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We assess the utility of an optimization-based data assimilation (D.A.) technique for treating the problem
of nonlinear neutrino flavor transformation in core-collapse supernovae. D.A. uses measurements obtained
from a physical system to estimate the state variable evolution and parameter values of the associated
model. Formulated as an optimization procedure, D.A. can offer an integration-blind approach to predicting
model evolution, which offers an advantage for models that thwart solution via traditional numerical
integration techniques. Further, D.A. performs most optimally for models whose equations of motion are
nonlinearly coupled. In this exploratory work, we consider a simple steady-state model with two
monoenergetic neutrino beams coherently interacting with each other and a background medium. As this
model can be solved via numerical integration, we have an independent consistency check for D.A.
solutions. We find that the procedure can capture key features of flavor evolution over the entire trajectory,
even given measurements of neutrino flavor only at the endpoint, and with an assumed known initial flavor
distribution. Further, the procedure permits an examination of the sensitivity of flavor evolution to estimates
of unknown model parameters, locates degeneracies in parameter space, and can identify the specific
measurements required to break those degeneracies.
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I. INTRODUCTION

We assess the efficacy of a data assimilation (D.A.)
technique for constraining neutrino flavor evolution histor-
ies inside core-collapse supernovae. The specific technique
of interest in this paper is an integration-blind procedure,
which offers advantages for problems that thwart traditional
numerical integration techniques. The procedure is crafted
to efficiently find solutions for an extremized action from a
sparse set of measurements [1]. Importantly, the technique
of transporting information from the measured quantities
through the complete model to the unmeasured quantities
requires that the model’s differential equations be coupled.
For this reason, D.A. lends itself particularly well to the
exploration of nonlinear systems. Notably, collective neu-
trino oscillation phenomena in astrophysical environments
are essentially nonlinear. This feature begs the question of
whether a D.A. approach to solving these problems is

feasible. Here we investigate this issue of feasibility in the
context of a simple toy model that captures nonlinearity.
Neutrino flavor evolution in compact object environ-

ments is a vexing and unsolved problem [2–52]. It is
inherently nonlinear and fraught with difficulties. These
difficulties are exacerbated by the limitations of our under-
standing of key supernova physics, for example: the
equation of state and weak interaction properties of nuclei
and nuclear matter in hot and dense conditions.
Even accounting for the inherent uncertainties in super-

nova microphysics, obtaining convincing numerical simu-
lations of supernova neutrino flavor histories inside the
supernova remains problematic. In just one example, inelas-
tic neutrino backscattering could contribute to flavor evolu-
tion in some regimes [27,34,35], giving rise to the “neutrino
halo” problem. The neutrino halo effect changes the flavor
evolution problem from an initial value problem with
neutrino fluxes and flavor content specified at the edge of
the proto-neutron star (the “neutrino sphere”), to something
more akin to a boundary value problem, where flavor phase
information is propagating both outward and inward. The
computational difficulties endemic to neutrino direction-
changing scattering represent just one of themany challenges
we face in transitioning from the usual coherent “index of
refraction” treatment of neutrino flavor evolution to a full
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quantum kinetic approach [53–69]. Other outstanding prob-
lems in supernova neutrino flavor physics include fast flavor
conversion [48–51] and spatial and temporal instabilities
[26,36,37,40,52]. For background on neutrino physics in
massive stars and supernovae, see Appendix D.
Against this backdrop of uncertainty in theoretical

calculations, there is an effort to configure water or ice
Čerenkov (for example, HyperK, IceCube); liquid argon
(for example, DUNE); and liquid scintillator detectors
(for example, JUNO), to be able to capture the neutrino
signal from a Galactic core-collapse supernova [70–77].
The potential for such a detection to provide a probe of
beyond-standard-model physics in the neutrino sector and
insight into the nuclear equation of state, along with a host
of astrophysical issues like neutrino heating and nucleo-
synthesis, is alluring. Consequently, the stakes are high
when it comes to gaining confidence in modeling nonlinear
neutrino flavor conversion. Given this context, it is worth
exploring new techniques.
The extraction of information from measurements is a

general procedure known in the geosciences as data assimi-
lation [78–81]. D.A. has been used commonly in fluid
dynamics [82,83] and more recently in neuroscience
[84–87], where the available data from a physical system
are sparse and the correspondingmodel consists of degrees of
freedom coupled in a nonlinear manner. The aim ofD.A. is to
incorporate information contained in measurements directly
into a model, to estimate unknown parameters and the
dynamics of the model state variables—both measured and
unmeasured. The test of a successful estimation is the ability
of the completedmodel to predict the system state outside the
times or locations at which the measurements were obtained.
D.A. has two key advantages over numerical integration.

First, when cast within the framework of optimization, it can
be written as an integration-blind procedure. An integration-
blind approach may be amenable to boundary-value
problems for which a solution via forward integration
is unrealistic. Second, the procedure can systematically
and efficiently identify the existence of degenerate solu-
tions, and the specific measurements that are required to
break degeneracy. For these reasons, we considered D.A.
worth exploring as a possible alternative attack to the
standard initial-value treatment of neutrino flavor evolution
employed in, for example, the “bulb” model [2].
We examine the potential utility of D.A. in the context of

collective neutrino oscillations by applying it to a simple
model that can be solved via numerical integration—and
thus where there exists an independent consistency check
for D.A. solutions. The model describes the flavor evolution
of two monoenergetic neutrino beams emanating from a
supernova event. The measurements used are the flavor
content of each neutrino beam at some final radius r ¼ R at
which a detector might be placed, given an assumed known
initial flavor distribution at the surface of the “neutrino
sphere” (r ¼ 0). We seek to determine whether the sparse

measurements suffice to yield the flavor evolution history
over the interim distance, and to estimate unknown model
parameter values: namely, the strength of neutrino coupling
to matter and the strength of neutrino-neutrino coupling.
In this first exploratory paper, three main results emerge.

First, over repeated trials we obtain realistic overall flavor
evolution history for both neutrinos, even given the extreme
sparsity of measurements. We shall describe exceptions to
this finding in Sec. V. Second, we find that generally the
given measurements are insufficient to distinguish among
multiple parameter solution sets. Third, and as a consequence
of the first and second findings, we gain insight regarding the
sensitivity of flavor evolution to these parameter values.
This paper proceeds as follows.
(i) Section II, Inverse Problems and Optimization,

explains the general framework for data assimilation
via optimization, and it states the specific objective
function and method of evaluation used in this paper.

(ii) Section III, Model, describes the specific model used
in this paper: a simplified version of the dynamics
of neutrino flavor evolution that ensues from the
surface of a core-collapse supernova event.

(iii) Section IV, The Experiments, explains the full
procedure for simulated experiments given to an
optimization algorithm, and our physical rationale
for the experimental designs.

(iv) Section V, Results, describes the solutions.
(v) In Sec. VI, Discussion, we comment on the impli-

cations of the results with respect to more realistic
problems in neutrino astrophysics, and we describe
immediate future work.

(vi) Section VII, Summary, contains concluding remarks.
(vii) Appendix A gives the path-integral derivation of the

objective function used in this paper.
(viii) Appendix B gives details of the optimization

procedure.
(ix) Appendix C gives an overview of how to interpret

our simplistic model in terms of a constant-entropy
envelope model.

(x) Appendix D gives background on relevant neutrino
astrophysics.

II. INVERSE PROBLEMS AND OPTIMIZATION

A. General framework

D.A. is a procedure whereby information in measure-
ments is used to complete a model of the system from
which the measurements were obtained (see Ref. [88] for
an introduction to this “inverse problem” formulation). The
model F is written as a set of D ordinary differential
equations (ODE) that evolve in affine parameter r as

dxaðrÞ
dr

¼ FaðxðrÞ; pÞ; a ¼ 1; 2;…; D;

where the components xa of the vector x are the model state
variables. The affine parametrization r may be, for
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example, time or distance. The unknown model parameters
to be estimated are contained in p; note that the model
evolution depends on p.
A subset L of the D state variables is associated with

measured quantities. One seeks to estimate the p unknown
parameters and the evolution of all state variables given the
provided measurements, and to then use those estimates to
predict the model evolution in regions where there exist no
measurements. The prediction phase is the test of estimation
quality.
In the simulated experiments described in this paper, we

integrate forward the equations of motion from an initial
known state at r ¼ 0 (the surface of the neutrino sphere), to
obtain a “measurement” of L variables at some detector
location R. The question for D.A. is whether sufficient
information can be propagated through the coupled equa-
tions—from measured to unmeasured variables—such that
the parameters that had generated the measurements can be
inferred. As noted, the test of a successful parameter
estimation is its ability to predict the evolution of all D
state variables in the interim r ∈ ð0; RÞ during which no
measurements are obtained.

B. Specific optimization formulation used
in this paper

One method commonly employed to solve an inverse
problem is optimization. Optimization is the process of
finding the extremum of a function, called the “cost
(or objective or penalty) function.” The cost function used
in this paper is motivated from a path-integral-like formu-
lation of D.A., and for this reason we nickname it an
“action.”
In constructing the action that will be used to yield

parameter estimates, we consider three factors that will
dictate those estimates: (1) measurements obtained from the
physical system of interest, (2) the dynamics of the model
describing that system, and (3) additional equality con-
straints that are specific to the model formulation. The means
by which we incorporate information from measurements,
and the manner in which each of the above three factors is
considered, may be best understood via an examination of
this cost function’s specific formulation.We do this now, and
then proceed to describe each term in turn.
The action A0 used in this paper is written as

A0 ¼
Rf

ðN − 1ÞD
XN−2

n∈foddg

XD
a¼1

��
xaðnþ 2Þ − xaðnÞ −

δr
6
½FaðxðnÞ; pÞ þ 4Faðxðnþ 1Þ; pÞ þ Faðxðnþ 2Þ; pÞ�

�
2

þ
�
xaðnþ 1Þ − 1

2
ðxaðnÞ þ xaðnþ 2ÞÞ − δr

8
½FaðxðnÞ; pÞ − Faðxðnþ 2Þ; pÞ�

�
2
�

þ Rm

Nmeas

X
j

XL
l¼1

ðylðjÞ − xlðjÞÞ2 þ k
XN
n

jg1ðxðnÞÞ − 1j2 þ k
XN
n

jg2ðxðnÞÞ − 1j2: ð1Þ

We seek the path X0 ¼ fxð0Þ;…; xðNÞ; pg in state space
on which A0 attains a minimum value.
The two squared terms in the first double sum in Eq. (1)

incorporate the model evolution of all D state variables xa.
Of these, the first term in curly braces represents error in the
first derivative (with respect to r) of the state variables,
whereas the second term corresponds to error in the second
derivative. These terms can be derived from a consideration
of Markov-chain transition probabilities. Here, the outer
summation in n is taken over all odd-numbered grid points
—discretized steps in r that parametrize the model equa-
tions of motion. The step size δr is defined as the distance
between alternate grid points: δr≡ rnþ2 − rn. The inner
summation in a is taken over all D state variables.
The squared term in the second double sum governs the

transfer of information from measurements yl to states xl. It
derives from the concept of conditional mutual information
of probability theory. The yl are the measurements, and xl
are the model variables corresponding to the measure-
ments. Here, summation on j runs over the set of all Nmeas
discretized grid points where the measurements are made,

which may in general be some subset of all the model grid
points. The summation in l is taken over the L measured
quantities.
Rm and Rf are inverse covariance matrices for the

measurement and model errors, respectively. In this paper
we take the measurements to be mutually independent and
the state variables to be independent, rendering these
matrices diagonal. Additionally, we constrain Rf to be
uniform across all state variables, and likewise Rm for all
measurements. For our purposes, Rm and Rf are relative
weighting terms; the utility of relative weighting will be
described below in this section. For a short derivation of the
first two terms, see Appendix A; for a full treatment,
see Ref. [1].
The third and fourth terms (with coefficients k) are

equality constraints, which were added to increase the
efficiency of the search algorithm. These will be written out
explicitly in Sec. III.
The optimization is performed at all locations along a

path simultaneously, so as not to impart greater importance
to a measurement at any particular location over another.
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An integration-blind technique may lend itself well to
problems that cannot be solved in a straightforward manner
via forward integration. An example of such a problem—
the “neutrino halo” —is discussed in Appendix D.
To minimize A0 we employ a variational approach, via

the open-source Interior-Point Optimizer (Ipopt) [89];
see Sec. IV.

