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Spherically symmetric relativistic stars with a polytropic equation of state (EoS), which possess local
pressure anisotropy, are considered within the framework of general relativity. The generalized Lane-
Emden equations are derived for the arbitrary anisotropy parameter Δ ¼ pt − pr (pt and pr being the
transverse and radial pressure, respectively). They are then applied to some special ansatz for the anisotropy
parameter in the form of a differential relation between the anisotropy parameter Δ and the metric function
ν. The analytical solutions of the obtained equations are found for incompressible fluid stars and then used
for getting their mass-radius relation, gravitational energy, and binding energy. Also, following the
Chandrasekhar variational approach, the dynamical stability of incompressible anisotropic fluid stars with a
polytropic EoS against radial oscillations is studied. It is shown that the local pressure anisotropy with
pt > pr can make the incompressible fluid stars unstable with respect to radial oscillations, in contrast to
incompressible isotropic fluid stars with a polytropic EoS which are dynamically stable.
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I. INTRODUCTION

It was argued in Ref. [1] that, despite the spherically
symmetric distribution of matter inside a compact stellar
object, it can be characterized by local pressure anisotropy.
An analysis of the generalized equations of hydrostatic
equilibrium, allowing for pressure anisotropy, shows that
anisotropy may have a substantial effect on the maximum
equilibriummass and gravitational surface redshift [1–3]. At
not toohigh densities, the impact of anisotropy can be studied
within Newtonian gravity [4,5]. At higher densities
(ϱ≳ 1015 g=cm3), both the relativistic effects and the effects
of general relativity become important [6–12]. In order to
study the influence of the local pressure anisotropy on the
specific basis, it is necessary to know the concrete physical
reasons responsible for its appearance, such as, e.g., the
existence of a solid core [6,7], occurrence of spontaneous
deformation of Fermi surfaces [13,14], availability of super-
fluid states with the finite orbital momentum of Cooper pairs
[15–19] or finite superfluid momentum [20,21], or the
presence of strong magnetic fields inside a star [22–34].
With account of the pressure anisotropy, the equation of

state (EoS) of the system will also be necessarily aniso-
tropic. The EoS is the essential ingredient in solving the
equations of the hydrostatic equilibrium, and its importance
was underlined in Ref. [35]. In the given work, we choose a
polytropic EoS, which is widely used in many astrophysical
applications [36–42]. For the polytropic index n ¼ 2, the
exact solutions of Einstein equations with pressure
anisotropy were obtained in Ref. [43]. Anisotropic spheres
with uniform energy density in general relativity were
studied in Refs. [12,44], and those with variable energy
density were studied in Ref. [45]. Note also that the exact

solutions of Einstein equations for spherical anisotropic
stars with a linear EoS were obtained in Ref. [46] for some
particular mass distribution.
In the present work, we will study spherically symmetric

relativistic anisotropic stars with a polytropic EoS, aiming to
obtain the generalized Lane-Emden equations for the special
ansatz for the anisotropy parameter in the form of a differ-
ential relation between the anisotropy parameter and the
metric function ν. This approach is different from that
suggested in Refs. [1,43] which consists in setting the
anisotropy parameter, or some metric function, in a specific
functional form. In the general case, the obtained Lane-
Emden equations can be integrated only numerically, but the
analytic solutions can be found for incompressible fluid stars.
These solutions can then be used to get the stars’mass-radius
relation, gravitational energy, and binding energy. Also, we
apply the Chandrasekhar variational procedure [47] to study
the dynamical stability of incompressible anisotropic fluid
stars with respect to radial oscillations.

II. BASIC EQUATIONS

For spherically symmetric stars, the line element is
written in the form

ds2 ¼ eνðr;tÞdt2 − eλðr;tÞdr2 − r2ðdθ2 þ sin2θdφ2Þ; ð1Þ

where we use the system of units with c ¼ 1. While the
matter distribution inside a star is spherically symmetric,
we allow the existence of the local pressure anisotropy in its
interior with the different values of the radial pr and
transverse pθ ¼ pφ ≡ pt pressures. The anisotropic
energy-momentum tensor for the static configuration reads

Tk
i ¼ diagðε;−pr;−pt;−ptÞ; ð2Þ*isayev@kipt.kharkov.ua

PHYSICAL REVIEW D 96, 083007 (2017)

2470-0010=2017=96(8)=083007(11) 083007-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevD.96.083007
https://doi.org/10.1103/PhysRevD.96.083007
https://doi.org/10.1103/PhysRevD.96.083007
https://doi.org/10.1103/PhysRevD.96.083007


where ε is the energy density of the system. The space-time
geometry and matter distribution are related by Einstein
equations:

