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The growth of a massive black hole will steepen the cold dark matter density at the center of a galaxy into
a dense spike, enhancing the prospects for indirect detection. We study the impact of black hole spin on the
density profile using the exact Kerr geometry of the black whole in a fully relativistic adiabatic growth
framework. We find that, despite the transfer of angular momentum from the hole to the halo, rotation
increases significantly the dark matter density close to the black hole. The gravitational effects are still
dominated by the black hole within its influence radius, but the larger dark matter annihilation fluxes might
be relevant for indirect detection estimates.
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I. INTRODUCTION

The central regions of galaxies and clusters of galaxies
are a prime target for searches for indirect signals of
annihilations or decays of dark matter (DM) particles.
Arguably, the brightest DM source in the sky is the center
of our Galaxy because of its close proximity and potentially
large concentration of DM. Although the precise DM
distribution is not well constrained by observations, mea-
surements of the stellar rotation curve provide robust
evidence for its presence in the innermost sector of our
Galaxy [1]. Dissipationless DM-only simulations of halos
with masses ranging from dwarf galaxies to rich clusters
suggest that its density follows a near-universal cusped
profile [2], which would enhance fluxes of high-energy
radiation originated by DM reactions. Baryonic effects
could modify the inner shape of the DM density profile,
either steepening the profile via adiabatic contraction [3,4]
or softening the cusp into a core through repeated and
violent oscillations in the central potential due to energy
injection from active galactic nuclei or supernovæ [5–8].
Although neither hydrodynamic simulations (see e.g. [9]
for a review) nor dynamical constraints [10,11] can
determine the exact DM brightness of the Galactic
Center, several intriguing observations of possible signals
have fuelled a sustained interest in understanding the DM
distribution in the central regions of the Galaxy and of large
scale structures in general [12–18].
In addition, there is strong evidence that the Galaxy

harbors a massive black hole (MBH ≳ 4 × 106 M⊙) at the
center (see e.g. [19] for a review), which could lead to a
significant increase of the DM density in its neighborhood.
As the black hole grows and pulls in more dark matter, the
density distribution becomes steeper. A Newtonian analysis
with an ad hoc treatment of particle capture by the hole
showed that a spike in the dark-matter density is created,

which causes a significant boost in the DM annihilation
fluxes [20].
A fully relativistic calculation for the case of a spherical

hole was completed in [21] (hereafter referred to as SFW),
concluding that the Newtonian framework underestimates
the dark matter density very close to the black hole: the
spike reaches significantly higher densities, and it extends
closer to the event horizon. Using the Schwarzschild
geometry, SFW found a closed form for the boundary of
the region in phase space containing bound orbits that do
not cross the event horizon, and consistently took particle
capture by the black hole into account.
On the other hand, a typical black hole is expected to be

rotating rather fast. The spin of a super-massive hole depends
on whether it gained most of its mass via mergers or
accretion. BHs that grow mostly through disk accretion,
adding material with constant angular momentum axis, end
up spinning rapidly [22]. Although the outcome of an
individual merger event depends on the initial spin align-
ment, for BHs that grow through repeatedmergers we expect
a distribution of spins that peaks at ~a ∼ 0.7, where a is
the Kerr parameter related to the angular momentum J by
a≡ J=m [23–25] and ~a≡ a=Gm is the associated dimen-
sionless quantity (we use units in which the speed of light
c ¼ 1).MillimeterVLBIobservations ofSgrA* [26,27], and
the analysis of Quasi-Periodic Oscillations of hot plasma
spots in the surrounding orbiting material [28] suggest a
value of ~a ∼ 0.65 for the spin of the super-massive black hole
in the Galactic Center, which obtains its angular momentum
through accretion of tidally disrupted stars and gas clouds
with randomly oriented angular momenta.
As pointed out in SFW, even if the initial DM distribu-

tion is spherically symmetric, the dragging of inertial
frames induced by the rotation of the black hole could
create a flux of DM in the azimuthal direction proportional
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to the Kerr parameter a. Numerical investigations of dark
matter geodesics around a preexisting hole have found
interesting features in the annihilation spectrum [29]. We
here study the modifications in the DM spike that ensue
from the rotation of the black hole by extending the
calculation in SFW to the Kerr geometry.
The main difficulty in performing this calculation for a

spinning black hole is that, in general, no analytic expres-
sion is known for the critical Carter constant that separates
orbits that plunge into the event horizon from those that do
not. We circumvent this difficulty by using a brute-force
determination of orbit “stability” from its turning points.
We were able to find a closed form of the phase-space
boundary for the subset of orbits that are contained in the
equatorial plane, and we check our numerical calculations
in this particular case.
Themain effectwe observe is a further enhancement of the

density profile in its innermost region, at around 5 times the
gravitational radius Gm of the black hole. Our results are
obtained from an initially symmetric dark matter distribution
and can be understood as coming from the preferential
binding of corotating orbits to the black hole. These particles
“feel” a deeper potential well than the Schwarzschild case
and are thus pulled closer to the hole, in what turns out to be
the dominant effect over the preferential capture of counter-
rotating particles by the black hole itself.
The increase obtained is more pronounced in the

equatorial plane and is more relevant for high black hole
spins. When ~a ¼ 0.8, we obtain a peak density that is
around 70% higher than the spherical case for DM that
initially follows a Hernquist profile, as shown in Fig. 10.
For a near-extreme black hole, the density just outside the
ergosphere is more than an order of magnitude greater than
the peak density obtained in the Schwarzschild case.
We choose the Hernquist profile as a proxy for a cuspy

dark matter distribution as suggested by dark matter only
N-body simulations, which do not include the baryonic
component of the Universe. As suggested by hydrodynam-
ical simulations [8,30–33], baryons could play an important
role in determining the shape of the halo, possibly leading
to the formation of a core. The results in Fig. 7 for the
constant distribution provide a good description in this
case, and show a 20% peak density increase in the
equatorial plane for ~a ¼ 0.8 compared to Schwarzschild.
Let us stress that we are assuming that the growth of the

black hole is adiabatic, but several dynamical effects could
affect our conclusions. For instance, if the black hole spirals
from an initially off-center location [34], if significant
merger events occur [35], or if gravitational scattering off
stars heats the dark matter [36–38], the density inside the
spike could be considerably lower. Recent observations for
the case of Sgr A* show that the density of old stars is flat
[39,40], or even decreasing towards the Galactic Center,
which implies heating timescales well above 10 Gyr.
However, it has been pointed out that this result only

holds for a small fraction of bright stars and the evidence
for the existence of a central cusp in the vicinity of the
Milky Way’s central black hole is at present inconclusive
(see e.g. [41] for a recent review). In addition, as discussed
below, the effects of dark matter annihilations could deplete
and weaken the density profile [42,43]. Although these
effects are important, our main purpose is to understand the
general relativistic effects due to the rotation of the black
hole, extending the nonrelativistic treatment in [20] and the
relativistic static calculation in SFW.
On the other hand, it is important to note that observables

such as fluxes depend on integrals of the density profile,
and the region where the enhancement occurs has a very
small volume. Thus, the impact of the enhancement on
integrated effects will be small, but should still be taken
into account in model building [14,44,45]. Moreover, a
significant number of super-massive black holes in Active
Galactic Nuclei are known to be rapidly spinning [46],
which could potentially enhance their contribution to the
isotropic gamma-ray background [47].
The rest of this paper provides the details supporting

these conclusions. In Sec. II we describe the phase space
available to bound orbits around a Kerr black hole. In
Sec. III we obtain the DM density profile resulting from an
initially constant phase-space distribution, and in Sec. IV
we obtain the profile from an initally cuspy Hernquist
distribution. Section V discusses the implications of these
DM distributions for the gravitational environment around
the black hole and for the fluxes of radiation from the DM
spike. Concluding remarks are presented in Sec. VI.

