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The attenuation effect is the effect of weakening contributions to the oscillation signal from remote
structures of the matter density profile. The effect is a consequence of integration over the neutrino energy
within the energy resolution interval. Structures of a density profile situated at distances larger than the
attenuation length, λatt, are not “seen” at the level ϵ≡ 2EV=Δm2, where V is the matter potential. We show
that the origins of attenuation are (i) the averaging of oscillations in certain layer(s) of matter, (ii) the
smallness of the matter effect: ϵ ≪ 1, and (iii) the specific initial and final states on neutrinos. We elaborate
on the graphic description of the attenuation that allows us to compute explicitly the effects in the ϵ2 order
for various density profiles and oscillation channels. The attenuation in the case of partial averaging is
described. The effect is crucial for the interpretation of oscillation data and for the oscillation tomography
of the Earth with low energy (solar, supernova, atmospheric, etc.) neutrinos.
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I. INTRODUCTION

The attenuation effect introduced in [1] is the key element
for understanding neutrino oscillations in the Earth. It
describes the weakening of the contribution of a remote
structure of a matter density profile to the oscillation signal in
a detector. The contribution decreases with an increase of
distance between a structure and a detector because of finite
accuracy of the reconstruction of the neutrino energy. The
latter can be due to finite energy resolution of a detector, or
finite width of produced neutrino energy spectrum, or due to
the kinematics of the process when neutrino energy cannot
be obtained uniquely. The better the energy resolution, the
more remote structures can be observed. The attenuation
effect applies to the astrophysical (solar, supernova) neu-
trinos arriving at the surface of the Earth as incoherent fluxes
of mass states. It also applies to the terrestrial neutrinos of
different origins: the reactor antineutrinos, atmospheric
neutrinos of low energies, etc.
The attenuation effect explains why, e.g., Super-

Kamiokande cannot observe the core of the Earth using
the solar neutrinos. The computed curves (see Fig. 1 in [2])
do not show an increase of the νe regeneration for the zenith
angles j cos θzj > 0.83 (core crossing trajectories) in spite
of 2 times larger density in the core than in the mantle. The
zenith angle dependence of the rate of events is flat as it
would be in the absence of the core. In the case of Super-
Kamiokande, which detects the boron neutrinos with a
continuous energy spectrum, the attenuation is due to
integration over the energy of neutrino since the observed
signal is the recoil electron from the ν − e scattering. As
can be seen in Fig. 53 of [3] and Fig. 2 of [4], even a

selection of narrow intervals for the recoil electron energy
does not improve the sensitivity to the core. One can
observe only small spikes at j cos θzj ¼ 0.83 which are
about 30 times smaller than the difference of the night and
day signals. The spikes slightly increase in the high recoil
energy bins (15–16) MeVand (16–20) MeV. The reason for
this increase is that only a very high energy part of the
neutrino spectrum contributes to these bins. By selecting
these bins we are effectively narrowing the integration
interval over neutrino energies. In contrast, small density
jumps close to the surface of the Earth (j cos θzj ∼ 0.05–0.2)
produce a much stronger effect.
The core can be seen, in principle, using the beryllium

neutrinos with a relative width of the line σE=E ∼ 0.005 [5].
Good energy reconstruction can be achieved in experiments
based on the ν-nuclei scattering. As an example, the ν-Ar
interactions have been considered [6] and the energy-nadir
angle distribution of events during the nighttime has been
computed. It is shown that the nadir angle dependence of
the night excess can be interpreted as hierarchical pertur-
bations of the result for a constant density profile. The
strongest perturbation of the lowest order is produced by
the closest to a detector density jumps in the outer mantle.
The first order dependence is then perturbed by a smaller
size effect of the deeper mantle jumps. In turn, this second
order approximation is perturbed by the Earth core effect.
With improvement of energy resolution of a detector the
effect of remote structures increases [6]. The core can be
seen with σE=E < 0.1.
The attenuation effect has been obtained for the mass-to-

flavor transition, e.g., ν1 → νe. The paradoxical result is
that for the inverse channel, the flavor-to-mass transition
νe → ν1, the situation is opposite: close to a detector
structures are attenuated, whereas remote structures can*smirnov@mpi-hd.mpg.de
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be seen. In the νe → νe channel the attenuation may or may
not be realized depending on features of the profile.
In this paper we further elaborate on the physics of the

attenuation effect. We clarify the meaning of the attenuation
length connecting it to the averaging of oscillations. Using
simple examples we (i) formulate conditions for realization
of the effect, (ii) show its specific properties for various
density profiles and channels, (iii) prove that it is realized in
the lowest order in ϵ, and (iv) consider the cases of partial
attenuation. The geometric (graphic) description of the
attenuation effect allows us to understand the paradoxical
features described above. We show that the attenuation
effect is a result of certain averaging of oscillations,
smallness of mixing of the neutrino mass states in matter,
and specific initial and final states of neutrinos. Using the
graphic representation we compute effects in leading order
in ϵ. We show that even for very large distances the effect of
structures appears at the ϵ2 level. We consider effects in
pure flavor channels that can be applied to neutrinos of
terrestrial origins: reactor antineutrinos, low energy atmos-
pheric neutrinos, geoneutrinos, and neutrinos from π- and
μ- decay at rest.
Let us emphasize that only the averaging of oscillations

cannot explain the attenuation effect, and in particular, the
fact that the average probability for the mantle crossing
trajectories and for the mantle-core (with 2 times larger
density) crossing trajectories is practically the same. The
averaging does not explain the attenuation of the close to
the detector structure in the case of νe → ν1 transition. It
does not explain that the effect of remote structures exists at
ϵ2 level independently of the distance.
The results obtained here are important for the inter-

pretation of data on neutrino oscillation in the Earth and for
the planning of future experiments aimed at the neutrino
oscillation tomography.
The paper is organized as follows: In Sec. II we recall the

main points of derivation of the attenuation effect. In
Sec. III we clarify the meaning of the attenuation length
and present a graphic description of the effect. The effect in
two layers of matter is discussed in Sec. IV. The case of a
multilayer medium is explored in Sec. V. In Sec. VI we
consider the case of partial averaging. Discussion and
conclusions are presented in Sec. VII.

II. ATTENUATION EFFECT

Astrophysical (solar, supernova) neutrinos arrive at the
Earth as incoherent fluxes of the mass eigenstates νi. In the
Earth, each mass state “splits” into eigenstates in matter and
oscillates. The mixing angle of the ν1 and ν2 mass states in
matter, θ0, is determined by

sin 2θ0 ¼ c213ϵ sin 2θ21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − c213ϵÞ2 þ sin22θ12

p ¼ c213ϵ sin 2θ
m
21:

ð1Þ

Here θm21 is the flavor mixing angle in matter, c13 ≡ cos θ13,
θ21, and θ13 are the 1-2 and 1-3 vacuum mixing angles, and

ϵ≡ 2VeE
Δm2

21

¼ 0.03

�
E

10 MeV

��
ρ

2.6 g=cm3

�
: ð2Þ

Thus, sin 2θ0 ≈ ϵ sin 2θ21—the mixing angle of the mass
states in matter is suppressed by ϵ. In the Earth for E <
30 MeV (solar, supernova neutrinos) oscillations proceed
in the low density regime when ϵ ≪ 1. The splitting of the
eigenvalues of the Hamiltonian

Δm
21 ≡ Δm2

21

2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos 2θ12 − c213ϵÞ2 þ sin22θ12

q
ð3Þ

determines the oscillation length in matter,

lm ¼ 2π

Δm
21

¼ lν½1þ cos 2θ12c213ϵþOðϵ2Þ�; ð4Þ

which is close to the vacuum oscillation length
lν ¼ 4πE=Δm2

21.
The detector registers the flavor states, and for definite-

ness we will take νe. Therefore the relevant transition is
νi → νe. Furthermore, at low energies, when the matter
effect on the 1-3 mixing is negligible, it is enough to find
the transition for one mass state, and the other can be
obtained using unitarity. So, in what follows for definite-
ness we will focus on the ν1 → νe transition.
Without the matter effect the probability equals