Rk
i −

1

2
Rδki ¼ 8πGTk

i : ð3Þ

Given Eqs. (1) and (2), the Einstein equations read

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ 8πGε; ð4Þ

e−λ
�
ν0

r
þ 1

r2

�
−

1

r2
¼ 8πGpr; ð5Þ

1

2
e−λ

�
ν00 −

1

2
ν0λ0 þ 1

2
ν02 þ ν0 − λ0

r

�
¼ 8πGpt; ð6Þ

where a prime denotes differentiation with respect to r.
From Eqs. (4)–(6), or, equivalently, from the vanishing
divergence of the energy-momentum tensor Tk

i;k ¼ 0, one
can get the equation for the hydrostatic equilibrium in the
presence of the pressure anisotropy in the form

p0
r ¼ −

ν0

2
ðεþ prÞ þ

2Δ
r
; Δ≡ pt − pr; ð7Þ

where Δ is the anisotropy parameter. The interior metric
function λ can be found from Eq. (4):

e−λðrÞ ¼ 1 −
2G
r

mðrÞ; r < R; ð8Þ

where R is the radial coordinate at the surface of a star and
mðrÞ is the mass enclosed in the sphere of radius r:

mðrÞ ¼ 4π

Z
r

0

εr2dr: ð9Þ

From Eq. (5), given Eq. (8), one can find

ν0 ¼ 2G
mðrÞ þ 4πprr3

rðr − 2GmðrÞÞ : ð10Þ

Hence, the equation of hydrostatic equilibrium for a
spherically symmetric anisotropic star takes the form

p0
r ¼ −G

ðεþ prÞðmðrÞ þ 4πprr3Þ
rðr − 2GmðrÞÞ þ 2Δ

r
; ð11Þ

which is the generalization of the Tolman-Oppenheimer-
Volkov (TOV) equation taking into account the local
pressure anisotropy. In order to solve Eq. (11), considered
together with Eq. (9), it is necessary to set the EoS of the
system, ε ¼ εðprÞ, and to use a specific model-dependent
expression for Δ or some approximation for it. Further we
will assume that any physical quantity or metric function in
the interior of a star is free of singularities. As follows from
Eq. (11), the gradient p0

r will be finite at r ¼ 0, if, at least,
Δ ∝ r at r → 0. As the boundary condition to Eq. (11), we
will set the radial pressure at the center of a star

prð0Þ ¼ pr0, and we will determine the radial coordinate
R at the surface from the condition prðRÞ ¼ 0. The total
mass then can be determined as M ¼ mðRÞ, assuming that
mð0Þ ¼ 0. After finding the radial pressure distribution
prðrÞ [together with the mass distributionmðrÞ], the metric
functions λðrÞ and νðrÞ can be determined from Eqs. (8)
and (10). At the boundary r ¼ R, the metric functions are
matchable to the exterior vacuum Schwarzschild metric:

λðRÞ ¼ −νðRÞ ¼ − ln

�
1 −

2GM
R

�
: ð12Þ

III. GENERALIZED LANE-EMDEN EQUATIONS

Further, as the EoS of the system, we choose the
polytropic EoS in the form [37]

pr ¼ Kϱγ ≡ Kϱ1þ1
n; ð13Þ

where ϱ is the mass (baryon) density; K is some constant,
which can be, in principle, temperature dependent; γ is the
polytropic exponent and n is the polytropic index. Note that
in someworks [12,36,38,41] the polytropic EoS is set in the
form pr ¼ Kεγ, which will not be considered here. It is
possible to show (see, e.g., Ref. [42]) that for the EoS (13)
the energy density ε is related to the mass density ϱ and the
radial pressure pr by the equation

ε ¼ ϱþ pr

γ − 1
: ð14Þ

It is convenient to introduce the auxiliary dimensionless
Lane-Emden function θ according to the equations

pr ¼ pr0θ
nþ1; ϱ ¼ ϱ0θ

n; ð15Þ
where ϱ0 is the central mass density. It follows from the
boundary conditions for the radial pressure pr that

θð0Þ ¼ 1; θðRÞ ¼ 0: ð16Þ
Then Eq. (7) of hydrostatic equilibrium can be rewritten as

2q0ðnþ 1Þdθ − 4Δdr
ϱ0rθn

þ ð1þ ðnþ 1Þq0θÞdν ¼ 0; ð17Þ

where q0 ≡ pr0
ϱ0
. This equation can be integrated to give

ν ¼ ν0 − ln

�
1þ ðnþ 1Þq0θ
1þ ðnþ 1Þq0

�
2

þ 4

ϱ0

Z
r

0

Δdr
rθnð1þ ðnþ 1Þq0θÞ

;

ν0 ≡ νð0Þ being the integration constant. In order to find it,
one can use the boundary condition (12). This gives

ν0 ¼ ln
1 − 2GM

R

ð1þ ðnþ 1Þq0Þ2
−

4

ϱ0

Z
R

0

Δdr
rθnð1þ ðnþ 1Þq0θÞ

:
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Therefore, the metric function νðrÞ can be written as

νðrÞ¼ ln
1− 2GM

R

ð1þðnþ1Þq0θÞ2
−

4

ϱ0

Z
R

r

Δdr
rθnð1þðnþ1Þq0θÞ

:

ð18Þ

Let us define the auxiliary function

uðrÞ≡mðrÞ
M

¼ r
2GM

�
1−e−λðrÞ

�
; uð0Þ¼ 0;uðRÞ¼ 1;