C. Iterative reweighting of measurement
and model contributions (“annealing”)

The complete D.A. procedure involves an iteration that is
aimed at identifying the parameter set corresponding to the
global minimum of the action. Local minima will represent
degenerate sets of parameter estimates that may fit the
measurements well but which are poor predictors of state
variable evolution outside of the locations at which the
measurements were obtained. The remedy consists of
recursively calculating A0 as the ratio of the model and
the measurement coefficients, Rf and Rm, respectively, is
gradually increased. Specifically, we define Rf ¼ Rf;0α

β,
where α is a small number greater than 1, and β is increased
from 0 in uniform increments. For all simulations performed
in this paper,Rf takes a uniform value over all state variables
xa. Rm is uniform over all measured variables xl, and it is
held fixed across iterations while Rf is incremented. For an
explanation of why this iterative procedure—which we call
“annealing”—aids in identifying the global minimum, see
Appendix A.

III. MODEL

A. Toy model motivation and scheme

A complete description of neutrino flavor evolution in
realistic astrophysical environments, such as supernovae,
involves complications imposed by geometry, multiangle
effects, realistic emission spectra, and nonforward scatter-
ing, among other effects. Turning D.A. into a useful tool to
simulate the dynamics in such a model, while matching the
fidelity and sophistication of current forward-integration
codes like BULB, is a daunting task. We shall not attempt
this here. Rather, our motivation in this paper is to take a
first step toward assessing the efficacy of D.A. in treating
the astrophysical neutrino flavor transformation problem.
This first step requires the use of a vastly simplified model.
The model we craft possesses two key features. First, it is

nonlinear—a key aspect of the physics that gives rise to
collective neutrino flavor evolution in these environments.
Notably, D.A. is particularly useful for estimating model
evolution and parameter values in nonlinear models where
only a subset of the state variables can be accessed
experimentally. Such is the case for neutrino flavor evo-
lution. A second key point is that the model is sufficiently
simple to be solvable via traditional forward-integration
techniques. This feature enables an independent consis-
tency check for D.A. solutions.

For our model, we consider a scenario in which two
monoenergetic neutrino beams with different energies
interact with each other and with a background consisting
of nuclei, free nucleons, and electrons. The densities of the
background particles and of the neutrino beams themselves
are taken to dilute as some functions of a position
coordinate r, which could be interpreted as the distance
from the neutrino sphere in a supernova. In what follows,
we first discuss general two-flavor neutrino flavor oscil-
lations, and we then adapt this formalism for our particular
toy model.

B. Two-flavor neutrino flavor evolution

Since νμ and ντ neutrino flavors experience identical
interactions in the supernova environment, the three-flavor
problem can be reduced to a two-flavor mixing between νe
and a state νx that is a particular superposition of νμ and ντ
[90,91]. The flavor state of neutrinos of energy E, as a
function of position, can then be expressed using a 2 × 2
density matrix, which in the flavor basis is given by

ρEðrÞ ¼
�
ρee;E ρex;E

ρxe;E ρxx;E

�
¼

� jae;Ej2 a�e;Eax;E
ae;Ea�x;E jax;Ej2

�
: ð2Þ

Here the last matrix representation of the density
operator is for the special case where the neutrinos are
in pure states, with ae;E and ax;E being the respective flavor
amplitudes. The quantum kinetic equation (QKE) gov-
erning the evolution of the general density operator ρE has
the form [16,53–69,92,93]

i
dρEðrÞ
dr

¼ ½HEðrÞ; ρEðrÞ� þ iCEðrÞ: ð3Þ

Here we are assuming that the neutrino density matrix
elements and potentials carry no explicit time dependence;
that is, they may vary only as functions of position along
the neutrino trajectory—-a steady-state solution. HEðrÞ is
the Hamiltonian driving coherent flavor evolution. The last
term on the right side, CEðrÞ, captures the effects of
collisions. Neglecting collisions, which may be justified
in some supernova regions and epochs [35,55], results in
the coherent limit in which neutrino flavor evolution is
Schrödinger-like:

i
dρEðrÞ
dr

¼ ½HEðrÞ; ρEðrÞ�: ð4Þ

Here, the right side is trace-conserving, implying unitary
evolution. Equation (4) can also be cast in the form of a
standard path-integral extremization problem [24].
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1. Spin basis and polarization vectors

Equation (4) can be recast in terms of Bloch vectors PE
and HE by decomposing the density matrices ρE and
Hamiltonians HE, respectively, into a basis of Pauli spin
matrices (for details see Ref. [65]):

ρE ¼ 1

2
ðPE;0Iþ PE · σÞ

¼ 1

2

�
PE;0 þ PE;z PE;x − iPE;y

PE;x þ iPE;y PE;0 − PE;z

�
; ð5Þ

HE ¼ 1

2
ðHE;0IþHE · σÞ

¼ 1

2

�
HE;0 þHE;z HE;x − iHE;y

HE;x þ iHE;y HE;0 −HE;z

�
: ð6Þ

We refer to the quantities PE as “polarization vectors,”
whereas the vectors HE will inherit the name
“Hamiltonians.” Note that the subscripts x, y, z on the
vector components above do not refer to spatial coordi-
nates, but rather to directions in this SUð2Þ “Bloch space.”
The advantage of Bloch-vector decomposition is twofold:
(1) the dynamical variables of the system, that is, the
components of PE, are now real numbers, unlike
the complex amplitudes in the density matrices, and
(2) the geometric representation makes for easier visuali-
zation of the often complex underlying dynamics. To
illustrate the second point, we write the evolution equation
in terms of these Bloch vectors:

dPE;0

d
¼ 0; and

dPE

dr
¼ HEðrÞ × PEðrÞ: ð7Þ

The first equation is simply a restatement of trace
preservation, and in fact, for a normalized density matrix,
PE;0 ¼ 1. The second equation, on the other hand, resem-
bles Larmor precession of a magnetic moment, with the
Hamiltonian in this case playing the role of a magnetic
field. Note that PE;z represents the probability of a neutrino
being detected as a νe over νx; that is, PE;z ¼ jae;Ej2−
jax;Ej2. Or, if one were to think in terms of a population of
neutrinos,

PE;zðrÞ ¼
nνe;EðrÞ − nνx;EðrÞ

nν;EðrÞ
; ð8Þ

where nν;EðrÞ is the number density of neutrinos of energy
E at a position r, and nνα;EðrÞ≡ nν;EðrÞjaα;EðrÞj2 is the
“expected” number density of neutrinos in the flavor α at
that energy and position.

2. The Hamiltonian and equations of motion
for neutrino forward scattering

Having set up the evolution equations, let us now
describe the specific Hamiltonians that drive flavor evolu-
tion in the coherent limit—first in matrix form and then in
the Pauli spin representation. The Hamiltonian HE consists
of three contributing terms: HEðrÞ ¼ Hvac;E þHmðrÞþ
HννðrÞ. The first of these terms drives flavor oscillations
in vacuum:

Hvac;E ¼ Δ
2

�− cos 2θ sin 2θ

sin 2θ cos 2θ

�
; ð9Þ

where θ is the mixing angle in vacuum, describing the
unitary transformation between the weak interaction
(flavor) eigenstates, and the energy (mass) eigenstates.
Also, Δ≡ δm2=2E, where δm2 is the mass-squared
splitting between the two energy eigenstates. The other
two contributions arise from neutrino forward scattering
on background matter particles (Hm, the “matter
Hamiltonian”) and other neutrinos (Hνν, the “neutrino-
neutrino Hamiltonian”), respectively. In the scenario
described above, they assume the forms

Hm ¼ VðrÞ
2

�
1 0

0 −1

�
; ð10Þ

Hνν ¼
X
E

μEðrÞρEðrÞ: ð11Þ

Here we have already subtracted the trace from the
vacuum and matter Hamiltonian, since it has no bearing on
the flavor evolution. In terms of the baryon number density
nBðrÞ, the electron fraction YeðrÞ, and the neutrino number
density nν;EðrÞ, the potentials are

VðrÞ ¼
ffiffiffi
2

p
GFnBðrÞYeðrÞ;

μEðrÞ ¼
ffiffiffi
2

p
GFαðrÞnν;EðrÞ; ð12Þ

where GF is the Fermi constant and αðrÞ≡ 1 − cosψðrÞ is
a factor that weights the neutrino-neutrino coupling accord-
ing to the intersection angle ψðrÞ between the two neutrino
streams. Our choice of particular functional forms for VðrÞ
and μEðrÞ is stated and explained later in this section
(Sec. III B 4) and in Appendix C. The neutrino-neutrino
Hamiltonian Hνν ensures that the evolution equations are
nonlinear, since the Hamiltonians driving the evolution of
the density matrices depend on the density matrices
themselves; moreover, the evolution histories of the two
neutrino populations are now coupled to each other.
Gathering the above Hamiltonians and expressing them

in the Pauli basis, one obtains the complete set of
dynamical equations for the two neutrino beams:
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dP1;x

dr
¼ ðΔ cos 2θ − VðrÞÞP1;y

þ μðrÞðP2;yP1;z − P2;zP1;yÞ;
dP1;y

dr
¼ −ðΔ cos 2θ − VðrÞÞP1;x − Δ sin 2θP1;z

þ μðrÞðP2;zP1;x − P2;xPz;1Þ;
dP1;z

dr
¼ Δ sin 2θP1;y

þ μðrÞðP2;xP1;y − P2;yP1;xÞ; ð13Þ
dP2;x

dr
¼ ðΔ cos 2θ − VðrÞÞP2;y

þ μðrÞðP1;yP2;z − P1;zP2;yÞ;
dP2;y

dr
¼ −ðΔ cos 2θ − VðrÞÞP2;x − Δ sin 2θP2;z

þ μðrÞðP1;zP2;x − P1;xPz;2Þ;
dP2;z

dr
¼ Δ sin 2θP2;y þ μðrÞðP1;xP2;y − P1;yP2;xÞ; ð14Þ

where for simplicity we have assumed equal neutrino
number densities at both energies [nν;E1

ðrÞ ¼ nν;E2
ðrÞ],

so that μE1
ðrÞ ¼ μE2

ðrÞ ¼ μðrÞ. For brevity, we have used
P1 and P2 in place of PE1

and PE2
.

