we suspect that most—if not all—of
those results can be generalized to the context of BHs and
scalar fields (bearing in mind, naturally, the different length
scales). In other words, it is possible that BHs anchoring
scalar fields may give rise to galacticlike structure on length
scales of a few hundred Schwarzschild radii.
The radii of the circular orbits that correspond to the

resonant frequencies are obtained by substituting the expres-
sions for the angular frequency ΩðrÞ and the epicyclic
frequency κðrÞ in the equations defining the resonances and
solving for the radial coordinate. By doing this, one can
immediately see that the smallest of the three resonant radii
is the one that corresponds to the inner Lindblad frequency.
In order to guarantee that Newtonian mechanics can be used
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FIG. 5. Representing the value of the radii of stable circular
orbits as a function of the angular momentum. Continuous lines
refer to circular orbits of a Keplerian potential −M=r—the blue
line corresponds to a Keplerian potential with M ¼ 1 and the red
line to M ¼ 1.26. Discontinuous lines represent the radii of
circular orbits for the potential of the BHSF system Ψr; for small
values of the angular momentum, these values are similar to those
generated by a Keplerian potential with M ¼ 1 while for large
values of the angular momentum they stabilize to the curve
described by the Keplerian potential with M ¼ 1.26. This fact
leads us to the conjecture that any other mass coupling parameter
would generate a plot that would be bounded by the two Keplerian
curves; the only influence of the mass coupling parameter is the
extent to which the radii of circular orbits deviate from a Keplerian
relation, as can be seen in the inline. In fact, the bigger the mass
coupling parameter the smaller is the range of the deviation.
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FIG. 6. Precession rate as a function of distance from the
SMBH, for different mass coupling parameters Mμ. The maxi-
mum and mininum precession-rate values are—to a good
precision—independent of the mass coupling parameter. The
precession rate takes positive and negative values at different
distances from the SMBH depending on the value of the mass
coupling parameter. The zoom in shows that there are, in fact, two
zeroes of the precession rate; see Eq. (46).

8This is confirmed by the results of Fig. 5.

9The complete understanding of this problem is out of the
scope of our work. More details can be found in Refs. [53,54].
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to study the inner Lindblad resonant orbit, its radius should
be RL− ≳ 20M, see Fig. 2. This scale can be controlled by
the mass couplingMμ given that the scalar field rotates with
angular frequency ωR ∼ μ; taking this into account, the inner
Lindblad radius is given by

RL−

M
≈
�

1

4M2μ2

�
1=3

; ð47Þ

from which one can estimate the maximum value of Mμ
such that a Newtonian analysis is justified. This is shown in
Fig. 7. Once the inner Lindblad radius is sufficiently far from
the central BH such that Newtonian mechanics is valid, then
the other two resonances (corotation and outer Lindblad
resonance) are automatically ensured to be within the same
regime. The corotation and outer Lindblad radii are, respec-
tively,

RC

M
≈
�

1

M2μ2

�
1=3

;
RLþ
M

≈
�

9

4M2μ2

�
1=3

; ð48Þ

i.e., RL− < RC < RLþ.
The analytical solutions we shall be presenting for the

quasicircular resonant orbits follow from the same assump-
tions made for the general quasicircular orbits, i.e., the
perturbations r1 and ϕ1 will be considered small. To do this,
we take the equations of motion for the perturbations and
analyze them separately for each of the three resonant
frequencies mentioned previously.

1. Lindblad resonances

To study the behavior of the system at the Lindblad
resonances, we have to go back to Eqs. (25) and (26) and
make the explicit substitution,

R0 → RL�Ω0 → ωR � 1

2
κL�; ð49Þ

which under the same reasoning applied before will allow
us to write

̈r1 þ κ2L�r1 þ CðRL�Þ þ ~BðRL�Þ cosðκL�tÞ ¼ 0; ð50Þ

with

~BðRL�Þ ¼
∂P3

∂r � 4Ω0P3

RL�κL�
: ð51Þ

The differences between the equations for the inner and
the outer Lindblad orbits are the numerical value of the
epicyclic frequency, the sign in the equation of motion
for ϕ1 [see Eq. (55)] and the functions BðrÞ, CðrÞ. The
previous equation has a direct analytic solution given by

r1ðtÞ ¼ −
1

κ2L�
½2CðRL�Þ þ ð ~BðRL�Þ − 2κ2L�Γ1Þ cosðκL�tÞ

þ κ2L�ð ~BðRL�Þt − 2κL�Γ2Þ sinðκL�tÞ�; ð52Þ

where Γ1 and Γ2 depend on the initial conditions as

Γ1 ¼
1

2κ2L�
½r1iκ2L� þ 2CðRL�Þ þ ~BðRL�Þ� ð53Þ

Γ2 ¼
1

2κ2L�
_r1i: ð54Þ

Using this expression for the evolution of r1 in

_ϕ1 þ
2ðωR � 1

2
κL�Þ

RL�
r1 �

2P3ðRL�Þ
κL�R2

L�
cosðκL�tÞ ¼ 0; ð55Þ

one can derive the expression for ϕ1.
The solutions for r1 and ϕ1 at Lindblad resonances show

a different behavior from the general case (28) and (29),
with the radial perturbation growing significantly even
when the orbiting body is initially placed in a circular orbit,
i.e., when r1i ¼ _r1i ¼ 0. Note that we chose initial con-
ditions to correspond to a circular orbit in the absence
of a scalar cloud. Because of the term proportional to the
time parameter in Eq. (52), the radial perturbation increases
at each period of oscillation—see Fig. 8. This behavior
results from the fact that up to first order, the perturbation r1
is described by the equation of motion for a harmonic
oscillator (with natural frequency given by κL�) being
excited by a harmonic force with the same frequency. This
is a classical example of resonance. While the first-order
approximation holds, the value of the radial perturbation
increases as seen in Fig. 9. Once this approximation stops
being valid, which eventually happens if enough time
passes, the higher-order components of the equations of
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FIG. 7. Radius of the innermost Lindblad radius, RL−, as
function of the coupling parameter Mμ. The grey area highlights
the region in which Newtonian approximation is suitable (see
Fig. 2), which is given by Mμ ≲ 0.006.
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motion describing r1 and ϕ1 become important and the
evolution of the radial perturbation is no longer described by
Eq. (52); the higher-order terms force r1 to decrease, as can
be seen in Fig. 9, ending up describing a beating pattern. The
time that it takes for a complete beat, both at inner and outer
Lindblad resonances, depends on the mass coupling param-
eter and on the amplitude a0 of Eq. (39); we numerically
compute this dependence, finding a good fit to be

τbeat ∼
1

a1.30

21.5M

ðMμÞ9125 ; ð56Þ

which means that the analytic solutions of Eqs. (52) and (55)
are accurate up to τbeat=2 in which the maximum value of r1
is attained.