ð19Þ

which, according to Eq. (9), satisfies the differential
equation

Mu0 ¼ 4πεr2: ð20Þ

Then, substituting e−λ from Eq. (19) and the derivative ν0
from Eq. (17) into Eq. (5), and using Eq. (20), one gets

q0ðnþ 1Þθ0r
1þ ðnþ 1Þq0θ

�
1 −

2GM
r

u

�
þ GMq0θ
1þ nq0θ

u0

þ GM
r

u −
2Δ

ϱ0θ
nð1þ ðnþ 1Þq0θÞ

�
1 −

2GM
r

u

�
¼ 0:

ð21Þ

Defining the dimensionless variable ξ and dimensionless
function η by the equations

r ¼ αξ; η ¼ M
4πϱ0α

3
u; ð22Þ

where α2 ¼ q0ðnþ1Þ
4πGϱ0

, Eqs. (20) and (21) can be rewritten as

ξ−2ðnþ1Þq0η
1þðnþ1Þq0θ

�
ξ
dθ
dξ

−
2Δ

ϱ0q0ðnþ1Þθnð1þðnþ1Þq0θÞ
�

þηþq0ξ3θnþ1 ¼ 0; ð23Þ

dη
dξ

¼ ξ2θnð1þ nq0θÞ: ð24Þ

As follows from Eqs. (16) and (22), the boundary
conditions for the functions θðξÞ and ηðξÞ read

θð0Þ ¼ 1; θðξRÞ ¼ 0; ð25Þ

ηð0Þ ¼ 0; ηðξRÞ ¼
M

4πϱ0α
3
; ð26Þ

where ξR ¼ R=α. Equations (23) and (24) represent the
generalized Lane-Emden equations for relativistic aniso-
tropic polytropes with the EoS (13), after solving which
one can find from Eqs. (15) and (22) the radial distribution

of the radial pressure and mass in the interior of a spheri-
cally symmetric relativistic anisotropic star. At Δ ¼ 0,
Eqs. (23) and (24) go over to the equations for the
relativistic isotropic polytropes [37].
Note that for a given q0, the radius and mass can be

found as functions of the constant K in EoS (13),

R ¼ R�q
1−n
2

0 ξR; M ¼ M�q
3−n
2

0 ηðξRÞ; ð27Þ
where the dependence on K goes through the quantities R�
and M�:

R� ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

4πG

r
K

n
2; M� ¼ 1ffiffiffiffiffiffi

4π
p

�
nþ 1

G

�3
2

K
n
2: ð28Þ

The mass-radius relation has the form

GM
R

¼ ðnþ 1Þq0
ηðξRÞ
ξR

: ð29Þ

The total energy of a star is

E ¼ 4π

Z
R

0

εr2dr ¼ M�q
3−n
2

0 ηðξRÞ: ð30Þ

The proper energy E0 is the integral of the energy density
over the proper spatial volume [36]:

E0 ¼ 4π

Z
R

0

εe
λ
2r2dr

¼ 4πϱ0α
3

Z
ξR

0

ð1þ nq0θÞ
ξ2θnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2q0ðnþ1Þ
ξ ηðξÞ

q dξ: ð31Þ

The gravitational potential energy Ω is determined as

Ω ¼ E − E0 ¼ M�q
3−n
2

0 ηðξRÞ

0
B@1 −

1

ηðξRÞ
Z

ξR

0

ð1þ nq0θÞ

×
ξ2θnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2q0ðnþ1Þ
ξ ηðξÞ

q dξ

1
CA: ð32Þ

The binding energy is the difference between the energy of
the particles scattered to infinity and the total energy of the
system [36]:

EB ¼ E0g − E; E0g ¼ 4π

Z
R

0

ϱe
λ
2r2dr; ð33Þ

which reads

EB ¼ M�q
3−n
2

0 ηðξRÞ
�
ugðξRÞ
ηðξRÞ

− 1

�
;

ugðξÞ ¼
Z

ξ

0

ξ2θnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2q0ðnþ1Þ

ξ ηðξÞ
q dξ: ð34Þ
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IV. ANALYTICAL SOLUTIONS AND NUMERICAL
RESULTS FOR INCOMPRESSIBLE

ANISOTROPIC FLUID STARS

In order to solve the generalized Lane-Emden Eqs. (23),
(24) for the functions θ, η with the boundary conditions
(25), (26), one needs to specify the anisotropy parameter Δ.
This can be done within the given model framework with
the concrete physical mechanism responsible for the
appearance of the local pressure anisotropy. The other
approach to study the effects of the pressure anisotropy is to
set the anisotropy parameter Δ in a phenomenological way,
with the use of some phenomenological ansatz for the
anisotropy parameter. This approach allows us to study the
general properties of spherically symmetric relativistic
anisotropic stars and will be followed in the given research.
The conclusions obtained within this approach are rather of
a general character and independent of the details of a
specific physical mechanism.
In fact, we will follow the point of view, suggested in

Refs. [5,48], which consists in setting some additional
differential relation between the unknown functions.
Namely, we will suppose that the presence of the anisotropy
parameter Δ does not change the general form of Lane-
Emden equations for relativistic isotropic stars [37], but can
only change the coefficients in these equations.
Specifically, we will assume that the parameter Δ and
the metric function ν are related by the differential equation