3. Physics of the model: MSW resonance
and collective effects

In principle, the various Hamiltonians driving neutrino
flavor evolution can—in the adiabatic limit—be combined
and expressed in the form of effective in-medium oscil-
lation parameters:

Hvac þHmðrÞ þHννðrÞ

≡ ΔmðrÞ
2

�− cos 2θmðrÞ sin 2θmðrÞ
sin 2θmðrÞ cos 2θmðrÞ

�
; ð15Þ

where ΔmðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔ cos 2θ − VeffðrÞÞ2 þ Δ2 sin2 2θ

p
and

sin2 2θmðrÞ ¼ ðΔ2 sin2 2θÞ=Δ2
mðrÞ represent the effective

in-medium mass-squared difference and mixing angle,
respectively. Here, Veff is taken to represent the effective
matter þ collective potential experienced by a neutrino. At
VeffðrÞ ¼ Δ cos 2θ, the in-medium mixing angle θm
achieves its maximal value of π=4 and flavor transformation
becomes resonant. A system that passes adiabatically
through this resonance is susceptible to highly efficient
flavor conversion through the Mikheyev-Smirnov-
Wolfenstein (MSW) mechanism [94,95], which is an
essential feature of the scenarios we treat in this study.
Near the neutrino sphere, Hm dominates, so that the heavier
mass eigenstate essentially aligns with the νe flavor state. At
large radii, however, Hvac takes over, and for small mixing
angles, this means the heavier mass eigenstate aligning
more closely with νx. If this transition is sufficiently

adiabatic, a neutrino initially emitted as νe undergoes
near-complete conversion into νx prior to its detection.
In the numerical calculations discussed below we choose

neutrino energy ratios and matter potentials that can encom-
pass highly adiabatic neutrino flavor transformation, so that
neutrinos stay in instantaneous mass eigenstates. Knowing
what the flavor states of neutrinos are at the beginning of our
calculations, that is, at the neutrino sphere, we can then
determine the flavor states at the end, without knowing the
precise details of the intervening matter density profile. It is
because of this reason that adiabatic neutrino flavor evolution
presents a fundamental problem in interpreting a detected
core-collapse neutrino signature: possible degeneracy of
neutrino flavor histories. That is, any number of smooth
matter density profiles, each transited by neutrinos adiabati-
cally, will facilitate conversion of an initial νe into a νx, or
vice versa. A key objective of this study is to ascertain
whether optimization techniques can map out degeneracies.
In Sec. VI, we suggest that introducing additional complex-
ities in our model, including sharp features in the matter
potential (such as shocks) that would engineer nonadiaba-
ticity, can help break such degeneracies [96–99].
Introducing neutrino-neutrino coupling into this picture

gives rise to an array of nonlinear flavor-transformation
phenomena. Nonlinearity can manifest as various modes of
collective neutrino flavor oscillation—see Ref. [12] for a
review. In these collective modes significant fractions of the
neutrinos in a range of energies and locations may undergo
simultaneous, sometimes synchronized coherent flavor
oscillations. In essence, neutrino-neutrino forward scatter-
ing serves to “inform” a neutrino about the flavor states
of others, and the nonlinear nature of the interactions
guides neutrino flavor states into lock-step coherence.
Determining the locations in radius and energy of the
transition in and out of such collective modes, or whether
they even occur at all, will be an important objective for
core-collapse supernova neutrino burst detection.
In a practical sense, collectivity engendered by nonlinear

neutrino-neutrino forward-scattering potentials may add to
the possible degeneracy in neutrino flavor histories, or it
may tend to narrow the possibilities. To use optimization
techniques to explore this question, we will now present
simple functional forms for matter and neutrino-neutrino
potentials.

4. Choice of the matter potential
and the neutrino coupling term

The above formulation of 2 × 2 neutrino flavor evolution
is general and has been used to calculate collective neutrino
oscillation phenomena, often capturing the qualitative
behavior of more sophisticated 3 × 3 multiangle simula-
tions. Here, we seek to use D.A. to solve the two-flavor
evolution embodied in an appropriately adapted version of
Eqs. (13) and (14). This requires choices for the matter and
neutrino background potentials.
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The matter potential VðrÞ is typically written in terms of
the baryon density nBðrÞ and the electron fraction YeðrÞ.
For simplicity we combine the two dependences and
describe VðrÞ using a single power law,1

VðrÞ ¼ C
r3
; ð16Þ

where all constants, including the weak couplingGF, as well
as physical parameters such as the neutrino sphere radius,
and nB and Ye at the neutrino sphere, have been absorbed
into the dimensionful constant C, which we treat as a para-
meter to be determined by the data assimilation procedure.
We also choose a simplified structure for the neutrino-

neutrino coupling term μðrÞ. Here, the dependences of the
neutrino number density nν;EðrÞ and the effect of the
intersection angle αðrÞ≡ 1 − cosψðrÞ are bundled
together into a single power law,

μðrÞ ¼ Q
r3

; ð17Þ

where, as with the matter potential, all constant parameters
are absorbed into Q, which we will treat as a single
parameter to be determined by the data assimilation
procedure. These functional forms are adopted as coarse
mock-ups of the matter and neutrino densities surrounding
the neutrino sphere and are not meant to emulate realistic
profiles to an accurate degree. Nevertheless, the physical
motivation behind the choice of these functional forms is
discussed in Appendix C.
The challenge posed to the data-assimilationmachinery is

to estimate the constantsC andQ as well as the flavor-space
trajectories P1ðrÞ and P2ðrÞ of the two neutrino beams as
they propagate outward from the neutrino sphere (radius
r ¼ 0) towards some radius R. We imagine that a detector
sits at R. For this exploratory D.A. study, we have chosen
energies that allow us to examine how the procedure
operates over different resonance locations relative to the
detector location. Our motivation is to probe the utility of
eventually adding constraints on physics within the
envelope. The inputs to the D.A. machinery are (1) the
model equations of motion and (2) the measurements Pz of
each neutrino at r ¼ R (given a known initial state at r ¼ 0),
which are processed through the action-minimization
procedure detailed in the previous section.

IV. THE EXPERIMENTS

A. The model-specific optimization procedure

Given (1) the model embodied in Eqs. (13) and (14), and
with unknown parameters C (the weight of the matter
potential) and Q (the weight of the coupling potential);
(2) measurements of the model state variables P1;z and P2;z

at r ¼ R; and (3) an assumed initial known flavor state (Pz)
of each neutrino at r ¼ 0, we seek to identify the path
X0 ¼ fP1ð0Þ;P2ð0Þ;…;P1ðRÞ;P2ðRÞ; C;Qg in state space
such that the cost function of Eq. (1) attains a minimum
value. Within our model formulation, the measurements yl
are the Pz components of both neutrinos, and the compo-
nents of x are the Px, Py, and Pz values of both neutrinos.
(Obviously, the only potential “measurement” of supernova
neutrinos would be in a terrestrial detector, and would
correspond to an energy spectrum; see Sec. VI.)
The two equality constraints (with coefficients k) are

designed to improve the efficiency of the search algorithm.
The algorithm does not recognize relations among nonin-
dependent state variables, but rather considers each inde-
pendently. Because the model described by Eqs. (13) and
(14) implicitly imposes P2 ¼ constant, the model is over-
determined in the Cartesian coordinate system. To mini-
mize the computational expense, we added these equality
constraints to strictly impose unitarity at the start of the
annealing procedure (Rm ≫ Rf), in which regime the
model weight may not yet be sufficiently strong for its
implicit requirement to be well respected. The functions g1
and g2 are

g1ðxðnÞÞ ¼ P2
1;x þ P2

1;y þ P2
1;z

g2ðxðnÞÞ ¼ P2
2;x þ P2

2;y þ P2
2;z;

the value of coefficient k in Eq. (1) was taken to be 1.

B. The experimental designs

We designed two sets of experiments for D.A., where the
sets are distinguished by the ratio of the neutrino energies.
In both cases the first neutrino (Neutrino 1) experiences the
MSW resonance at a radius r ¼ 1.1 in the absence of
coupling (Q ¼ 0). [We express both the location r and
matter and neutrino potential coefficients C and Q as
dimensionless quantities. We can provide dimensions, for
example in cm and MeV cm3, respectively, through
Eqs. (18) and (C2); see Appendix C.] This requirement
sets the value of the matter coefficient C. In the first set of
experiments, the ratio of neutrino energies Eν1=Eν2 ¼ 2.5;
in the second set of experiments, Eν1=Eν2 ¼ 0.01. For each
of these two cases, we examined the model dynamics for
four values of the coupling strength: Q ¼ 0, 1, 100, and
1000. These choices were made to permit an examination
of whether the quality of results is sensitive to neutrino
coupling strength or energy ratio.
For all experiments, we assumed the neutrinos to be in

pure νe flavor at r ¼ 0, with a corresponding Pz value of
þ1. Here we make a note regarding our treatment of this
bound constraint at r ¼ 0. While the only actual measure-
ment in this experiment occurs at r ¼ R, for the purposes of
the D.A. procedure we treated the known initial state (at
r ¼ 0) as a “measurement” as well. We then added a 1%

1In practice, we set the dependences as 1=ðrþ 0.1Þ3, to avoid
infinities at r ¼ 0, where 0.1 is in arbitrary units.
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uncertainty to that “measurement.” In this way, the initial
known distribution was treated by the algorithm as a bound
constraint of finite rigidity. To be reasonable, we also added
1% noise to the measurement of Pz at r ¼ R.
Finally, for all eight experiments, a search was per-

formed 20 times, each beginning from a randomly chosen
location on the state space surface (for a description of the
discretized space, see Appendix B, Sec. B 1).
The simulated data were generated by forward-integrating

Eqs. (13) and (14) out to r ¼ R, via a fourth-order adaptive
Runge-Kutta scheme “odeINT,” an open-access Python
integrator. Ipopt uses a Simpson’s rule method of finite
differences to discretize the state space, a Newton’s method
to search, and a barrier method to impose user-defined
bounds that are placed upon the searches. The integration
step for the simulated data, and the discretization step, were
each Δr ¼ 0.0001. The resulting flavor evolution histories
obtained in the interim (r ¼ 0 toR) consist of 20,000 points.
The annealing procedure took β from 0 to 30 in increments of
1, and Rf;0 ¼ 0.01.
The summations in Eq. (1), then, are constituted as

follows. For the measurement error, the sum on location j
has two terms, r ¼ 0 and R, and the sum on the measured
state variables l has two terms, P1;z and P2;z. For the model
error, the sum on location n has 20,000 terms, and the sum
on all state variables a has six terms: P1;x, P1;y, P1;z, P2;x,
P2;y, and P2;z. We performed the experiments for various
values of Rm between 1 and 10,000.
A link to the Python codes that we used to interface with

Ipopt is provided in Appendix B, Sec. B 2.

C. Rationale for experiments in light
of astrophysical considerations

The specific experimental designs we adopt—namely,
the two energy ratios Eν1=Eν2 and various values of
coupling strength Q—were crafted to be analogies to
interesting physical scenarios. In Appendix C we illustrate
these analogies by providing supernova envelope examples
in which to “embed” the chosen neutrino energy ratios.
The examples with a neutrino energy ratio of 2.5 will

correspond to situationswhere the location of our “detector,”
that is, our final location R, is well outside the supernova
envelope, and well beyond any MSW resonances. With
completely adiabatic flavor evolution this will correspond to
the completely degenerate case, where the initial and final
neutrino flavor states are essentially predetermined, and the
flavor state history between these points is not uniquely
determined. Consequently, we might expect the optimiza-
tion algorithm to fail to converge consistently to a single
C-value in the case where Q ¼ 0. Nonadiabatic flavor
evolution, for example, because of density ledges or shocks,
would be expected to break this degeneracy.
In the examples with a neutrino energy ratio of 0.01,

the final location R was held unchanged from the
Eν1=Eν2 ¼ 2.5 case. Changing the energy ratio, however,

results in changing the locations of the MSW resonances
relative to r ¼ R. In particular, in these examples, the
resonance location of Neutrino 2 is shifted beyond the final
location r ¼ R, in the limit where Q ≪ C. Physically, this
corresponds to a scenario in which the final location R is
inside the supernova envelope.
Our purpose behind this choice is twofold. First,we aimed

to assess whether optimization techniques can capture with
fidelity the neutrino flavor evolution, if information is
specified about the flavor content at certain locations within
the envelope. This information might be important for
calculating nucleosynthesis or neutrino heating, since both
of these issues hang mostly on the νe and ν̄e content of the
local neutrino fluxes. For example, alpha-rich freeze-out in
the postaccretion phase will lead to overproduction of
nuclides such as 90Zr, unless the electron fraction is larger
than about 0.48 [100]. This processmay place constraints on
the electron neutrino/antineutrino energy spectra and fluxes
in the postaccretion epoch. There also exist speculative
theoretical models about the possible production of
r-process nuclides in core-collapse supernova environ-
ments, for example, via neutrino-spallation-induced liber-
ation of neutrons in the helium layer [101,102].
Our second motivation for choosing a value of R inside

