
Current and future white dwarf mass-radius constraints
on varying fundamental couplings and unification scenarios

D.M. N. Magano,1,2,* J. M. A. Vilas Boas,1,2,† and C. J. A. P. Martins1,3,‡
1Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal

2Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4150-007 Porto, Portugal
3Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

(Received 12 November 2016; revised manuscript received 12 September 2017; published 16 October 2017)

We discuss the feasibility of using astrophysical observations of white dwarfs as probes of fundamental
physics. We quantify the effects of varying fundamental couplings on the white dwarf mass-radius relation
in a broad class of unification scenarios, both for the simple case of a polytropic stellar structure model and
for more general models. Independent measurements of the mass and radius, together with direct
spectroscopic measurements of the fine-structure constant in white dwarf atmospheres lead to constraints
on combinations of the two phenomenological parameters describing the underlying unification scenario
(one of which is related to the strong sector of the theory while the other is related to the electroweak
sector). While currently available measurements do not yet provide stringent constraints, we show that
forthcoming improvements, expected for example from the Gaia satellite, can break parameter
degeneracies and lead to constraints that ideally complement those obtained from local laboratory tests
using atomic clocks.
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I. INTRODUCTION

Cosmology and particle physics are presently experi-
encing a truly exciting period. While both have remarkably
successful standard models, the observational evidence for
the acceleration of the universe shows that these are at the
very least incomplete, and that new physics may be there,
waiting to be discovered. A key driver for the forthcoming
generation of ground and space-based astrophysical facili-
ties is to search for, identify and ultimately characterize this
new physics.
Tests of the stability of fundamental couplings—

effectively testing the universality of physical laws as we
know them—are one of the cornerstones of this endeavor
[1,2]. High-resolution spectroscopic studies of absorption
systems along the line of sight of bright quasars have led to
indications of variations of the fine-structure constant at the
parts per million level of relative variation [3], and addi-
tional tests of this claim are being actively pursued [4,5].
Meanwhile, analogous tests have also been carried out for
compact astrophysical objects, including solar-type stars
[6,7], Population III stars [8] and neutron stars [9].
Typically these yield constraints that are not as strong as
the quasar ones (largely due to uncertainties associated with
nuclear physics processes), although it is important to
note that the two types of tests are carried out in very
different physical environments and therefore they are in
any case independent tests. In particular, tests in compact

astrophysical objects are important to constrain possible
dependencies of fundamental couplings on the local envi-
ronment, e.g. the strength of the local gravitational field.
In this work we will discuss how another class of

astrophysical objects, white dwarfs, can be used for similar
purposes. The physics of white dwarfs is comparatively well
known [10], and it can be constrained through their mass-
radius relation which is a convenient observable. While the
number of objects for which the mass and radius have been
independently determined with good accuracy and without
assuming any underlying model is currently small [11]—of
order ten, to be compared to the tens of thousands of known
white dwarfs—this number and the sensitivity of the mea-
surements are both expected to increase in the coming years,
for example as a result of the Gaia space mission.
Indeed the white dwarf mass-radius relation has been

recently used to constrain a class of modified gravity
models [12]. Here we show that the standard mass-radius
relation is affected in models with spacetime variations of
fundamental couplings. In this respect white dwarfs are
particularly promising, because spectroscopic measure-
ments of the value of the fine-structure constant α and
the proton-to-electron mass ratio μ can be made on their
surface [13,14]. For this reason they provide a further tool
with which one may be able to constrain models with
environmental dependencies [15,16]; such constraints have
already been obtained locally, relying on the varying gravi-
tational potential felt by the Earth as it orbits the Sun [17,18].
In this work we will consider two such models, without and
with explicit environmental dependencies.
We will work in the context of a broad class of grand

unified theory (GUT) models, where the variations of the
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relevant couplings are related in a particular way [19,20].
This class of models has also been considered in previous
works on solar type and neutron stars [7,9], and it can also
be constrained in laboratory tests of the stability of
fundamental couplings using atomic clocks [21]. Indeed,
we will show how constraints on these models coming
from white dwarfs can ideally complement the atomic
clock ones.