−
4Δdr
ϱ0rθn

þ ð1þ ðnþ 1Þq0θÞdν ¼ ð1þ βq0θÞdν; ð35Þ

where β is some real constant. Substituting Eq. (35) into
Eq. (17) and integrating it, one can obtain the metric
function νðrÞ in the form

νðrÞ ¼ ln
1 − 2GM

R

ð1þ βq0θÞ
2ðnþ1Þ

β

: ð36Þ

Using Eqs. (8) and (36), and introducing the same
dimensionless variable ξ and dimensionless function η as
in Eq. (22), we have the modified Lane-Emden equations,
corresponding to the ansatz (35), in the form

ξ − 2ðnþ 1Þq0η
1þ βq0θ

ξ
dθ
dξ

þ ηþ q0ξ3θnþ1 ¼ 0; ð37Þ

dη
dξ

¼ ξ2θnð1þ nq0θÞ; ð38Þ

with the same boundary conditions (25) and (26). One
can see that the obtained Lane-Emden equations for-
mally look as in the isotropic case [37], but with the
difference that the impact of the anisotropy para-
meter is reflected in the coefficient β [substituting the
multiplier (nþ 1)].

In the general case, the Lane-Emden Eqs. (37) and (38)
can be integrated only numerically, but the analytical
solutions can be found for incompressible anisotropic fluid
stars, characterized by the constant density ϱ ¼ const. At
n ¼ 0, the function ηðξÞ, with account of the boundary
condition ηð0Þ ¼ 0, is given by

ηðξÞ ¼ ξ3

3
: ð39Þ

The solution for the function θðξÞ reads

1þ 3q0θ
1þ βq0θ

¼ � 1þ 3q0
1þ βq0

�
1 −

2q0
3

ξ2
�3−β

4

: ð40Þ

In the last equation, only the branch corresponding to the
upper plus sign satisfies the boundary conditions (25), and
the respective solution is given by

θðξÞ ¼ 1

q0

ð1þ 3q0Þð1 − 2q0
3
ξ2Þ3−β4 − ð1þ βq0Þ

3ð1þ βq0Þ − βð1þ 3q0Þð1 − 2q0
3
ξ2Þ3−β4

: ð41Þ

The positive root of θðξÞ reads

ξR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2q0

�
1 −

�
1þ βq0
1þ 3q0

� 4
3−β
�s
: ð42Þ

It is possible to check that the subradical function is non-
negative at any β satisfying the inequality 1þ βq0 > 0.
Calculating the function ugðξÞ in Eq. (34) at n ¼ 0, the

binding energy of incompressible anisotropic fluid stars can
be written as

EB ¼M�
(
−
3

4
ξR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0

�
1−

2q0
3

ξ2R

�s

þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffi�
3

2

�
3

s
arcsin

� ffiffiffiffiffiffiffi
2q0
3

r
ξR

�
−
1

3
ð ffiffiffiffiffi

q0
p

ξRÞ3
)
: ð43Þ

It can be verified that at n ¼ 0 the gravitational potential
energy is just Ω ¼ −EB.
Using the obtained analytical results for incompressible

anisotropic fluid stars, we can also represent the basic
quantities of interest in a graphical form. From Eq. (35),
one can find the anisotropy parameter Δ at n ¼ 0 in terms
of the dimensionless variable ξ:

ΔðξÞ ¼ pr0ξ

4
ð1 − βÞθðξÞ ∂ν∂ξ : ð44Þ

The radial pressure pr, in turn, is determined from Eq. (15).
Figure 1 shows the ratios ΔðξÞ=pr0, prðξÞ=pr0, and
ptðξÞ=pr0 at some fixed values of the parameter q0 ¼ pr0

ϱ0
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and parameter β, characterizing the impact of the pressure
anisotropy. The important peculiarity of our model ansatz
(35) is that the anisotropy parameter Δ vanishes both in the
center and at the surface of a star. At β < 1, Δ is positive,
and at β > 1, the opposite is true. The absolute value of Δ
increases with q0.
The radial pressure pr gradually decreases from its

maximum value pr0 in the center till it vanishes at the
surface of a star. Also, pr decreases with both increasing β
and increasing q0. Qualitatively the same behavior is
demonstrated by the transverse pressure pt. The important
feature of the model ansatz (35) is that not only pr, but also
pt is positive in the interior of a star and vanishes at its

surface. The positiveness of the radial pr and transverse pt
pressures in the interior of a star guarantees its mechanical
stability. If some of these pressures becomes negative, like
the radial pressure pr in ultrastrong magnetic fields, this
leads to the appearance of the corresponding instability; in
the case of strong magnetic fields, this is the longitudinal
instability developed along the magnetic field direction
[22–24,26,27,28,29]. Vanishing of the transverse pressure
pt at the surface of anisotropic fluid stars is also important
for their stability [24,25,30,31], although in some studies
this is not a required feature [1,11,12].
Figure 2 shows the dimensionless mass M=M� and