the supernova envelope was to facilitate a direct compari-
son between different energy ratios, in order to examine the
sensitivity of the D.A. procedure for different final radii
relative to the resonance locations. We include these results
here because our aim throughout this paper is not to capture
physical realism, but rather to examine the robustness of the
D.A. machinery over various model regimes.
Finally, and before giving examples of specific super-

nova conditions (Appendix C), it will prove useful to
note that the MSW resonance condition, δm2 cos 2θ ¼
2EνVeffðrÞ, where VeffðrÞ is the flavor-diagonal potential
from background matter and neutrinos at location r, lets us
determine the resonance location for a given neutrino
energy. For purely matter-driven (Q ¼ 0) flavor evolution
this means that the location of the resonance is

rres ¼
�

2Eν

δm2 cos 2θ

�
1=3

C1=3; ð18Þ

and consequently the ratio of the resonance locations for
two different neutrino energies, Eν1 and Eν2 , is independent
of C in this case:

rres;1
rres;2

¼
�
Eν1

Eν2

�
1=3

: ð19Þ

V. RESULTS

A. Key findings

Before presenting details of the results, we summarize
key findings:
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(i) For six out of the eight experiments (which were
defined in Sec. IV), the measurements contain
sufficient information to qualitatively capture overall
flavor evolution through the MSW resonance, given
the estimated parameter values. That is, the flavor
evolution histories are consistent with the parameter
estimates. These six experiments correspond to
model regimes in which the equations of motion
for the neutrinos are strongly coupled to each other, to
the matter background, or both.

(ii) For these six experiments, the precise location of the
MSW transition is estimated correctly in roughly
33% of trials.

(iii) For the other two (out of eight) experiments, the
D.A. result failed to capture the model evolution.
These two cases correspond to low coupling of the
equations of motion of ν2 to both matter and to ν1.

(iv) There is insufficient information in the measure-
ments to break the degeneracy in allowed sets of
parameter values C andQ. This result is expected, as
broad ranges of the parameters C and Q will leave
flavor evolution completely adiabatic, thereby
matching the neutrino flavor values imposed at
the end points. The corresponding picture of the
state space surface that emerges is not one riddled
with clearly defined local minima of varying depth,
but rather a wide, relatively flat basin.

(v) The sensitivity of model evolution to parameter values
may depend on (1) energy ratio Eν1=Eν2 , (2) the value
of neutrino-neutrino coupling strength Q, (3) the
location of the detector relative to the resonance
location, or (4) any combination of the above. For
example, when the detector sits outside the region of
flavor transformation, the model is insensitive to the
values of C and Q. When the measurement is made
prior (in location) to complete flavor transformation,
however, a correlation emerges between estimates ofC
and Q. This finding suggests that the addition of
physical constraintswithin the supernova envelope (in
a more complicated model) could prove useful for
degeneracy breaking.

(vi) The high-frequency, low-amplitude oscillations that
modulate the overall transformation are fit poorly, in
comparison to the fit of the overall transformation.
This is due to the high sensitivity of this aspect of the
model to precise estimates of C and Q.

B. Predicted flavor evolution and parameter estimates

1. Predicted flavor evolution histories

Examples of flavor evolution for the eight experiments
are depicted in Figs. 1 and 2, for neutrino energy ratios
Eν1=Eν2 ¼ 2.5 and 0.01, respectively. For each experiment,
polarization vector components PxðrÞ, PyðrÞ, and PzðrÞ are
shown at left for ν1 and at right for ν2. The rows correspond

to results for Q parameter values of 0, 1, 100, and 1000,
respectively. Predicted flavor evolution by the D.A. pro-
cedure is shown in red, alongside evolution curves in blue
corresponding to the correct evolution obtained by forward
integration, for comparison. The best results, over all trials,
were obtained by a choice of measurement weight Rm of 1
and annealing parameter β between 13 and 15.
For six out of the eight experiments, we found the model

dynamics to be captured well. For two out of the eight
experiments, flavor evolution was traced poorly over all
trials. We will first discuss the six relatively successful
experiments, and then separately the final two.
The six relative successes were all four experiments for

the Eν1=Eν2 ¼ 2.5 case (for all four values of Q), and the
two experiments for the Eν1=Eν2 ¼ 0.01 high coupling
(Q ¼ 100 and 1000). For all six of these experiments, the
corresponding plots on Figs. 1 and 2 represent roughly one
third of results over all trials. For the other roughly 66% of
trials, the overall transformation history had the same
qualitative appearance, but the precise location rres of
resonant flavor conversion was matched less precisely to
the model evolution. By “less precisely,” we mean roughly
a discrepancy between model and prediction captured in the
top left panel in Fig. 2: Px, Py, and Pz for ν1 in the case
for Q ¼ 0.
As we will describe in Sec. VI, all of these results

capture the expected behavior of resonant transformation
modified by neutrino self-coupling; the offsets in rres over
the trials are due to different (degenerate) sets of parameter
estimates.
Next we examine the two experiments for the Eν1=Eν2 ¼

0.01 case, for low coupling:Q ¼ 0 and 1. Unlike the results
for the other six experiments, all of these D.A. solutions fail
to match the features of the true evolution of ν2, including
the measurements at the end points. This result may be
interpreted in terms of the efficiency of information flow
among the state variables. As noted, if one has available as
measurements only those corresponding to a subset of the
model’s total number of state variables, then in order to
obtain information regarding the unmeasured states, the
equations between measured and unmeasured states must
be coupled to some significant degree. This interpretation is
borne out by observations that generally, across physical
models in other fields, D.A. tends to perform poorly when
the equations of motion are not strongly coupled [103], as
is the case here: ν2 is not strongly coupled to ν1, and it is
also far from its resonance location.

2. Parameter estimates

The parameter estimates corresponding to the flavor
evolution histories of Figs. 1 and 2 are listed in Table I. We
found that for each experiment, the estimates varied across
trials, with values of C and Q that spanned the permitted
search ranges for each parameter (not shown); the search
ranges are specified in the caption of Table I. Note that the
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FIG. 1. Flavor evolution histories for the four experiments with neutrino energy ratio Eν1=Eν2 ¼ 2.5. For each experiment, polarization
vector components PxðrÞ, PyðrÞ, and PzðrÞ are shown at left for ν1 and at right for ν2. Red curves represent neutrino flavor evolution
histories predicted by Ipopt, given Pz measurements at the end points. The blue curves shown for comparison are the model solutions
obtained by forward integration of the equations of motion. The rows correspond to results for Q parameter values of 0, 1, 100, and
1000, respectively. The true (model) value of C was 1304.5 for all four experiments.
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FIG. 2. Flavor evolution histories for the four experiments with neutrino energy ratio Eν1=Eν2 ¼ 0.01. For each experiment,
polarization vector components PxðrÞ, PyðrÞ, and PzðrÞ are shown at left for ν1 and at right for ν2. Red curves represent neutrino flavor
evolution histories predicted by Ipopt, given Pz measurements at the end points. The blue curves shown for comparison are the model
solutions obtained by forward integration of the equations of motion. The rows correspond to results forQ parameter values of 0, 1, 100,
and 1000, respectively. The true (model) value of C was 1304.5 for all four experiments. Note the poor match to the flavor evolution of
ν2 for the low-coupling cases (Q ¼ 0 and 1). See text for comments.
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search ranges were different for each value ofQ chosen; see
Sec. VI. In addition, for comments on the lack of errors on
these parameter estimates and on methods to quantify these
errors, see Sec. VI.
To examine possible model sensitivity to parameter

estimates in different model regimes, we explored C −Q
space for all trials over all eight experiments. For the four
experiments with Eν1=Eν2 ¼ 2.5, no statistical trend
emerged. Note that for this case, the detector sits at a
location beyond the complete flavor conversion of both
neutrinos. For Eν1=Eν2 ¼ 0.01, however, a trend emerged at
Q ¼ 100 and 1000. Figure 3 illustrates this trend. As Q is
increased from 100 to 1000, it clearly emerges that a
correlation between the C and Q values is required by the
estimates. Note that for this case, the detector sits at a
location at which the resonant flavor conversion of ν2 is not
complete. See Sec. VI for comments.
Finally, to test whether the low noise added to the

measurements was in part responsible for the high degen-
eracy of these estimates, we repeated all experiments with
zero noise in the measurements. Results were essentially
unchanged.

C. Tests to ascertain success of prediction,
given the parameter estimates

The degeneracy of parameter estimates described above
gave rise to an important question: Could the deviation of
the state prediction from precise MSW resonance be
attributed to the particular estimates of C and Q? In other
words, we sought to ascertain whether—over all trials for
the six out of eight rather successful experiments—the
evolution history was traced correctly given the respective
parameter estimates.
To this end, we examined the value of A0 over all values

of the annealing parameter β. The top panel of Fig. 4 shows
the value of the action A0 over the annealing procedure
corresponding to the first solution depicted in Fig. 1, where
Eν1=Eν2 ¼ 2.5 and coupling strength Q ¼ 0. This is a
purely matter-driven neutrino evolution case. The y-axis is

the base-ten logarithm of A0, and the x-axis is the parameter
β defined by Rf ¼ Rf;02

β; Rf;0 ¼ 0.01 and Rm ¼ 1.
This top panel of Fig. 4 is representative of the A0-

versus-β plots for all of the most-precisely-fit flavor
evolution solutions presented in Figs. 1 and 2, that is,
for roughly 33% of trials in six out of the eight experiments.
Specifically, the logarithm of A0 holds at a constant value of
−4.0 (up to machine precision) for all values of β.
The bottom panel of Fig. 4 shows an overlaid plot of

A0-versus-β for all 20 trials corresponding to the first
experiment (again, for Eν1=Eν2 ¼ 2.5 and Q ¼ 0). An
examination of each of the 20 results individually revealed

TABLE I. Parameter estimates C and Q corresponding to the
solutions whose state variable evolution is displayed in Figs. 1
and 2, for Eν1=Eν2 ¼ 2.5 (center columns) and 0.01 (right). The
permitted search range for C is 500 to 1900, for all experiments.
The permitted search range for Q ¼ 0 is −10 to 10; for Q ¼ 1, 0
to 10; for Q ¼ 100, 0 to 200; for Q ¼ 1000, 500 to 1900.

Eν1=Eν2 ¼ 2.5 Eν1=Eν2 ¼ 0.01

C (model) Q (model) C (DA) Q (DA) C (DA) Q (DA)

1304.5 0 1457 0.3 563 10a

1304.5 1 1292 0.7 1586 9
1304.5 100 1621 169 1560 101
1304.5 1000 1681 1840 1641 1272

aValue is a permitted search range bound.