2. Corotation resonance

Going back to the equation of motion (23) and (24),
considering that the circular orbit has a radius given by the
corotation radius we see that the zeroth-order term vanishes
identically and [see Eq. (22)]

ϕðtÞ ¼ ϕi þ ϕ1ðtÞ: ð57Þ

Thus, what sets corotation apart from the general orbits and
Lindblad orbits is the fact that besides the initial condition

of the radial perturbation, also the initial angle is important
for the motion, as can be seen in the corotation equations of
motion

̈r1 þ
�∂2Ψ0

∂r2 − ω2
R

�
r1 − 2ωRRC

_ϕ1 þ CðRCÞ

þ ∂P3

∂r ½cosð2ϕiÞ − 2 sinð2ϕiÞϕ1� ¼ 0; ð58Þ

ϕ̈1 þ
2ωR

RC
_r1 −

2P3

R2
C
½sinð2ϕiÞ þ 2 cosð2ϕiÞϕ1� ¼ 0; ð59Þ

Outer Lindblad resonant orbit

Outer Lindblad radius
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FIG. 8. Representing the orbit of a particle at the outer Lindblad
resonance. We usedMμ ¼ 0.015 and we artificially enhanced the
scalar field amplitude (again, we artificially increased the
amplitude to ~A0 ¼ 350A0, where A0 is the standard amplitude
of the scalar field given by A0 ¼ 0.05ðMμÞ2) to allow for an
easier representation of the main characteristics. The behavior
presented is described by a first-order approximation [see
Eq. (52)] where an increase in the radius of the orbit can be seen.
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FIG. 9. Representing r1ðtÞ ¼ rðtÞ − RLþ. Notice that this cal-
culation was made using the initial conditions _r1i ¼ r1i ¼ 0,
meaning that the particle was initiated in the circular orbit with
radius given by the outer Lindblad radius. The amplitude of the
scalar field is artificially enhanced (we use an amplitude ~A0 ¼
350A0 where A0 is the standard amplitude of the scalar field given
by A0 ¼ 0.05ðMμÞ2) in order for the beating pattern to be more
easily observed. The mass coupling parameter used isMμ ¼ 0.015
so that the outer Lindblad radius is RLþ ∼ 21.5M. Top panel: The
first-order evolution of the perturbation r1 is represented, agreeing
with the analytical expression of Eq. (52) (see Fig. 8 for a depiction
of the orbit). Bottom panel: As the absolute value of the
perturbation increases due to the first-order resonant behavior,
higher orders of the equation of motion acquire importance
preventing an indefinite grow of r1 by giving rise to a beat pattern.
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where the coefficients are computed at the corotation
radius. To write these equations, we considered that the
angular perturbation ϕ1 is small enough to allow for the
expansion of the corresponding sinusoidal functions up to
first order. Moreover, we observed that in order for the
analytical solution to be valid, the initial condition ϕ1i ¼
ϕ1ðt ¼ 0Þ has to be of the same order as ϕ1.

10 After all these
cautionary remarks, one can advance to the solution of the
equation of motion; the method used previously to obtain
the expressions describing the motion of the orbiting body
is not adequate in this case. One has to employ a more
evolved method, described in Appendix C, which in
general gives a solution of the form

r1ðtÞ ¼ C1 cosðω1tÞ þ C2 cosðω2tÞ; ð60Þ

ϕ1ðtÞ ¼ C3 sinðω1tÞ þ C4 sinðω2tÞ; ð61Þ

or

r1ðtÞ ¼ C1 sinðω1tÞ þ C2 sinðω2tÞ; ð62Þ

ϕ1ðtÞ ¼ C3 cosðω1tÞ þ C4 cosðω2tÞ; ð63Þ

where ωi depends only on the parameters of the problem—
both the scalar field and the mass of the SMBH—and Ci
depends on the parameters of the problem and the initial
conditions. Comparison with the numerical calculations
(see Table I) shows good agreement with the analytical
solutions for an arbitrary range of the time parameter. In
general, one of the sinusoidal functions in the solution for
r1 and ϕ1 dominates over the other leading to the so-called
“banana orbits” [58] which can be appreciated in Fig. 10.
The width of the banana orbits, which is related to the
maximum value attained by the radial perturbation r1, is
dependent on the amplitude of the scalar field but also
on the initial angle. The extent of the banana orbit, i.e.,
the angular range it covers, depends only on the initial
conditions of the problem, particularly on the initial angle.
Hence, no matter how thin it is, a banana orbit will always
be found close to a stable Lagrangian point as a result of an
initial angle ϕ1i ≠ 0. On the other hand, the time it takes for
an orbiting body to describe a complete banana orbit does
not depend on the initial angle, being determined by the
mass coupling parameter as

τbanana ∼
15M
ðMμÞ3 ; ð64Þ

meaning that banana orbits take less time to appear for
higher mass couplings.11

If the initial angle is precisely at ϕ1i ¼ π=2 then the
resulting orbit is not a banana orbit. This particular initial
angle corresponds to an unstable Lagrangian point (see
Appendix C) and a particle that starts there will cover the
whole angular range. For initial angles bigger than π=2,
the banana orbits are recovered, but in this case they will be
centered around the stable Lagrangian point ϕi ¼ π.
As this discussion illustrates, one sees that the position of

the Lagrangian points determines the shape of corotation
orbits. Most notably, the proximity to a given Lagrangian
point determines the way the orbiting body reacts to a
perturbation: a particle at an unstable Lagrangian point will

Corotation radius
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FIG. 10. Representing banana orbits. The mass coupling
parameter used in the calculations is Mμ ¼ 0.01 so that the
corotation radius is given by RC ∼ 21.5M. The orbits are depicted
in the corotating frame and because they are symmetric in y we
show only one quadrant. We used an artificially enhanced
amplitude for the scalar field (we use ~A0 ¼ 350A0) in order to
make possible a clearer representation of the orbits. We show two
initial angles, ϕ1i ¼ π=3 and ϕ1i ¼ π=4. The influence of the
initial angle on the extent and on the width of the banana orbit is
apparent, and can be related to the approximate analytic solution
presented in Table I.