dimensionless binding energy EB=M� for incompressible

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. The anisotropy parameter Δ (upper row), radial pressure pr (middle row), and transverse pressure pt (bottom row) at n ¼ 0,
normalized to the central radial pressure pr0, as functions of the dimensionless variable ξ for a set of fixed values of β and q0.
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anisotropic fluid stars, determined according to Eqs. (27) and
(43), respectively, as functions of the parameter q0 for the set
of fixed values of the parameter β. It is seen that both
quantities first rapidly increase with q0 and then gradually
approach their asymptotic values, dependent on the given
value of β. The mass of a star decreases with increasing the
parameter β at the given q0, and, hence, the pressure
anisotropy with β < 1 (pt > pr) leads to the increase of
the mass of a star compared to that in the isotropic case. The
binding energy stays always positive, as required by the
stability of a star (although not all stars with EB > 0 are
stable, aswill be shown in the next section). Thegravitational
potential energy at n ¼ 0 differs only by sign from the
binding energy, Ω=M� ¼ −EB=M�, and is always negative.
Figure 3 shows the mass-radius relation at n ¼ 0 for two

values of the central mass density, ϱ0 ¼ 1018 kg=m3 and
ϱ0 ¼ 2 × 1018 kg=m3, obtained by varying the parameter q0
at fixed values of the parameter β. For the specific central

mass density, themasses and radii, corresponding to different
fixed q0 and β, are different. Nevertheless, when q0 varies at
the given β, the current point moves along almost the same
curve for this specific central density independently of β, the
difference being only in the limiting masses for different β.
Note that the maximummass for incompressible anisotropic
fluid stars with a polytropic EoS cannot be reached at finite
q0, but only asymptotically at q0 → ∞. This is in contrast to
the common behavior when a mass-radius curve reaches a
maximum value and then decreases (cf. the mass-radius
curves, for example, in Refs. [49,50] for strange quark stars).
This result does not rely on any numerical procedure. It is just
a reflection in the graphical form of the mass-radius relation,
given byEq. (27), with the analytically found solutions of the
modified Lane-EmdenEqs. (37) and (38) atn ¼ 0, where the
quantities ηðξÞ, ξR are given by Eqs. (39) and (42).
The recent discovery of two heavy neutron stars PSR

J1614-2230 [51] and PSR J0348þ 0432 [52] with the
masses M ∼ 2 M⊙ (M⊙ ≈ 1.989 × 1030 kg being the solar
mass) set the corresponding constraint, to which any
reasonable EoS should satisfy. It is seen from Fig. 3 that,
despite its simplicity, the polytropic EoS for incompressible
anisotropic fluid stars can fulfill this constraint even with-
out reaching the maximum masses.

V. DYNAMICAL STABILITY OF
INCOMPRESSIBLE ANISOTROPIC FLUID STARS

Let us consider the stability of spherically symmetric
anisotropic stars with respect to radial oscillations, assum-
ing that they do not violate the spherical symmetry. In the
spherically symmetric case, allowing for the motions in the
radial direction, Einstein Eqs. (3) read

e−λ
�
λ0

r
−

1

r2

�
þ 1

r2
¼ 8πGT0

0; ð45Þ

−e−λ
�
ν0

r
þ 1

r2

�
þ 1

r2
¼ 8πGT1

1; ð46Þ

FIG. 2. The dimensionless mass M=M� and dimensionless binding energy EB=M� at n ¼ 0 as functions of the parameter q0 for the
same set of fixed values of the parameter β as in Fig. 1.

FIG. 3. The mass-radius relation at n ¼ 0 for two values of the
centralmass density, ϱ0 ¼ 1018 kg=m3 and ϱ0 ¼ 2 × 1018 kg=m3,
with the variable parameter q0 and fixed values of the parameter β:
β ¼ 0.5 (black curves), β ¼ 2 (blue curves), and β ¼ 4 (green
curves). The limiting masses for each configuration are shown by
full dots.
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−
1

2
e−λ

�
ν00 −

1

2
ν0λ0 þ 1

2
ν02 þ ν0 − λ0

r

�

þ 1

2
e−ν

�̈
λþ _λð_λ − _νÞ

�
¼ 8πGT2

2 ¼ 8πGT3
3; ð47Þ

−
e−λ

r
_λ ¼ 8πGT1

0; ð48Þ

where a dot means differentiation with respect to t. The
radial component of the equation Tk

i;k ¼ 0, expressing the
vanishing of the divergence of the energy-momentum
tensor, can be written as

_T0
1 þ T1

1
0 þ 1

2
T0
1ð_νþ _λÞ þ ν0

2
ðT1

1 − T0
0Þ þ

2

r
ðT1

1 − T2
2Þ ¼ 0:

ð49Þ

The energy-momentum tensor for a spherically sym-
metric anisotropic star reads

Tk
i ¼ ðεþ ptÞuiuk − ptδ

k
i þ ðpr − ptÞsisk; ð50Þ

where ui ¼ dxi
ds is the fluid four-velocity and si is the unit

spacelike vector with the properties

siui ¼ 0; sisi ¼ −1: ð51Þ

For the motions in the radial direction, the four-vectors ui

and si have the structure

ui ¼
�

e−
ν
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2eλ−ν
p ;

ve−
ν
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2eλ−ν
p ; 0; 0

�
; ð52Þ

si ¼
�

ve
λ
2
−νffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2eλ−ν
p ;

e−
λ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2eλ−ν
p ; 0; 0

�
; ð53Þ

where v ¼ dr
dt is the velocity in the radial direction. In the

static limit, Eq. (50) for the energy-momentum tensor goes
over to Eq. (2).
Further we will study the small radial oscillations and

will represent the unknown quantities as

ε ¼ ε0 þ δε; pr ¼ p0
r þ δpr; pt ¼ p0

t þ δpt;