II. PHENOMENOLOGY OF UNIFICATION

In order to account for the effects of varying fundamental
couplings on white dwarfs we must describe phenomeno-
logically the simultaneous variation of the relevant
couplings. These couplings will clearly include the fine-
structure constant α ¼ e2=ðℏcÞ, the proton-to-electron
mass ratio μ ¼ mp=me and Newton’s gravitational constant
G. The simplest way to do this is to relate the various
changes to those of a particular dimensionless coupling,
typically α. Then, if α ¼ α0ð1þ δαÞ and

ΔA
A

¼ kA
Δα
α

; ð1Þ

we have A ¼ A0ð1þ kAδAÞ and so forth; these kA are
known as sensitivity coefficients. Clearly the relations
between the various couplings will be model-dependent.
Here we will adopt the generic class of unification models
developed in Coc et al. [19], to which we refer the reader
for full derivations. Earlier less generic scenarios have also
been discussed in [22–24].
Specifically, [19] consider a class of GUT models in

which the weak scale is determined by dimensional trans-
mutation and further assuming that relative variations of all
the Yukawa couplings hi are the same, in other words that

Δhi
hi

¼ Δh
h

: ð2Þ

Finally they also assume that the variation of the couplings
is driven by a dilaton-type scalar field, as described in [20].
In this case one finds that the variations of α and those of
other quantities are related through two dimensionless
parameters, R and S, defined as

ΔΛ
Λ

¼ R
Δα
α

þ ðElectroweak termsÞ; ð3Þ

where Λ denotes the energy scale of Quantum
Chromodynamics, and

Δv
v

¼ S
Δh
h

; ð4Þ

where v is the Higgs vacuum expectation value and h are
the aforementioned Yukawa couplings (assumed to have a
common relative variation). In this case one can show [19]
that the proton-to-electron mass ratio μ obeys

Δμ
μ

¼ ½0.8R − 0.3ð1þ SÞ�Δα
α

: ð5Þ

Note that different models within this class will have
different values of R and S. Their absolute value can be
anything from order unity to several hundreds, but while R
can be positive or negative (with the former case being
more likely), physically one expects that S ≥ 0. To give just
two examples, Coc et al. [19] suggest typical values of
R ∼ 36 and S ∼ 160, while in the dilaton-type model
studied by Nakashima et al. [25] we have R ∼ 109 and
S ∼ 0. We mention these both to illustrate that they are
calculable in particular models within this class, and that
there is a significant model dependence in their values.
Additional discussion of these points can be found in the
review by Uzan [1]. In any case, we can simply treat both as
phenomenological parameters to be constrained by astro-
physical data. The strongest current constraints on R and
S—or, strictly speaking, a combination thereof—come
from atomic clock tests [21].
Concerning the gravitational constantG, we must bear in

mind that speaking of variations of dimensional constants
has no physical significance per se: one can always concoct
any variation one wishes by defining appropriate units of
length, time and energy. Still, one is free to choose an
arbitrary dimensionful unit as a standard and compare it
with other quantities. If one explicitly or implicitly assumes
particle masses to be constant, then constraints on G are in
fact constraining the (dimensionless) product of G and the
nucleonmass squared.A better route is to compare the strong
interaction with the gravitational one: this can be done by
assuming a fixed energy scale for quantum chromodynamics
(QCD) and allowing a varying G, or vice-versa.
Here, we will follow the latter route, defining the

dimensionless couplings

αi ¼
Gm2

i

ℏc
ð6Þ

and assuming that the QCD scale and particle masses vary,
while the Planck mass is fixed. We then have for the
electron mass

Δαe
αe

¼ 2
Δme

me
¼ ð1þ SÞΔα

α
ð7Þ

while for the proton mass

Δαp
αp

¼ 2
Δmp

mp
¼ 2½0.8Rþ 0.2ð1þ SÞ�Δα

α
: ð8Þ

The combination of the last two equations trivially recovers
Eq. (5). Similarly for the mass difference between neutrons
and protons, σ ¼ mn −mp, we find
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Δσ
σ

¼ ½0.1þ 0.7S − 0.6R�Δα
α

; ð9Þ

while for the ratio η ¼ mn=mp we have

Δη
η

¼
�
1

η
− 1

�
½0.1 − 0.5Sþ 1.4R�Δα

α
; ð10Þ

so the variation is of higher order (i.e., smaller), since the
function of R and S is in this case multiplied by a prefactor
of order 10−3. Similarly the relative variation of the neutron
mass can be obtained from

Δmn

mn
¼ Δσ

σ
þmp

mn

�
Δmp

mp
−
Δσ
σ

�
: ð11Þ

Relative variations of other quantities of interest, such as
the neutron lifetime and the deuteron binding energy can
also be cast in this form, as discussed in [19].
Finally, for our present purposes it is also useful to define

an average nucleon mass

mN ¼ 1

2
ðmp þmnÞ; ð12Þ

as well as its corresponding dimensionless parameter αN.
However, it is straightforward to show that the difference
between the relative variation of αN and αp is also of higher
order

ΔαN
αN

−
Δαp
αp

¼ 2η

1þ η

Δη
η

¼ η − 1

ηþ 1

�
Δσ
σ

−
Δmp

mp

�
; ð13Þ

and therefore we will later make the approximation
αN ∼ αp.