10The approach presented here focuses on motions around the
point ϕi ¼ 0, a stable Lagrangian point. For an alternative
approach to the study of the motion at corotation; see Sec. 3.3
of Ref. [52].

11This timescale is much smaller than the instability time
scale of the scalar field we are considering, which is given by
τ ∼M=ðMμÞ9 [25].
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spend some time at that point, which depends on the mass
coupling parameter as

τunstable ∼ τbanana ∼
15M
ðMμÞ3 ; ð65Þ

and then it will rapidly move to the other unstable
Lagrangian point. On the other hand, a particle at a stable
Lagrangian point stays there indefinitely or, in case of a
perturbation, librates around it—it is this libration that
gives rise to banana orbits.

The libration around stable Lagrangian points may
induce an accumulation of orbiting bodies in the surround-
ing regions. In fact, perturbations to a body sitting exactly
at a stable Lagrangian point will force it to librate around it,
as shown in Fig. 11, and find itself trapped. A similar effect
was obtained in N-body calculations in a galactic setting
[59] and constitutes a fingerprint of a gravitational potential
of the form given in Eq. (15)—structures resembling this
trapping mechanism close to BHs may be a smoking gun
for this dark matter model based on an ultralight scalar field
of this sort.

C. Orbital torque

The fact that the perturbing gravitational potential
imposed by the presence of the scalar field has an angular
component means that the angular momentum is not
exactly conserved [cf. Eq. (24)]. The angular momentum
of the orbiting body initialized in a circular orbit of radius
R0 is given by

L ¼ ðR0 þ r1Þ2ðΩ0 þ _ϕ1Þ; ð66Þ

and the torque responsible for this is, up to first order,
given by

dL
dt

¼ dL1

dt
¼ 2R0Ω0 _r1 þ R2

0ϕ̈1: ð67Þ

To get an idea of the magnitude of this effect, we calculate
the average value of this quantity over a revolution around
the central BH �

dL1

dt

�
¼ 1

Δt

Z
Δt

0

dL1

dt
dt; ð68Þ

whereΔt is the interval over which we average.We obtain an
expression for this quantity by observing that the expression
for ϕ̈1 is related with r1 [see Eqs. (26) and (59)] such that we
can write

dL1

dt
¼ 2P3 sinð2ðΩ0 − ωRÞtÞ ð69Þ

for the general case,
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FIG. 11. Orbital motion due to a radial perturbation to a particle
at the stable Lagrangian point ϕi ¼ 0. The amplitude of the scalar
field is artificially enhanced (we use ~A0 ¼ 350A0) so that the
features of the movement are clearer and the mass coupling
parameter used is Mμ ¼ 0.01. The orbits are initiated at radial
position rð0Þ ¼ RC þ r1i for different values of the radial
perturbation r1i as an illustration of the fact that nearly circular
orbits in the vicinity of the corotation orbit are described by a
libration around stable Lagrangian points. The approximate
analytical solution describing the motion is presented in Table I.

TABLE I. The general solution, described by Eqs. (60)–(63), for the specific cases described in Figs. 10 and 11. To obtain these values
we applied the method described in Appendix C. From these expressions we can see the immediate influence of the initial perturbations
ϕ1i and r1i on the amplitude of the solutions.

Initial conditions r1ðtÞ ϕ1ðtÞ
r1i ¼ _r1i ¼ _ϕ1i ¼ 0 r1 ¼ ϕ1i½−0.004 sinð0.01tÞ þ 0.2 sinð0.0002tÞ� ϕ1 ¼ ϕ1i½−0.0004 cosð0.01tÞ þ cosð0.0002tÞ�
ϕ1i ¼ _r1i ¼ _ϕ1i ¼ 0 r1 ¼ r1i½−3 cosð0.01tÞ þ 4 cosð0.0002tÞ� ϕ1 ¼ r1i½0.3 sinð0.01tÞ þ 17 sinð0.0002tÞ�
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dL1

dt
¼ 4P3ðsinð2ϕiÞ þ cosð2ϕiÞϕ1Þ ð70Þ

for the corotation case and

dL1

dt
¼ �2P3 sinðκL�tÞ ð71Þ

for the inner and outer Lindblad case. The average values are

�
dL1

dt

�
¼ 0 ð72Þ

for the general case,

�
dL1

dt

�
¼ �ðΩ0 − ωRÞ

π
P3

�
1 − cosð 2πκL�Ω0−ωR

Þ
κL�

�
ð73Þ

for the inner (minus sign) and outer (plus sign) Lindblad
resonances, where we used Δt ¼ 2π=ðΩ0 − ωRÞ, and
�
dL1

dt

�
¼2ωR

π
P3

�
2sinð2ϕiÞþ2cosð2ϕiÞ

×
�
C3

ω1

ð1−cosð2πω1=ωRÞÞþ
C4

ω2

sinð2πω2=ωRÞ
��
ð74Þ

for the corotation case, where we considered Δt ¼ 2π=ωR.
The change in the angular momentum of a particle over a

complete orbit around the BH is considerable only when
the particle is orbiting at a resonant orbit. Particularly, since
the function P3 is overall negative, we see that at the inner
Lindblad resonance there is an increase in the angular
momentum while at the outer Lindblad resonance there is a
decrease. At the corotation resonance the angular momen-
tum transfer depends structurally on the initial angle ϕi:
explicitly, as argument of sinusoidal functions, and implic-
itly, affecting the values of the constants C3 and C4

(cf. Appendix C). The latter fact can be seen by calculating
the change in the angular momentum of a particle in a
stable Lagrangian point ϕi ¼ 0 or ϕi ¼ π; if one cared to go
though the calculations, one would find that C3 ¼ C4 ¼ 0.
In any case, in the mass coupling limit we are consid-

ering the angular momentum changes only slightly. Be
that as it may, the transfer of angular momentum from the
scalar cloud can play an important role on the dynamical
evolution of the EMRI in more extreme regimes. In the
following, we will cover some instances in which similar
mechanisms are essential for the dynamics of the systems
in which they are inserted.