ð54Þ

ν ¼ ν0 þ δν; λ ¼ λ0 þ δλ; ð55Þ

where δε, δpr, δpt, δν, δλ are small perturbations with
respect to the corresponding values at the state of hydro-
static equilibrium, denoted by the upper index 0. Also, for
the small radial oscillations we will consider that v ≪ 1. In
the linear approximation on the small perturbations, for the

nonzero components of the energy-momentum tensor we
have

T0
0 ¼ ε; T1

1 ¼ −pr; T2
2 ¼ T3

3 ¼ −pt;

T1
0 ¼ ðε0 þ p0

rÞv; T0
1 ¼ −eλ0−ν0T1

0; ð56Þ
where the quantities ε, pr, and pt are given by Eq. (54).
Given Eq. (56), Eqs. (45) and (46) can be written in the
linearized form

∂
∂r ðre

−λ0δλÞ ¼ 8πGr2δε; ð57Þ

1

r
e−λ

0ðδν0 − ν00δλÞ ¼ 1

r2
e−λ

0

δλþ 8πGδpr: ð58Þ

The linearized form of Eq. (48) is

−
e−λ

0

r
_δλ ¼ 8πGðε0 þ p0

rÞv: ð59Þ

In the linear approximation, Eq. (49) reads

−eλ
0−ν0ðε0þp0

rÞ _v−δp0
r−

1

2
ðε0þp0

rÞδν0−
1

2
ðδεþδprÞν00

þ2

r
ð−δprþδptÞ¼ 0: ð60Þ

Following Ref. [47], it is convenient to introduce a
“Lagrange displacement” ψ by the equation v ¼ _ψ .
Then integration of Eq. (59) gives

1

r
e−λ0δλ ¼ −8πGðε0 þ p0

rÞψ : ð61Þ

Note that in the state of hydrostatic equilibrium, as a
consequence of Eqs. (4) and (5), the following relationship
holds true:

1

r
e−λ0ðν00 þ λ00Þ ¼ 8πGðε0 þ p0

rÞ: ð62Þ

With account of the last equation, Eq. (61) becomes

δλ ¼ −ψðν00 þ λ00Þ: ð63Þ
Taking into account Eq. (61), Eq. (57) reads

δε ¼ −ψε00 − ψp00
r − ðε0 þ p0

rÞ
1

r2
∂
∂r ðr

2ψÞ: ð64Þ

In view of the condition of hydrostatic equilibrium (7), the
last equation can be written as

δε¼−ψε00− ðε0þp0
rÞ
e
ν0

2

r2
∂
∂rðr

2e
−ν0
2 ψÞ−2ψ

r
ðp0

t −p0
rÞ:

ð65Þ
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Next, considering Eq. (58), given Eqs. (61) and (62), we get

ðε0 þ p0
rÞδν0 ¼

�
δpr − ðε0 þ p0

rÞ
�
ν00 þ 1

r

�
ψ

�
ðν00 þ λ00Þ:

ð66Þ

Now let us assume that all perturbations contain the
dependence on time only through the exponential factor
eiωt, where ω is the frequency of radial oscillations. Then,
taking Eq. (66) into account, Eq. (60) can be written as

ω2eλ
0−ν0ðε0 þ p0

rÞψ ¼ δp0
r þ

�
ν00 þ λ00

2

�
δpr

þ ν00

2
δε −

1

2
ðε0 þ p0

rÞ
�
ν00 þ 1

r

�

× ðν00 þ λ00Þψ þ 2

r
ðδpr − δptÞ;

ð67Þ

where all variations now stand for the amplitudes of the
corresponding quantities with the time dependence given
by the exponent eiωt. Note that the variation δε is expressed
through the Lagrange displacement ψ by Eq. (64). In order
to relate the perturbation of the radial pressure δpr to ψ , we
will assume, following Ref. [47], the conservation of the
total baryon number. The corresponding continuity equa-
tion in general relativity reads

∂
∂xk ðnbu

kÞ þ nbuk
∂ ln ffiffiffiffiffiffi−gp

∂xk ¼ 0; ð68Þ

where nb is the baryon number density, g is the deter-
minant of the metric tensor, g≡ det jjgikjj ¼
− expðνþ λÞr4 sin2 θ. Taking into account Eq. (52), the
last equation in the linear approximation on the small
perturbations takes the form

e−
ν0

2 _δnb þ
1

r2
∂
∂r

�
n0be

−ν0

2 vr2
�
þ 1

2
n0be

−ν0

2 _δλ

þ 1

2
n0be

−ν0

2 vðν00 þ λ00Þ ¼ 0; ð69Þ

where n0bðrÞ is the baryon number density in the state of
hydrostatic equilibrium. Since v ¼ _ψ , this equation can be
integrated and one gets