II. BLACK HOLE GROWTH IN A DARK
MATTER HALO

We begin by reviewing the analysis of how the adiabatic
growth of a black hole modifies the density and velocity
dispersions within a preexisting dark matter halo. We follow
the general relativistic approach in SFW, which extended the
Newtonian treatment in [48–50] (see also [51]).
Our starting point is the relativistic phase space distri-

bution fð4Þðx; pÞ describing a system of dark matter
particles of rest mass μ [52–54], normalized so that when
integrated over phase space it gives the total mass of the
halo. The mass current four-vector can be written in terms
of the distribution function as

JμðxÞ ¼
Z

fð4Þðx; pÞuμ ffiffiffiffiffiffi
−g

p
d4p; ð1Þ

where uμ ¼ pμ=μ is the four-velocity, and g≡ detðgμνðxÞÞ
is the determinant of the metric.1 Knowledge of the mass

1Note that we use contravariant components dpμ to define the
volume element in momentum space, but the same results can be
obtained by taking covariant components pμ as the argument of
the distribution function.
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current four-vector will allow us to find the dark matter
density: from the definition Jμ ¼ ρuμ and the fact that
uμuμ ¼ −1, we obtain the mass density as measured in a
local freely falling frame as ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−JμJμ
p

.
To calculate Jμ we need to know the distribution function

fð4Þðx; pÞ and the boundary of integration over momentum
space. Both tasks are greatly simplified if instead of pμ we
use invariant constants of the motion to write down the
distribution function and the volume element. We review
below this change of variables for the case of a Kerr black
hole background following the discussion in SFW.
We use Boyer-Lindquist coordinates to express the Kerr

line element for a hole of mass m (with c ¼ 1):

ds2 ¼ −
�
1 −

2Gmr
Σ2

�
dt2 þ Σ2

Δ
dr2

þ Σ2dθ2 −
4Gmar
Σ2

sin2θdϕdt

þ
�
r2 þ a2 þ 2Gmra2sin2θ

Σ2

�
sin2θdϕ2; ð2Þ

where a is the Kerr parameter defined above, and
we have introduced the functions Δ¼r2þa2−2Gmr and
Σ2¼r2þa2cos2θ.
The orbits of dark matter particles of rest mass μ in this

geometry admit four constants of the motion: the energy
per unit mass, E, and angular momentum per unit mass, Lz,
that are conserved because the metric is stationary and
axisymmetric; the mass-shell condition; and the so-called
Carter constant per unit ðmassÞ2, C [55]:

E ≡ −ut ¼ −gttut − gtϕuϕ;

Lz ≡ uϕ ¼ gϕϕuϕ þ gtϕut;

μ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−pμpμ

p
;

C≡ Σ4ðuθÞ2 þ L2
z

sin2θ
þ a2cos2θð1 − E2Þ: ð3Þ

We use a definition of the Carter constant that, in the
spherically symmetric Schwarzschild limit (a → 0),
reduces to the square of the conserved total angular
momentum per unit mass, L: C → L2 ¼ u2θ þ u2ϕ=sin

2θ.
Given these definitions and using pμ ¼ μuμ, we calcu-

late the (inverse) Jacobian

J ¼
���� ∂ðE; C; Lz; μÞ
∂ðpt; pr; pθ; pϕÞ

���� ¼ 2Σ4Δjurjjuθjsin2θ
μ3

: ð4Þ

The last step is to write the necessary four-velocity
components appearing in the Jacobian in terms of the
constants of the motion. These are

uθ ¼ � 1

Σ2

ffiffiffiffiffiffiffiffiffiffi
UðθÞ

p
ur ¼ � r2

Δ
ffiffiffiffiffiffiffiffiffiffi
VðrÞ

p
; ð5Þ

where

UðθÞ≡ C −
L2
z

sin2θ
− a2ð1 − E2Þcos2θ; ð6Þ

and

VðrÞ≡
�
1þ a2

r2
þ 2Gma2

r3

�
E2 −

Δ
r2

�
1þ C

r2

�

þ a2L2
z

r4
−
4GmaELz

r3
: ð7Þ

The presence of the� signs in Eq. (5) implies that the r and
θ components of the current Jμ vanish, as they come with
an absolute value in the Jacobian and we must integrate
over both positive and negative values of ur and uθ in
Eq. (1), since they are equally likely to be positive or
negative for a given set of values for E, C and Lz. For the
other two components, we must put in an extra factor of 4
to allow for the integration over the positive and negative
values of both four-velocity components. Note that, as
pointed out in SFW, Jϕ will not vanish even for spherically
symmetric dark matter distributions, fðE; CÞ, since the last
term in Eq. (7) is linear in Lz. This effect, related to the
dragging of inertial frames caused by the rotation of
the black hole, will influence the dark matter spike around
the black hole as we further elaborate below.
Concerning the distribution function,we are assuming that

all of the darkmatter particles have the samemass μ. Thenwe
are allowed to write fð4Þðx; pÞ ¼ μ0−3fðE; C; LzÞδðμ0 − μÞ,
which will allow us to perform the integration over dμ0.
Putting everything together, we can write the nonzero

components of the mass current four-vector as

Jtðr; θÞ ¼
−2

r2 sin θ

Z
dEdCdLz

EfðE; C; LzÞffiffiffiffiffiffiffiffiffiffi
VðrÞp ffiffiffiffiffiffiffiffiffiffi

UðθÞp ; ð8aÞ

Jϕðr; θÞ ¼
2

r2 sin θ

Z
dEdCdLz

LzfðE; C; LzÞffiffiffiffiffiffiffiffiffiffi
VðrÞp ffiffiffiffiffiffiffiffiffiffi

UðθÞp ; ð8bÞ

where we used ut ¼ −E and uϕ ¼ Lz to show the covariant
components.
Introducing Ω≡ Jϕ=Jt, the density in the rest frame of

the distribution, ρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνJμJν

p
, reads2:

2We correct a typo in Eq. (3.11) in SFW.
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ρ ¼ jJtj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gϕϕ − 2gtϕΩþ gttΩ2

Δsin2θ

s
: ð9Þ

To actually evaluate Eq. (8), we still need to specify the
shape of the integration region over E, C and Lz, as well as
the distribution of the trajectories of dark matter particles
fðE; C; LzÞ. The first task is quite involved and is one of the
main results of this work. We give several general consid-
erations here that are further developed in the following
sections.

A. Region of integration in E-C-Lz space

If we consider only the contribution of bound particles to
the density, there are three constraints we must apply to our
phase space: the energy E is bounded above by 1, and we
must also have VðrÞ ≥ 0 and UðθÞ ≥ 0. Also, as pointed
out in previous work [20,21], we must remove orbits that
plunge into the black hole. For the case of a Schwarzschild
black hole, this capture condition can be worked out
analytically. The criterion obtained in SFW is that, given
an energy, there is a critical value of the angular momentum
Lcrit below which all orbits are captured.
For the Kerr metric, no such constraint has been derived.

For given values of the conserved quantities (E, C, Lz), we
now have in general two sets of “bound orbits”: one orbit
with two turning points beyond the horizon, and one with a
subhorizon turning point [56]. These can be seen extending
through the shaded regions in Fig. 1, which shows the
effective potential Veff ≡ −VðrÞ. In between the two
shaded regions corresponding to the two orbits, the
effective potential has a maximum at runst.
We can thus exclude the plunge orbits on a case by case

basis using the following criteria:
(i) The value of r at which we are evaluating the current

must be to the right of the unstable orbit runst.

(ii) The point runst must also be in the forbidden
region, VeffðrunstÞ ¼ −VðrunstÞ > 0, so that there is a
potential barrier between the orbit of interest and the
horizon. This will ensure that the orbit does not cross
the horizon and become trapped.

In this way we exclude all plunge orbits and all unphysical
orbits with a subhorizon turning point, as illustrated in
Fig. 2. Unfortunately, it is not possible in general to find
analytic expressions of the region in ðE; C; LzÞ–space
where these two criteria are met, so our code implements
the capture condition numerically. Nevertheless, useful
insight can be gained by focusing on a subset of the orbits.
The case of nonrelativistic particles with E ≈ 1 was studied
by Will [57], who found an approximate analytic expres-
sion for the critical value of C. We consider in Sec. III A all
bound orbits that are contained in the equatorial plane. In
this case Lz ¼ � ffiffiffiffi

C
p

, which makes the problem tractable
and also provides a useful check of the full numerical
calculation.