FIG. 3. Relation between Ipopt-predicted values of parameters
C (matter coupling strength) and Q (ν − ν coupling strength), for
Eν1=Eν2 ¼ 0.01, for model Q ¼ 100 (top) and model Q ¼ 1000

(bottom). Symbol representations are as follows. Blue x’s:
estimates over all trials for all values of annealing parameter
β; solid green squares: estimates over all trials for the values of β
that consistently yielded the best fits to flavor evolution, β ¼ 13
through 15; open black circle: the estimate corresponding to the
plot of flavor evolution on Fig. 2; solid red star: the true model
value. A weak positive correlation between C and Q appears for
Q ¼ 100, and gets stronger at Q ¼ 1000. The same plot (of
C −Q space) for the experiments in which Eν1=Eν2 ¼ 2.5
revealed no significant correlation at any value of Q (not shown).
See Sec. VI for comments.
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that the value log10 A0 ¼ −4.0 essentially held constant
over the annealing procedure for each trial, but with varying
degrees of scatter. The degree of scatter at the extremes
(Rm ≫ Rf and Rf ≫ Rm) on each plot was correlated with
the degree to which the corresponding flavor history
solution matched the precise location of transformation.
As there occurs no evolution of action with increasing

Rf, we conclude that the dominant contribution to the
action is the measurement error, and the model dynamics is
obeyed well. Further, given that A0 has the same minimum
value for all parameter sets, we infer that all parameter
sets—and corresponding evolution histories—capture the
given measurements equally well.
Finally, we note two systematic features that we have

identified for obtaining best-fit solutions to the flavor
histories. Namely, all best fits, as exemplified in Figs. 1
and 2, correspond to values of β between 13 and 15 (out of
the full span of zero to 30), and Rm ¼ 1. The optimal values
of these user-defined parameters vary across dynamical

models, and for any given model it is important to identify a
systematically reliable choice. Currently, this can only be
done via trial and error; see Appendix B, Sec. 2 b.

VI. DISCUSSION

There are many issues in nonlinear compact object
neutrino flavor evolution that are difficult to treat with
standard initial-value-problem integrations of the neutrino
flavor quantum kinetic equations as described in Sec. III.
This concern constitutes our reason for considering numeri-
cal path integral-inspired approaches to this problem. To
this end, here we have investigated the efficacy with which
a particular D.A. algorithm (1) captures neutrino flavor
evolution, and (2) identifies the sensitivity of that evolution
to parameter values. It is significant that using one
particular algorithm (Ipopt), we were able capture key
features, like MSW resonance locations, of a simple
supernova envelope neutrino flavor oscillation model.
Furthermore, our results do indeed capture the degeneracy
inherent in the highly adiabatic versions of our model, and
they reveal that certain choices, for example, neutrino-
neutrino coupling strength Q, neutrino energy ratio, and
detector location, affect model sensitivity to the unknown
parameters to be estimated. These findings are encourag-
ing. In addition, and as discussed in the previous section,
there exist particular realizations of parameter choices in
our simple model that yield a MSW resonance prediction
that is offset from the true location. It will be important to
explore methods of breaking the parameter degeneracies
that caused the offsets.
In this section we will (1) examine the significance of the

results, (2) consider immediate enhancements to the model
and to the D.A. experiment formulation, and (3) describe a
tentative plan for ultimately investigating D.A. as an alter-
native method to solving the backscattering (halo) problem.

A. The physics captured by the results

Even in this simplistic two-neutrino model an array of
flavor effects is evident. Perhaps the most prominent of these
is the MSW conversion that occurs for one or both of the
neutrinos in the scenarios depicted in Figs. 1 and 2. As the
value ofQ increases, the nonlinear coupling between ν1 and
ν2 grows stronger and leads to modifications both in the
locations of the resonances and in the flavor-space trajectories
traversed by the neutrinos as they pass through resonance.
The influence of nonlinearity is especially conspicuous in the
scenario with Q ¼ 1000 and an energy ratio of Eν1=Eν2 ¼
0.01, wherein the resonance of ν1, which would have
occurred at r ∼ 1 in the absence of neutrino-neutrino cou-
pling, has synchronized with that of ν2, which would have
otherwise occurred at r > 2. The predicted solutions are able
to capture the changing nature of resonant conversion across
the entire range of Q values that we have considered.
In themost successful cases the solutions also exhibitmore

subtle features of flavor transformation. The small excursion

FIG. 4. The action A0 over the annealing procedure. The
y-axis is log10 A0, and the x-axis is the parameter β defined
by Rf ¼ Rf;02

β; Rf;0 ¼ 0.01 and Rm ¼ 1. Top: A0-versus-β for
the first solution depicted in Fig. 1, where Eν1=Eν2 ¼ 2.5 and
coupling strength Q ¼ 0. Specifically, log10 A0 holds constant at
−4.0 to machine precision. This panel is representative of the
roughly 33% of solutions that fit flavor evolution well. Bottom:
An overlaid plot of A0-versus-β for all 20 solutions corresponding
to the first experiment (for Eν1=Eν2 ¼ 2.5 and Q ¼ 0). The
degree of scatter at the extremes (β ∼ 0 and 30) for each trial
is individually correlated with the degree to which the corre-
sponding flavor history solution matched the location of trans-
formation.
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inPy that is common tomany of the results reflects the slight
deviation from perfect adiabaticity: the polarization vector
swings away from the xz-plane as it struggles to keep upwith
the Hamiltonian vector. Superimposed on top of these
excursions are small-amplitude high-frequency oscillations,
which correspond to the fast precession of P about H, and
although there are quantitative discrepancies between the
model and prediction curves, the correct qualitative behavior
is visible. Taken as a whole, Figs. 1 and 2 suggest that even
with just two measurements per neutrino the data assimila-
tion procedure is nevertheless sensitive to the fine features of
flavor transformation.

B. Model sensitivity to parameter values

We now comment on our finding that the model’s
sensitivity to parameter values depends on detector location.
As noted, we found that for experiments where the detector
sat outside the rangeof resonant flavor transformationof both
neutrinos, there existed high degeneracy in permitted values
of parameters C and Q. This degeneracy is a result of the
flavor conversion of neutrinos having completed prior to
detection, thus rendering ameasurement ofPz at that location
relatively insensitive to both C and Q independently. In the
cases where the measurement occurred prior (in location) to
the complete transformation of ν2, however, there emerged a
correlation between the estimated values of C and Q.
This result occurred for the energy ratio Eν1=Eν2 ¼ 0.01.
The correlation between C and Q is strongly evident for
Q ¼ 1000 and more weakly for Q ¼ 100.
Our interpretation of these findings is as follows. For

the Q ¼ 1000 case (Fig. 2, fourth row, right panel), ν2
is still evolving through resonance at the location of
measurement.2 In this regime, the value of P2;z is highly
sensitive to the value of Q at a particular location. Because
both VðrÞ and μðrÞ are taken to scale as 1=r3 [see Eqs. (16)
and (17)], the estimated value of Q essentially sets a
corresponding value of C. For the case of Q ¼ 100, the
observed correlation between C and Q is weaker because
(1) while some flavor oscillations of ν2 are apparent, ν2
is not yet evolving through resonance (Fig. 2, third row,
right panel) and (2) since Q ≪ C, the dependence of
resonance location on Q is minimal. This discovery of
detector-location-dependent model sensitivity to parameter
values (Sec. IV C) suggests that it will be useful to add to a
more realistic model additional known physics within the
supernova envelope—as constraints, rather than as strict
measurements (see immediately below).

C. Next steps

Ideally, we would next like to explore a model of similar
simplicity, but with the addition of a backscattering term.
Given, however, the degeneracy of parameter estimates in
this simple model—and hence an unreliable predicted
precision of the MSW transition, it is clear that we first
must improve the current D.A. procedure. Improvements
may involve amending the model, the D.A. formulation, or
both. Here we outline a tentative stepwise plan for the
ultimate employment of D.A. upon a realistically sized
flavor evolution model that includes terms that are prob-
lematic for traditional numerical integration.

1. Tailor the D.A. procedure to the point at which we
are consistently obtaining precise estimates of
parameters and MSW transition location for a
statistically significant fraction of trials—for exam-
ple, over 99%. This step may require any of the
following amendments, to be discussed in detail
below: (1) addition to the model of more compli-
cated potentials, (2) scaling of the model in terms of
neutrino number, (3) imposing constraints on values
of parameters and state variables within particular
ranges of locations at particular epochs, and
(4) modifying the particular D.A. formulation. Note
that, in this stage, it is critical that the model
continue to be solvable via numerical integration,
so that we continue to have a consistency check for
D.A. solutions. In addition, it is critical in this stage
to add only the minimal amount of complexity to the
model that is required to break degeneracy. A more
realistic model—in which, for example, measure-
ments correspond to energy spectra—would be
vastly too large an initial step to take, given the
difficulties already inherent with backscattering and
with honing an appropriate D.A. methodology.

2. Once the procedure is consistently yielding precise
estimates at, say, 99% confidence or higher, we add
to the model a term that presents formidable diffi-
culties to traditional numerical integration, namely,
backscattering. No longer able to solve the model via
standard forward integration, we obtain “blind”D.A.
solutions. We are now permitting the D.A. to lead us
in an understanding of the new physics that emerges.

3. Ultimately, having identified a D.A. protocol that
works reliably for a toy model, we scale the model in
neutrino number, consider multiangle calculations,
and take the measurements to correspond to energy
spectra.

D. Immediate next step: Seek methods
for degeneracy breaking

1. Amending the model

Degeneracies in outcomes for different neutrino flavor
evolution histories, for example, stemming from adiabatic

2Note that in this regime the neutrino-neutrino potential is
negative, since ν1 has already gone through resonance and
therefore has P1;z ¼ −1. This leads to the resonance of ν2 being
pulled farther in as compared to the case with no ν–ν coupling, an
effect that was pointed out in Refs. [44,45] and is akin to the
“matter-neutrino resonance” (MNR) [25,104–108].
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evolution through MSW resonances, are among the sought-
after targets of a numerical calculation. In many ways,
however, they offer a computational challenge. If we think
physically about what could cause nonadiabatic neutrino
flavor evolution in a supernova envelope we immediately
think of physics that gives abrupt jumps or ledges in the
neutrino forward-scattering potentials. Shocks or entropy
jumps associated with supernova progenitor star fossil
nuclear burning shells can produce these features in the
matter potential. A goal might be to reveal such features by
taking a detected Galactic supernova core-collapse neutrino
burst signature, and then employing simulations to reverse
engineer the neutrino flavor histories in the supernova
envelope. Such jumps are tantamount to alterations in the
neutrino forward-scattering potentials. Regarding our
ongoing study of D.A. applied to this problem, then,
one method to break parameter degeneracies may be to
add to the model more complicated potentials that capture
the physics just described. Another goal might be to
ascertain whether evidence of nonlinear neutrino flavor
evolution, for example, collective oscillations, appears in
such a detected signature.
Another method of degeneracy breaking may be the

addition of constraints within the supernova envelope, that
is, between locations r ¼ 0 and R. We have already
stipulated that we know the neutrino fluxes, energy spectra,
and flavor states at the neutrino sphere. What if, in addition,
we stipulate that at a certain epoch (time postbounce) in the
supernova, and in a range of locations (radius), the
polarization vector components and energy spectra lie in
given ranges? That is, we might want to examine how well
we can fit detected neutrino data with assumed neutrino
sphere flavor and energy distributions, while also demand-
ing, for example, neutron-rich conditions in a certain region
in the envelope. This neutron excess might arise from the
νe þ n → pþ e−, ν̄e þ p → nþ eþ competition [42], or
neutral-and-charged-current neutrino spallation of neutrons
from nuclei. We can incorporate such considerations in the
D.A. procedure as constraints on state variable values.
Finally, we may add neutrinos, as well as antineutrinos, to

the model. As neutrinos in any given model are coupled all
to all, the addition of neutrinos would tighten the coupling
among the model ODE. In short, prior to adding back-
scattering, we consider it important to examine embellish-
ments to the current model for degeneracy breaking. First,
we will add more complicated potentials (to represent
shocks and changes in the electron fraction and density
at particular locations r). A more complicated model will
not only capture more faithfully the physics of interest, but it
will furnish additional parameters to be estimated, thereby
possibly providing more power to the measurements in
distinguishing among solutions. Second, we will add more
measurements, in terms of neutrino number, to examine the
measurement dependence of degeneracy breaking. Third,
we will examine the model dynamics at various epochs after

the core bounce. Fourth, and separate from “measurements,”
we will add constraints to the values of variables within
particular ranges of locations at various epochs.