P1e ¼ jUe1j2, where Ue1 is the e1 element of the mixing
matrix in vacuum. Therefore the Earth matter effect is given
by the “regeneration factor”

freg ≡ P1e − jUe1j2:

In the lowest order in ϵ the factor equals [1,7]

freg ¼ C
Z

L

0

dxVeðxÞ sinϕm
x→L; ð5Þ

where C≡ − 1
2
sin2 2θ12c413 and

ϕm
x→LðEÞ≡

Z
L

x
dxΔm

21ðx; EÞ ð6Þ

is the phase acquired from a given point of trajectory x to a
detector. L is the total length of the trajectory.
The attenuation effect is a consequence of the integration

of the oscillation probability over the neutrino energy with
the neutrino energy reconstruction function gðEr; EÞ, where
Er and E are the reconstructed and true energies corre-
spondingly. The width of gðEr; EÞ is determined by the
smallest quantity among (i) a width of neutrino spectrum,
(ii) the energy resolution of a detector, and (iii) an accuracy
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of the neutrino energy reconstruction determined by kin-
ematics of the process used for a detection. Items (ii) and
(iii) coincide in the case of ν-nucleon scattering when the
neutrino energy is directly related to the energy of the
produced electron (which is not the case of νe scattering).
The regeneration factor averaged over the energy equals

f̄regðErÞ ¼
Z

dEgðEr; EÞfregðE; xÞ; ð7Þ

with
R
dEgðEr; EÞ ¼ 1. Inserting (5) into (7) we obtain

f̄regðErÞ ¼ C
Z

L

0

dxVðxÞFðL − xÞ sinϕm
x→LðErÞ; ð8Þ

where FðdÞ is the attenuation factor [1] and d≡ L − x is
the distance from a given structure of the profile to a
detector. The factor F is defined by the equality

FðL − xÞ sinϕm
x→LðErÞ ¼

Z
dEgðEr; EÞ sinϕm

x→LðEÞ ð9Þ

in such a way that for the ideal energy resolution,
gðEr; EÞ ¼ δðE − ErÞ, one would get FðL − xÞ ¼ 1; i.e.,
attenuation is absent. Notice that due to the presence of the
sine of the phase in the integral (9) the factor FðL − xÞ
appears as a kind of Fourier transform of the energy
resolution function gðEr; EÞ.
For the Gaussian resolution function with width σE,

gðEr; EÞ ¼
1

σE
ffiffiffiffiffiffi
2π

p e
−ðEr−EÞ2

2σ2
E ; ð10Þ

we obtain from (9)

FðdÞ≃ e−2ð
d
λatt

Þ2 ;

where

λatt ≡ lν
E
πσE

ð11Þ

is the attenuation length. If d ¼ λatt, the factor equals
FðλattÞ ¼ 0.135, and therefore according to (8), a contri-
bution to the oscillation effect of structures with d > λatt is
strongly suppressed. As follows from (11), the better the
energy resolution of a detector, the more remote structures
can be “seen.” Thus, for the relative energy resolution
σE=E ¼ 0.1 and lν ¼ 400 km the attenuation length equals
1470 km and the structures of a density profile at d >
1470 km cannot be observed. For σE=E ¼ 0.2 already
structures with d > 750 km are strongly attenuated.
The origin of the attenuation can be traced from Eq. (8)

where the potential VðxÞ is integrated with the sine of the

phase acquired from the coordinate of a structure, x, to a
detector.
Notice that computing the number of events in a detector

we integrate over energy not just freg, as in (7), but
the product of freg with the flux F and cross section σ.
The product σF depends on energy, but even in this case
the results are qualitatively unchanged. If the energy
resolution is high, the dependence on energy of the product
σF can be neglected and the product can be put out of the
integral.
The attenuation effect is also realized for the flavor

neutrinos of the terrestrial origins (low energy atmospheric
neutrinos, neutrinos from pion and muon decay at rest). For
these neutrinos loss of coherence can occur in the first layer
of matter, e.g., the mantle of the Earth, so that at internal
structures the incoherent flux of the eigenstates (close to
mass states) arrives. Attenuation is then realized for inner
structures.
In what follows we will mainly consider attenuation for

the 1-2 mode of oscillations described by the 1-2 subsystem
of the complete 3ν system. At low energies the third mass
state, ν3, decouples and dynamics of the 3ν evolution is
reduced to the 2ν evolution in the so-called propagation
basis (see [8] for details), which is related to the flavor
basis, in particular, by the 1-3 rotation on the angle−θ13. At
this rotation νe → ν0e. The matter effect on the 1-3 mixing
can be neglected and the remaining 2ν subsystem is
characterized by θ12, Δm2

21, and the potential c213Ve. So,
in what follows we will consider the 2ν transition ν1 → ν0e.
(We will omit the prime keeping in mind that results in the
flavor basis can be obtained from the results in the
propagation basis by multiplying them by c213.)
With this, the evolution in the Earth is reduced to the 2ν

evolution in the potential V ¼ c213Ve. For simplicity we
omit the subscript θ12 → θ. Then using Eq. (1) we find for
the mixing of mass states in matter

sin2θ0 ≈
ϵ2

4

sin22θ
ðcos 2θ − ϵÞ2 þ sin22θ

¼ 1

4
ϵ2sin22θm: ð12Þ

Here c213 is included in the potential and ϵ. We comment on
attenuation for the 1-3 mode in Sec. VII.

III. ATTENUATION EFFECT AND
DECOHERENCE

Let us first clarify the meaning of the attenuation length
λatt. According to (11) the phase acquired by the neutrino
with energy E over the distance λatt equals

ϕðEÞ ¼ 2π
λatt
lm

≈ 2π
E
πσE

:

Then the difference of phases of neutrinos with the
difference of energies ΔE is
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Δϕ ¼ 2π
ΔE
πσE

: ð13Þ

For the integration interval ΔE ¼ πσE, Eq. (13) gives
Δϕ ¼ 2π. Therefore integration over the energy resolution
leads to the averaging of oscillations. So, λatt is the distance
(or width of the layer) over which oscillations observed
with the energy resolution σE are averaged.
Let us consider a density profile with some structure, the

s layer, e.g., the density bump in the interval between x ¼ 0
and x ¼ xs and the “decoherence” layer d with length xd
situated between xs and ðxs þ xdÞ. The bump should have
sharp edges, so that the adiabaticity is broken. The
decoherence layer has constant or slowly changing density.
Suppose a neutrino enters the profile at x ¼ 0, while a
detector is placed at x ¼ xd þ xs. The distance between the
structure and a detector equals xd. (Actually the presence of
matter in the d layer is not important.) The densities in d
and s are low being of the same order. Recall that the Earth
density can be considered as layers with a slowly changing
density inside the layers and a sharp density change on the
borders between them [9]. So, our consideration can
immediately be applied to this realistic situation.
Suppose d > λatt, so that oscillations in the d layer are

averaged (or equivalently, the coherence of the neutrino
state is lost). Let νd1m, ν

d
2m be the neutrino eigenstates in d.