1. Comparison with known phenomena
and floating orbits

In planetary dynamics, particularly in interactions
between planetary rings and satellites, angular momentum
can be transferred between the disk and the orbiting object
[55–57]. This exchange of angular momentum is most
effective at the resonances, both corotation and (inner and
outer) Lindblad. Angular momentum is removed from
the disk when the satellite is at the innermost Lindblad
resonance and added to the disk when the satellite is at the
outermost Lindblad resonance. Angular momentum is also
exchanged at the corotation resonance, in which the rate
depends on the gradient of the vorticity per unity of surface
density. In general, a disk with background (surface)
density σ has a angular momentum flux induced by the
satellite of (dipolar case)

dL
dt

¼ −π2
�
σ

�
r
dD
dr

�
−1
�
r
dψ s

dr
þ 2Ωd

Ωd −Ωm
ψ s

�
2
�
rL

;

ð75Þ

where the quantity in the brackets are computed at the inner
or outer Lindblad resonances, D ¼ κ2d − ðΩd −ΩmÞ2, ψ s is
the gravitational potential generated by the satellite and Ωm
depends essentially on satellite quantities (see Ref. [55] for
details). At the corotation resonances, the angular momen-
tum flux is given by

dL
dt

¼ π2

2

�
σ

�
dΩd

dr

�
−1 d

dr

�
σ

B

�
ψ2
s

�
rC

; ð76Þ

where B ¼ Ωd þ rΩ0
d=2 is the Oort’s parameter.

Expressions (75) and (76) are derived assuming a fluid
description for the disk as well as some physical reasonable
assumptions for the propagation of the fluid perturbations
in the disk.
Although we cannot directly map the system above into

the BHSFS, many of its features must be common to the
latter. In order to translate the above picture for the BHSFS,
one has to solve the perturbation equations of the Einstein-
Klein-Gordon system around a hairy BH induced by an
orbiting particle. In general, similarly to the disk-satellite
interaction [56], there will be modes that are trapped (due to
the mass of the scalar field, for instance) and modes that
propagate angular momentum and energy away from the
system. Since in many scenarios scalar field configurations
can be mapped into effective fluid descriptions (see Ref. [60]
for instance), one may expect that equations similar to
Eqs. (75) and (76) can be obtained from the equations
governing the perturbations of stars orbiting hairy BHs.
Additional mechanisms, such as superradiant instability,
may also be important, depending on the frequency of the
orbiting stellar object. The description of perturbations of
hairy BHs with scalar field is still an open subject; to
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improve it one must go beyond weak field approximations—
the perturbations experience strong field regions and appro-
priate boundary conditions have to be set at the event
horizon. Therefore, and though the full description is beyond
the scope of this paper, we conjecture that orbital resonances
may play an important role in the angular momentum
transfer between the scalar field and the orbiting objects
in such systems.
The exchange of angular momentum between the stellar

object and the scalar field halo can also lead to floating
orbits, depending on the configuration of the system. Let
us, first, note that the EMRI binary formed by a BHSFS and
a stellar object incidentally loses angular momentum due
to the gravitational radiation emitted. For nonrelativistic
orbits, the energy and angular momentum flux can be
approximated using the quadrupole formalism [61].
Therefore, the angular momentum flux due to a stellar
object in a circular orbit at radius R is given by12

dL
dt

¼ −
32

5

η2ðMtotalÞ5=2
R7=2 ; ð77Þ

where Mtotal is the total mass of the configuration and η is
the reduced mass. Because the system is losing angular
momentum through gravitational waves, the orbit tends to
decrease in radius. However, according to the reasoning
exposed above, when the system is at the resonances
additional angular momentum can be provided to the star
[see Eqs. (75) and (76)]. If the angular momentum provided
is sufficient to compensate the lost by gravitational waves,
the net result is zero and the orbiting object remain with the
same angular momentum, even though the system as a
whole radiates. This characterizes essentially a floating
orbit [30,31,41,62]. Note that differently to what happens in
the standard picture—where the energy is provided by the
BH’s rotational energy—the energy in the BHSFS is
provided by the scalar field. It would be interesting to
see whether the order of magnitude between (75) and (77)
are the same, which favors the above picture. Nevertheless,
to achieve such picture, the BHSFS should have the exact
configuration such that (75) equals (77), which in turns
depends on the perturbations of the BHSFS.

IV. NONMINIMAL EFFECTS OF SCALAR
FIELDS ON ORBITAL MOTION

The stellar object orbiting the BHSFS may be subject to
other forces besides the standard gravitational one. Here we
comment on the possibility of having an additional scalar
force, assuming that the stellar matter has a nonminimal
coupling with the scalar field. Moreover, we comment on

the effects of the dynamical friction and accretion, using a
fluid approximation to describe it.

A. Scalar force

Assuming that the stellar matter is nonminimally
coupled with a scalar field, we have that there will be an
extra force, which shall depend on the coupling between
the scalar field and the stellar matter. A simple way to test
the implications of such force, is to assume that the
interaction action SI is such that the motion of the star
is described by [63–65]

S ¼ S0 þ SI ¼ −mp

Z
dτ þ q

Z
dτΦ; ð78Þ

where Φ is the (background) scalar field and q measures
the strength of the interaction. When q ¼ 0, the particle
follows a geodesic motion. Such kind of coupling may arise
in different contexts, such as dimensional reduction or a
frame transformation in the action. Using the above action,
we find the following equation of motion,

mpðτÞ
Dua

dτ
¼ qðgab þ uaubÞ∂bΦ; ð79Þ

where mpðτÞ≡m0 − qΦ is usually called dynamical mass
[63], andD=dτ≡ ua∇a. The above equation of motion can
also be obtained from the action [66]

