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In hierarchical searches for continuous gravitational waves, clustering of candidates is an important post-
processing step because it reduces the number of noise candidates that are followed up at successive stages
[J. Aasi et al., Phys. Rev. Lett. 88, 102002 (2013); B. Behnke, M. A. Papa, and R. Prix, Phys. Rev. D 91,
064007 (2015); M. A. Papa et al., Phys. Rev. D 94, 122006 (2016)]. Previous clustering procedures
bundled together nearby candidates ascribing them to the same root cause (be it a signal or a disturbance),
based on a predefined cluster volume. In this paper, we present a procedure that adapts the cluster volume to
the data itself and checks for consistency of such volume with what is expected from a signal. This
significantly improves the noise rejection capabilities at fixed detection threshold, and at fixed computing
resources for the follow-up stages, this results in an overall more sensitive search. This new procedure was
employed in the first Einstein@Home search on data from the first science run of the advanced LIGO
detectors (O1) [LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1707.02669 [Phys. Rev. D
(to be published)]].

DOI: 10.1103/PhysRevD.96.082003

I. INTRODUCTION

In searches for continuous gravitational wave (CW)
signals (e.g. [1–9]), like in many other gravitational wave
searches, the detection statistic can be triggered both by
signals and by noise disturbances. Furthermore, when the
signal or disturbance is strong, it typically does not trigger
only a single templatewaveform but alsomany nearby ones.
“Clustering” is the procedure through which we assess

elevated detection statistic template points close enough to
each other in parameter space that might arise from the
same root cause, i.e. signal or noise disturbance. The reason
for doing this is that the clustering properties help dis-
criminate candidates due to signals from the candidates due
to disturbances, and in certain cases (e.g. loud disturb-
ances), bundle together large numbers of candidates
together which one does not need to assess separately.
In case of hierarchical subthreshold searches (e.g. [7,10]),
clustering is performed on the candidates from the first
stage. This significantly reduces the number of candidates
for subsequent follow-up at fixed threshold on the detection
statistic. Hence, at fixed computing budget for the follow-
up stages, clustering allows us to lower the threshold and
increase the sensitivity of the search.
In previous searches using a clustering procedure, the

cluster volumewas constant, based on the average clustering

properties of signals [7,10]. In this paper, we present a
clusteringmethod that is adaptive, i.e. it adapts the clustering
size in each dimension to the local distribution of candidates
in parameter space, and then it requires consistency in
clustering among the different dimensions. We have named
it AdCl procedure (Adaptive Clustering Procedure).
As the name suggests, the AdCl procedure adapts its

parameters to the data. If the data were pure Gaussian noise,
all this sophistication would not be necessary. Hence, in
order to illustrate the AdCl under realistic and relevant
conditions, throughout this paper we use small (50 mHz)
frequency-domain snippets of data from the first Advanced
LIGO observing run (O1).
The paper is organized as follows. In Sec. II, we introduce

the fundamental idea behind the adaptive clustering pro-
cedure; in Sec. III, we detail how it functions and introduce
the various parameters that characterize it. In section IV, we
present and compare the performance of this procedure
against the clustering procedure used in previous searches.
The last section summarizes themain findings and discusses
prospects.

II. CLUSTERING OF CANDIDATES

A typical all-sky CW search covers the entire sky, a large
frequency range and a certain range of spin-down values.
In this parameter space, grids are set up and a detection
statistic is computed at each grid point.
We indicate a generic grid point with λi ≡ ðfi; ḟi; αi; δiÞ,

with i ¼ 1…N, and the detection statistic calculated at that
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grid point with Γi. Here, αi, δi are the equatorial sky
coordinates of the signal template, while fi and ḟi denote
the frequency and the first-order spin-down respectively. The
result of the search are the ensemble of κi ≡ ðλi;ΓiÞ. We
concentrate on the subset of these results that are interesting,
i.e. where the detection statistic values are elevated above
some predefined threshold (ΓL). Let’s assume that there are
M such results. We will refer to these as the candidates.
Operationally, the clustering procedure is an iterative

process and it was first introduced in [10]: we begin with
the highest detection statistic value in our results, correspond-
ing to, say, candidate κið1Þ, where “1” identifies the first

iteration of the clustering procedure (i.e. the first cluster). The
candidate κið1Þ is also called the seed for the first cluster. We
then find elevated detection statistic values “nearby” λi, and
we associate themwith κið1Þ. These set of points will form the
first cluster, and they—along with the seed κið1Þ—will be
referred to as the occupants of the cluster. We proceed to
remove these occupants associatedwith κið1Þ from the original
set of candidates. In the next iteration, we consider the
candidate with the highest detection statistic value among
the remaining candidates, now κið2Þ, i.e. the seed for the second
cluster. We again find elevated detection statistic values