Suppose the mass state ν1 arrives at the s layer and after
oscillations in s enters the d layer as νx which can be
parametrized as

νx ¼ cos θxνd1m þ sin θxνd2me
−iϕx : ð14Þ

So, the information about the s layer is contained in the
angle θx and the phase ϕx. It may happen that some
averaging occurred already before arriving at d. This can be
accounted for by the overall normalization factor of νx, N,
such that jNj2 < 1. We assume also that

θx ¼ Bϵ; B ¼ Oð1Þ; ð15Þ

and ϵ is defined in (2). The phase ϕx becomes irrelevant due
to averaging in layer d.
In terms of the eigenstates νdim (i ¼ 1, 2) the electron

neutrino and the mass state ν1 are given by

νe ¼ cos θdνd1m þ sin θdνd2m; ν1 ¼ cos θ0dν
d
1m þ sin θ0dν

d
2m;

ð16Þ

where θd and θ0d are the mixing angles of the flavor states
and the mass states in the d layer correspondingly. Then
according to (14) the probability to observe νe in a detector
equals

Px ¼ jhνejνxij2 ¼ cos2θxcos2θd þ sin2θxsin2θd: ð17Þ

So, after averaging the information about the structure is
encoded in θx only.
In the absence of s layer, the neutrino ν1 enters

immediately layer d and propagates there. Then instead
of (17), we obtain the probability to detect νe,

P1 ¼ jhνejν1ij2 ¼ cos2θ0dcos
2θd þ sin2θ0dsin

2θd: ð18Þ

The difference of the probabilities in (17) and (18), which is
the measure of effect of the s layer, equals

ΔPe ≡ Px − P1 ¼ ðsin2θ0d − sin2θxÞ cos 2θd: ð19Þ

Since density of the structure is of the order of density in
layer d, we obtain using (15) and (12)

ΔPe ¼ Px − P1 ≈ ðB2 − 1Þ 1
4
ϵ2sin22θd cos 2θd: ð20Þ

The equalities corresponds to the low density case. So, the
effect of structure is absent in the first order in ϵ, i.e.,
attenuated, in agreement with our previous consideration.
Its effect appears in the second order in small parameter ϵ.
Averaging eliminates information about the phase, and

therefore removes interference, so that small parameters
appear being squared.
This result as well as results for more complicated cases

can easily be obtained using the graphic representation of
oscillations based on the analogy of the oscillations and the
precession of the spin of electron in the magnetic field [10]
(see Fig. 1–8). According to this representation the neutrino
state is described by the polarization vector in the flavor
space,

P ¼ 1

2
ψ̄σψ ; ψT ≡ ðνe; νaÞ:

Oscillations are equivalent to the precession of the vector P
in the flavor space ðx; y; zÞ around the axis of eigenstates in
matter Am. The axis lies in the ðx; zÞ plane, and the angle
between the flavor axis z andAm equals 2θm. The direction
of the axis of the mass states in vacuum,Av, with respect to
z is given by the vacuum mixing angle 2θ. We use
normalization jAmj2 ¼ jAvj2 ¼ 1. The probability to
observe νe is given by the projection of P onto the flavor
axis z,

Pe ¼ ðP · zÞ þ 1

2
:

Let Ad be the axis of eigenstates in the d layer. The loss
of coherence (averaging) in d means that neutrino polari-
zation vector P precesses around Ad with a decrease of the
orthogonal to Ad component. The projection of P on Ad
does not change. Thus, the vector P shrinks and eventually
coincides with its own projection onto Ad,
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P → ðP ·AdÞAd:

Further on we will consider the attenuation effect in terms
of this graphic representation.
Let Px be the vector that describes the state νx in the

example discussed above. The angle between Px and the
axis Ad equals 2θx, and θx is defined in (14). Averaging of
oscillations in layer d means that Px evolves to its
projection on Ad,

Px →
1

2
cos 2θxAd: ð21Þ

Similarly, the polarization vector P1, which corresponds to
the mass state ν1, evolves (losing the coherence) as

P1 →
1

2
cos 2θ0dAd: ð22Þ

Here 2θ0d is the angle between P1 and Ad introduced in
(16). Then the difference of the final vectors in (21) and
(22) is as follows:

1

2
ðcos 2θx − cos 2θ0dÞAd: ð23Þ

Projection of this difference onto the flavor axis z [recall
that ðAd · zÞ ¼ cos 2θd] presents the effect of the s layer on
the νe survival probability,

ΔPe ≡ Px − P1 ¼
1

2
ðcos 2θx − cos 2θ0dÞ cos 2θd;

which coincides with the expression in (19).

IV. TWO LAYERS CASE

Let us consider the oscillation effect in the s layer
explicitly, assuming first that the densities in s and d are
constant. Recall that in all setups the s layer is the layer
with a structure, while the d layer is the decoherence layer
whose length is larger (in this and the next section) than the
attenuation length. We denote by As the axis of eigenstates
in the s layer. A density jump on the border between the s
and d layers leads to a sudden change of the mixing angle in
matter, and consequently, to a change of direction of the
eigenstate axis: As → Ad. The angle between As and Ad
equals

2Δθm ≡ 2θs − 2θd ¼ 2θ0s − 2θ0d: ð24Þ

The parameter

Jm ≡ sin 2Δθm ∼ ϵ;

which we will call the jump factor, quantifies the effect of
structure: the effect should be proportional to Jm, and if the
structure is absent, Δθm ¼ 0. Notice that for neutrinos Δθm
is positive, if density in the s layer is larger than that in the d
layer, and Δθm < 0, if the density in s is smaller. For
antineutrinos the situation is opposite. For definiteness we
will present plots for Δθm > 0. It is easy to see that the
formulas we will obtain are valid for both cases. If
Δθm > 0, the effect of the structure on the νe probability
is negative, ΔPe < 0. It is positive for Δθm < 0.
Oscillations in the s layer may or may not be averaged.
To perform the oscillation tomography (see, e.g.,

[11–15]) one can scan a density profile by changing the
direction of the neutrino trajectory. This happens for the
solar neutrinos for a fixed position of a detector due to
the Earth’s rotation. Let η be the nadir angle of the neutrino
trajectory, and ηs corresponds to the border of the s layer, so
that for η < ηs, the neutrino crosses both the d and the s

FIG. 1. Graphic representation of evolution of the neutrino
polarization vector in the case of ν1 → νe transition. Numbers
indicate positions of the neutrino vector (red line) at the borders
of different layers in the order of their crossing. They enumerate
vectors P1;P2;… (see the text). The position of the vector
marked by “0” corresponds to the initial state. The positions of 10

mark the final state P0 (blue line) in the absence of the structure.
To make the effect visible we took rather large ϵ. The upper
panel: remote structure. The diameter of precession ∼ϵ and its
projection onto the eigenstate axis is given by ϵ. This leads to the
attenuation. The lower panel: the same as in the upper panel but
for the near structure. The precession diameter equals ∼ϵ, and its
projection on the flavor axis is Oð1Þ. The attenuation is absent.
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layers, whereas for η > ηs it crosses the d layer only. The
length of the trajectory in the layers depends on η. If
xd > λatt, the oscillations are averaged in the d layer, and
therefore for η > ηs the probability P0

e does not depend on
η. For η < ηs one can observe the oscillatory dependence of
the probability Pe on η induced by the structure, since the
length of trajectory in the s layer, xs, changes with η.
Therefore in what follows we will quantify the effect of the
s layer by the depth of this oscillatory pattern,

De ≡ jΔPmax
e j ¼ jPmax

e − Pmin
e j;

and by the difference of the averaged probabilities with, P̄e,
and without, P̄0

e, the structure,

ΔP̄e ≡ P̄e − P0
e:

In many cases Pmax
e ¼ P0

e and ΔP̄e ¼ 0.5De. Apart from
De and ΔP̄e the information about the structure is con-
tained in the period and phase of the oscillatory pattern
at η < ηs.
We will describe the attenuation effect in terms of the

diameter of precession in the s layer, Ds, and its projection
onto one of the eigenstate axes involved. Projection of Ds
onto the flavor axis is determined by the flavor mixing
angle and therefore does not produce smallness.
Depending on the type of density profile and channel of

oscillations we obtain the following results:
1. Let us consider the ν1 → νe transition in the profile

with a remote structure. Evolution of the neutrino vector is
shown in the upper part of Fig. 1. The initial state is
Pð0Þ ¼ 0.5Av. In the s layer it precesses around As with
the cone angle 2θ0s, which is the angle between Av and As.
The maximal effect in the s layer corresponds to the state
P1 or the precession phase π þ 2πk (k is an integer) at the
moment when the neutrino arrives at the d layer,

s layer∶ Pð0Þ → PðxsÞ ¼ P1:

According to Fig. 1 the angle between P1 and Ad equals
2θx ¼ 2θ0s þ 2Δθm. Notice that P1 ¼ Px in our consider-
ation in Sec. III.
In the d layer the vector P precesses around Ad

approaching its projection onto Ad,

d layer∶ P1 → P2 ¼
1

2
cosð2θ0s þ 2ΔθmÞAd:

Without the structure we have

Pð0Þ → P0
1 ¼

1

2
cos 2θ0dAd ¼

1

2
cosð2θ0s − 2ΔθmÞAd:

The projection of the difference of vectors ½P2 − P0
1� onto

the flavor axis z equals

De ¼ −ΔPðν1 → νeÞmax ¼ cos 2θd sin 2θ0sJm; ð25Þ

giving the depth of the νe oscillations. Since Jm ∼
sin 2θ0s ∼ ϵ, we obtain ΔPðν1 → νeÞmax ∼ ϵ2 in accordance
with our consideration above. Attenuation is realized. If
oscillations in s are averaged, the effect of the structure is
ΔP̄e ¼ 0.5De. Notice that oscillations correspond to a
change of the vector P between positions P2 and P1

0
in Fig. 1.
In other terms, the diameter of the precession in the s

layer equals Ds ¼ sin 2θ0s. Its projection onto Ad (forced
by the averaging) is D sin 2Δθm ¼ sin 2θ0sJm, and finally
the projection onto the flavor axis is given by De ¼
cos 2θd sin 2θ0sJm. Thus, the origins of the attenuation
are (i) the smallness of the diameter of precession Ds∼ ϵ,
which is due to the initial mass state ν1, and (ii) the
projection of Ds onto the eigenstate axis Ad forced by the
averaging in d; this produces another smallness ϵ.
Without structure after complete averaging in the d layer

we have

P̄0
eðν1 → νeÞ ¼ P̄0

1ðνe → ν1Þ ¼
1

2
ð1þ cos 2θd cos 2θ0dÞ:

ð26Þ

Without averaging the maximal value of PeðηÞ equals
cos2 θ.
Performing scanning of the profile we will observe at

η > ηs the constant probability P̄0
e of (26). For η < ηs the

probability oscillates around the average value P̄e ¼ P̄0
e −

0.5De with the depth De ∼ ϵ2 (25), so that Pmax
e ðηÞ ¼ P̄0.

2. Let us consider the ν1 → νe transition in the matter
profile with structure near a detector (see Fig. 1, lower
panel). In the d layer the initial state Pð0Þ ¼ 0.5Av evolves
to its averaged value,

d layer∶ Pð0Þ → P1 ¼
1

2
cos 2θ0dAd: ð27Þ

Without structure this gives the final position P0 ¼ P0
1.

Then in the s layer the vector P precesses around As with
the cone angle 2Δθm; see Fig. 1, lower panel. The diameter
of the precession equals 2jPðxdÞj sin 2Δθm. Its projection
onto the flavor axis gives the depth of νe oscillations due to
the structure,

De ¼ −ΔPðν1 → νeÞmax ¼ cos 2θ0d sin 2θsJm: ð28Þ

Here 2θs is the angle between the axis As and z. θs ≈ θ12
is the flavor mixing angle in the layer s, and it is
large. According to (28) De ≈ Jm sin 2θ12 ∼ ϵ, the effect
of the structure appears in the lowest order in ϵ; i.e., the
attenuation is absent. The change of the averaged proba-
bility equals ΔP̄e ¼ −0.5De.
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In contrast to the first case here the projection of P onto
Ad (induced by averaging) occurs before the oscillations in
the s layer. Averaging changes the diameter of the pre-
cession in s by a factor Oð1Þ, and therefore does not
produce additional smallness. The diameter of precession
in s is Ds ∼ ϵ. It should be projected onto the flavor axis
immediately, which does not produce additional smallness.
Thus, the oscillation effect close to detector structures is not
suppressed.
In this case, for η < ηs one will observe oscillations

with large depth De ∼ ϵ (28) and the average value
P̄e ¼ P̄0

e − 0.5De. Furthermore, Pmax
e ¼ P̄0

e (26).
3. For comparison let us consider the inverse (although

not practical) case of the flavor-to-mass, νe → ν1, transi-
tion. Now the initial state, νe, is described by Pð0Þ ¼ 0.5z.
The evolution of P in the matter profile with remote
structure is shown in the upper panel of Fig. 2. In the s
layer P precesses aroundAs with a largeOð1Þ diameter and
evolves to P1 in the case of the maximal final effect,

s layer∶ Pð0Þ → PðxsÞ ¼ P1:

P1 has the angle ð2θs þ 2ΔθmÞ with respect to Ad. In the d
layer (precessing around Ad) P converges to its projection
onto Ad (position 2),

d layer∶ PðxsÞ → P2 ¼
1

2
cosð2θs þ 2ΔθmÞAd: ð29Þ

Without the structure we have

P0ðxs þ xdÞ ¼ P0
1 ¼

1

2
cos 2θdAd ¼

1

2
cosð2θs − 2ΔθmÞAd:

ð30Þ
Projection of the difference ½P2 − P0

1� onto the mass
eigenstate axis Av [ðAv ·AdÞ ¼ cos 2θ0d ≈ 1] gives the
difference of probabilities with and without structure:
ΔPðνe → ν1Þ ¼ De, and the latter is given in (28). Thus,

ΔPðνe → ν1Þfar ¼ ΔPðν1 → νeÞnear: ð31Þ
This coincidence is the consequence of the T invariance of
the physical setup. Namely, the shape of the density profile
is time inverted: ðs − dÞ → ðd − sÞ, and the initial and final
states are permuted, ν1 ↔ νe.
Thus, ΔPðνe → ν1Þ ≈ sin 2θ21Jm ∼ ϵ; i.e., the effect of

structure is not attenuated in spite of its remote position.
Here the appearance of single factor ϵ is related to the
projection of the precession diameter, Oð1Þ, onto Ad,
which is given by sin 2Δθm. The observational features
are the same as in case 2. Notice that averaging still leads to
suppression: the final depth of oscillations is OðϵÞ rather
than Oð1Þ.
4. In contrast to the previous case the structure near the

detector is not visible in the νe → ν1 transition; see Fig. 2,
lower panel. Now in the d layer

d layer∶ Pð0Þ → P1 ¼
1

2
cos 2θdAd; ð32Þ

and the large initial precession diameter vanishes. In the s
layer the precession proceeds with small angle 2Δθm ∼ ϵ
around As, and then the diameter of this precession should
be projected onto the axis Av (given by sin 2θ0s), which
leads to another ϵ. As a result, we obtain the difference of
the probabilities with and without structure as in Eq. (25).
Again this is a consequence of the T invariance of the setup.