S ¼
Z

d4xδ4ðx − zðτÞÞ
�
1

2
mpgabuaub þ qΦ

�
; ð80Þ

where zðτÞ represents the worldline of the particle. We shall
use the above setup to determine the features of a force due
to a background scalar field. This setup may suit the
description of stellar-size objects through clouds surround-
ing BHs [18,19,21], through dark matter mini-spikes
[67,68] or even through compact exotic objects formed
by scalar field, such as boson stars [7,9,46]. Note that the
above picture is fully relativistic.
Let us begin, for simplicity, neglecting the gravitational

interactions between the scalar field and the star. Therefore,
the star will feel the BH spacetime and the additional
scalar force will be weighted by the coupling parameter
q=mp. Assuming a dependence of the field as Φ ¼ ψðrÞ
cosðϕ − ωRtÞ, and considering a small q limit, all quantities
can be expanded around the geodesic quantities, just as
seen in previously in Sec. III. In this case, considering that
at zeroth order the particle is at a circular orbit and that the
corrections are small, we have that the motion can be
described as

t ¼ _t0τ þ t1ðτÞ; r ¼ Rþ r1ðτÞ; ϕ ¼ _ϕ0τ þ ϕ1ðτÞ;
ð81Þ

12Gravitational wave emission tends to circularize orbits, and
therefore it is sufficient for us to consider only circular orbits
here.
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where _t0 and _ϕ0 are constants obtained from solving the zeroth-order problem, and we have chosen that the motion initially
starts at tð0Þ ¼ 0 and ϕð0Þ ¼ 0. Using this solution, the equations for t1, ϕ1, and r1 and are given by

̈t1 −
qψ0ð_t0 _ϕ0ðR0 − 2MÞ þ _t20ωRð2M − R0Þ þ R0ωRÞ sin ½ð_t0ωR − _ϕ0Þτ�

m0ðR0 − 2MÞ þ 2M_r1_t0
R0

2 − 2MR0

¼ 0; ð82Þ

ϕ̈1 −
qψ0ðR0

2 _ϕ2
0 þ 1 − R0

2_t0ωR
_ϕ0Þ sin ½ð_t0ωR − _ϕ0Þτ�

m0R0
2

þ 2_r1 _ϕ0

R0

¼ 0; ð83Þ

̈r1 þ
qðR0 − 2MÞðψ0ðR0

3 _ϕ2
0 −M_t20Þ − R0

2∂rψ0Þ cos ½ð_t0ωR − _ϕ0Þτ�
m0R0

3
þ 2M_t1_t0ðR0 − 2MÞ

R0
3

þ _ϕ1ð4M _ϕ0 − 2R0
_ϕ0Þ þ r1

�
−
2M_t20ðR0 − 3MÞ

R0
4

− _ϕ2
0

�
¼ 0; ð84Þ

where we have defined ψ0 ≡ ψðR0Þ. The first two equa-
tions can be directly integrated and solved for _t1 and _ϕ1. We
then use the result into the radial equation, obtaining

̈r1 þ κ2r1 ¼ F ðR0Þ cos½ð _ϕ0 − ωR_t0Þτ�; ð85Þ

where κ is the usual epicyclical frequency, measured
according to the particle’s proper time, and

F ≡ −
2qψ0ðR0Ω0 −Mð2Ω0 þ ωRÞÞ

m0R2
0ðωR −Ω0Þ

−
q∂rψ0ðR0 − 2MÞ

m0R0

:

ð86Þ

Note that the above equation is very similar to Eq. (27).
This suggests that the same effects appearing in the
gravitational field due to a scalar field also appear when
the cloud itself interacts directly with the star. However,
note that the angular dependence of the gravitational
external force is twice the one of the scalar external force.

This enables longer banana orbits, which can be seen in the
interval 0 < ϕ < 2π, as illustrated in Fig. 12. The width of
the banana orbits also depends on the coupling q=mp.
Additionally, note that Eq. (85) is relativistic, unlike the
gravitational case we explored previously, and therefore it
is valid for any orbit; once again, one must be careful at
resonant configurations, mainly because the approxima-
tions given by Eq. (81) breaks down.

B. Gravitational drag and accretion

We can get a grasp into additional effects of the scalar
field by analyzing some known features of gravitating
objects moving through fluids. Here we briefly describe
two of them: accretion and dynamical friction. The
expressions are valid in the Newtonian regime.
Accretion causes the stellar object to increases its mass,

therefore changing its momentum. The accretion rate is
usually described by13

_m0 ¼ σρv; ð87Þ

where σ is the accretion cross section, that depends on the
nature of process, ρ the local density and v the relative
velocity between the fluid and the object. The simplest
accretion mode, suitable for our scenario, describes the
accretion of colisionless particles. For this case, the
accretion rate is [69–71]

_m0 ¼
πρRp

v
; ð88Þ

where Rp is the characteristic size of the stellar object. The
accretion into the moving star effectively creates a force in
the opposite direction to the velocity of the star.

–20 –10 0 10 20
0
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FIG. 12. Illustrative example of banana orbits considering only
the scalar force, obtained by solving the equation for a charged
scalar particle (79), in the Schwarzschild background and the
scalar field profile used in this paper. The plot is symmetric with
respect to the x axis.

13Note that we are using an expression for wind accretion,
which is reasonable because the characteristic size of the stellar
object is much smaller than the environment.
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Besides accretion, the interaction between the stellar
object and the wake left behind can be important.
Assuming that sound speed in the medium to be large
compared to the one of the stellar object, we can model the
gravitational friction as [46,72,73]

FDF ¼ −
4πm0ρ

v2

�
1

2
ln

�
1þ v=cs
1 − v=cs

�
− v=cs

�
v̂: ð89Þ

For the cases explored here, the velocity of the scalar
medium is very small. Also, the propagation of scalar
perturbations is in general very large compared with the
relative velocity v. Therefore, a good approximation for the
drag force is given by

FDF ≈ −
4π

3
m0ρ1v; ð90Þ

where we have used that cs ∼ 1.
We see that both accretion and dynamical friction create

a dragging force, in the opposite direction to the velocity
of the moving object. In order to see the influence of the
dragging forces into the motion of the scalar charge, we
artificially insert the expression of an external force −bv
into the relativistic equation of the motion, with b being a
dimensionful constant, suitably chosen to have a very
small scaled value. While this is not valid rigorously, it
may give a hint about the effects of accretion and
dynamical friction. The result can be seen in Fig. 13.
The effect of the dragging force is to shrink the size of
the banana orbit, which makes the particle approach the

stable Lagrangian point. We note that in the case we have
only a scalar force in a BHSFS, therefore neglecting the
gravitational force of the scalar field, there is only one
stable Lagrangian point located at the corotation radius
and ϕ ¼ π.