III. MASS-RADIUS RELATION FOR
POLYTROPIC WHITE DWARFS

A polytropic star is a simplified model for the structure
of a star in equilibrium [26]. We will start by briefly
reviewing the physics underlying the model and using it for
discussing the case of a polytropic white dwarf allowing for
varying couplings in this section because, having an
analytic solution, it will help to understand the more
general model (which can only be solved numerically)
which we will subsequently study. In this and the following
section we follow the canonical textbook treatments of
Chandrasekhar [26] and Shapiro and Teukolsky [10], to
which we refer the reader for further details.

A. Polytropic stars

The model for a polytropic star starts from the mass
continuity equation

dmðrÞ
dr

¼ 4πρðrÞr2; ð14Þ

and further assumes perfect spherical symmetry and hydro-
static equilibrium

dPðrÞ
dr

¼ −
GmðrÞρðrÞ

r
: ð15Þ

Here r is the radial distance to the center of the star,m is the
mass within the sphere of radius r, ρ the density, and P the
pressure. These equations can be solved if an equation of
the type P ¼ PðρÞ is specified. The polytropic solution
corresponds to a simplified equation of state with the form

P ¼ Kρ1þ1=n; ð16Þ

where K is the polytropic constant (related to the boundary
conditions of the star) and n is called the polytropic index
and is in principle a free parameter. From these equations
we can arrive at the Lane-Emden equation, given by

1

z2
d
dz

�
z2

dw
dz

�
¼ −wn: ð17Þ

In order to obtain this equation, we have made the
following substitutions (ρc is the density at the center of
the star):

z ¼ r
a
; w ¼

�
ρ

ρc

�
1=n

; a2 ¼ ð1þ nÞK
4πGρc1−1=n

: ð18Þ

The corresponding solution will have physical significance
from z ¼ 0 until z ¼ zn, with zn being the first zero of the
parameter w for the chosen value of n.
If we define R⋆ andM⋆ to be the total radius and mass of

the star, respectively, then

ð1þ nÞK
ð4πÞ1=n βn ¼ R3=n−1⋆ M1−1=n⋆ ; ð19Þ

where βn is a factor that can be calculated numerically:

βn ¼ z1þ1=n
n ð−w0ðznÞÞ1−1=n: ð20Þ

B. Simplified mass-radius relation

Awhite dwarf is a low- or medium-mass star in the final
stage of its life, after the main sequence. Having burned up
all of the nuclear fuel, the thermal pressure can no longer
support its own gravity. Hydrostatic equilibrium is achieved
because electrons become degenerate, and the resulting
Fermi pressure prevents the star from collapsing. Here we
start by considering a simple model of a white dwarf using
the free electron gas model, and assuming Newtonian
gravity and no thermal effects, following the analysis
of [10].
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For free electrons the number of states dn available at
momentum p per unit volume is

dn ¼ p2dp
π2ℏ3

: ð21Þ

The electrons will occupy one octant of a sphere of radius
pF in the p-space, whose volume is

1

8

4π

3
p3
F ¼ 1

2
qN

ℏ3π3

V
; ð22Þ

where pF is the Fermi momentum, N is the number of
nucleons in the gas, q is the number of electrons per
nucleon and V is the total volume of the gas.
First, we explore the situation where the electrons are

nonrelativistic. In this case, the energy of the system is
given by

ENR ¼
Z

pF

0

p2

2me

Vp2dp
π2ℏ3

¼ ℏ2ð3π2NqÞ5=3
10π2meV2=3 ; ð23Þ

whereme is the mass of the electron. From here can we find
the value of the degeneracy pressure:

PNR ¼ −
�∂E
∂V

�
N
¼ ð3π2Þ2=3

5

ℏ2

me

�
qρ
mN

�
5=3

; ð24Þ

where mN is the mass of the nucleon and ρ is the density of
the material. Indeed, we are assuming that all of the mass
comes from the atomic nuclei:

ρ ¼ NmN

V
: ð25Þ

We can also consider the ultrarelativistic limit E ≈ pc:

EUR ¼
Z

pF

0

pc
Vp2dp
π2ℏ3

¼ ð32πÞ2=3
4

ℏcðNqÞ4=3
V1=3 ; ð26Þ

PUR ¼ ð3π2Þ1=3
4

ℏc

�
qρ
mN

�
4=3

: ð27Þ

Equations (24) and (27) provide us with polytropic
equations of state for the nonrelativistic and ultrarelativistic
white dwarf, respectively. Combining the former with
equation (19), we find a theoretical mass-radius relation
for the nonrelativistic white dwarf:

R⋆ ¼
�
3π

64

�
2=3

β3=2ð2qÞ5=3
�
Gℏ2

c4

�
2=3 1

αN
5=6αe

1=2

1

M1=3⋆
:

ð28Þ

It is also useful to rewrite this equation in terms of
dimensionless masses and radii. We then have

R⋆ ¼
�
3π

64

�
2=3

β3=2ð2qÞ5=3
1

αN
5=6αe

1=2

1

M1=3⋆
; ð29Þ

whereR⋆ andM⋆ are in units of Planck’s radius and mass,
respectively.
If we now consider the ultrarelativistic regime, we get the

Chandrasekhar limit (again, in units of the Planck mass)

M⋆ ¼
ffiffiffiffiffiffi
3π

64

r
β3

3=2ð2qÞ2 1

αN
: ð30Þ

Here the αi are defined in Eq. (6), with mi referring to the
masses of the nucleon and the electron.
Now we are in a position to apply the modifications

mentioned in Sec. II to our model (which would otherwise
be standard). We replace

1

αN
5=6αe

1=2 →
1 − x

αp
5=6αe

1=2 ;
1

αN
→

1 − y
αp

; ð31Þ

where we have used the fact that the relative variations of
αN and αp differ by higher-order terms (cf. Sec. II) to
replace the former by the latter, and for convenience we
have defined

x ¼
�
4

3
Rþ 5

6
ð1þ SÞ

�
Δα
α

; ð32Þ

y ¼
�
8

5
Rþ 2

5
ð1þ SÞ

�
Δα
α

: ð33Þ

In short, our equations for the white dwarf have the
following structure

R⋆ ¼ 0.0126

M1=3⋆
ð1 − xÞ ðnonrelativisticÞ ð34Þ

M⋆ ¼ 1.45ð1 − yÞ ðultrarelativisticÞ; ð35Þ

where the numerical values apply for R⋆ andM⋆ expressed
in units of solar radius and mass, respectively.

IV. GENERAL MASS-RADIUS RELATION

We will now discuss a more general model, not restrict-
ing ourselves to any of the relativistic limits. As a
consequence, we will no longer be able to find a simple
analytic expression for the mass-radius relation. As we
shall see, the behavior of this model will differ significantly
from the previous one, especially for white dwarfs with
large masses.
First, it is convenient to introduce the dimensionless

quantity
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xF ¼ pF

mec
¼

�
3π2ð2qÞ
2mN

�
1=3 ℏ2

mec
ρ1=3: ð36Þ

The energy of the star is

E ¼
Z

pF

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

2c4 þ p2c2
q

−mec2
�
Vp2dp
π2ℏ3

¼ Vðmec2Þ4
ℏ3c3π2

Z
xF

0

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− 1

�
x2dx

¼ Vðmec2Þ4
ℏ3c3π2

ζðxFÞ: ð37Þ

In order to find the pressure, it is easier to calculate the
integral over the flux of momentum:

P ¼
Z

pF

0

vp
3

p2dp
π2ℏ3

¼ me
4c5

3π2ℏ3

Z
xF

0

x4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p dx

¼ me
4c5

3π2ℏ3
ξðxFÞ: ð38Þ

The functions ζ and ξ are

ζðxÞ ¼ 1

8π2

h
ðxþ 2x3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
− log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ x

�i
;

ð39Þ

ξðxÞ ¼ 1

8π2

h
ð2x3=3 − xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
þ x

�i
:

ð40Þ

Solving the system of Eqs. (14), (15), (36) and (38)
provides the functions mðrÞ, PðrÞ, ρðrÞ and xFðrÞ, from
which we can obtain the mass-radius relation. The surface
of the white dwarf is the value of r for which PðrÞ ¼ 0 (as
previously mentioned we call it R⋆). It should also be noted
that x ¼ 0 is the only root of ξðxÞ—cf. Eq. (40). Therefore,
by Eq. (38), the task of finding R⋆ is equivalent to the one
of finding the (first) root of xFðrÞ. Naturally, the mass of
star is mðR⋆Þ≡M⋆. With this in mind, we conveniently
reduce that system to the following one