B. Adiabatic approximation

Now that the available phase space has been determined,
at least implicitly, we turn to fðE; C; LzÞ. Our starting point
is a known initial nonrelativistic dark matter distribution
without a central black hole, f0ðE;L2; LzÞ. For simplicity,
we will assume our initial distribution to be spherically
symmetric, generating a potential ΦðrÞ.
As reviewed in appendix A, the adiabatic growth of the

black hole preserves the form of the distribution function,
fðE; C; LzÞ ¼ f0ðE;L2; L0

zÞ. Here, E, L2 and L0
z are

obtained from the Kerr constants of the motion by noting
that each particle responds to the slow change in the
gravitational potential by altering its energy E and angular
momentum L and Lz, in such a way that the action variables
Ir, Iθ and Iϕ are kept fixed [48,58].

FIG. 1. A plot of Veff ≡ −VðrÞ vs r=Gm for a Kerr black hole
with ~a ¼ 0.75, E ¼ 0.97, C ¼ 12ðGmÞ2, and Lz ¼ 2Gm. This is
equivalent to the usual effective potential of classical mechanics.
The two “bound orbits” are clearly seen ranging along the shaded
regions. The bottom of the leftmost peak is not shown, as it is
much lower than the normal bound orbit.

FIG. 2. A plot of VeffðrÞ vs r=Gm with fixed E, Lz. Varying the
Carter constant separates bound and plunge orbits. The solid blue
line depicts the same orbit shown in Fig. 1. Decreasing C we
reach the dashed magenta line showing the critical orbit with
C ¼ Ccrit, which is equal to Ccrit ¼ 10.3ðGmÞ2 in this case. For
smaller C the orbits plunge into the hole, as depicted by the
dot-dashed red line with C ¼ 9ðGmÞ2.
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For an orbit in the initial nonrelativistic dark matter
distribution, these are

I0rðE;LÞ≡
I

dr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E − 2Φ − L2=r2

q
;

I0θðL;L0
zÞ≡

I
dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 −

L0
z
2

sin2 θ

s
¼ 2πðL − jL0

zjÞ;

Iϕ0ðL0
zÞ≡

I
dϕL0

z ¼ 2πL0
z: ð10Þ

For a bound orbit in the Kerr geometry,

IrðE; C; LzÞ≡
I

urdr ¼
I

dr

ffiffiffiffiffiffiffiffiffiffi
VðrÞp

1þ a2

r2 −
2Gm
r

;

IθðE; C; LzÞ≡
I

uθdθ ¼
I

dθ
ffiffiffiffiffiffiffiffiffiffi
UðθÞ

p
;

IϕðLzÞ≡
I

uϕdϕ ¼ 2πLz: ð11Þ

The equality Iϕ ¼ I0ϕ implies L0
z ¼ Lz. The conservation

of this component of the angular momentum should be
expected as both the initial and the final states have axial
symmetry.
Given a set (E, C, Lz) for a Kerr orbit, together with

Lz ¼ L0
z, we can determine L via

L ¼ jL0
zj þ

IθðE; C; LzÞ
2π

:

Given this value of L, we can obtain E by equating the
radial actions. Since the radial integral in (10) cannot in
general be solved analytically, we find the energy E using
the bisection method.

III. DENSITY PROFILE FOR A CONSTANT
DISTRIBUTION FUNCTION

The simplest possible example that can be considered is
that of a constant distribution function. Although somewhat
unrealistic, it can be seen as a toy model for describing the
stars close to a black hole forming in the core of an
approximately isothermal system. This case does not
require any adiabatic matching, but is still useful for
building intuition, as the current-density will be directly
related to the total phase space volume.

A. Restriction to equatorial orbits

We first consider the subset of particles following planar
orbits, which are only possible on the equatorial plane. In
this case, the calculations can be carried out analytically to
a large extent. Moreover, the result will be a lower bound
on the final dark matter density on the plane, because the
calculation omits nonplanar orbits that cross θ ¼ π=2.

We will begin by setting fðE; C; LzÞ ¼ feqδðuθÞ and
focusing on θ ¼ π=2. This allows us to perform the
integrals in Eq. (8) over C and Lz, obtaining

Jt ¼
−8feqffiffiffiffiffiffiffiffiffiffi
Gmr

p
Z

1

EminðrÞ
dEEItðEÞ;

Jϕ ¼ 8feq
ffiffiffiffiffiffiffiffi
Gm

p
ffiffiffi
r

p
Z

1

EminðrÞ
dEIϕðEÞ: ð12Þ

The explicit forms of the functions It;ϕ representing the
C − Lz integration are given in Eq. (B17). The E depend-
ence in these functions is implicit in the quantities Lz

�,
which are the two roots of the equation VðrÞ ¼ 0 given
in Eq. (B5), and Lcrit

z , the critical angular momentum
for capture by the black hole. For a corotating planar
orbit, Lþ

z ≥ Lcrit;þ
z > 0, while for a counter-rotating orbit

L−
z ≤ Lcrit;−

z < 0. The currents are thus naturally separated
in a counter-rotating and a corotating part corresponding to
the integration domain ΔLz in Lz:

ΔLz ¼ ðL−
z ; L

crit;−
z ∪ ðLcrit;þ

z ; Lþ
z Þ:

The minimum energy EminðrÞ is found by setting
Lcrit
z

�ðEÞ ¼ L�
z ðEÞ.

As further discussed in appendix B, this is a useful
simplification because the numerical difficulty of the calcu-
lation is transferred to the pair of functions Lcrit�

z ðEÞ. Results
for the density and the co- and counter-rotating parts of Jt are
shown in Figs. 3 and 4. Figure 3 shows that increasing spin
increases the density, and Fig. 4 is helpful in understanding
the physical origin of this effect.
As Fig. 4 shows, the density enhancement is coming

from the corotating orbits, which are more deeply bound to
the black hole. Since this binding energy increases with the
spin parameter, the density will also increase with black
hole spin. This is illustrated in Fig. 5, which shows the

FIG. 3. Density profiles for a distribution of equatorial orbits.
The density increases as we vary the Kerr parameter ~a ¼ 0
(solid), 0.5 (dashed), 0.8 (dot-dashed) and 0.998 (dotted). Since
the latter value is greater than ~a > 2ð ffiffiffi

2
p

− 1Þ, the spike extends
into the ergosphere (shaded region).
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minimum allowed energy for r=Gm ¼ 10 as a function of
spin parameter ~a.
As explained in SFW, the density is zero at the

coordinate r such that EminðrÞ ¼ 1. Orbits that go any
closer to the black hole will have to be unbound in order to
not be captured, and are therefore not included in this
calculation. For the equatorial plane, this occurs at
r�mb=Gm ¼ 2 ∓ ~aþ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ ~a

p
, which corresponds to the

radius of the marginally bound circular orbit, where the
upper (lower) sign is for corotating (counter-rotating)
orbits. Note that the density vanishes at rþmb, which can
be inside the ergosphere for ~a ≥ 2ð ffiffiffi

2
p

− 1Þ ≈ 0.83. Only
corotating orbits contribute in the range rþmb ≤ r ≤ r−mb. In a
small region around r≳ r−mb, when counter-rotating orbits
start contributing, the slope of the density profile becomes
less steep. For Schwarzschild, rþmb ¼ r−mb ¼ 4Gm, which is
where SFW found the end point of the spike in this case.
It is important to note that the boost obtained here is

amplified by the fact that the corotating equatorial orbits are
the most bound to the black hole. Nevertheless, when we
integrate over the full phase space, the net effect is still the
same: the enhanced binding of the corotating orbits is large
enough to make up for the loss of counter-rotating orbits,
which are preferentially captured by the black hole. This

last point is also illustrated in Fig. 6, which shows a fixed
energy slice on the equatorial plane. The planar orbits fall
on the left and right boundaries of the blue region, but the
trade-off between loss of counter-rotating orbits that is
more than compensated by the addition of corotating ones
holds in general.