V. DISCUSSION AND FINAL REMARKS

The existence of new, ultralight fundamental fields are
an intriguing prospect: in the many orders of magnitude
ranging between the lightest known particle and the
cosmological horizon scale, new physics can hide. One
natural possibility is to populated this desert with light
fields. These fields could, in addition, explain dark matter,
the accelerated expansion of our Universe, or just work as a
toy model for more complex interactions.
A generic outcome of having massive bosons living

together with supermassive BHs, is the spin-down of the
BH and the growth of a bosonic, nonaxisymmetric
structure [22,28]. This bosonic structure may give rise
to measurable gravitational waves, or lead to such a low
BH-spin that it would be noticeable in a statistic sense
[28,29]. Our results are sensitive to the mass parameter μ,
which controls the scales at which the scalar field effects
play a role; systems with a different value of the coupling
Mμ will show a different phenomenology at different
scales. Indeed, a scalar field with mass μ will produce
effects whose scales will ultimately depend on the central
mass M. Fortunately, BHs come in a wide mass-range:
from stellar-mass BHs to 106 M⊙ in the center of
Milky Way [74], and to 1010M⊙ solar masses in the
center of the galaxy NGC 4889 [75]. Thus, one has, in
principle, scalars with a mass scale differing by several
orders of magnitude may give rise to similar effects, albeit
around BHs of different masses.
What we have shown here is that there is a direct

imprint of bosonic structures in the orbit of tightly-bound
stars. The asymmetric bosonic structure leads to periodic
forcing of nearby stars, which triggers resonances or
anomalous precession effects. Overall, the bosonic struc-
ture may cause the BH–star-populated-vicinity to behave
like large-scale galactic structure. A mapping of the star
content close to supermassive BHs may reveal the
presence of such structures; in the meanwhile, an exten-
sion of all our results to the relativistic regime is clearly
necessary.
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APPENDIX A: WEAK-FIELD ANALYSIS

In the limit of small mass-coupling parameter, Mμ ≪ 1,
the peak of the scalar field profile is localized far from
the BH, which enables the use of a flat background in its
analysis (see [22,42]). The gravitational effect of the
presence of the scalar field is obtained by studying the
linear response of the metric to its stress-energy tensor. We
shall follow the approach presented in [76]. We consider
that the spacetime metric is written as

gμν ¼ ημν þ hμν; ðA1Þ

and that, to linear order, the interaction between the scalar
field and the metric is governed by the action

S ¼
Z

d4x

�
1

2κ2
hμνEμν;ρσhρσ þ

1

2
hμνTμν

�
; ðA2Þ

where κ≡ ð32πÞ1=2, Eμν;ρσ is the Lichnerowicz operator
and

Tμν ¼
1

2
½Φ�

;μΦ;ν þΦ�
;νΦ;μ − ημνðηρσΦ�

;ρΦ;σ þ μ2jΦj2Þ�
ðA3Þ

is the stress-energy tensor of the scalar field. Notice that
the to raise and lower indices we use the background
Minkowski metric. To obtain the equations of motion
for the metric components, it is useful to perform the

scalar-vector-tensor decomposition14 of both the perturba-
tion tensor hμν

h00 ¼ 2ψ ; ðA4Þ

h0i ¼ βi þ ∂iγ; ðA5Þ

hij ¼ −2ϕδij þ
�
∂i∂j −

1

3
δij∇2

�
λ

þ 1

2
ð∂iϵj þ ∂jϵiÞ þ hTTij ; ðA6Þ

and the stress-energy tensor

T00 ¼ ρ; ðA7Þ

T0i ¼ Si þ ∂iS; ðA8Þ

Tij ¼ Pδij þ
�
∂i∂j −

1

3
δij∇2

�
σ þ 1

2
ð∂iσj þ ∂jσiÞ þ σij;

ðA9Þ

where ∇2 is the flat space Laplacian, ψ , ϕ, γ, λ are scalars
under spatial rotations, βi and ϵi are transverse vector
fields and hTTij is a transverse traceless 3 × 3 tensor; the
components of the stress-energy tensor have, mutatis
mutandis, the same meaning as their metric counterparts.
Additionally, the decomposed components satisfy

∂iβ
i ¼ 0; ∂iϵ

i ¼ 0; ∂jhTTij ¼ 0; δijhTTij ¼ 0;

ðA10Þ

for the metric ones, and similarly for the stress-energy
tensor ones. This decomposition is unique as long as

14A symmetric 4 × 4 spacetime tensor Aμν in a constant
curvature background manifold can be decomposed into scalar,
vector and tensor independent parts. This is the statement of the
scalar-vector-tensor decomposition. This decomposition is related
to the way each component transforms under the group of rotations
of the background. Given that A00 has no spatial indices, it is a
scalar; A0i ¼ Ai0 has one spatial index, so it is a vector; finally,
Aij ¼ Aji is a spatial tensor. The decomposition is not complete
since it is possible to decompose both the vector A0i and the tensor
Aij in scalar, vector and tensor components. This second part of the
decomposition is made by observing that the symmetry of the
spatial part of the background manifold allows the expansion of
vectors and symmetric tensors in terms of solutions of the
Helmholtz equation (see, for instance, [61,77–80]). This is
achieved by projecting each object in the basis elements of the
space of solutions of the Helmholtz equation [80,81]. Conse-
quently, an arbitrary vector is broken into a scalar and a transverse
vector (a rendition of the original Helmholtz theorem); an arbitrary
symmetric tensor is decomposed into two scalars, one transverse
vector and a transverse traceless tensor [61,81].
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boundary conditions guaranteeing asymptotical flatness are
satisfied [76].
Of the ten degrees of freedom of the metric, only six of

them are gauge invariant. These degrees of freedom are
constructed from the decomposed components of the
metric in Eqs. (A4)–(A6) and constitute a particular case
of the more general Bardeen variables [79]

~Φ ¼ −ϕ −
1

6
∇2λ; ðA11Þ

~Ψ ¼ ψ − _γ þ 1

2
̈λ; ðA12Þ

Ξi ¼ βi −
1

2
_ϵi: ðA13Þ

~Φ and ~Ψ account for two degrees of freedom, Ξ, which is
subjected to the condition ∂iΞi ¼ 0, carries two degrees of
freedom and the remaining two are carried by hTTij which,
by construction, is gauge invariant. Writing the linearized
action (A2) in terms of the gauge-independent variables
and the decomposed components of the stress energy
tensor, one arrives at the equations of motion

∇2 ~Φ ¼ −4πρ; ðA14Þ

∇2 ~Ψ ¼ −4πðρþ 3P − 3_SÞ; ðA15Þ

∇2Ξi ¼ −16πSi; ðA16Þ

□hTTij ¼ −16πσij; ðA17Þ

where □ ¼ ημν∂μ∂ν. This means that, at linear order, the
different components of the metric decouple, which allows
one to treat them independently. In what follows, we shall
focus on the scalar components of the metric.