8>>><
>>>:

dm0
dr ¼ m0r2xF3

dxF
dr ¼ −K1

m0
r2

ffiffiffiffiffiffiffiffi
1þx2F

p
xF

m ¼ K2m0

: ð41Þ

There is no analytic solution to this system, and so we will
have to resort to numerical methods. For this purpose, we
have introduced the dimensionless constant m0 in order to
control the order of magnitude of the parameters in the
equations. We also defined

K1 ¼
16

3πð2qÞ2
R⊙
m0

c3

Gℏ3
αeαN; ð42Þ

K2 ¼
8

3πð2qÞ8
R⊙3

M⊙m0

c5

G2ℏ
αe

3=2αN
1=2: ð43Þ

To allow for the possibility of varying couplings, bothK1

and K2 should now be extended to include corrections.
Making again use of phenomenological relations of Sec. II
we get

8>>><
>>>:

dm0
dr ¼ m0r2xF3

dxF
dr ¼ −K1ð1þ βÞ m0

r2

ffiffiffiffiffiffiffiffi
1þx2F

p
xF

m ¼ K2ð1þ γÞm0

; ð44Þ

where

β ¼
�
9

5
Rþ 8

5
ð1þ SÞ

�
Δα
α

; ð45Þ

γ ¼
�
4

5
Rþ 23

10
ð1þ SÞ

�
Δα
α

: ð46Þ

Note that β and γ are significantly different from the
analogous parameters in the polytropic case, x and y.
Indeed, it is instructive to compare this model with the

polytropic ones. In Fig. 1, we plot the curves corresponding
to Eqs. (34), (35) and (44). This plot suffices to show that

FIG. 1. The white dwarf mass-radius relation for the general
model [Eq. (44), solid red line for the standard model, with the
nearby darker and lighter dashed lines corresponding to
β ¼ �0.01]. For comparison the plot also shows the nonrelativ-
istic limit of the polytropic model [Eq. (34), blue solid line for the
standard case and darker and lighter dashed lines for x ¼ �0.1]
and the ultrarelativistic model [Eq. (35), green solid line for the
standard case and darker and lighter dashed lines for y ¼ �0.02].
The black points with error bars correspond to the data in Table I.
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the polytropic models do not tell the whole story about
white dwarfs. We can see that Eq. (34) is an accurate model
only for low mass stars. On the other hand, Eq. (35) is only
good for stars very near the Chandrasekhar limit. For these
reasons, in the following sections we will base our analysis
on Eq. (44).
Note that in this section we are assuming a model for the

relative variation of α (and therefore for the other quantities
related to it) where its numerical value is the same for all
white dwarfs, and is spatially homogeneous on the scale of
the white dwarf radius. An alternative scenario, where the
magnitude of the (relative) variations does depend explic-
itly on the local gravitational field, is briefly discussed in
the Appendix. We also note that to other astrophysical
processes, such as rotation or magnetic fields, may affect
the mass-radius relation: as in the recent [12] (which also
uses this to constrain modified gravity models) such addi-
tional effects have been neglected, but they may be relevant
for future data sets.

V. CURRENT OBSERVATIONAL CONSTRAINTS

We now use our mass-radius relation model to set
constraints on the parameters β and γ. We will make use
of a catalog of twelve white dwarfs in binary systems,
compiled in [11], for which both masses and radii have
been independently obtained from a combination of obser-
vations of trigonometric parallaxes, spectroscopic effective
temperatures and surface gravities, and gravitational red-
shifts. These are listed in Table I and are also depicted by
the black points in Fig. 1. We note that a possible source of
model dependence in the analysis of [11] stems from the fact
that their analysis requires an estimate of the intrinsic flux of
the white dwarf, which is made by fitting the observed
spectrum to model atmosphere codes. Quantitatively esti-
mating the magnitude of the effect of α variations on this

spectroscopic fitting is beyond the scope of this work (as it
would require detailed simulations of these spectra) though
we believe that this effect is negligible in our current error
budget.
We carry out a standard likelihood analysis, with β and γ

as fitting parameters, which is otherwise similar to the one
in [12], which recently used the same data to constrain a
class of modified gravity models. For each star i in our
catalog, we choose the value of M⋆ that minimizes the
following quantity