FIG. 2. The same as in Fig. 1, but for the case of νe → ν1
transition. The upper panel: remote structure, where the attenu-
ation is absent. The lower panel: near structure, where the
attenuation is realized.
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The origin of attenuation here is (i) the reduction of the
diameter of precession in s: Ds ¼ cos 2θdJm ∼ ϵ due to
averaging in the d layer, and (ii) the projection of Ds onto
the mass axis A1 since the final state is ν1. This gives
another ϵ.
So, in contrast to ν1 → νe, in the νe → ν1 channel the

detector “sees” the remote structures, but the closest ones
are attenuated. In a sense, the “ν1 detector” is focused on
remote structures, when the initial state is ν1.
In general, expressions for the depth of oscillations

induced by the structure, De, have the form of a product
of the jump factor and the projection factors corre-
sponding to initial and final states. In four cases
considered above the probabilities are given by two
formulas (25) with and (28) without the attenuation.
Both contain the jump factor. They differ by the
projection factors in which the flavor and mass mixing
angle are permuted: θd ↔ θ0d and θs ↔ θ0s. The attenu-
ation is related to the latter—the mixing of the s layer.
Sines of these angles enter the diameter of precession,
and consequently, the appearance of small mass mixing
angle θ0s gives an additional smallness.
Notice that in the cases of attenuation 1 and 4, two small

factors Jm and sin 2θ0s play different roles: in the first case
sin 2θs determines the diameter of the precession, whereas
Jm gives the projection onto the axis of eigenstates. In case
4—vice versa.
5. Finally, let us consider a remote structure and the

νe → νe transition. It is similar to the case described in
Fig. 2 left, but now the difference of vectors in (29) and (30)
should be projected onto the flavor axis that does not
produce a smallness,

ΔPðνe → νeÞmax ¼ − cos 2θd sin 2θsJm: ð33Þ

cos 2θ0d in (27) is substituted here by cos 2θd. So, both
projections are given by large flavor mixings, and there is
no attenuation as in case 3.
For a near structure (and νe → νe mode) we obtain the

same result as in (33) due to the T invariance.
Let us consider the generalization of the formalism to the

case when density in the d layer changes adiabatically. (The
same can be done for the s layer.) Now the jump factor Jm
is determined by the difference of the densities immediately
before a jump and after a jump. The oscillation phase
should be computed by integration (6). The angles θd and
θ0d in the projection factors should be taken at the outer
border, the layer d that is not attached to the s layer. Thus,
in case 1 the result is given by Eq. (25) with substitution
θd → θfd in the projection factor, where θfd is the mixing
angle at the end of the layer d (i.e., near a detector). In case
4 the substitution θd → θd

i should be done. In the second
case one should change θ0d → θ0d

i in Eq. (28), where θ0d
i is

the mixing angle in matter in the beginning of layer d. In the
third case, θ0d → θ0d

f; see Eq. (31).

V. ATTENUATION IN MULTILAYER
MEDIUM. TWO JUMPS CASE

Let us consider a matter density profile with three layers:
d1 − s − d2, thus adding another decoherence layer to the
profile studied in Sec. IV. Now there are two jumps. We
assume that the layers d1 and d2 have the same properties,
lengths xd and densities, and therefore the same eigenstate
axis Ad with the direction fixed by 2θd. The overall profile
is symmetric with respect to the center and similar to the
Earth density profile, when di are identified with the mantle
layers, whereas s is identified with the core. The core
appears here as the “structure.” A similar matter profile
appears also when the neutrino crosses two outer shells of
the mantle. We call it the profile with a structure in the
middle. As before, we assume that oscillations in d1 and d2
are averaged, while in s they are not.
Let us consider the ν1 → νe oscillations when ν1 enters

d1; see Fig. 3. The initial state is Pð0Þ ¼ 0.5Av. In the first
mantle layer P precesses around Ad converging to its
projection on Ad,

d1 layer∶ Pð0Þ → P1 ¼
1

2
cos 2θ0dAd: ð34Þ

In the s layer P precesses around As. The maximal effect
corresponds to the state P2 or the precession phase at the
end of the layer π þ 2πk, where k is an integer,

s layer∶ PðxdÞ → Pðxd þ xsÞmax ¼ P2: ð35Þ
The angle between P2 and the axis Ad is 4Δθm,
ðAd · P2Þ ¼ cos 4Δθm. Since the length of the precessing
vector in s does not change, we have jP2j ¼ jPðxdÞj ¼
1=2 cos 2θ0d. Notice that the length is smaller than 1=2
reflecting the departure from the pure state due to averaging
in d1. [Pðxd þ xsÞ corresponds to Px in our original
consideration.]
In the third layer due to averaging the vector P evolves to

its projection onto axis Ad,

FIG. 3. The same as in Fig. 1, but for the case of profile with
two jumps and the ν1 → νe transition. The diameter of precession
∼ϵ, and its projection is given by ϵ. The attenuation is present.

A. N. IOANNISIAN and A. YU. SMIRNOV PHYSICAL REVIEW D 96, 083009 (2017)

083009-8



d2 layer∶ Pðxd þ xsÞmax → P3 ¼
1

2
cos 2θ0d cos 4ΔθmAd:

Without the s layer we would have P0ð2xdþxpÞ¼P0
1¼P1

(34). Then the projection of the difference ðP3 − P0
1Þ onto

the flavor axis z gives the depth of oscillations due to the
structure,

De ¼ −ΔPðν1 → νeÞmax ¼ cos 2θ0d cos 2θdJ
2
m: ð36Þ

Again ΔPe ≈ cos 2θ12J2m ∝ ϵ2, and the attenuation is
realized.
The result can be obtained immediately from Fig. 3 as

follows. The length of P precessing in the s layer equals
1
2
cos 2θ0d (34). Then the diameter of the precession is

Ds ¼ cos 2θ0d sin 2Δθm; the projection of this diameter
onto Ad (driven by averaging in d2) is given by
cos 2θ0d sin

2 2Δθm; finally, its projection onto the flavor
axis leads to (36). The change of the average probability
(due to structure) equals ΔP̄e ¼ 0.5De.
The origin of attenuation is similar to that in case 1 of

Sec. IV. One ϵ appears because of smallness of the
precession diameter in the s layer. Averaging in d1 gives
only a small reduction of this diameter. Another ϵ is a result
of the projection of this diameter onto axis Ad of the layer
d2. This is described by sin 2Δθm. Both the precession
diameter and the projection onto the axis of eigenstates Ad
are determined by Jm.
This attenuation is realized in the Super-Kamiokande

detection of the solar neutrinos. No change of the prob-
ability should be seen at η ¼ ηs in the lowest order in ϵ. In
the next order (ϵ2) for η < ηs one expects oscillations below
Pmax
e ¼ P̄0 with depth (36) that describes spikes. Because

of unitarity the decrease of P1e corresponds to the increase
of P2e. Since for the high energy part of the solar neutrino
spectrum neutrinos arrive mainly in the ν2 mass state, the
decrease of P1e means an increase of the νe signal.
To further illustrate the effect we can consider the

following exotic situations. If the core of the Earth is absent
(removed) and the density profile is smoothly extrapolated
from the mantle, the nadir angle dependence of the night
signal will be the same (in the order ϵ) as in the presence of
the core. The small jump at cos θz ¼ 0.83 will be absent.
The difference (being of the order ϵ2) is given in Eq. (36). If
the far half of the Earth is absent, in the case of ν1 → νe
transition again only very small (practically unobservable)
changes in the nadir angle distribution are expected. For the
core-crossing trajectories the profile is reduced now to two
layers and the depth of oscillations is given in (25). So, in the
expression for the whole Earth (36) one of the Jm factors
should be substituted by sin 2θ0s or Δθm → θ0s. Since
θ0s ∼ 2Δθm, the removal of the far half of the Earth would
increase the effect of the core by a factor of 2.
Let us consider the attenuation for the flavor channel

νe → νe (see Fig. 4). The result can be obtained

immediately from (36). The only difference is that in the
first mantle layer the initial (flavor) state is Pð0Þ ¼ 0.5z. It
evolves to

Pð0Þ → P1 ¼
1

2
cos 2θdAd;

so that θ0d in Eqs. (34) and (36) should be substituted by θd.
Therefore, the final difference of the probabilities with and
without a core equals

De ¼ −ΔPðνe → νeÞmax ¼ cos22θdJ2m: ð37Þ

ΔPðνe → νeÞmax ∼ ϵ2, the structure is attenuated, in con-
trast to the case of νe → νe transition in two layers of
Sec. III when suppression was ∼ϵ. The reason for such a
difference is that now the state that arrives at the structure
(core) is close to the mass state, and therefore the oscillation
effect in two other layers is similar to that for ν1 → νe of
Sec. IV. So, in the case of complete averaging in d1 the
attenuation appears for any initial neutrino state. Here
averaging in d1 plays a crucial role: the first layer prepares
the incoherent system of states close to the mass
eigenstates.
In both three layer cases the factor Jm appears being

squared, which corresponds to the presence of two jumps.
The projection factors are given by cosines of the mixing
angles and do not produce additional smallness. Now the
sign of the effect is fixed and does not depend on the sign of
difference of densities. The observational consequences are
as in the previous case: for η < ηs one expects oscillations
with the depth (37) below P̄0

e.