B. Full phase space

Unlike the equivalent calculation for the Schwarzschild
case done in SFW, there is no analytic expression for
the integration volume in the Kerr geometry. None of the
integrals can be performed analytically to simplify the
current density. Therefore, we used a Monte Carlo (MC)
method to overcome these difficulties. To maximize effi-
ciency in the MC evaluation of the integrals, we look for the
(E, C, Lz)-cube that has the tightest fit to our phase space:
we know that the maximum value of E is 1. We find an
upper bound for C by noting that, from the positivity of
UðθÞ one obtains C ≥ Lz

2 for bound orbits.
Thus, substituting Lz ¼ −

ffiffiffiffi
C

p
and E ¼ 1 in VðrÞ, one

can obtain an upper bound on VðrÞ and, consequently, on
C, as long as r=Gm > 2. For r=Gm < 2 or, in general, for
any r within the ergoregion of the black hole, this upper
bound on C can be found by looking for a plunge orbit with
E ¼ 1 and VðrÞ ¼ 0.
Once we have the upper bound on C and E, we find the

orbit with minimum energy and Carter constant
ðEminðr; θÞ; Ccritðr; θÞÞ by requiring that all of the bounds
in our phase space be satisfied simultaneously. This means
VðrÞ ¼ UðθÞ ¼ 0, and this orbit must also be a plunge
orbit, implying that the potential will have a double root at
its unstable orbit runst. This gives us a system of four
polynomial equations for ðEmin; Ccrit; L�

z ; runstÞ, which we
solve using a homotopy continuation method [59].

FIG. 4. The corotating (dashed) and counter-rotating (dotted)
parts of jJtj for ~a ¼ 0.8, compared with jJtj=2 for the Schwarzs-
child case (solid).

FIG. 5. Minimum allowed energy for r=Gm ¼ 10 as a function
of Kerr parameter ~a in the equatorial plane.

FIG. 6. The blue region shows a phase space slice of fixed
energy, E ¼ 0.98, at r=Gm ¼ 20 on the equatorial plane for a
Kerr hole with ~a ¼ 0.5. The upper dashed line corresponds to
VðrÞ ¼ 0 for r ¼ 20Gm, and the lower dashed line corresponds
to the capture condition for E ¼ 0.98, both in the Schwarzschild
case. The red-shaded lower-left region shows the counter-rotating
orbits that are lost due to capture by the hole, which are
compensated by the tightly bound corotating orbits in the dark
blue-shaded region.
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We find it advantageous to implement the positivity of
UðθÞ explicitly through the change of variables:

E ¼ xþ ð1 − xÞEmin;

C ¼ yCmax þ ð1 − yÞCcrit;

Lz ¼ ð2z − 1Þ sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − a2cos2θð1 − E2Þ

q
; ð13Þ

which puts our ðx; y; zÞ-integration region in ½0; 1�×
½0; 1� × ½0; 1�.
The equivalent for a general inclination of the radius of

the marginally bound circular orbit is found by setting
Eminðr; θÞ ¼ 1. The dark matter density vanishes for
r ≤ rminðθÞ, since no bound orbit exists within this region.
Given a spin parameter ~a and an inclination θ, we can

run the MC to calculate the current density for any r >
rminðθÞ with these simplifications. We use two standard
numerical routines, VEGAS [60] and MISER [61], as
implemented in the GNU Scientific Library [62]. When
evaluating the density at a particular point, the numerical
integrator performs 107 function calls to reach a relative
accuracy at the level of ≲1% across the entire r, θ range.
Sample results are displayed in Figs. 7 and 8, where we

use the same value of fðE; C; LzÞ ¼ f0 ¼ 0.3 GeV=cm3

ð2πð100 km=sÞ2Þ3=2 ¼
5.1 × 108 GeV=cm3 as in SFW to allow a direct compari-
son of our results. The density plot in Fig. 9 provides a
pictorial illustration of the density distribution.
Once more we find that the density increases with the

spin parameter ~a, and the spike gets closer to the hole.
The decrease of the density as we get away from the

equatorial plane is to be expected: for instance, only orbits
with Lz ¼ 0 can cross the axis. Unlike the spherical case, in
which the components Lx and Ly of the angular momentum
are also conserved, this restriction effectively reduces the
available phase space and, consequently, the density. This
is useful since the calculation for orbits that cross the axis is
simpler and provides us with a lower bound on the density

everywhere. Note that, as can be seen from comparing
Figs. 7 and 8, although lower than on the plane, the density
on the axes is still boosted for ~a ¼ 0.8 compared to the case
of Schwarzschild.
Indeed, using the last substitution in Eq. (13) and setting

sin θ ¼ 0 allows us to perform the integrals over z and C
explicitly, obtaining:

Jt ¼
4πf0ffiffiffiffi

Δ
p

Z
1

Emin

dEE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CmaxðEÞ − CcritðEÞ

p
; ð14Þ

where, as usual, Cmax is obtained from VðrÞ ¼ 0 and Ccrit is
the critical Carter constant. Because Lz ¼ 0, these are much

FIG. 7. The dark matter density in the equatorial plane
increases with the spin parameter, and the spike gets closer
to the hole. The different lines show the Schwarzschild calcu-
lation from SFW (blue, dot-dashed), ~a ¼ 0.5 (purple, dashed),
and ~a ¼ 0.8 (red, solid).

FIG. 8. Density anisotropy for ~a ¼ 0.8. The spike is shown at
different angles with respect to the black hole rotation axis: on
axis θ ¼ 0 (blue, dot-dashed), θ ¼ π=3 (purple, dashed) and
equatorial θ ¼ π=2 (red, solid).

FIG. 9. Dark matter density in the r − θ plane for a spin
parameter ~a ¼ 0.8, and a constant initial distribution function.
The axis of the black hole points vertically, and r=Gm is plotted
from 0 to 15. The density is axisymmetric about the spin axis.
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simpler constraints than in the general case: Cmax can be
found algebraically and Ccrit requires numerically solving a
straightforward nonlinear equation. On the axis, Jϕ ¼ 0,
and the density is easily found from Eq. (9) with Ω ¼ 0.
This alternative route to calculate the density along the
rotation axis of the black hole provides us with a useful
check of the full MC evaluation.

IV. GROWTH FROM A CUSPY
HERNQUIST PROFILE

The constant distribution is an adequate proxy for a
cored profile [20], but DM-only simulations tend to
favor cuspy distributions, and we would like to know if
the calculated effect is still sizeable for a cuspy profile.
Following SFW, we consider a Hernquist profile [63]:

ρH ¼ ρ0
ðr=rsÞð1þ r=rsÞ3

; ð15Þ

which generates the Newtonian gravitational potential

ΦH ¼ −
GM
rs þ r

: ð16Þ

Here ρ0 and rs are scale factors related to the total dark
matter mass in the halo by M ¼ 2πρ0r3s, which we take to
be M ¼ 1012 M⊙ for the Milky Way. The ergodic distri-
bution function associated with the Hernquist profile can be
found analytically [63]:

fHð~ϵÞ ¼
Mffiffiffi

2
p ð2πÞ3ðGMrsÞ3=2

~fHð~ϵÞ; ð17Þ

with

~fHð~ϵÞ ¼
ffiffiffi
~~ϵ

p
ð1 − ~ϵÞ2

�
ð1 − 2~ϵÞð8~ϵ2 − 2~ϵ − 3Þ þ 3sin−1

ffiffiffi
~ϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~ϵð1 − ~ϵÞp �

;

ð18Þ

and we have introduced a new dimensionless relative
energy ~ϵ ¼ −rsE=GM, which is related to the relativistic
energy E per unit particle mass by