χi
2ðM⋆Þ ¼

ðM⋆ −MiÞ2
σ2M;i

þ ðRthðM⋆Þ − RiÞ2
σ2R;i

; ð47Þ

where Mi, σM;i, Ri, and σR;i are the mass and radius of the
ith star and their respective uncertainties, and RthðMÞ is the
theoretical relation that we wish to fit. Thus, total value of
χ2 is

χ2 ¼
XN
i¼1

χi
2ðM̂iÞ; ð48Þ

with M̂i as the value of M that minimizes the correspond-
ing χi

2.
Figure 2 shows the resulting constraints in the β–γ plane.

The results are consistent with the standard values
β ¼ γ ¼ 0, but the two parameters are strongly correlated,
preventing us from obtaining individual constraints on each
of them. This is partially because the uncertainties in the
masses and radii are relatively large, but also due to the
fact that the available measurements span a comparatively
narrow range of white dwarf masses, around 0.6 solar
masses. (The only white dwarf in the catalog with a mass
near one solar mass is WD0642 − 166, otherwise known as
Sirius B.) Nevertheless, this suggests that the degeneracy
between the two parameters can be broken by improved
(future) astrophysical measurements, as we will show in
what follows.

TABLE I. Catalog of currently white dwarf masses and radii,
reproduced from [11]. All masses and radii are in units ofM⊙ and
R⊙, respectively, and their values and corresponding uncertain-
ties are shown with the same number of significant digits as the
original reference.

System M⋆=M⊙ R⋆=R⊙
WD0413 − 077 0.51� 0.036 0.0135� 0.0008
WD0416 − 594 0.62� 0.056 0.0133� 0.0006
WD0642 − 166 0.94� 0.05 0.0084� 0.0025
WD1105 − 048 0.45� 0.094 0.0133� 0.0026
WD1143þ 321 0.71� 0.072 0.0149� 0.001
WD1314þ 293 0.80� 0.25 0.0171� 0.0047
WD1327 − 083 0.53� 0.0079 0.0141� 0.00085
WD1620 − 391 0.68� 0.016 0.0127� 0.0028
WD1706þ 332 0.54� 0.085 0.0125� 0.001
WD1716þ 020 0.65� 0.08 0.0151� 0.0015
WD1743 − 132 0.46� 0.11 0.0129� 0.0018
WD2341þ 322 0.56� 0.053 0.0124� 0.0007 FIG. 2. One, two and three sigma confidence regions in the β–γ

plane, from the currently available data listed in Table I.
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VI. FORECASTING FUTURE CONSTRAINTS

Astrophysical facilities such as the Gaia satellite should
soon lead to significantly improved measurements of white
dwarf masses and radii. Here, by means of a simple
forecast, we show that these improvements can be expected
to lead to competitive constraints on β and γ, as well as on
the previously introduced class of unification models.
For this purpose we have generated a simulated catalog

of 100 mass-radius pairs, spanning a wider range of masses,
0.3 < M⋆ < 1.2. We conservatively assume that the fidu-
cial model is the standard one (with β ¼ γ ¼ 0). For the
scatter of the measurements and their uncertainties, we
make the simplifying assumption that each of the corre-
sponding masses and radii is determined with an uncer-
tainty corresponding to the smallest of the currently
available ones, which are listed in Table I. This corresponds
to σM ¼ 0.0079 and σR ¼ 0.0006 respectively, and is likely
to be a conservative assumption, both in terms of uncer-
tainties and (perhaps even more so) in terms of the number
of measurements—as was pointed out in the introduction,
several tens of thousands of white dwarfs are already
known. This simulated data set is plotted against the
theoretical mass-radius relations in Fig. 3, which should
be compared to Fig. 1.

A. Constraints on β and γ

Figure 4 shows the constraints obtained from the
simulated data on the β–γ plane. The previous degeneracy
is partially broken, so marginalized constraints on β and γ
can now be obtained. Figure 5 shows the likelihoods for
each parameter, and at the 68.3% (1σ) confidence levels we
find, for the parameters defined in Eqs. (45)–(46) the
following constraints

β ¼ 0.012� 0.032; ð49Þ

γ ¼ 0.006� 0.060: ð50Þ

Thus each of the parameters can be constrained to an
accuracy of a few percent. As a simple illustration, if we
assume the typical values suggested in [19] of R ∼ 30 and
S ∼ 160, allowing a 10%uncertainty in each of them,we find

Δα
α

¼ ð2.7� 9.1Þ × 10−5; ð51Þ

which although weaker that direct spectroscopic constraints
is consistent with them (and also consistent with the null
result, as it should be given our choice of fiducial model).