FIG. 4. The same as in Fig. 3, but for the νe → νe transition.
The diameter of the precession is ∼ϵ, and its projection is given
by ϵ. The attenuation is present.
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Notice that the effect of a structure with more than two
jumps will still be proportional to J2m ∼ ϵ2, although some
additional numerical factor can appear. Thus, for four
jumps of the same size one can find that the maximal
total effect is proportional to sin 4Δθm ≈ 4J2m, i.e., 4 times
larger than in the two jumps case due to the parametric
enhancement.
When the density in the d layer changes adiabatically,

both θd and θ0d in Eq. (36) should be substituted by their
values at the surface.

VI. ATTENUATION IN THE CASE
OF PARTIAL DECOHERENCE

Partial averaging (decoherence) of oscillations can be
described by the factor ξ ≤ 1 in the interference term of
oscillation probability that suppresses the depth of oscil-
lations. For ξ ≠ 0 the effect of the structure also depends on
the phase of precession in the d layer, and we will find the
maximal possible effect of the structure varying this phase.
It can be shown that in the graphic representation the same
parameter ξ describes the reduction of the precession
diameter: D → ξD, projection of P onto the precession
axis does not change. Notice that ξ as a function of x
depends on the shape of wave packets. For wave packets
with the exponential tails we have ξ ¼ expð−s=σxÞ, where
s ≈ ðΔm2=2E2Þt is the relative shift of the packets due to
the difference of the group velocities and σx is the width of
the packet. In this case ξ obeys multiplicative properties: if
ξ1 and ξ2 are the averaging factors in the layers 1 and 2, the
total averaging of oscillations after crossing both layers is
given by the product ξtot ¼ ξ1ξ2.
In what follows we will consider the effects of ξ ≠ 0 for

some cases presented in the previous sections.
1. Let us first study the ν1 → νe oscillations in the two

layer profile with a remote structure (see Fig. 5, upper
panel). In the s-layer oscillations proceed as case 1 of
Sec. III. The phase ϕs acquired in this layer determines
characteristics of oscillations in the layer d, in contrast to
the complete averaging case. The maximal effect of
oscillations corresponds to the state P1 at the end of s
when the phase equals ϕs ¼ π þ 2πk. Then the precession
of P in the d layer around the axisAd will be with the initial
diameterDd ¼ sinð2θ0s þ 2ΔθmÞ. After partial averaging in
d the projection of Dd onto the flavor axis equals

Dmax
e ðxdÞ ¼ ξ sinð2θ0d þ 4ΔθmÞ sin 2θd: ð38Þ

Here ξ ¼ ξðxdÞ. Thus, Dmax
e ∼ ϵ.

Without the structure the diameter of precession in the
beginning would be sin 2θ0d. Partial averaging reduces it to
ξ sin 2θ0d, and the projection of the diameter onto the flavor
axis gives

D0
e ¼ ξ sin 2θ0d sin 2θd: ð39Þ

So, in the absence of structure the probability P0
e oscillates

with the depth D0
eðxdÞ (39) around the average value given

in Eq. (26). The oscillation depth decreases with an
increase of xd. The probability oscillates below maximal
value Pe ¼ Pmax

e ≈ cos2 θ.
In the presence of structure, the probability Pe oscillates

around nearly the same average value as without the
structure (the same in the lowest approximation in ϵ),
but with bigger depth, and the maximal possible depth is
given in (38). Now Pmax

e can be even above P ¼ cos2 θ,
which is a manifestation of the parametric enhancement of
oscillations. This type of the oscillation pattern has been
found in [5].
The difference of the depths of oscillations with and

without structure equals

Dmax
e −D0

e ¼ ξ½sinð2θ0d þ 4ΔθmÞ − sin 2θ0d� sin 2θd
¼ 2ξ sin 2θd cos 2θ0sJm ≈ 2ξ sin 2θdJm:

That is, the effect of structure is of the order ϵξ. The
difference of average probabilities is the same as in

FIG. 5. The same as in Fig. 1 (remote structure, ν1 → νe
transition), but with partial averaging of oscillations in the d
layer. Red and blue sections show final precession diameters in
the cases of profiles with and without structure correspondingly.
The upper panel: remote structure. The lower panel: near
structure. The attenuation is absent in both cases.

A. N. IOANNISIAN and A. YU. SMIRNOV PHYSICAL REVIEW D 96, 083009 (2017)

083009-10



Eq. (25), ∼ϵ2, and it does not depend on ξ. Thus,
incomplete averaging leads to a difference of depths of
precession, but does not change averaged values in the
lowest order. This is a consequence of the fact that before
detection the neutrino vector precesses around the same
axis in both cases.
Recall that the depth oscillations in the presence of

structure can be smaller than the one without structure if the
density in s is smaller than in d.
2. Let us consider a structure near a detector and the

ν1 → νe channel; see Fig. 5, lower panel. In the d layer the
polarization vector precesses around Ad with the diameter
of precession at the end of the layer,

Dd ¼ ξ sin 2θ0d:

It can be expressed in terms of θ̄d
0—the angle between

PðxdÞ ¼ P1 and Ad,

Dd ¼ 2jP1j sin 2θ̄d0; ð40Þ

where the length of P1 at the end of layer d1 equals

jP1j ¼
1

2

cos 2θ0d
cos 2θ̄d0

: ð41Þ

The angle θ̄d
0 is determined by the equality

tan 2θ̄d0 ¼ ξ tan 2θ0d: ð42Þ

From Eqs. (40), (41), and (42) we obtain the diameter in d

Dd ¼ cos 2θ0d tan 2θ̄d
0: ð43Þ

The largest final precession depth in the s layer is
realized when the neutrino vector is P1, which corresponds
to the phase ϕd ¼ 2πk at the end of layer d. In this case the
angle of precession in s is ð2θ̄d0 þ 2ΔθmÞ, and conse-
quently, the diameter of precession in s equals

Ds¼ 2jPdjsinð2θ̄d0 þ2ΔθmÞ¼
cos2θ0d
cos2θ̄d0

sinð2θ̄d0 þ2ΔθmÞ:

Its projection on the flavor axis

Dmax
e ¼ cos 2θ0d

cos 2θ̄d0
sinð2θ̄d0 þ 2ΔθmÞ sin 2θs:

So, Dmax
e ∼ ϵ. In the limit of complete averaging, θ̄d0 ¼ 0,

the above expression coincides with (28). Neglecting the
high order corrections it can be rewritten as

Dmax
e ≈ sin 2θs½ξ sin 2θ0d þ Jm�:

The average probability equals P̄ ≈ cos2 θs.