2. Amending the D.A. procedure

In addition to model embellishments, various modifica-
tions to the D.A. procedure may improve parameter
estimation.
First we note our choices for various user-defined search

parametrizations: the relative weighting terms Rm and Rf,
the coefficient k of the equality constraints, and the choice
of discretized step size in radius r. There exists no universal
optimal choice for any of these values. The optimal choices
are model dependent and require extensive trial and error to
identify. In this paper we experimented with various
choices and took the set that yielded the most reliable
results, but our experimentation was not exhaustive. As one
example, the relative weighting terms Rf and Rm were
taken to be equal at all points on any given path. We might
examine whether loosening this constraint changes the
results. (For comments on choosing an optimal ratio of
Rm=Rf, see Appendix B, Sec. 2 b.) Finally, a value of Rm ¼
1.0 consistently produced the best results, and this was the
value used for all the results presented in this paper.
Second, the user-defined search ranges for parameter

values C and Q differed over all eight experiments, depend-
ing on the true model values of these quantities. Obviously,
such bias has no place in a true D.A. experiment, that is, in
an experiment where the measurements have been gener-
ated by a real physical process whose associated model
parameter values are, of course, not known. A prerequisite
to taking on real (experimental) measurements will be the
elimination of this bias in simulated experiments.
More broadly, there exist many formulations for incor-

porating measurements and model evolution into an opti-
mization framework. To discuss the myriad of existing
techniques is beyond the scope of this paper. Here we note
just two as examples. The first is variational synchroniza-
tion (or “nudging”), where the model is imposed as a strong
constraint upon the cost function rather than as a term
within it. This formulation has demonstrated better perfor-
mance for some problems in neuroscience [109].
As a second example, we cite Monte Carlo (MC)

algorithms. This is a class entirely separate from variational
approaches. MC methods have three notable advantages
over the variational method. First, they are more efficient at
searching a wider area, thereby offering a more global view
of the action surface. Second, the map yields not only the
depth of a minimum but also its width—thereby offering a
quantification of errors on parameter estimates.3 Third, MC

3On a related note, work is ongoing on a MC method to
quantify errors on estimates obtained via the variational approach
described in this paper [110].
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methods are more readily parallelizable. This feature may
be valuable when considering scalability.

E. Scalability

Ultimately, we will aim to build a D.A. formulation for a
large-scale model. Because of the enormity of realistic
astrophysical scenarios in terms of model degrees of
freedom, the practicality of scalability is an important
consideration. In numerical weather prediction, large mod-
els are being handled by GPUs. The model currently used
at the European Centre for Medium Range Weather
Forecasts, for example, contains 109 degrees of freedom,
107 of which are measured [111]. This size is comparable to
the size of a neutrino flavor evolution model we would
ultimately aim to build. See Ref. [112] for information on
their computing facilities. Current state-of-the-art numeri-
cal radiation hydrodynamics simulations of core-collapse
supernovae that incorporate detailed equation of state
physics and include Boltzmann neutrino transport might
utilize 1010 degrees of freedom. Simulations of this size
may be augmented to treat the halo problem, but full
quantum kinetic treatments of neutrino flavor and spin
evolution may remain elusive, even at the exascale [113].
As noted, MC frameworks for D.A. may be better suited for
large-scale simulations, as they are readily parallelizable.
See Ref. [114] for a formulation of the MC algorithm
using a cost function similar to that used in this paper;
see Ref. [115] for an exploration of GPU processing
capabilities for such MC structures. Finally, we note that
other kinds of statistical approaches to gas dynamics and
magnetohydrodynamics are being pursued, for example,
Gaussian process modeling [116]. Whether any of these
might be employed to tackle neutrino flavor evolution is an
open question.

VII. SUMMARY

Our exploration of optimization-based data assimilation
techniques for treating the neutrino flavor transformation
problem in supernovae has yielded insights into the utility
of these approaches. Advantages include (1) the ability of
D.A. to search efficiently over ranges of input model
parameters, and (2) the integration-blind feature offered
by an optimization framework. Obviously, we have only
scratched the surface of this problem. We plan immediate
modifications to both the model and D.A. procedure, to
obtain more precise and reliable results in advance of
considering the direction-changing scattering problem in a
toy model. Following that achievement, we envision scal-
ing up the sophistication of the model, by adding more
neutrinos, with many more neutrino energy bins, a more
sophisticated geometry, realistic nonsmooth matter density
profiles, and direction-changing neutrino scattering. We
also envision treating other supernova epochs, for example,
shock break-out and the associated neutronization burst.
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APPENDIX A: A PATH-INTEGRAL-BASED
FORMULATION OF STATISTICAL DATA

ASSIMILATION

1. Summary of purpose and strategy

Here we lay out a derivation of the cost function A0 used
in this paper. We begin by seeking the probability of
obtaining a path X in the model’s state space given
observations Y, or PðXjYÞ. If we write

PðXjYÞ ¼ e−A0ðX;YÞ;

the equation abovewill then mean “the pathX for which the
probability (given Y) is greatest is the path that minimizes
A0.” Now, if A0 is sufficiently large (where “sufficiently”
must be defined by the results of a particular D.A.
experiment using a particular model), we can use
Laplace’s method to estimate the minimizing path on the
surface of A0.

4

A formulation for A0 will permit us to obtain the
expectation value of any function GðXÞ on a path X;
expectation values are the quantities of interest when the
problem is statistical in nature. We can write the expect-
ation value of GðXÞ as

hGðXÞi ¼
R
dXGðXÞe−A0ðX;YÞR

dXe−A0ðX;YÞ :

That is, the expectation value can be expressed as a
weighted sum over all possible paths, where the weights
are exponentially sensitive to A0. The RMS variation, and
higher moments ofGðXÞ, can be calculated by taking the xa
to the appropriate higher exponents. If the quantity of
interest is the path X itself, then we choose GðXÞ ¼ X.
It remains, then, to write a functional form for A0. This

will take place in two steps. First we shall consider how

4Laplace’s method was developed to approximate integrals of
the form

R
eMfðxÞdx. For sufficiently high values of the coefficient

M, significant contributions to the integral will come only from
points in a neighborhood around the minimum, which can then be
estimated.
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measurements and model dynamics enter into the state and
parameter estimation. This wewill do via an examination of
Bayesian probability theory and Markov chain transition
probabilities, for the effect of measurements and model
dynamics, respectively. Second, we shall make four sim-
plifying assumptions: (1) the measurements taken at differ-
ent times are independent, (2) both measurement and model
errors have Gaussian distributions, (3) each measurement is
taken to correspond directly to one model state variable,
and (4) the minimizing path is independent of the guess—in
state and parameter space—of the initial path.
In what follows, we shall describe this strategy in some

detail (for a full treatment, see Ref. [1]). To remind the
reader of the notation, the model consists of D ordinary
differential equations, each of which represents the evolu-
tion of one of the model’s D state variables. From the
corresponding physical system, we are able to measure L
quantities, each of which corresponds to one of the
model’s D state variables. Typically the measurements
are sparse (L ≪ D), and the sampling may be infrequent
or irregular.

2. Considering model dynamics only
(no measurements yet)

We shall first examine this formulation by considering
the model’s time evolution in the absence of measurements.
We represent the model’s path through state space as the set
X ¼ fxðt0Þ; xðt1Þ;…; xðtNÞ; pg, where tN is the final “time
point,” the vector xðtÞ contains the values of the D total
state variables, and p are the unknown parameters (here, the
word “time” can also be taken to represent other grid
parametrizations, for instance, location).

a. Assuming that a Markov process underlies
the dynamics

If we assume that the dynamics are memoryless, or
Markov, then xðtÞ is completely determined by xðt − ΔtÞ,
where t − Δt means “the time immediately preceding t”
and an appropriate discretization of time Δt for our
particular model has been chosen. A Markov process
can be described in the continuous case by a differential
equation, or as a set of differential equations:

dxaðtÞ
dt

¼ FaðxðtÞ; pÞ; a ¼ 1; 2;…; D;

and we note that the model is an explicit function of the
state variables xðtÞ and the unknown parameters p. It is in
this way that the unknown parameters are considered to be
on equal footing with the variables; namely, they are
variables with trivial dynamics.
In discrete time, that relation can be written in various

forms. For our purposes, we use the trapezoidal rule,

xaðnþ 1Þ ¼ xaðnÞ þ
Δt
2
½Faðxðnþ 1ÞÞ þ FaðxðnÞÞ�;

where for simplicity we have taken n and nþ 1 to represent
the values of tn and tnþ1.

b. Permitting stochasticity in the model and recasting
its evolution in terms of probabilities

We are interested in ascertaining the model evolution
from time step to time step, where now we allow for some
stochasticity in the model dynamics. In this scenario, the
evolution can be formulated in terms of “transition prob-
abilties,” for example, Pðxðnþ 1ÞjxðnÞÞ, the probability of
the system reaching a particular state at time nþ 1 given its
state at time n. If the process were deterministic, then in
our case Pðxðnþ 1ÞjxðnÞÞ would simply reduce to
δDðxðnþ1Þ−xðnÞ−Δt

2
½Fðxðnþ1ÞÞþFðxðnÞÞ�Þ. We will

revisit to this expression later in this appendix, under the
section Approximating the Action.
For a Markov process, the transition probability from

state xðnÞ to state xðnþ 1Þ represents the probability of
reaching state xðnþ 1Þ given xðnÞ and x at all prior time
steps, or

Pðxðnþ 1ÞjxðnÞÞ ¼ Pðxðnþ 1ÞjxðnÞ; xðn − 1Þ;…; xð0ÞÞ
so that

PðXÞ≡ Pðxð0Þ; xð1Þ;…; xðNÞÞ

¼
YN−1

n¼0

Pðxðnþ 1ÞjxðnÞÞPðxð0ÞÞ:

We now write

PðXÞ≡ e−A0ðXÞ;

where A0 is the action defined on the model’s path X in
state space (or the path that minimizes the action is the path
most likely to occur).5 Then the model term of the action,
A0;model, can be written as

A0;model ¼ −
X

log½Pðxðnþ 1ÞjxðnÞÞ� − log½Pðxð0ÞÞ�;
where the second term represents uncertainty in initial
conditions.

3. Now with measurements

We now consider the effect of measurements. Let us
define a complete set of measurements Y to be the set of all
vectors yðnÞ at all times n—the analog of X for the
complete set of state variable values. We shall examine

5The reader might find it of interest to note the
quantum-mechanical analog of the transition probability, which
involves the trivial addition of the term i

ℏ in the exponent:
Pðxðnþ 1ÞjxðnÞÞ ¼ e

i
ℏAðtnþ1;tnÞ, where A here is the classical

action.
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the effect of these measurements upon a model’s dynamics
by invoking the framework of “conditional mutual infor-
mation” (CMI); for a useful definition of CMI, see
Ref. [117].6

The expression CMIðxðnÞ; yðnÞjYðn − 1ÞÞ asks, “How
much is learned about event xðnÞ upon observing event
yðnÞ, given that events Yðn − 1Þ have been previously
observed?” The CMI can be quantified as

CMIðxðnÞ; yðnÞjYðn − 1ÞÞ

¼ log

�
PðxðnÞ; yðnÞjYðn − 1ÞÞ

PðxðnÞjYðn − 1ÞÞPðyðnÞjYðn − 1ÞÞ
�
:

4. The complete action

With measurement considerations included, the action
now becomes

A0ðX;YÞ ¼ −
X

log½Pðxðnþ 1ÞjxðnÞÞ� − log½Pðxð0ÞÞ�
−
X

CMIðxðnÞ; yðnÞjYðn − 1ÞÞ;

where the first and second terms represent the model
dynamics including initial conditions, and the third term
represents the transfer of information from measurements.
The summations are over time. As noted, this formulation
positions us to calculate the expectation value of any
function GðXÞ on the path X.
We now offer an interpretation of the measurement term.