~ϵ≡ rs
GM

ð1 − EÞ: ð19Þ

The halos found in simulations can be better fit by an NFW
profile [2] with strongly correlated ρ0, rs. As a result, halos
are essentially members of a one-parameter family. For a
galactic mass halo, rs ¼ 20 kpc, and ρ0 is then fixed by the
total mass. We choose to work with a Hernquist profile
with the same parameters because, as mentioned above, the
distribution function can be calculated analytically, and

both halos have the same cuspy ∝ 1=r behavior in the inner
region r≲ rs giving rise to the same Newtonian spike [49].
Thus the only numerical difficulty introduced by this

distribution is the evaluation of the radial action.
Using Eq. (16) in Eq. (10), we can write the radial

invariant for the Hernquist potential as

IHr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
GMrs

p Z
xþ

x−

dx

�
2

1þ x
− 2~ϵþ

~L2

x2

�1=2

; ð20Þ

where we introduced the dimensionless quantities ~L ¼
L

ffiffiffiffiffiffiffiffiffiffiffiffi
GMrs

p
, x ¼ r=rs; and x� are the turning points of the

orbit. As discussed in Sec. II B, ~L and ~ϵ are obtained
through the matching of Eqs. (10) to (11) for each point in
the Kerr phase space (E, C, Lz) with the correspondence
Eq. (19).
As E → 1, the orbit becomes unbound and the corre-

sponding ~ϵ → 0. In this limit, both radial invariants diverge
as the upper turning point goes to infinity. To prevent
numerical instabilities in the evaluation of the integrals, we
follow SFW and remap the interval ½x−; xþ� to [0, 1] at
each step of the bisection method that is used to evaluate
Eq. (20). We do a similar remapping to evaluate the Kerr
invariant.3

The Hernquist distribution has most of its contribution to
the density coming from the more deeply bound orbits,
which are those that have ~ϵ closer to 1. Since we have
argued in Sec. III that the presence of a deeper potential
well for corotating orbits is what drives the enhancement of
the spike, we expect it to increase more rapidly with
increasing Kerr parameter. This is seen in Figs. 10
and 11 below: the peak of the spike with ~a ¼ 0.8 is
approximately 35% higher than the one with ~a ¼ 0.5,
whereas the corresponding boost for the constant

FIG. 10. Dark matter density in the equatorial plane with
increasing Kerr parameter for an initial Hernquist distribu-
tion. The different lines show the Schwarzschild calculation
from SFW (blue, dot-dashed), ~a ¼ 0.5 (purple, dashed), and
~a ¼ 0.8 (red, solid).

3Note that the Schwarzschild limit of the radial invariant in
Eq. (3.19) in SFW is missing a factor of r2=Δ ¼ 1=ð1 − 2Gm=rÞ.
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distribution is around 20%. Figure 12 shows the density
distribution resulting from an initial Hernquist profile.

V. DISCUSSION

The spatial extension of the spike is of the order of the
radius of gravitational influence of the black hole, rh ¼
Gm=σ2v ∼ 1.7 pc for the galactic center black hole, and the
mass of the dark matter contained in this small volume is
negligible compared to the mass of the black hole. Hence,
as pointed out by SFW, the additional precession rate
induced by the spike on the orbits of stars in the central
cluster will be small, and this conclusion remains valid
for a rotating black hole. As shown in Fig. 5 in SFW, the
rapid fall off with distance of the effects of frame dragging

and departure from spherical symmetry makes their
contribution to the pericenter advance of the orbits of
stars subdominant when compared to the monopole
Schwarzschild component over the range of semi-major
axis ≳0.1 pc. The enhanced dark matter density due to the
rotation of the hole, will neither interfere with a test of the
black hole no-hair theorem using hypothetical stars with
semimajor axes≲0.2 mpc [64], nor change the conclusions
of a future experiment sensitive to precession rates at the
level of 10 μarcsec per year that could discover the
perturbing effects of the dark-matter for S2-type stars,
with semimajor axes ∼10 pc [21].
On the other hand, the enhanced density in the Kerr

geometry could significantly alter the fluxes of high-energy
radiation from dark matter annihilations in the central
regions surrounding the black hole. A prediction of the
effects of rotation depends on the underlying particle
physics model and on the formation history of the
super-massive black hole (see e.g. [65] for a review).
As mentioned above, we are assuming that the growth of

the black hole is adiabatic, but several dynamical effects
could weaken the density spike around the supermassive
black hole. Although these effects are important, our main
purpose is to understand the general relativistic effects
close to the rotating black hole, and the following consid-
erations provide an order of magnitude estimate in a sample
of representative scenarios.
To estimate the effects of the spike on the dark matter

annihilation fluxes we compare the line of sight integral for
a beam of opening angle θ towards the Galactic Center:

JðθÞ ¼ hσvi
4πm2

χ

Z
2π

0

dϕ
Z

θ

0

dψ cosψ sinψ
Z

dsρ2ðr; ϑÞ;

ð21Þ

with or without the presence of the spike. In Eq. (21),
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ s2 − 2Rs cosψ

p
is the Boyer-Lindquist coordi-

nate, s is the radial coordinate from the Earth to the
annihilation point, R ¼ 8.5 kpc is the distance from the
Earth to the Galactic Center, and ϑ is the angle relative to
the equatorial plane of the black hole.
For a thermal relic, hσvi ¼ 3 × 10−26 cm3=s, of mass

mχ ¼ 100 GeV, we find a flux of 6.3 × 10−9 cm−2 s−1

for an opening angle of 1° from annihilations in the halo
with only the underlying Hernquist profile included.
To evaluate the integral in Eq. (21), we fit the profiles

that were previously calculated using MC techniques to
profiles of the form

ρðr; ϑÞ ¼ A
xp

�
1 −

rminða; ϑÞ
r

�
n
; ð22Þ

with all coefficients being allowed to vary with ϑ. The
expression in Eq. (22) is a generalization of Eq. (9) in [20]

FIG. 11. Density anisotropy for an initial Hernquist profile and
~a ¼ 0.8. The spike is shown at different angles with respect to
the black hole rotation axis: on axis θ ¼ 0 (blue, dot-dashed),
θ ¼ π=3 (purple, dashed) and equatorial θ ¼ π=2 (red, solid).

FIG. 12. Dark matter density in the r − θ plane for a spin
parameter ~a ¼ 0.8, and an initial distribution function corre-
sponding to a Hernquist profile.
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to allow for a θ-dependent end point for the spike. This
expression is then matched to the power law B=xγsp using
smooth functions to improve the fit and to give a reasonable
estimate of ρ. We use γsp ¼ 2.33 corresponding to the
Newtonian spike generated by a 1=rNFWorHernquist cusp.
We extend our spike profile until the density is equal to

that of the underlying Hernquist profile. This happens at
12.4 pc, and we take the fiducial 1=r halo shape beyond this
point. Putting all the pieces together, our model for the
central part of the halo is equivalent to the canonical model
used in [14], aside from the fact that we are assuming an
underlying Hernquist profile with rs ¼ 20 kpc and the
extension of the spike. For the Schwarzschild geometry, the
spike enhances the flux by a factor of 1.93 × 109 relative to
the initial Hernquist profile. In Table I, we present the flux
enhancement normalized to the Schwarzschild one, as that
is less sensitive to the normalization of the underlying
density profile.
Note that, as mentioned above, the influence radius of

the black hole is rh ∼ 1.7 pc, so at these distances the spike
should start being modified. Also, our calculation of the
Kerr spike does not consistently take into account the
gravitational field generated by the dark matter distribution
itself. We leave for future work a proper treatment of this
effect along the lines of the grid calculation in [49] for the
nonrelativistic case. Let us stress that it is only in the
transition region between the black hole dominated field
and the smooth underlying halo that we expect significant
changes. Moreover, the relative boost factors quoted in
Table I will remain mostly unchanged.
Our expression for the spike does not include the effects

of dark matter annihilations which will deplete and weaken
the density profile. SFW followed the strategy used in [20],
and considered a constant core within the radius rann
determined by the location where the density equals
ρann ¼ mχ=σvtbh, which for our thermal relic turns out
to be rann ¼ 1.3 × 10−2 pc, assuming that the annihilation
process has been acting over tbh ¼ 1010 yr. It was pointed
out in [42] that a plateau is in equilibrium if all the dark
matter particles move in circular orbits, and the density
forms a “weak cusp” ∝ r−1=2 for a more realistic isotropic
distribution of DM velocities. This behavior has been