Without structure the depth of flavor oscillations [z
projection of Dd in (43)] would be

D0
e ¼ sin 2θd cos 2θ0d tan 2θ̄d

0 ≈ ξ sin 2θd sin 2θ0d:

The average value of the probability is P̄0 ¼ cos2 θd.
The difference of the depths of oscillations with and

without structure equals

Dmax
e −D0

e ¼
cos 2θ0d
cos 2θ̄d0

½sin 2θs sinð2θ̄d0 þ 2ΔθmÞ

− sin 2θd sin 2θ̄d0� ≈ 2 sin 2θsJm; ð44Þ
which does not depend on ξ. So, in the lowest order, partial
averaging affects De and D0

e equally. The dependence of
ðDmax

e −D0
eÞ on ξ appears in the next order with ϵ being

≈2θ̄d0Jm ∼ ξϵ2. If θ̄d0 ¼ 0 (complete averaging), we would
get from (44) the value ΔPe ¼ −ðDmax

e −D0
eÞ, which

coincides with that in (28).
The difference of the averaged probabilities with and

without structure is large,

P̄ − P̄0 ≈ − sin 2θdJm ∼ ϵ:

There was no attenuation even in the case of complete
averaging in d, so that the effect of the s layer appeared at
the level of ϵ.
If ϕðxdÞ ¼ πk, then the maxima of survival probability

with and without the structure are approximately equal:
Pmax
e ðxdÞ ≈ Pmax

e ðxd þ xpÞ; otherwise, the probability with
structure is smaller than that without it. The observational
effect consists of an increase of oscillation depth and a
decrease of the average probability at η < ηs.
3. Let us consider the νe → νe transition and remote

structure (Fig. 6). Without the s layer the diameter of
precession in the d layer equals

D0 ¼ ξ sin 2θd;

and its projection onto the flavor axis is

D0
e ¼ ξsin22θd: ð45Þ

In the limit ξ ¼ 1 it coincides with standard oscilla-
tion depth.
With structure, the precession in the s layer has the

diameter sin 2θs. The maximal final depth of oscillations in
the d layer corresponds to the vector P1 and the phase
ϕðxs þ xdÞ ¼ π þ 2πk. The angle between P1 and Ad is
ð2θs þ 2ΔθmÞ, so that the precession diameter at the
beginning of the d layer equals

Dmax
d ¼ sinð2θs þ 2ΔθmÞ:

Taking into account averaging and projecting the diameter
onto the flavor axis we obtain the depth of oscillations at a
detector
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Dmax
e ¼ ξ sin 2θd sinð2θs þ 2ΔθmÞ: ð46Þ

The difference of the depths with and without structure
equals according to (45) and (46)

Dmax
e −D0

e ¼ 2ξ sin 2θd cos 2θsJm: ð47Þ

The difference is the order of ϵ; i.e., the attenuation is
absent as in case 5 of Sec. III.
The position of neutrino vector P2 corresponds to the

minimal value of the probability Pmin
e at the end. The

maximal value of the probability in the presence of
structure, Pmax

e , is in the position P0
2, which is realized

when the phase of precession in s is 2πk; that is, the
neutrino enters the d layer as Pð0Þ. The difference of the
maximal and minimal probabilities can be found from
Fig. 6,

Pmax
e − Pmin

e ¼ ðξ sin 2θd cos 2θs þ cos 2θd sin 2θsÞJm;
ð48Þ

which differs from (47). In the limit ξ → 0 it is reduced to
the expression (33) for the complete averaging.
It is straightforward to show that the difference of the

average oscillation probabilities is the same as in the case of
complete averaging in the layer d; see (31). So, here we
have oscillations with Oð1Þ depth. The differences of
depths of oscillations and average values (with and without
structure) are of the order ϵ.

Notice that it was no attenuation even with complete
averaging. Incomplete averaging does not change the
difference of average probabilities, but produces a differ-
ence of depths of oscillations (47) of the order ϵ.
4. Let us consider ν1 → νe transition in the symmetric

profile with three layers ðd1 − s − d2Þ (see Fig. 7). If ξ1 and
ξ2 are the averaging factor in the layers d1 and d2, we obtain
the depth of oscillations without structure ðd1 − d2Þ,

Dmax
e ðxdÞ ¼ ξ1ξ2 sin 2θ0d sin 2θd; ð49Þ

which differs from (39) by the additional power of ξ. The
average value of probability is given in (26).
As in case 2 of this section, we use the angle θ̄d

0 (42)
between the polarization vector at the end of layer d1, P1,
and the axis Ad. Then the precession angle in the s layer is
ð2θ̄d0 þ 2ΔθmÞ. The length of P1 is given in (41). The
maximal final precession depths correspond to the phase of
oscillations in the s layer ϕs ¼ π þ 2πk (k integer) when
the neutrino state is described by P2. The angle of
precession in layer d2—the angle between P2 and Ad—
is ð2θ̄d0 þ 4ΔθmÞ. Consequently, the initial diameter of
precession in d2 equals

D ¼ cos 2θ0d
cos 2θ̄d0

sinð2θ̄d0 þ 4ΔθmÞ:

Averaging in the layer d2 gives another factor ξ2, and then
projection on the flavor axis leads to

Dmax
e ¼ ξ2

cos 2θ0d
cos 2θ̄d0

sinð2θ̄d0 þ 4ΔθmÞ sin 2θd:

The oscillations proceed around the average value

P̄e ¼
1

2
þ cos 2θ0d
2 cos 2θ̄d0

cosð2θ̄d0 þ 4ΔθmÞ cos 2θd:

FIG. 6. The same as in Fig. 5 (remote structure) but for the
νe → νe transition. The attenuation is absent.

FIG. 7. The same as in Fig. 3, but with partial averaging in d1
and d2. The attenuation is absent.
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The difference of average probabilities with and without
structure is very small ∼ϵ2.
The difference of the oscillation depth with and without

structure equals

Dmax
e −D0

e ¼ ξ2 sin 2θd

×

�
cos 2θ0d
cos 2θ̄d0

sinð2θ̄d0 þ 4ΔθmÞ − ξ1 sin 2θ0d

�
:

ð50Þ

(In the limit Δθm ¼ 0, the expression in the brackets
vanishes, as it should.) In the lowest approximation in ϵ
Eq. (50) reduces to

Dmax
e −D0

e ≈ 2ξ2 sin 2θdJm ¼ OðξϵÞ:

Thus, the difference of depths is proportional to ξ2,
whereas dependence on ξ1 is absent. There is no attenu-
ation: Dmax

e −D0
e ∝ ξ2ϵ. The difference of averaged prob-

abilities, ΔP̄e ∼ ϵ2, is slightly changed from that in Fig. 3.
There is no change of average values of the probabilities in
the lowest order in ϵ, since oscillations in the last layer
occur in both cases (with and without structure) around the
same axis.
5. Let us consider the νe → νe transition in the case

of partial averaging in the symmetric profile with three
layers, Fig. 8. The only difference from the previous case
is the initial state given now by Pð0Þ ¼ 1

2
z, instead of

Pð0Þ ¼ 1
2
Av. Therefore in formulas obtained for the

ν1 → νe transition θ0d should be substituted by θd. As in

case 2, we introduce the angle θ̄d between the polarization
vector P1 at the end of layer d1 after partial averaging and
the axis Ad. It is determined by the equality

tan 2θ̄d ¼ ξ tan 2θd: ð51Þ

Then the precession angle in the s layer (the angle between
P1 and As) is ð2θ̄d þ 2ΔθmÞ. The length of the vector
equals

jP1j ¼
cos 2θd
2 cos 2θ̄d

:

The maximal final depths of oscillations correspond to the
phases of oscillations ϕd ¼ 2πk (position P1) in the d1
layer and ϕs ¼ π þ 2πk0 (position P2) in the s layer (k, k0
are integers). Under these conditions the parametric
enhancement of oscillations occurs, and the precession
angle in the d2 layer, i.e., the angle between P2 and Ad,
becomes 2θ̄d þ 4Δθm. Consequently, the initial diameter of
precession in d2 equals