δnb þ
e
ν0

2

r2
∂
∂r ðn

0
be

−ν0

2 r2ψÞ þ 1

2
n0bðδλþ ψðν00 þ λ00ÞÞ ¼ 0:

ð70Þ
In view of Eq. (63), the last term in Eq. (70) vanishes and
one obtains

δnb ¼ −
e
ν0

2

r2
∂
∂r ðn

0
be

−ν0

2 r2ψÞ: ð71Þ
Let the EoS of the system have the following general
structure: nb ¼ nbðε; prÞ. Then it follows from Eqs. (65)
and (71) that in the linear approximation

δpr ¼ −p00
r ψ − γp0

r
e
ν0

2

r2
∂
∂r ðe

−ν0

2 r2ψÞ − 2

r
∂pr

∂ε ðp0
t − p0

rÞψ ;
ð72Þ

where the adiabatic coefficient γ is determined by

γ ¼ 1

pr
∂nb∂pr

�
nb − ðεþ prÞ

∂nb
∂ε

�
ð73Þ

and, analogously to Ref. [47], is considered to be a constant
for the matter inside a star. For the polytropic EoS (14),
∂pr∂ε ¼ γ − 1. Substituting expressions (65) and (72) for δε
and δpr into Eq. (67), and using the field Eq. (6) and
equation of hydrostatic equilibrium (7), in the case of a
polytropic EoS, one gets

ω2eλ
0−ν0ðε0 þ p0

rÞψ ¼ 2ψ

r
p00
r −

2ψ

r

�
γ

�
ν00 þ λ00

2
þ 2

r

�
þ 2

r

�
ðp0

t − p0
rÞ

þ 8πGeλ
0

p0
t ðε0 þ p0

rÞψ − γ
d
dr

�
2

r
ðp0

t − p0
rÞψ

�
−

ψ

ε0 þ p0
r

�
p00
r −

2

r
ðp0

t − p0
rÞ
�

2

− γe−ðν0þλ0

2
Þ d
dr

�
e
3ν0þλ0

2
p0
r

r2
d
dr

ðr2e−ν0

2 ψÞ
�
−
2

r

�
γp0

r
e
ν0

2

r2
d
dr

ðr2e−ν0

2 ψÞ þ δpt

�
: ð74Þ

Solutions of Eq. (74) for the frequencies of radial oscillations should be sought under the boundary conditions

ψðr ¼ 0Þ ¼ 0; δprðr ¼ RÞ ¼ 0: ð75Þ

In order to get the variational basis for finding the frequencies ω, let us multiply both parts of Eq. (74) on r2ψ expðν0þλ0

2
Þ and

integrate over the range of r. We will write the corresponding equation already for incompressible fluid stars (n ¼ 0), when
the polytropic exponent γ → ∞. Omitting the upper indices zero as no longer necessary, one gets
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ω2

Z
R

0

e
3λ−ν
2 ðεþ prÞr2ψ2dr ¼ γ

Z
R

0

e
λþ3ν
2
pr

r2

�
d
dr

ðr2e−ν
2ψÞ

�
2

dr − γ

Z
R

0

e
λþν
2 r2ψ

d
dr

�
2

r
ðpt − prÞψ

�
dr

− 2γ

Z
R

0

e
λþν
2 rψ2

�
ν0 þ λ0

2
þ 2

r

�
ðpt − prÞ − 2γ

Z
R

0

e
λ
2
þνψ

pr

r
d
dr

ðr2e−ν
2ψÞdr: ð76Þ

In the variational Eq. (76), the Lagrange displacement ψ
should be chosen such that ω2 is minimized. If all
frequencies of radial oscillations are real, a spherically
symmetric anisotropic star is dynamically stable; if some
frequency appears to be imaginary, the configuration is
unstable. A sufficient condition for the occurrence of the
dynamical instability is vanishing of the right-hand side of
Eq. (76) for some trial form of the Lagrange displacement
ψ satisfying the boundary conditions.
Let us introduce, following Ref. [37], the auxiliary

function χ ¼ e−
ν
2ψ . After changing the integration variable

in Eq. (76) according to Eq. (22), substituting pr ¼ q0ϱ0θ
and ε ¼ ϱ0, and using Eq. (44) for the anisotropy parameter
Δ ¼ pt − pr and expressions for the metric functions at
n ¼ 0