confirmed by integrating the Boltzmann equation in [43]
for the case of s-wave annihilation. If we assume that the
DM is distributed as r−1=2 within rann then the density is
sufficiently low that the spike goes away. The effects of the
black hole spin are therefore washed out and we get the
same boost factor for a Schwarzschild as for a nearly
extreme ~a ¼ 0.998 black hole. In both cases the profile
close to the hole is the same r−1=2 weak spike, and the ratio
of the flux coming from the spike to that coming from the
smooth halo is 2.8 × 103. This large enhancement is due to
the spatial extension of our spike, which shows that most of
the annihilation signal comes from the outer regions of the
spike, where relativistic corrections are not important.
The weak r−1=2 is not generic, but depends on the s-wave

nature of the annihilating process. For p-wave annihilation,
the final cusp is even weaker and again erases any effects
due to the Kerr spin. On the other hand, a possible detection
of an identified x-ray line at E ≈ 3.55 keV from the Perseus
cluster and the Andromeda galaxy [66,67] have been
attributed to a sterile neutrino [68]. This dark matter
candidate decays emitting an x-ray line and its density
profile is the Kerr spike without any attenuation due to self-
annihilation. The x-ray flux due to dark matter decays,
however, is proportional to the density as opposed to the
density squared behavior of the annihilation signal shown
in Eq. (21). Much like in the case of the precession rates
induced by the spike on the orbits of stars, we expect the
additional decay flux induced by the spike to be small, and
the effects due to the rotation of the black hole to be
subdominant.
Self-interacting dark matter [69] with a cross section as

large as σ=mχ ≈ 0.1 cm2=g has been invoked to address
several discrepancies between numerical predictions of
cold dark matter models and observations of subgalactic
scale structures [70,71]. The effects of self-interactions
have been shown in [72] to replenish the weak cusp, giving
rise to a steeper profile depending on the velocity depend-
ence of the cross section. Since a detailed study of the final
relaxed distribution using the exact phase-space distribu-
tion of the Kerr spike is missing, we display in Table I the
radiation fluxes as arising from a full Kerr spike with no
weakening due to annihilation. The results show that when
going from a nonrotating to an almost extremal black hole,
the boost factor is almost doubled.

VI. CONCLUSIONS

We have extended the analysis performed in SFW to
include the effects of black hole spin. Our findings show
that the spike persists around a rotating black hole and,
furthermore, that it is enhanced.
Since the total mass contained in the spike is not very

large, effects that depend on the total mass of the spike such
as the stellar precession studied in [21] or fluxes from
decaying dark matter will essentially remain unaltered by
the inclusion of rotation. Our results are summarized in

TABLE I. Boost factors for different Kerr spin parameters ~a for
the full spike with no annihilation normalized to the Schwarzs-
child spike.

~a JðaÞ=Jð0Þ
0 1
0.5 1.11
0.6 1.14
0.7 1.22
0.8 1.38
0.9 1.59
0.998 1.97
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Fig. 13, which shows the largest density enhancement,
obtained for a near-extreme black hole ( ~a ¼ 0.998) in the
equatorial plane, as well as the density along the spin axis,
comparing them to previous calculations.
However, the large growth of the spike could have

consequences for observables related to dark matter anni-
hilation, which depend on the density squared. Further
work remains to be done here to properly implement the
evolution of the spike and the presence of a weak cusp
[42,43], which are both necessary for the extraction of a
gamma-ray signal.
Although we have focused our attention on the signals

from the Galactic Center, black holes are ubiquitous in
nature. Our findings could potentially impact the cumu-
lative effects of dark matter spikes on the diffuse gamma-
ray background [47], or the signals from local dwarf
spheroidal galaxies [73].
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APPENDIX A: ADIABATIC INVARIANCE
OF THE DISTRIBUTION FUNCTION

We here prove the important property that the distribu-
tion function is an adiabatic invariant, which we use in our
code. A proof for nonrelativistic spherical systems is given
in Young [48], which was generalized to the general

relativistic Schwarzschild case by Sadeghian [58]. The
extension to the Kerr geometry uses the same ideas, but the
change of variables that must be performed in the adiabatic
evolution is two-dimensional instead of one-dimensional.
We start by integrating the current density Eq. (8)

to find the mass enclosed in a hypersurface of constant
time. The future-pointing normal vector to the surface is
nα ¼ −ð−gttÞ−1=2∂αt, and the three-dimensional surface
element can be written as [74]:

d3Sα ¼ −δ0α
ffiffiffiffiffi
gS

pffiffiffiffiffiffiffiffi
−gtt

p d3x; ðA1Þ

where

gS ¼
Σ4

Δ
gϕϕ; ðA2Þ

is the determinant of the metric induced on the hyper-
surface.
The enclosed mass is therefore:

M ¼ −
Z

d3SαJα

¼
Z

drdθdϕ
ffiffiffiffiffi
gS

pffiffiffiffiffiffiffiffi
−gtt

p ðgttJ0 þ gtϕJϕÞ

¼ 2

Z
drdθdϕdEdCdLz

r2 sin θ
ffiffiffiffiffiffiffiffiffiffi
VðrÞp ffiffiffiffiffiffiffiffiffiffi

UðθÞp Σ2 ffiffiffiffiffiffiffigϕϕ
pffiffiffiffiffiffiffiffiffiffiffiffi
−Δgtt

p
× ðgtϕLz − gttEÞfðE; C; LzÞ: ðA3Þ

Interchanging the order of integration, the integrals
over coordinates give us a distribution NðE; C; LzÞ of
particles per unit conserved quantity. Using the relation
gtt ¼ −gϕϕ=ðΔsin2θÞ for Kerr, we obtain:

NðE; C; LzÞ ¼ 4π

Z
drdθ

r2
ffiffiffiffiffiffiffiffiffiffi
UðθÞp ffiffiffiffiffiffiffiffiffiffi

VðrÞp Σ2

× ðgtϕLz − gttEÞfðE; C; LzÞ: ðA4Þ

In the above expression, the limits of integration are the
radial turning points of VðrÞ and the angular turning points
of UðθÞ. Under adiabatic evolution, the constants of the
motion will change to new values E�,C�, Lz

�, in such a way
that NðE; C; LzÞdEdCdLz ¼ N�ðE�; C�; Lz

�ÞdE�dC�dLz
�.

The new values of the constants of the motion are
determined by the invariance of the action integrals in
Eq. (11). If we assume that the initial and final states are
axisymmetric, then the invariance of Iϕ gives Lz ¼ Lz

�.
The remaining two integrals allow us to relate N and N�
through the chain rule of multivariable calculus,

FIG. 13. Equatorial (solid blue) and on-axis (solid red) density
obtained for the near-extreme black hole, compared with previous
calculations assuming a Schwarzschild hole (dot-dashed purple),
and the nonrelativistic estimate in [20] (dashed green). The initial
DM distribution before the growth of the black hole is a Hernquist
profile shown as the dotted red line.
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∂ðE�; C�Þ
∂ðE; CÞ ¼ ∂ðE�; C�Þ

∂ðI�r ; I�θÞ
∂ðIr; IθÞ
∂ðE; CÞ :

Taking partial derivatives in Eq. (11), we find:

J≡ ∂ðIr; IθÞ
∂ðE; CÞ

¼ 2

Z
drdθΣ2ðEgϕϕ þ LzgtϕÞ
r2sin2θΔ

ffiffiffiffiffiffiffiffiffiffi
UðθÞp ffiffiffiffiffiffiffiffiffiffi

VðrÞp : ðA5Þ

Using gtt ¼ −gϕϕ=ðΔsin2θÞ, gtϕ ¼ gtϕ=ðΔsin2θÞ and com-
paring to Eq. (A4), we immediately obtain

NðE; C; LzÞ ¼ 2πJfðE; C; LzÞ:

Therefore, we find

NðE; C; LzÞdEdCdLz

¼ 2πJfðE; C; LzÞdEdCdLz

¼ 2πJ�f�ðE�; C�; L�
zÞdE�dC�dLz

�

¼ 2πJ�f�ðE�; C�; L�
zÞ

×
∂ðE�; C�Þ
∂ðI�r ; I�θÞ

∂ðIr; IθÞ
∂ðE; CÞ dEdCdLz

¼ 2πJ�f�ðE�; C�; L�
zÞ

J
J� dEdCdLz

¼ 2πJf�ðE�; C�; L�
zÞdEdCdLz;

which demonstrates the adiabatic invariance of the distri-
bution function,

fðE; C; LzÞ ¼ f�ðE�; C�; L�
zÞ:

APPENDIX B: PHASE SPACE FOR ORBITS
THAT REMAIN ON THE EQUATORIAL PLANE

We will set G ¼ 1 and work with the dimensionless
quantities:

~a≡ a
m

~Lz ≡ Lz

m
~C≡ C

m2
x≡ r

m
;

and we will drop the tildes for the rest of this appendix.
The black hole horizon is located at

xhorizon ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
; ðB1Þ

and the boundary of the ergosphere is

xergosphere ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2cos2θ

p
; ðB2Þ

which is equal to xergosphere ¼ 2 for the equatorial θ ¼ π=2
latitude.
For planar trajectories Lz ¼ � ffiffiffiffi

C
p

, with the plus (minus)
sign corresponding to corotating (counter-rotating) orbits.
Hence, the subset of orbits that we are considering is
defined by two quantities E and Lz. These are constrained
to satisfy E ≤ 1, which bounds the energy from above;
VðrÞ ≥ 0, which results in an upper bound on the angular
momentum Lmax

z ; and the capture condition

V ¼ 0 ¼ dV
dx

; ðB3Þ

which will determine the critical angular momentum, Lcrit
z ,

and the minimum energy, Emin. Note that the constraint
UðθÞ ≥ 0 is trivially satisfied.
The effective potential for orbits in the equatorial

plane reads:

VjC¼L2
z
¼ E2ðx3 þ a2ð2þ xÞÞ − 4aLzE þ ð2 − xÞðL2

z þ x2Þ − a2x
x3

: ðB4Þ

Wewill use this expression to obtain Lmax
z , Lcrit

z and Emin, at
a fixed distance x from the hole.

1. Lz
max

For a fixed energy E < 1, the constraint V ≥ 0 puts an
upper bound on Lz. We can explicitly find the boundary
V ¼ 0, since V is quadratic in E and Lz:

Lz
max¼−2aE�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xða2−xðx−2ÞÞð2−ð1−E2ÞxÞ

p
x−2

: ðB5Þ

We generally obtain two solutions: a positive value of Lz,
which is the maximum for corotating orbits, and a negative

one corresponding to the smallest Lz for counter-rotating
orbits (which we also name Lmax

z ). But these solutions
might not exist for all x, since the polynomial inside the
square root can become negative. Being a quartic poly-
nomial in x with negative quartic coefficient, E2 − 1, it will
become negative (i.e. no Lz

max) at large x. This reflects the
fact that far away orbits are closer to being unbound as
discussed below [cf. Eq. (B8)].
More specifically, the discriminant in Eq. (B5) vanishes

at the nonphysical points x ¼ 0 and x ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
,

which are inside the horizon. It also vanishes at

x ¼ xhorizon and x ¼ 2

1 − E2
> 2; ðB6Þ
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so the square root is well defined between these two
locations and we will find two values of Lz

max.
This is true for points outside of the ergosphere, x > 2.

At the ergosphere, Eq. (B4) is linear in Lz, and there is only
one solution. A closer look shows that the positive root
smoothly tends to this single root,

Lmax
z ¼ 2a2E2 þ 4E2 − a2

2aE
;

which may be positive.
The negative branch in Eq. (B5) diverges as x → 2. This

does not mean that counter-rotating orbits with arbitrarily
large jLzj are allowed, since we will see that they cease to
exist that close to the hole. For the Schwarzschild case
SFW found that the critical value of the angular momentum
limited orbits to lie beyond the unstable marginally bound
orbit at x ¼ 4 for E ¼ 1. The minimum energy E ¼ ffiffiffiffiffiffiffiffi

8=9
p

is attained at the location of the ISCO, x ¼ 6. For a Kerr
hole the locations of these orbits get closer to the horizon
for corotating orbits (x ¼ 1 for the extremal a ¼ 1 case)
and pushed away for counter-rotating ones (x ¼ 5.83 and
x ¼ 9). As we prove below, there are no orbits within the
radius of the marginally bound orbit,

xmb ¼ 2 ∓ aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ a

p
; ðB7Þ

and we will not have to worry about regions where Eq. (B5)
does not provide a valid bound. Nevertheless, there might
be corotating bound orbits within the ergosphere since
Eq. (B7) can be < 2.

Note also that, for a given x, there is a minimum value of
the energy since, for V to be positive, we need x to be to the
left of the second root in Eq. (B6), so

E2 ≥ 1 −
2

x
: ðB8Þ

2. Lcrit
z and Emin

Let us examine the capture condition, which is going to
provide us with Lcrit

z and Emin. The first equality in Eq. (B3)
is a cubic equation in x, while the second requires solving a
2nd order polynomial.
The solution to the second equation is

dV
dx

¼ 0 ⇒ x∓ ¼ ða2ð1 − E2Þ

þ L2
z ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2

z þ a2ð1 − E2ÞÞ2 − 12ðLz − aEÞ2
q

Þ=2:
ðB9Þ

The smaller root x− will correspond to the turning point
when the constraint V ¼ 0 is also satisfied. It has the
correct Schwarzschild limit:

lim
x→a

x− ¼ L2
z − Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
z − 12

p
2

¼ 6

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 12=L2

z

p ;

which is the location of the unstable circular orbit.
We can now plug this value back in the equation V ¼ 0

and solve for Lcrit
z :

Vðx;E; Lcrit
z Þ ¼ 0 ⇒

0 ¼ −9ðLcrit
z − aEÞ2

× ½ðE2 − 1ÞLcrit 6
z þ ð36E2 − 27E4 − 3a2ð1 − E2Þ2 − 8ÞLcrit 4

z þ 36aEð2 − 5E2 þ 3E4ÞLcrit 3
z

þ ð2a2ð10 − 91E2 þ 162E4 − 81E6Þ þ 3a4ðE2 − 1Þ3 − 16ÞLcrit 2
z þ 4aEð8þ 9a2ð1 − E2Þ2ð−1þ 3E2ÞÞLcrit

z

− 16a2E2 − a6ð1 − E2Þ4 − a4ð1 − E2Þ2ð−1 − 18E2 þ 27E4Þ�; ðB10Þ

which contains a sixth-order polynomial in Lcrit
z that can be

numerically solved for given a and E. Since Lcrit
z ≤ Lmax

z ,
we select the largest of all the roots that are smaller
than Lmax

z .
The value of Lcrit

z will depend on our choice of E. For
corotating orbits it can be shown from Eq. (B5) that Lmax

z is
a monotonically increasing function of E, so it will be
largest for E ¼ 1, while Lcrit

z is a monotonically decreasing
function of E. On the other hand, keeping the value of Lz

constant, there is a minimum energy Emin, which satis-
fies V ¼ 0.
This allows us to find the boundary of momentum-space

at the location x using the following numerical scheme
depicted in Fig. 14. Starting with E ¼ 1,

(i) Find Lmax
z from Eq. (B5), and Lcrit

z solving Eq. (B10).
As long as Lmax

z ≥ Lcrit
z , the volume in momentum

space at x is nonzero.
(ii) Solve VðLz ¼ Lcrit

z Þ ¼ 0 to find Emin.
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Note that we have found the minimum energy of all the
orbits with Lz ¼ Lcrit

z , where Lcrit
z was found by setting

E ¼ 1. But we can now set E ¼ Emin and repeat the steps
above to find a smaller Lmax

z and a larger Lcrit
z ; and a smaller

Emin. This process can be iterated until we get to an energy
for which Lmax

z ¼ Lcrit
z , this is the minimum energy for any

Lz allowed at the location x. An analogous strategy can be
followed for counter-rotating orbits.
As we get closer to the hole, the phase space gets

reduced. Orbits with smaller values of E, which were
allowed at larger distances, are now pulled in and trapped.
Eventually, we reach a point where only a single orbit with
E ¼ 1 is allowed. In this case, the iteration process above
will end immediately, since Lmax

z ¼ Lcrit
z for E ¼ 1 at that

point. We can find this location by solving for x from the
equation Lmax

z ¼ Lcrit
z with E ¼ 1.