The measurement term can be considered to be a nudging
(or synchronization) term. While nudging terms are often
introduced rather artificially in the interest of model
control, we have shown that the measurement term arises
naturally through considering the effects of the information
those measurements contain. For this reason, we prefer to
regard the measurement term as a guiding potential. In the
absence of the potential, we live in a state space restricted
only by our model’s degrees of freedom. The introduction
of the measurements guides us to a solution within a
subspace in which those particular measurements are
possible.

5. Approximating the action

We now seek to simplify the action formulation for the
purposes of calculation.

a. The measurement term

Regarding the measurement term, we make four
assumptions:

(i) The measurements taken at different times are
independent of each other. This permits us to write
the CMI simply as PðxðnÞjyðnÞÞ, or

A0ðX;YÞ ¼ − log½PðXjYÞ�:
(ii) There may be an additional relation between

the measurements and the state variables to which
those measurements correspond, which can be ex-
pressed with the use of some transfer function
hl: hlðxðnÞÞ ¼ ylðnÞ.

(iii) For each of the L measured state variables, we allow
for a noise term θl at each time point, for each
measurement yl that corresponds to a state variable
xl: ylðnÞ ¼ hlðxðnÞÞ þ θlðnÞ. In this case, then,
PðxðnÞjyðnÞÞ is simply some function of hðxðnÞÞ −
yðnÞ at each time point.

(iv) The measurement noise has a Gaussian distribution.
Taking these assumptions, we arrive at

CMIðxðnÞ; yðnÞjYðn − 1ÞÞ

¼ −
XL
l;k¼1

ðhlðxðnÞÞ − ylðnÞÞ

×
½RmðnÞ�lk

2
ðhkðxðnÞÞ − ykðnÞÞ;

where Rm is the inverse covariance matrix of the measure-
ments yl.

b. The model term

We simplify the model term by assuming that the model
may have errors, which will broaden the delta function in
the expression noted earlier for the deterministic case. If we
assume that the distribution of errors is Gaussian, then

δDðzÞ becomes
ffiffiffiffiffiffiffiffiffi
detRf

ð2πÞD
q

e½−z
Rf
2
z�, where Rf is the inverse

covariance matrix for the model’s state variables.
Taking both approximations together, assuming that the

transfer function hl is simply unity, and assuming that the
minimizing path is independent of considerations of initial
conditions, we obtain

A0 ¼
XN−1

n

XD
a

Rf
a

2

�
xaðnþ 1Þ − xaðnÞ

tnþ1 − tn
− faðxðnÞÞ

�
2

þ
X
j

XL
l

Rm
l

2
ðylðjÞ − xlðjÞÞ2;

where faðxðnÞÞ≡ 1
2
½FaðxðnÞÞ þ Faðxðnþ 1ÞÞ�. The first

(model) term involves a summation over allD state variables,
and the second (measurement) term involves a summation

6The reader may find an intuitive understanding of our use of
the CMI by the following consideration. The overall information,
in bits, in a set A is defined as the Shannon entropy
HðAÞ ¼ −

P
APðAÞ log½PðAÞ�. The CMI is a means to quantify

the amount of information, in bits, that is transferred along a
model trajectory within a particular temporal window. That
information is equivalent to −

P
N
n¼0 log½PðxðnÞjyðnÞ;Yðn − 1ÞÞ�.
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over the L measured quantities. Note that here we write the
model error term in a simpler, more general manner than the
specific formulation used in this paper [Eq. (1)].
Finally, we allow in the cost function the addition of

equality constraints, of the general form kgðxðnÞÞ, where
the coefficient k set the strength of the constraint function g.
The specific equality constraints chosen in this paper are
described in Sec. II.

APPENDIX B: DETAILS OF THE
D.A. PROCEDURE

1. The discretized search space

The optimization procedure searches a ðDðN þ 1Þ þ pÞ-
dimensional state space, where D is the number of state
variables of a model, N is the number of discretized steps,
and p is the number of unknown parameters. Note that each
location point is considered a separate dimension. Thus the
action, instead of being a functional of D functions, is a
function of ðDðN þ 1Þ þ pÞ variables.
Ipopt, the specific algorithm used in this paper, employs

a Newton’s, or descent-only, search. The spatial resolution
is set by a user-defined step size. The user provides the
objective function, model, the Jacobean and Hessian
matrices of the model, permitted search ranges of variables
and unknown parameters, and discretized step size. The
algorithm iteratively searches for a path in the state space
that minimizes the action subject to the requirements that
the first derivative of the objective function at the minimiz-
ing path along any direction be zero and that its second
derivative along any direction be positive definite. The
resulting “path” is a set of state vectors, one at each
discretized step, and specific values of the unknown
parameters. Each path corresponds to a single point in
the ðDðN þ 1Þ þ pÞ-dimensional space. In this way, the
model parameters are considered on equal footing with the
state variables; namely, the unknown parameters are state
variables with trivial dynamics. Finally, to impose user-
defined bounds placed upon the searches, Ipopt uses a
barrier method. For details, see [89].

2. Specific choices governing D.A. experiments
in this paper

a. Interface with Ipopt

Ipopt requires a user interface to discretize state space
and calculate the model equations of motion, Jacobean, and
Hessian matrices that are used in the minimization pro-
cedure. We used a suite of Python codes to generate this
interface; it is available here: https://github.com/yejingxin/
minAone.

b. Choosing Rf=Rm for best results

As noted in Sec. VI, there exists no universal rule for
choosing an optimal ratio of model and measurement

weights. An optimal value is model dependent and must
be identified via trial and error. Generally, for many
biophysical models of neurons, small neuronal networks,
atmospheres, and chaotic Lorenz-63 and Lorenz-96 mod-
els, a value of β between 10 and 20 is found to be ideal
[103]. The reader may compare this range to our identi-
fication of β ∈ ½13; 15�, which we found yielded the best
results.
Poor results at the extremes (Rm ≫ Rf and Rf ≫ Rm)

are expected for any model, for the following reasons. For
low Rf, the model constraints are not yet sufficiently strict
to require a converging solution. For high Rf, the failure of
solutions has at least two potential causes. First, one
encounters numerical problems with considering “infinite”
model weight. The problem is ill conditioned when it
involves a matrix whose elements are so large that the
matrix is not invertible. The optimizing solution may thus
become overly sensitive to changes in the state vector.
Rounding errors may render these solutions invalid.
A second possible cause is discretization error at high
Rf. In taking a discretized derivative, one retains only the
first term in a Taylor series. As the multiplicative factor
grows, the higher-order terms—which are ignored—will
become important.

APPENDIX C: EMBEDDING THE MODEL INTO
A SIMPLIFIED ASTROPHYSICAL SYSTEM

1. Forms for matter and coupling potentials

The cubic radial dependence of the matter potential is
actually close to the expected density run in the supernova
envelope in some cases. For example, some seconds after a
supernova explosion, perhaps 3 to 10s after core bounce,
we can be left with a tenuous, near-hydrostatic envelope
sitting in a gravitational potential well dominated by the
hot, proto-neutron star. This envelope is being heated to
high entropy by the intense neutrino radiation from the
neutrino sphere, and driven off. This is the “neutrino-driven
wind” epoch. It is a candidate site for r-process nucleo-
synthesis, but one fraught with challenges stemming from
uncertain neutrino flavor transformation physics and the
“alpha effect” : the interaction between charged current
νe and ν̄e captures and aggressive alpha particle formation
in the high entropy wind. In turn, the entropy of this wind is
a complicated function of neutrino heating and flavor
histories.
We can approximate the wind regime envelope as

(1) being in hydrostatic equilibrium, with enthalpy per
baryon equal to the local gravitational binding energy per
baryon and (2) with the entropy of the material being
carried entirely by relativistic particles, namely photons and
electron-positron pairs. The latter assumption is tantamount
to the entropy being high. We can combine (1) and (2) and
find for a constant entropy envelope the baryon density
dependence on radius r:
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where the baryon mass (energy) density is ρ; Avogadro’s
number is NA; and MNS, mp, and mpl are, respectively, the
neutron star mass, proton rest mass, and the Planck mass.
Here s is the entropy per baryon in units of Boltzmann’s
constant kb, and g is the statistical weight in relativistic
particles. In terms of this parametrization of the density run,
our constant C in the expression for VðrÞ is [118]

C ¼
ffiffiffi
2

p
GFYe

�
11π2

45

��
g

11=2

��
MNSmp

m2
pl

�
3 1

s4

≈ 2.9 × 106 MeVcm3

�
g

11=2

��
MNS

1.4M⊙

�
3 Ye

s4100
; ðC2Þ

where Ye is the electron fraction, and the entropy per
baryon in units of 100kb is s100.
In a spherical geometry, with neutrinos emitted from a

sharp neutrino sphere, the radial dependence of the ν − ν
potential is μðrÞ ∼ 1=r4, as both the neutrino number flux
nνðrÞ and the angle factor αðrÞ each dilute as 1=r2 in the
far-field limit. In more complicated models, including those
that incorporate backscattering, we expect a different radial
dependence than 1=r4. Specifically, we expect the neutrino
potential to drop less quickly with radius than in conven-
tional bulb models. Here then, for simplicity and to enable a
direct comparison to the matter potential, we choose
μðrÞ ∼ 1=r3. That is, our motivation here was to introduce
nonlinearity in a simple manner, while avoiding the use of
different functional forms for VðrÞ and μðrÞ.

2. Neutrino energy ratios set within
an astrophysical context

For the energy ratio Eν1=Eν2 ¼ 2.5 we can give three
plausible supernova envelope examples based on the
constant-entropy, wind-like density profile given in
Eqs. (C1) and (C2) and the atmospheric neutrino mass-
squared splitting. If we take s100 ¼ 1, g ¼ 11=2, and
Ye ¼ 0.4, all plausible conditions for a neutrino-driven
wind that might form at > 3 s after core bounce, then the
resonance locations for Eν1 ¼ 25 MeV and Eν2 ¼ 10 MeV
are 289 km and 213 km, respectively, and the ratio in
Eq. (19) is ≈1.4. Note that the corresponding resonance
widths, δr ¼ jV=ðdV=drÞjres tan 2θ ∼ ðrres=3Þ sin 2θ ∼
10 km for θ ¼ 0.1, are small enough that the resonances
are well separated for these neutrino energies. We can also
consider the same neutrino energies, but now with a smaller
entropy, s100 ¼ 0.1, a slightly smaller electron fraction,
Ye ¼ 0.35, and g-factor, g ¼ 2. These choices will very
crudely mock up an earlier accretion phase supernova
envelope. In this case the resonance locations are 4254 km
and 3135 km, respectively. If we consider the same

envelope parameters but now take neutrino energies Eν1 ¼
2.5 MeV and Eν2 ¼ 1 MeV, we obtain resonance locations
at 1975 km and 1455 km, respectively. In all of these cases
neutrino flavor evolution through these resonances will be
adiabatic.
If we take the neutrino energy ratio of 0.01, with Eν1 ¼

0.5 MeV and Eν2 ¼ 50 MeV, and the windlike higher
entropy conditions described above, we obtain resonance
locations at 79 km and 364 km, respectively, for the Q ¼ 0
case. In this case, our experimental setup would put the
final location R between these resonances, inside the
supernova envelope. We study this scenario, for multiple
values of coupling strength Q, in order to examine
collective effects and explore the sensitivity of the D.A.
procedure to flavor information deep in the supernova
envelope.

APPENDIX D: EVOLUTION OF MASSIVE STARS,
WEAK INTERACTIONS, AND NEUTRINO

FLAVOR PHYSICS

The following is a pedagogical overview of neutrino
physics in core-collapse supernovae [119–121].