1. Gauge choice

As it was mentioned previously, of the ten degrees of
freedom carried by the metric, four of them are nonphysical
because they are related with the gauge freedom of the
theory. So far, we have followed a gauge independent
analysis of the equations in order to focus solely on the
physically relevant, gauge independent, quantities. This is
not the only way of avoiding the gauge dependent
quantities in the calculations: one can also fix a gauge;
i.e., one can impose conditions on the variables of the
problem in order to remove the nonphysical degrees of
freedom. The Newtonian or longitudinal gauge [82] is
defined by imposing the conditions,

βi ¼ 0; γ ¼ 0; λ ¼ 0; ϵi ¼ 0; hTTij ¼ 0;

ðA18Þ

which means that not only the four gauge degrees of
freedom are being turned off, but also four physical degrees
of freedom are being explicitly discarded. Hence, given
that we are not interested in these degrees of freedom,
this metric is ideal for what follows, since it only conveys
the scalar metric perturbations15 In this gauge, the line
element is

ds2 ¼ −ð1 − 2ψÞ þ ð1 − 2ϕÞδijdxidxj; ðA19Þ

where it was made the identification between the scalar
components ϕ and ψ of Eqs. (A4) and (A6) and the gauge
invariant scalars ~Φ and ~Ψ of Eqs. (A11) and (A12) given
that in this gauge they are equal [78,82]. Moreover, the
equations of motion governing the scalar potentials ϕ and ψ
are equal [82] to the ones governing ~Φ and ~Ψ, completing
the identification.

2. Particle motion in a weak gravitational field

The Lagrangian that describes the movement of a free
particle is given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνdxμdxν

q
ðA20Þ

which is written, in the Newtonian gauge and up to first
order in the scalar potentials, as [83]

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p �
1 −

ψ − ϕv2

1 − v2

�
; ðA21Þ

where v2 ¼ _xi _xjδij is the coordinate velocity of the particle
measured by a particular observer that sits far enough from
the central BH. To write the Euler Lagrange equations,
we need

∂L
∂ _xi ¼

_xiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
�
−1þ 2ϕ −

ψ − ϕv2

1 − v2

�
; ðA22Þ

and

∂L
∂xi ¼

−1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ð∂iψ − ð∂iϕÞv2Þ: ðA23Þ

To obtain these expressions we considered that we are in a
weak field limit, keeping only the first-order terms in the
potentials. On top of this, we shall consider that the particle
is nonrelativistic and that the time derivatives of the
potentials are very small, i.e. that a quasistatic limit applies.
Taking this into account, all the terms proportional to the
velocity v can be ignored, as well as the terms _xiϕ and _xiψ .
Finally, the equation of motion for a free, nonrelativistic
particle in a a quasistatic, weak field limit is given by

15Other works have employed this gauge—see [43,44]
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d
dt

�∂L
∂ _xi
�

¼ ∂L
∂xi ⇒ ẍi ¼ ∂iψ ðA24Þ

and we have the identification of the scalar potential ψ with
the Newtonian potential due to the presence of the scalar
field, indicated as Ψ1 in Eq, (8).
Following the previous considerations, we shall study

the influence of the scalar field in the movement of a
point particle through the use of a Newtonian gravitational
potential Ψ1 obtained from the equation

∇2Ψ1 ¼ −4πðρþ 3P − 3_SÞ ðA25Þ

where ρ, P and S are given in Eqs. (A7), (A8) and (A9).

APPENDIX B: GRAVITATIONAL FIELD
OF THE SCALAR CLOUD

1. Harmonic expansion

We obtain the expression for the potential Ψ1ðt; r;ϕ; θÞ
by employing a method of decomposition of the compo-
nents of the function in terms of spherical harmonics
Ylmðθ;ϕÞ. We follow chapter 1 of Ref. [84]. We consider
that, being a solution of the Poisson’s equation, Ψ1 has an
expansion of the form

Ψ1 ¼
X
lm

4π

2lþ 1

�
qlmðt; rÞ

Ylmðθ;ϕÞ
rlþ1

þ plmðt; rÞrlYlmðθ;ϕÞ
�

ðB1Þ

with

qlmðt; rÞ ¼
Z

r

0

sl ~ρlmðt; sÞs2ds ðB2Þ

plmðt; rÞ ¼
Z

∞

r

~ρlmðt; sÞ
slþ1

s2ds ðB3Þ

and

~ρlmðt; rÞ ¼
Z

~ρðt; r; θ;ϕÞY�
lmðθ;ϕÞdΩ; ðB4Þ

where ~ρ is the source of the potential; in this case the source
of the potential is ~ρ ¼ ðρþ 3P − 3_SÞ [see Eqs. (A7), (A8)
and (A9)].
All the nonzero terms of the expansion of Eq. (B1) exist

up to l ¼ 2 such that the potential can be written as

Ψ1¼P1ðrÞþP2ðrÞcos2ðθÞþP3ðrÞsin2ðθÞcosð2ðϕ−ωRtÞÞ;
ðB5Þ

where

P1ðrÞ ¼
A2
0πe

−Mrμ2

2M5r3μ8
ð−192 − 192Mrμ2 þ 2M6r4μ10 þM7r5μ12 − 4M5r3μ8ð−3þ r2μ2Þ − 24M4r2μ6ð−1þ r2μ2Þ

þM2ð16μ2 − 160r2μ4Þ þM3ð16rμ4 − 80r3μ6Þ − 16eMrμ2ð−12þM4r2μ6 þM2ðμ2 − 4r2μ4ÞÞÞ; ðB6Þ

P2ðrÞ ¼
A2
0πe

−Mrμ2

2M5r3μ8
ð576þ 576Mrμ2 − 2M6r4μ10 −M7r5μ12 þ 48eMrμ2ð−12þM2μ2Þ þ 4M5r3μ8ð−2þ r2μ2Þ