Dmax ¼ cos 2θd
cos 2θ̄d

sinð2θ̄d þ 4ΔθmÞ:

Averaging in the layer d2 gives another factor ξ2, and then
projection onto the flavor axis leads to

Dmax
e ¼ ξ2

cos 2θd
cos 2θ̄d

sinð2θ̄d þ 4ΔθmÞ sin 2θd: ð52Þ

The depth of oscillations without structure equals

Dmax
e ðxdÞ ¼ ξ1ξ2sin22θd; ð53Þ

which again differs from (49) by substitution θ0d → θd. The
difference of the depths with (52) and without (53)
structure,

Demax
e −D0

e ¼ ξ2 sin 2θd

×

�
cos 2θd
cos 2θ̄d

sinð2θ̄d þ 4ΔθmÞ − ξ1 sin 2θd

�
;

is similar to that in (50) with substitution θ0d → θd in the
parentheses. It can be rewritten as

Dmax
e −D0

e ¼ ξ2 sin 2θd½cos 2θd cos 2ΔθmJm
− ξ1 sin 2θdJ2m� ≈ ξ2 sin 4θdJm: ð54Þ

There is no attenuation and Dmax
e −D0

e ∝ ξ2ϵ. Attenuation
is reproduced if ξ2 ¼ 0, i.e., in the case of complete
averaging in the d2 layer, then the diameter of precession
becomes zero in the lowest order. Dependence on ξ1
appears in the ϵ2 order, that is, attenuated.

FIG. 8. The same as in Fig. 7, but for νe → νe transition. The
attenuation is absent.
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The oscillations proceed around the average value

P̄e ¼
1

2
þ cos22θd
2 cos 2θ̄d

cosð2θ̄d þ 4ΔθmÞ:

Without the structure we would have P̄0
e ¼ 0.5ð1þ

cos2 2θdÞ. The difference of average probabilities with
and without structure equals

ΔP̄e ¼ −cos22θd½ξ1 tan 2θd cos 2ΔθmJm þ J2m�: ð55Þ
Now partial averaging leads to ΔDe ∼ ξ2ϵ and ΔP̄e ∼ ξ1ϵ.
Thus, the difference of average values depends on ξ1, but it
does not depend on ξ2. In the limit ξ1 ¼ 0, ΔP̄e ∝ ϵ2 and
the attenuation is recovered. Notice that the differences of
depth and average values depend on different ξ: ξ2 and ξ1
correspondingly. This can be used for tomography.
The structure in the density profile changes the depth of

precession, which can be larger or smaller than that without
structure depending on phases of oscillations in the d1 and s
layers. In the case of smaller density in the s layer than in
the d layers, the sign of 2Δθm and, consequently, the sign of
Jm change. As a result, the difference of precession
diameters (54) becomes negative, and the difference of
average values (55) becomes positive.
For ξ ≫ ϵ, the effect of structure appears in the lowest

order in ϵ in all the cases (channel, profile), although it can
be suppressed by ξ.

VII. DISCUSSION AND CONCLUSIONS

1. The attenuation effect is the effect of the loss of
sensitivity of the oscillation signal to remote structures of
density profile due to finite neutrino energy resolution. We
presented the graphic (geometric) description of the effect.
We show that the effect is a result of

(i) small mixing of the mass states in matter;
(ii) incoherence of the neutrino state arriving at a

structure;
(iii) averaging of oscillations (loss of coherence) be-

tween a structure and a detector.
Contributions to the oscillation effect of structures at

distances larger than the attenuation length are suppressed
by an additional power of ϵ.
The attenuation length is the distance over which

oscillations integrated over the energy resolution interval
of neutrinos are averaged. In other terms, it is a distance
over which the wave packets of the size determined by the
energy reconstruction function are separated in space. The
attenuation is realized in the lowest order in ϵ. The remote
structures produce effects in the ϵ2 order. The better the
relative energy resolution σE=E, the more remote structures
can be seen.
The conditions of attenuation are valid for a multilayer

medium. In the case of several different structures the con-
ditions should be applied to each structure independently.
Interplay between different structures will show up in the

next order in ϵ. Actually, we saw this interplay in the case of
two jumps.
2. The effect of remote structure is proportional to the

change of the mixing parameter Jm ≡ sin 2Δθm ∼ ϵ and
the projection factors. The attenuation is realized if one of
the projection factors is ∼ϵ. For the profile with core (two
jumps) the jump factor appears as J2m in the probability. For
more than two jumps the effect is still proportional to J2m
with some additional coefficients.
3. In terms of graphic representation the effect of

structure is determined by the diameter of precession
and its projection onto the eigenstate axis (which depends
on the setup and channel of transition). This allows us to
understand immediately why in the case of flavor to mass
transition νe → ν1 the sensitivity is mainly to remote
structures (see [1]). The detector of neutrinos ν1 is
“focused” on structures to which neutrino state ν1 arrives.
Graphic description allows us to explicitly compute

effects in ϵ2 and higher orders and also obtain results for
different positions of a structure and channels of oscillations.
Attenuation is a result of (i) suppression of the pre-

cession diameter in the s layer either due to specific initial
state (state arriving at the structure) or due to averaging, and
(ii) smallness of projection of the diameter onto the
eigenstates axis.
4. In the case of partial averaging the attenuation is

absent or weak. For all the configurations (channels,
profiles) the effect appears in the lowest order in ϵ. In
expressions obtained for complete attenuation one factor ϵ
is substituted by ξ, and the effect is given by ξϵ. So, it may
be suppressed, if ξ is small.
5. From the observational point of view, in the case of

complete averaging one will see constant Pe at η > ηs and
the oscillatory pattern at η < ηs. In the case of attenuation
the depth of oscillations and change of the average
probability are of the order ϵ2. In the absence of the
attenuation these parameters are of the order ϵ.
6. Similarly, one can consider the attenuation in the 1-3

channel. There are two features here: the vacuum angle is
relatively small, so the eigenstate axes are turned closer
to the flavor axis. Consequently, in the 2ν case we would
get the same formulas as before with just substitution
θ12 → θ13, and ϵ → ϵ13 ¼ EVe=Δm2

31. Low density means
here E < 1 GeV. The 2ν case can be realized in the region
(0.2–1) GeV where the 1-2 phase is small (evolution is
frozen).
7. On the practical side, the operations of integration over

the energy (wave function of a detector) and integration of
the evolution equation can be permuted. That is, one can
first integrate over the neutrino energy obtaining wave
packets and then consider the flavor evolution, or first
compute the flavor evolution and then perform the energy
integration. In the first case it is clear that one can simply
neglect effects of remote structures in consideration from
the beginning.
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8. The attenuation effect should be taken into account at
the interpretation of experimental data on neutrino oscil-
lations in the Earth and in planning future experiments
devoted to the Earth oscillation tomography.
Super-Kamiokande measures the energy of the recoil

electron that does not allow one to reconstruct the neutrino
energy precisely. Essentially integration over the neutrino
energy above Ee occurs, and this determines the attenuation
length. The core effect is about 0.1%; therefore, to “see” the
core of the Earth with νe scattering at the 3σ level one needs
103 larger statistics than present Super-Kamiokande

statistics. Higher sensitivity to remote structures can be
provided by experiments based on the neutrino nuclei
scattering when the neutrino energy is immediately related
to the energy of the produced electron. The THEIA project
with 7Li doping [16], in which neutrinos are scattered on 7Li
due to the charged currents, may realize such a possibility.
The night Super-Kamiokande signal increases with a

decrease of the nadir angle η for η < 1.4 rad toward the
vertical direction η ¼ 0. However, this increase is due to
small density jumps in the mantle near a detector and not
due to the core [6].
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