B. Constraints on R and S

Our parameters β and γ are specific combinations of the
unification parameters R and S and the relative variation of
α itself. Therefore, measurements ofΔα=α on the surface of
white dwarfs can be used as priors in this analysis, allowing
us to express the direct constraints on β and γ as constraints
on R and S (or possibly combinations thereof). Recently
Berengut et al. [13] reported on spectroscopic Hubble

FIG. 3. Same as Fig. 1, except that the black data points now
depict a simulated future data set, as described in the text.

FIG. 4. Two and three sigma confidence regions in the β–γ
plane, for the simulated future data set described in the text. To be
compared to the current constraints, depicted in Fig. 2.

FIG. 5. One-dimensional marginalized likelihoods for β and γ
parameters (blue and green curves respectively) for the simulated
future data set. The vertical dotted lines identify the best-fit values
of each parameter.
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Space Telescope measurements in the white dwarf G191-
B2B, using Fe V and Ni V transitions which are com-
paratively very sensitive to α variations, and finding
respectively

�
Δα
α

�
FeV

¼ ð4.2� 1.6Þ × 10−5 ð52Þ
�
Δα
α

�
NiV

¼ ð−6.1� 5.8Þ × 10−5; ð53Þ

note that the two measurements are discrepant at 1.6
standard deviations; given the high resolution of the spectra
used in the analysis, the most likely source of uncertainty is
the accuracy of the laboratory wavelength measurements of
the required Fe V and Ni V transitions. In what follows we
will therefore use them separately in the following analysis,
but for comparison we will also consider their weighted
mean combination, which is

�
Δα
α

�
Joint

¼ ð3.5� 1.5Þ × 10−5: ð54Þ

With these measurements we could use Eqs. (49)–(50) to
constrain the two combinations of R and S given by
Eqs. (45)–(46). Note than in this case one can only constrain
combinations of the two parameters, rather than each one of
them individually. Interestingly, the combination of the
parameters R and S to which the white dwarf mass-radius
relation is sensitive is orthogonal to an analogous constraint
obtained from laboratory tests of the stability of fundamental
couplings using atomic clocks [21]

ðSþ 1Þ − 2.7R ¼ −5� 15: ð55Þ

We can therefore take our forecast one step further and
combine thewhite dwarf and atomic clock constraints, again
using a standard likelihood analysis. Figure 6 shows the
resulting constraints in theR–S plane, while Fig. 7 shows the

FIG. 6. Left panel: Allowed one-sigma regions in the R–S parameter space. The blue (top) and green (bottom) bands correspond to
the Iron and Nickel measurements, respectively. The thin grey band corresponds to the atomic clocks bound, Eq. (55), while the darker
elliptic regions are the result of the combination of the latter with each of the two former ones. Right panel: Analogous plot, with the
pink band corresponding to the weighted mean combination of the Iron and Nickel measurements.

FIG. 7. One-dimensional posterior likelihoods for R (solid lines) and S (dashed lines), marginalizing over the other parameter. In the
left panel the blue lines correspond to the Iron measurements while the green ones correspond to the Nickel measurements; in the right
panel the red lines correspond to the weighted mean of both measurements.
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overall 1D posterior likelihoods for each of the parameters,
marginalizing the other. We show the results of the analysis
for both the Iron and Nickel measurements taken separately,
and for the combination of the two.
The resulting constraints on R and S are summarized in

Table II. We note the different signs of the best-fit values of
R and S that this simulated analysis leads to: positive for
Iron (and the joint analysis) and negative for Nickel. From a
purely theoretical point of view, the former set of param-
eters would be somewhat natural than the latter one, but in
any case all results are consistent with one another within
one standard deviation. This ultimately stems from the
fact that these constraints are dominated by the atomic
clocks data, cf. Eq. (55). Therefore, despite the simplifying
assumptions made in this forecast, it does show that with
the expected improvements in the sensitivity of both the
white dwarf mass-radius relation and the spectroscopic
measurements of α at their surface (for which [13] suggests
that improvements by up to two orders of magnitude are
within reach) this has the potential to become a powerful
probe of unification scenarios.