1. Evolution of massive stars and the weak interaction

The weak interaction, the nuclear force responsible for
changing neutrons to protons and vice versa, is the key to
why stars shine, and why big stars collapse, explode, and
synthesize the elements. The sun and stars like it burn
hydrogen into helium, combining four protons into a
helium nucleus, and thereby turning two of those protons
into neutrons along the way. The fundamental weak
reaction in the sun turns two protons into a deuterium
nucleus with the emission of a positron and an accom-
panying electron-flavor neutrino, pþ p → Dþ eþ þ νe.
Neutrinos experience only gravitation and the weak

force, making them very “slippery,” that is, able to escape
from deep inside a dense star, and carry away energy. The
weak interaction is aptly named, being some 20 orders of
magnitude weaker than electromagnetic forces, at the
relevant energy scales. Indeed, hydrogen burning in the
sun is desperately slow. It will take 1010 years for the sun to
burn through all of its hydrogen. In more massive stars,
however, weak interactions, along with attendant neutrino
emission, combined with gravitation, can nevertheless
engineer their violent destruction.
Stars some ten or more times the mass of the sun

(M ≥ 10M⊙) evolve in millions of years through a series
of nuclear burning epochs: hydrogen to helium, to carbon
and oxygen, to magnesium, to silicon. Finally, silicon burns
to “iron,” forming a core with mass ∼1.4M⊙ composed of
relatively neutron-rich iron-peak nuclei (for example, 56Fe,
48Ca, etc.). From core carbon burning onward in these
objects, the energy carried away by neutrinos exceeds that
radiated by photons. Neutrinos carry away the heat
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generated by nuclear reactions, forcing the star to contract
and release more gravitational binding energy, accelerating
nuclear burning, and so on. This jams the electrons in the
star into a smaller and smaller volume, and the Pauli
principle implies that they are consequently forced into
higher and higher energy states—the electrons become
relativistically degenerate. In turn, the energy dependent
weak interactions, for example, electron capture on protons
to make neutrons (e− þ p → nþ νe) proceed faster.
Though this iron core has a density more than ten orders
of magnitude higher than that of water, it is essentially
transparent to these neutrinos.
The end result is that neutrinos leave and refrigerate the

core. Though the core has a temperature of nearly 1010 K
(∼1 MeV), it is desperately cold in a thermodynamic sense,
highly ordered, with an entropy per baryon ∼1 unit of
Boltzmann’s constant, a factor of 10 or more lower than the
entropy in the sun. This low entropy, or high order, sets up
the core for instability. The pressure supporting the star
against gravitation is coming mostly from the degenerate
electrons, which are moving nearly at the speed of light.
A consequence of the nonlinear nature of gravitation is that
whenever the pressure support for a star comes from
particles moving at the speed of light, that star is trembling
on the verge of instability.
A variety of processes can shove the core over the edge,

leading to dynamical collapse, with infall speeds in some
cases approaching the free-fall rate. As the density rises, the
electrons become even more energetic and electron capture
proceeds even faster, making more neutrinos and “neutro-
nizing” the collapsing core. When the density of the core
reaches ∼1012 g cm−3, roughly 1% of nuclear matter
density, it becomes opaque to neutrinos. The neutrinos
are trapped and quickly come into thermal and chemical
equilibrium with the matter. As the collapse proceeds, the
outer portions of the core are falling in supersonically.
When the inner part of the core reaches nuclear density, the
nucleons touch, and this region stops abruptly. The outer,
supersonic part of the core slams into this “brick wall,”
generating a shock wave that propagates outward through
the outer core.
In broad brush terms, the ∼1.4M⊙ core collapses from a

configuration with a radius like that of the Earth (∼109 cm)
to one with a radius of roughly 45 km in about one second.
Within another second or two it quasistatically shrinks
down to a radius of 10 km. The upshot is a prodigious
gravitational binding energy change, amounting to about
10% of the entire rest mass of the core. One percent of this
energy largess resides in the bulk infall kinetic energy of the
core (and consequently the initial energy in the shock
wave), and the other 99%, some 1053 erg, is in the trapped
seas of neutrinos of all kinds.
At the edge of the proto-neutron star, deemed the

“neutrino sphere,” the matter density and opacity to
neutrinos drop off dramatically and neutrinos can more

or less freely stream away, mostly unhindered by direction-
changing or inelastic collisions with particles that carry
weak charge, for example, neutrons, protons, electrons, and
other neutrinos. The average energies of the neutrinos
streaming out are of order ∼10 MeV. With a gravitational
binding energy of 1053 erg (∼1059 MeV), this amounts to
some 1058 neutrinos carrying this energy away in a matter
of a few seconds. These are titanic neutrino fluxes.
The shock wave that propagates through the supernova

envelope is associated with an entropy jump across the
shock front—the material that the shock plows into has an
entropy per baryon ∼1kB, whereas the material behind the
shock has an entropy per baryon of ∼10kB. As a result, the
passing of the shock wave through the envelope results in
the dissociation of nuclei into mostly free nucleons, a
process that costs ∼8 MeV of energy per nucleon. This
causes the shock wave to rapidly lose energy and stall at a
radius of order a few hundred kilometers. Subsequently,
within a second or so, charged-current captures of electron
flavor neutrinos on neutrons and protons (νe þ n → pþ e−

and ν̄e þ p → nþ eþ) may deposit enough energy in the
matter behind the shock to reenergize it and get it moving
again with an energy of 1051 erg, resulting in a supernova
explosion. This process can be aided by hydrodynamic
motion of the neutrino-heated material. In the end, about
1% of the total neutrino energy needs to be deposited in this
material to get an explosion.

2. Collective neutrino flavor transformations
in supernovae

It is known that neutrinos come in three “flavors,” νe, νμ,
and ντ, corresponding to each of the three charged leptons.
These flavors denote weak-interaction eigenstates, essen-
tially determining how these particles interact inmatter. Each
neutrino has an antiparticle, implying that there are six kinds
of neutrinos: νe, ν̄e, νμ, ν̄μ, ντ, and ν̄τ. These particles are spin-
1=2, electrically neutral, and have very small rest masses.We
do not know what the masses are, but the differences of the
squares of these masses are measured: the so-called solar
mass-squared splitting δm2⊙ ¼ m2

2 −m2
1 ≈ 7.9 × 10−5 eV2,

and the atmospheric mass-squared splitting δm2
atm ¼ m2

3−
m2

1 ≈ 2.4 × 10−3 eV2, wherem1,m2, andm3 are the neutrino
mass eigenvalues corresponding to the energy eigen-
states (sometimes called “mass” states) of the neutrinos.
Experiment shows that these neutrino mass states are not
coincident with the flavor states and this can have conse-
quences for the core-collapse supernova mechanism and for
neutrino detection.
The fact that neutrino mass states are not coincident with

flavor states means that neutrinos emitted initially in one
flavor state can transform into another as they propagate,
with consequences for the way these particles effect
heating, nucleosynthesis, etc. Flavor transformations are
modified in the presence of potentials arising from neutrino

OPTIMIZATION-BASED APPROACH TO NEUTRINO … PHYSICAL REVIEW D 96, 083008 (2017)

083008-21



forward scattering on particles that carry weak charge,
such as leptons, nucleons, and other neutrinos. As the
neutrinos stream away through the lower density material
above the neutrino sphere, they acquire through forward
scattering an “index of refraction,” equivalent to an effec-
tive mass in medium. This is analogous to the way photons
acquire an index of refraction and effective mass propa-
gating through a transparent medium like glass. Unlike this
optical case, however, the “medium” through which the
supernova neutrinos pass consists, in part, of other neu-
trinos. This makes the neutrino flavor transformation
problem fiercely nonlinear: the potentials that determine
how neutrinos change their flavors depend on the flavor
states of the neutrinos.
These nonlinear effects become important in environ-

ments where the neutrino fluxes are substantial, such as
core-collapse supernovae, compact object mergers, and also
the early Universe. A complete treatment of flavor-
transformation physics in these environments is important,
because the charged-current weak interactions are flavor
dependent at typical temperatures (∼MeV)—the νe’s par-
ticipate, but νμ’s and ντ’s do not as there are no μ or τ leptons
around to scatter on.As a result, the effective scattering cross
sections for νe are larger than those for νμ and ντ, resulting in
different energy deposition rates—relevant for the super-
nova explosion mechanism. Moreover, the charged-current
weak processes νe þ n → pþ e− and ν̄e þ p → nþ eþ
determine the n=p ratio, and therefore knowing the flavor
content is essential for evaluating the nucleosynthesis
prospects in these environments.
Thermal processes during the core collapse manufacture

neutrino-antineutrino pairs of all flavors and these thermal-
ize with the electron capture-created νe’s. The net result is a
rough equipartition of energy among all six types of
neutrinos. Neutrinos of different flavors, however, have
correspondingly different interactions in the matter near the
neutrino sphere. The result is that electron-flavor neutrinos,
with the largest interactions, decouple furthest out, where it
is coolest, and have lower average energies as a conse-
quence. μ and τ flavor neutrinos and their antiparticles have
no charged-current weak interactions, and so these neu-
trinos decouple deeper in, where it is hotter. Consequently,
these are on average more energetic. Electron antineutrinos
have energies in between those of the electron neutrinos
and the μ or τ flavor neutrinos.
Neutrinos diffuse out of the hot proto-neutron star core

with a typical random walk time of seconds. This rather
long diffusion time also sets the time scale over which
neutrino spectral parameters and fluxes change. The time
scale for these changes can then be long compared to

neutrino transit times across regions of interest. Numerical
studies of supernova neutrino flavor evolution have tradi-
tionally sought to take advantage of this situation by
seeking stationary, time-independent solutions to the evo-
lution equations, wherein the neutrino fluxes/spectra
depend only on position. These numerical studies, in which
some ∼107 nonlinearly coupled Schrödinger-like equations
are solved on a supercomputer, have yielded unexpected
and surprising results [2–47]. Nonlinearity in the neutrino
flavor potentials can give rise to collective neutrino flavor
oscillations, where significant populations of neutrinos in
the supernova envelope can execute synchronized or other
organized and simultaneous changes in flavor, across a
range of neutrino energies and in a large region of space or
time.
One of the limitations of current simulations of

neutrino flavor evolution in supernovae is the failure to
account for potentials arising from neutrino direction-
changing scattering. This is the neutrino halo effect. Even
though a relatively small fraction of neutrinos undergo
direction-changing scattering, they could nevertheless
contribute significantly to the forward-scattering potential
felt by the outward-streaming neutrinos. This is a con-
sequence of the peculiar intersection-angle dependence of
the weak-interaction potential. In certain regions of the
envelope, and for certain epochs, it has been shown that
the potential term arising from the halo neutrinos could in
fact be the dominant term [34,35]. A complete treatment
of neutrino flavor evolution that includes the effects of
both forward and direction-changing scattering necessi-
tates the use of the so-called “quantum kinetic equations”
(QKE) [16,53–69,92,93]. In high-density regions, where
the scattering rates are large so that quantum mechanical
phases do not have any time to build up, the QKEs reduce
to a Boltzmann-like form. In the other limit, where the
neutrinos essentially free-stream and only experience
coherent forward scattering, the QKEs reduce to a
Liouville–von Neumann (Schrödinger-like) equation.
If in the future we are lucky enough to detect the neutrino

burst from a Galactic core-collapse event, we will want to
know whether the detected signal indicates that the simple
forward-scattering-based optical analogy is sufficient to
explain the neutrino flavor data, or whether the halo must
be invoked. A key objective will be to use this signal to
potentially extract information regarding the conditions in
the envelope and to ascertain whether collective oscillations
and their signatures like spectral swaps/splits occurred.
These issues prompt the exploration of alternative calcu-
lation techniques.
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