It turns out that this can be done analytically, since for
E ¼ 1 Eq. (B10) simplifies to

0 ¼ −9ða − LzÞ2ð−16a2 þ 32aLz − 16L2
z þ L4

zÞ:

The roots of this polynomial can be found in closed form:

Lcrit
z ¼ a; 2ð1 −

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
Þ; 2ð1þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
Þ;

2ð−1 − ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ; 2ð−1þ ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p Þ: ðB11Þ

On the other hand, Eq. (B5) becomes for E ¼ 1:

Lmax
z ¼ −2a� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xða2 þ ðx − 2ÞxÞ
p
x − 2

: ðB12Þ

We can solve for the values x where Lcrit
z ¼ Lmax

z by
equating each of the roots in Eq. (B11) to each of the two
branches in Eq. (B12). Equating the negative branch of
Eq. (B12) to the only negative root in Eq. (B11) and solving
for x we find for counter-rotating orbits,

xLz<0
min ¼ 2þ aþ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ a

p
:

For corotating orbits, we equate the four positive roots in
Eq. (B11) to the positive branch of Eq. (B12). The solution
for Lmax

z ¼ a occurs at x ¼ 0; a2=2, which are inside the
horizon and thus nonphysical; Lmax

z ¼ 2ð�1 ∓ ffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓ a

p Þ
are located at x ¼ 2� a − 2

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
, which are also inside

the horizon. The only physical solution is

FIG. 14. Momentum-space at the locationx ¼ 10, which is shown as a red dot.Top left:Starting fromallowedvalues ofE ¼ E0 ¼ 0.9997
and Lz ¼ 4, the red dot is well within the allowed region. Top right: For this value of E, changingLz → Lmax

z ¼ 4.829 from Eq. (B5) pulls
the effective potential Veff ≡ −VðrÞ up and brings the red dot to the edge of the allowed region. Bottom left:Keeping E ¼ E0 but changing
Lz → Lcrit

z ¼ 2.9 brings the effective potential down, so that the orbit is almost captured. Bottom right: Once we have the Lz bounds,
lowering the energy while keeping Lz ¼ Lcrit

z will pull the effective potential curve up. When it touches the red dot we have found
Emin ¼ 0.938. Setting E0 ¼ Emin the process can be iterated to find Lmax

z ¼ 2.99, Lcrit
z ¼ 2.73, and the next Emin ¼ 0.931.
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xLz>0
min ¼ 2 − aþ 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − a

p
:

The locations above coincide with Eq. (B7). Hence, the
volume of momentum-space available vanishes at the
location of the marginally bound orbit, and only corotating
orbits exist inside the ergosphere.
The boundaries derived above are shown in Fig. 15,

which also shows the Schwarzschild limit for comparison.
Note that in the latter case, the absolute minimum energy
Emin ¼

ffiffiffiffiffiffiffiffi
8=9

p ¼ 0.94 is attained at x ¼ 6 in agreement
with the results in SFW.

3. Density on the equatorial plane

Let us consider the two-dimensional equatorial plane
described by the restriction of the Kerr geometry to
θ ¼ π=2. The definition of Jμ in Eq. (1) is still valid,
but now the indices run over μ ¼ t; r;ϕ only. Our geodesics
are described by the constants of motion E, Lz, μ, and the
Jacobian of the change is

J ¼
���� ∂ðE; Lz; μÞ
∂ðpt; pr; pϕÞ

���� ¼ Δjurjsin2θ
μ2

; ðB13Þ

where we are temporarily using dimensionful quantities to
parallel the discussion in the main text. Now there is
only an additional factor of 2 to account for the sign
in pϕ, and

ffiffiffiffiffiffi−gp ¼ r. Putting things together and using

jurj ¼ r2=Δ
ffiffiffiffiffiffiffiffiffiffi
VðrÞp

, we obtain

ffiffiffiffiffiffi
−g

p
dptdprdpϕ ¼ 2μ2

r
ffiffiffiffiffiffiffiffiffiffi
VðrÞp dEdLzdμ:

We have the relation fð3Þðx; pÞ ¼ μ−2fðE; LzÞδðμ − μ0Þ,
where fðE; LzÞ has units of surface mass density.
Considering a constant distribution on the plane
fðE;LzÞ¼ feq, we obtain

Jμ¼
Z

fð3Þðx;pÞuμ
ffiffiffiffiffiffi
−g

p
d3p¼2feq

r

Z
uμ

dEdLzffiffiffiffiffiffiffiffiffiffi
VðrÞp : ðB14Þ

Going back to using dimensionless quantities, e.g. Lz ¼
Gm ~Lz and dropping the tildes again, we obtain more
explicitly

Jt ¼ −2feq
ffiffiffi
x

p Z
1

Emin

EdEItðEÞ;

Jϕ ¼ 2feq
ffiffiffi
x

p ðGmÞ
Z

1

Emin

dEIϕðEÞ; ðB15Þ

where

ItðEÞ≡
Z
ΔLz

dLzffiffiffiffiffiffiffiffiffiffi
~VðxÞ

q
IϕðEÞ≡

Z
ΔLz

LzdLzffiffiffiffiffiffiffiffiffiffi
~VðxÞ

q ; ðB16Þ

and ~VðxÞ is the numerator in Eq. (B4). The E-dependent
region of integration ΔLz ¼ ðL−

z ; L
crit;−
z Þ∪ ðLcrit;þ

z ; Lþ
z Þ

includes both corotating and counter-rotating orbits, and
Lþ
z , L−

z are the respective values of Lmax
z in Eq. (B5).

The integral over Lz can be found analytically by means
of an Euler substitution [75]. The end result is

FIG. 15. Comparison of the edges of the phase-space volume as a function of distance x ¼ r=m from the hole for corotating orbits
(solid blue), counter-rotating orbits (dashed magenta), and Schwarzschild (dot-dashed red). The left panel shows Emin, while the range of
allowed values of Lz is shown in the right one as the regions bounded by Lmax

z and Lcrit
z . The Kerr hole has spin a ¼ 0.75, and the sign of

the angular momentum for the counter-rotating orbits has been flipped. The dotted vertical lines mark the location of the marginally
bound orbit, where the phase-space vanishes.
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ItðEÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffijx − 2jp �

θðx − xþmbÞ
�
θðx − 2Þ arctan 1ffiffiffiffiffiffi

κþ
p þ θð2 − xÞarctanh 1ffiffiffiffiffiffiffiffiffi

−κþ
p

�
þ θðx − x−mbÞ arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ− − 1

p
�
;

IϕðEÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffijx − 2jp �

θðx − xþmbÞ
�
θðx − 2Þ

�
ðLþ

z þ L−
z Þ arctan

1ffiffiffiffiffiffi
κþ

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ

z − Lcrit;þ
z ÞðLcrit;þ

z − L−
z Þ

q 	

þ θð2 − xÞ
�
ðLþ

z þ L−
z Þarctanh

1ffiffiffiffiffiffiffiffiffi
−κþ

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLcrit;þ

z − Lþ
z ÞðLcrit;þ

z − L−
z Þ

q 	�

þ θðx − x−mbÞ
�
ðLþ

z þ L−
z Þ arctan

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ− − 1

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ

z − Lcrit;−
z ÞðLcrit;−

z − L−
z Þ

q 	�
; ðB17Þ

where we have defined

κþ ≡ Lcrit;þ
z − L−

z

Lþ
z − Lcrit;þ

z
κ− ≡ Lþ

z − L−
z

Lcrit;−
z − L−

z

: ðB18Þ

Since we are working with a geometry that has only
two spatial dimensions, our final result is a surface mass
density. Working instead with the full Kerr geometry and
the restriction fðE; C; LzÞ ¼ feqδðuθÞ on the distribution

function, results in a volume mass density, which is
what we used in Sec. III. The only difference between
the results of this appendix and those in Sec. III is a
factor of 2=r between the currents in Eq. (B15) and
those in Eq. (12). When calculating quantities integrated
over space, such as masses or annihilation fluxes, the
difference is only a factor of 2, since the three-dimensional
Jacobian has an extra factor of r compared to the planar
geometry.
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