þ 24M4r2μ6ð−1þ r2μ2Þ þ 48M2μ2ð−1þ 6r2μ2Þ −M3ð48rμ4 − 96r3μ6ÞÞ; ðB7Þ

P3ðrÞ ¼
A2
0πe

−Mrμ2

2M5r3μ8
ð−3456 − 3456Mrμ2 − 2M6r4μ10 −M7r5μ12 þ 48eMrμ2ð72þM2μ2Þ − 8M5r3μ8ð1þ 3r2μ2Þ

− 48M2ðμ2 þ 36r2μ4Þ − 48M3ðrμ4 þ 12r3μ6Þ − 24M4ðr2μ6 þ 6r4μ8ÞÞ: ðB8Þ

In the main text, the focus is on the potential in the
equatorial plane, θ ¼ π=2, which is written as

Ψ1 ¼ P1ðrÞ þ P3ðrÞ cosð2ðϕ − ωRtÞÞ: ðB9Þ

2. The Lagrangian points

A general potential Ψ ¼ Ψðr;ϕÞ produces a motion
governed by equations on a plane ðr;ϕÞ rotating with
angular velocity Ωp given by
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̈r − rð _ϕþ ΩpÞ2 þ
∂Ψ
∂r ¼ 0 ðB10Þ

d
dt

ðr2ð _ϕþΩpÞÞ þ
∂Ψ
∂ϕ ¼ 0: ðB11Þ

The Lagrangian points are the points where the forces
acting on the orbiting particle cancel exactly. To uncover
those locations, one forces the equations of motion to
describe a particle at rest in this frame, i.e. _r ¼ ̈r ¼ ϕ̈ ¼
_ϕ ¼ 0, which amounts to

∂Ψ
∂r ¼ rΩ2

p; ðB12Þ

∂Ψ
∂ϕ ¼ 0: ðB13Þ

Applying this reasoning to the total potential in Eq. (12),
Ψ ¼ Ψ0 þ Ψ1, one can see from Eq. (B13) that the
Lagrangian points are located at ϕ ¼ 0; π=2; π; 3π=2;…
since

∂Ψ
∂ϕ ¼ 0 ⇔ sinð2ϕÞ ¼ 0 ⇔ ϕ ¼ 0; π=2; π; 3π=2;…

ðB14Þ

Substituting these values in Eq. (B12), we obtain that the
radial position of the Lagrangian points satisfies

∂Ψ0

∂r þ ∂P1

∂r � ∂P3

∂r ¼ rΩ2
p; ðB15Þ

where � refers to the unstable (ϕ ¼ π=2;…) or stable
points (ϕ ¼ 0;…), respectively. Considering that the
derivatives of both P1 and P3 are negligible, which is a
safe assumption in general (see Sec. III A 1), we obtain that
the radial location of the Lagrangian points is given by

1

r
dΨ0

dr
−Ω2

p ¼ 0 ⇔ ΩðrÞ2 −Ω2
p ¼ 0; ðB16Þ

which means that these points are located in a circle with
radius given by the radius of the Keplerian circular orbit
with angular velocity equal to Ωp. Given that this is the
velocity at which the reference frame is rotating, this is
called the corotation radius.

APPENDIX C: ANALYTICAL EXPRESSION FOR
THE PERTURBATION TO THE CIRCULAR

ORBIT AT COROTATION

In this appendix, we present some details regarding the
analytical solution for the perturbations to the circular orbit
at corotation. The equations of motion (58) and (59) can be
written as

dX
dt

¼ ÂX þ B; ðC1Þ

in which

XT ¼ ðr1;ϕ1; R1;Φ1Þ; ðC2Þ

with R1 ¼ _r1, Φ1 ¼ _ϕ1,

Â ¼

0
BBBBB@

0 0 1 0

0 0 0 1

−ðΨ00
0 − ω2

RÞ −2P0
3 sinð2ϕiÞ 0 2ωRRc

0 4P3

R2
C
cosð2ϕiÞ − 2ωR

RC
0

1
CCCCCA;

ðC3Þ

and

BT ¼
�
0; 0;−CðRCÞ − P0

3 cosð2ϕiÞ;
2P3

R2
C
sinð2ϕiÞ

�
:

ðC4Þ

The solution, obtained from standard methods, has the form

X ¼ Xh þ Xp; ðC5Þ

in which

Xh ¼
X4
i¼1

ciVi expðλitÞ; ðC6Þ

with ci, Vi, λi being constants of integration, eigenvectors
and eigenvalues of Â, respectively, and Xp is a constant
vector.
The general form of the solutions will depend on

Lagrangian point around which the analysis is being made.
We observe that independently of the Lagrangian point, it is
verified that λ2 ¼ −λ1 and λ4 ¼ −λ3. For stable Lagrangian
points (ϕi ¼ 0; π) all the eigenvalues λi are purely imagi-
nary, which implies that the solution is given by

r1ðtÞ ¼ C1 cosðImðλ1ÞtÞ þ C2 cosðImðλ3ÞtÞ; ðC7Þ

ϕ1ðtÞ ¼ C3 sinðImðλ1ÞtÞ þ C4 sinðImðλ3ÞtÞ; ðC8Þ

where the constants Ci are determined in terms of ci,
Vi and the vector Xp. For unstable Lagrangian points
(ϕi ¼ π=2; 3π=2), two of the eigenvalues are real and two
are imaginary; the solution is

r1ðtÞ ¼ ~C1 cosðImðλ1ÞtÞ þ ~C2ðe−λ3t þ eλ3tÞ; ðC9Þ

ϕ1ðtÞ ¼ ~C3 sinðImðλ1ÞtÞ þ ~C4ðe−λ3t − eλ3tÞ; ðC10Þ
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where it was assumed that λ1, λ2 are imaginary and λ3,
λ4 are real and the constants ~Ci depend on ci, Vi, Xp.
The two solutions have different limits of validity.
Around the stable Lagrange points the solution is valid
for all times t. On the other hand, around

ϕi ¼ π=2; 3π=2, the unstable points, the solution is
valid in a limited range of the time coordinate: the
presence of the exponential terms force the values of r1
and ϕ1 out of the smallness assumption in which rests
the validity of the solution.
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