e−λ¼ 1−
2q0ηðξÞ

ξ
¼ 1−

2q0ξ2

3
; eν¼ 1− 2GM

R

ð1þβq0θÞ
2
β

; ð77Þ

Eq. (76) takes the form

ω2

ω2
0

1

1− 2GM
R

Z
ξR

0

ð1þq0θÞξ2χ2
ð1− 2q0ξ

2

3
Þ32

dξ

ð1þβq0θÞ
1
β

¼ γ

Z
ξR

0

θð ddξðξ2χÞÞ2
ξ2ð1− 2q0ξ2

3
Þ12

dξ

ð1þβq0θÞ
3
β

−
γð1−βÞ

2

Z
ξR

0

ξ2χ

ð1− 2q0ξ2

3
Þ12

d
dξ

�
ν0χθ

ð1þβq0θÞ
1
β

�
dξ

ð1þβq0θÞ
2
β

−
γð1−βÞ

2

Z
ξR

0

ξ2χ2ν0θðν0 þ λ0
2
þ 2

ξÞ
ð1− 2q0ξ2

3
Þ12

dξ

ð1þβq0θÞ
3
β

−2γ

Z
ξR

0

χθ d
dξðξ2χÞ

ξð1− 2q0ξ2

3
Þ12

dξ

ð1þβq0θÞ
3
β

; ð78Þ

where ω2
0 ¼ 4πϱ0G. Let us use the trial functions of the

form

χ1 ¼ e−
ν
2ξ; χ2 ¼

ffiffiffi
ξ

p
: ð79Þ

Then for each given β we will try to find q0c such that the
right-hand side of Eq. (78) vanishes, and, hence, the
dynamical instability for an incompressible anisotropic
fluid star occurs at q0 > q0c.
The results of these calculations are presented in Table I.

The most important conclusion is that there are solutions
for q0c in the case of the trial function χ1 at β < 1, i.e., for
Δ ¼ pt − pr > 0 (and there are no solutions at β > 1). This
means that the local pressure anisotropy with pt > pr can
affect the dynamical stability of spherically symmetric
incompressible fluid stars, the result which is in contrast
to the conclusion for incompressible isotropic fluid stars
with the polytropic EoS (13) in Ref. [37], which are stable
against radial oscillations.
It is seen also that the choice of the trial function does

matter: the use of χ1 allows us to find the critical value q0c
for β < 1 while the right-hand side of Eq. (78) does not
vanish for the trial function χ2 at any β. Figure 4 shows the
behavior of these trial functions at β ¼ 0.5, q0 ¼ 3. While
the derivative χ02ðξÞ is always positive, the derivative χ01ðξÞ
changes sign in the interval ½0; ξR�, and, hence, the sub-
integral functions containing χ0ðξÞ contribute qualitatively
differently to the respective integrals for χ1ðξÞ and χ2ðξÞ.
If dynamical instability occurs at β < 1, the question

naturally arises: is the mass of an incompressible aniso-
tropic fluid star still compatible with the two-solar-mass
constraint at the moment of the appearance of dynamical
instability at the critical value q0c? Table II shows the
values of the mass of an incompressible anisotropic fluid

TABLE I. The critical values of the parameter q0 for the
appearance of the dynamical instability of an incompressible
anisotropic fluid star at different values of the parameter β and
two types of the trial functions used in the calculations.

β

q0c evaluated with the trial function

χ1 ¼ e−
ν
2ξ χ2 ¼

ffiffiffi
ξ

p

0.1 1.391 -
0.3 1.796 -
0.5 2.526 -
0.7 4.210 -
0.9 11.646 - FIG. 4. The trial functions χ1 ¼ e−

ν
2ξ and χ2 ¼

ffiffiffi
ξ

p
at β ¼ 0.5,

q0 ¼ 3.
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star at the critical value q0c in the case of the trial function
χ1ðξÞ. It is seen that for both values of the central mass
density ϱ0, used in the calculations, the two-solar-mass
constraint is still satisfied at the moment of the appearance
of dynamical instability.
In summary we have considered, within the framework

of general relativity, spherically symmetric relativistic stars
with a polytropic equation of state which possess local
pressure anisotropy. The generalized Lane-Emden equa-
tions have been derived for the case of the arbitrary
anisotropy parameter Δ ¼ pt − pr. In this research, in
order to study the effects of the pressure anisotropy, we
follow a phenomenological approach, in which the
anisotropy parameter is set with the help of some phe-
nomenological ansatz. The conclusions obtained within
this approach are of a rather general character and inde-
pendent of the details of a specific physical mechanism.
Specifically, the generalized Lane-Emden equations are
applied to the special ansatz (35) for the anisotropy
parameter Δ in the form of the differential relation between
Δ and the metric function ν. The analytical solutions of the
obtained equations have been found for incompressible
fluid stars and then used to obtain their mass-radius
relation, gravitational energy, and binding energy. It has

been clarified that the pressure anisotropy with pt > pr
leads to an increase of the mass of a star compared to
that in the isotropic case, and this factor can be helpful
in explaining the observational data of heavy compact
stars with the mass M ∼ 2 M⊙. Also, following the
Chandrasekhar variational approach [47], the dynamical
stability of incompressible anisotropic fluid stars with a
polytropic EoS against radial oscillations has been
studied. It has been shown that local pressure anisotropy
with pt > pr can make the incompressible fluid stars
unstable with respect to radial oscillations, in contrast to
incompressible isotropic fluid stars with a polytropic
EoS which are dynamically stable [37]. As shown in the
model calculations of the given work, if dynamical
instability occurs, the mass of an incompressible aniso-
tropic fluid star at the moment of the appearance of
instability is still compatible with the two-solar-mass
constraint.
Note that in the interior of magnetars—strongly mag-

netized neutron or quark stars—magnetic fields of about
1018 G, or even larger, can potentially occur. Such strong
magnetic fields can produce substantial pressure anisotropy
with pt > pr [22–34], and, hence, can cause the dynamical
instability of a magnetized stellar object.
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