VII. CONCLUSION

There is growing interest in using compact astrophysical
objects as a probe of fundamental physics paradigms. In
this work we have focused on white dwarfs, for which there
are three relevant observables. Their masses and radii can
be measured independently (i.e., without critically relying
on theoretical models) in binary systems, while the value of
the fine-structure constant α in their atmosphere can be
measured spectroscopically.
By studying how the mass-radius relation is affected in a

broad class of GUT models where both α and the particle
masses are allowed to vary, we have shown that the
combination of these observables can lead to constraints
on the phenomenological parameters characterizing the
unification models. Interestingly, in the space of these
phenomenological parameters, constraints coming from
white dwarfs are roughly orthogonal to those coming from
atomic clock tests [21].
After showing that the effects of varying couplings are

different in a simple polytropic model and in a more

detailed model, we have used current as well as simulated
data (representative of future observations) to obtain con-
straints on the relevant parameters. Currently available data
consists of only twelve mass-radius pairs [11], with
relatively large uncertainties and in a relatively narrow
range of masses, and this implies that at the moment no
stringent constraints can be obtained: only a degenerate
combination of the relevant parameters is constrained. As
for published spectroscopic measurements of α, they have
been done in a single white dwarf [13], though with
discrepant results for the two species used, Iron and Nickel.
The number and the sensitivity of the mass-radius

measurements are both expected to increase significantly
in the near future. In particular, it is expected that the Gaia
space mission [27,28] will provide highly accurate inde-
pendent measurements of masses and radii for several
hundreds of white dwarfs—our forecast conservatively
assumed 100. On the other hand, the current limiting factor
in the sensitivity of the spectroscopic measurements is the
uncertainty in laboratory measurements of the relevant
atomic transitions; should these be improved, the sensitivity
can be improved by up to two orders of magnitude. We thus
expect that this method will soon provide competitive
constraints.
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APPENDIX: ENVIRONMENTAL DEPENDENCIES

In the main text we have assumed that the value of α is
the same for all the white dwarfs, while this value need not
be the standard one (known from lower density environ-
ments such as the Earth). In what follows we will very
briefly discuss a different scenario. We will assume that the
relative variation of α depends on the local gravitational
field,

Δα
α

∝ g: ðA1Þ

Clearly, in this model there is an explicit environmental
dependence: the value of α will have a radial dependence
for each white dwarf, and will also have a different value at
the surface of each one of them. For a spherically
symmetric mass distribution and Newtonian gravity, we
will have

TABLE II. One-sigma posterior uncertainties on the parameters
R and S, marginalizing over the other parameter, form the
combination of white dwarf and atomic clock data. We separately
show the results of the analysis for the cases where the Iron and
Nickel measurements, or the weighted mean of both measure-
ments, are used as priors.

Prior R (68.3% C.L.) S (68.3% C.L.)

Fe V measurement only 11� 41 24� 109
Ni V measurement only −5� 30 −19� 79
Joint (weighed mean) 13� 49 29� 132
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Δα
α

¼ a0
mðrÞ
r2

; ðA2Þ

where a0 is a dimensionless constant and r and mðrÞ are in
solar units as in the main text. The system of equations
analogous to that of Eq. (44) is now

8>>>>><
>>>>>:

dm0
dr ¼ m0r2xF3

dxF
dr ¼ −K1

�
1þ β0

m
r2

�
m0
r2

ffiffiffiffiffiffiffiffi
1þx2F

p
xF

m ¼ K2

�
1þ γ0

m
r2

�
m0

ðA3Þ

and our model parameters (analogous to β and γ) are

β0 ¼
�
9

5
Rþ 8

5
ð1þ SÞ

�
a0 ðA4Þ

γ0 ¼
�
4

5
Rþ 23

10
ð1þ SÞ

�
a0: ðA5Þ

Comparing these with Eqs. (45)–(46) we note that the
dependencies on R and S are exactly the same, but instead
of being multiplied by the (previously assumed constant)
relative variation of α they are now multiplied by the
dimensionless constant a0, defined in Eq. (A2).
Now there is no advantage in working withm0, since it is

not obtained from m by a single rescaling. We therefore
have

8<
:

dm
dr ¼ m2ðð1m þ γ0

r2Þ2K2m0r2xF3 −
2γ0
r3 Þ

dxF
dr ¼ − K1

K2

1þβ0
m
r2

1þγ0
m
r2

m
r2

ffiffiffiffiffiffiffiffi
1þx2F

p
xF

:
ðA6Þ

Figure 8 shows examples of mass-radius relations for
various choices of the parameters β0 and γ0, and the
constraints from the Holberg et al. [11] data listed in
Table I, assuming logarithmic priors for both of these. In
this case we find three sigma upper bounds on β0 and γ0,

respectively at the 10−5 and 10−4 level. On the other hand,
in this case there is no independent determination of a0
(which in principle is another free parameter), so one
cannot obtain separate constraints on R and S.
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