FIG. 1. (Top panel) Distribution of F -statistic values (2F̄ ) in the parameter space near a fake signal in noise (from LIGO O1 data).
Note the elevated 2F̄ values in the neighborhood of the injection. The elevated 2F̄ values are clearly coincident in frequency-spindown
and the sky. The location of the injection is marked withþ. (Bottom panel) Distribution ofF -statistic values (2F̄ ) in the parameter space
in the vicinity of a typical noise disturbance in LIGO O1 data. In contrast with the top panel, the elevated 2F̄ values due to the
disturbance are not coincident between frequency-spindown and the sky.
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nearby κið2Þ and associate them with it. The occupants of the
second cluster are again removed from the set of remaining
candidates. This process is repeated with κið3Þ, κið4Þ, κið5Þ and
so on. The process ends when we have no more seeds left
above a certain predefined detection statistic threshold (ΓS).
The core of the AdCl procedure procedure lies in

identifying an overdensity of candidates in frequency and
spin-down around each seed, in determining its extension,
and in checking whether that set of candidates also presents
an overdensity in sky around its seed. These features are
trademark signatures of signals (e.g. see Fig. 1 top panel), and
they are not shared by most noise fluctuations/disturbances
(e.g. see Fig. 1 bottom panel). We note that previous
clustering algorithms did not require such coincident over-
densities between frequency-spindown and the sky, and
hence, lead to a higher number of false alarms.
Furthermore, the AdCl procedure dynamically defines

the clustering neighborhood based on the data itself. In
contrast, previous procedures derived a static clustering
neighborhood around the seed based on average clustering
properties of the signals independently of the data. Thus,
the AdCl procedure enables us to bundle together any
overdensity that extends over large volumes of parameter
space as a single follow-up candidate, and hence, the
number of candidates to follow up from highly populated
parameter space regions decreases significantly.

III. THE CLUSTER SIZE

A. A measure of distance in frequency
and spin-down space (F-space)

The clustering is applied to a set of candidates χ1 whose
detection statistic value is above a certain threshold ΓL; Let
us assume that there are M such candidates:

χ1 ≔ fκlgjΓl ≥ ΓL; ð1Þ

where 1 ≤ l ≤ M.
In general, at each iteration i, the clustering procedure

defines a new cluster, and it does this by operating on a set
of candidates χi. We indicate the seed for the ith cluster
with κlðiÞ, with lðiÞ being the index that corresponds to the
candidate with the loudest detection statistic value among
the candidates in χi. We constrain the cluster seed to exceed
a fixed threshold ΓS, which in general is larger than ΓL. The
clustering procedure stops at iteration Nc þ 1 when there
are no more candidates with detection statistic values above
ΓS in χNcþ1, i.e. when ΓlðNcþ1Þ < ΓS.
At each iteration i, we define as Euclidean distance RF

i;k

in frequency and spin-down space (F-space) between the
cluster seed κlðiÞ and every other candidate κk in χi:

RF
i;k ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
fk − flðiÞ

δf

�
2

þ
�
ḟk − ḟlðiÞ

δḟ

�
2

s
∀ κk ∈ χi; ð2Þ

where, δf and δḟ are the frequency and spin-down grid
spacings used in the search. Note that at fixedRF

i;k, (2) is an
ellipse in F-space centered at ðflðiÞ; ḟlðiÞÞ and with axes of
half-length δf ×RF

i;k and δḟ ×RF
i;k.

B. Distribution of distances in F-space

We define the cluster radius for the ith cluster based on
the distribution of the distancesRF

i;k in F-space. In order to
derive such a distribution, we must bin the distances RF

i;k

appropriately.
The binning in F-space naturally takes the form of

concentric elliptical annuli (fr, _fr) at distances BF
i;r from

the seed. The index r denotes the different bins. The edges

(f1, _f1) of the first bin are defined by the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
f1 − flðiÞ
BF
i;1δf

�
2

þ
�
ḟ1 − ḟlðiÞ
BF
i;1δḟ

�
2

s
¼ 1: ð3Þ

The successive bins are defined by the recursive relation

½BF
i;rþ1�2 − ½BF

i;r�2 ¼ ½BF
i;1�2 for all bins r ¼ 1; 2; 3…;

ð4Þ
which requires that the area of the annuli is constant
and equal to π½BF

i;1�2 (see Fig. 2). Note that each annulus
encloses an equal number of parameter space points. The
relation (4) can be explicitly solved to yield

FIG. 2. Example of annular binning in F-space, defined
by (3)–(5). The values of the parameters are δf¼8.3×10−7Hz,
δḟ ¼ 1.3 × 10−13 Hz=s. An ad hoc value for BF

i;1 of 1.2 × 103

(NF ¼ 50) is taken. The area within each annuli is constant, hence
the annuli get thinner with distance from the center. Note that the
figure shows only the first 5 annuli for clarity; in total, there are
N2

F ¼ 2500 such annuli.
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BF
i;r ¼

ffiffiffi
r

p
BF
i;1 for all bins r ¼ 1; 2; 3…: ð5Þ

The value of BF
i;1 is chosen as

BF
i;1 ¼

1

NF
RF

i;max with RF
i;max ¼max

k
fRF

i;kg: ð6Þ

Comparing (6) with (5) and setting RF
i;max ¼ BF

i;r, we find
that N2

F is equal to the total number of r bins. NF is
determined as follows: the candidate count nFi;r in the
various r bins is determined for a test value of NF, say
NFt. If the condition,

nFi;1ðNFtÞ ≥ CFhnFi;rðNFtÞi where r¼ 1;2;3…; ð7Þ

is not satisfied, we iteratively decrease NFt by one
(NFt → NFt − 1) until (7) is verified, and set NF ¼ NFt.
In (7), the angled brackets indicate the average over the r
bins, and CF > 1. Note that NFt should be large enough
such that BF

i;1 is comparable with the signal containment
region in F-space [7]. Further, CF encodes the overdensity
requirement, and for low amplitude signals, this require-
ment is very lax: CF ≳ 1, which means that the procedure
picks the finest binning for which we at least do not have an
underdensity around the seed.
We note that in a subthreshold search, the clustering

procedures are in principle sensitive to the parameter ΓL:
the overdensities of signal candidates due to a weak signal
will only be observable down to certain detection statistic
values, below which the density of noise candidates will be
high enough that the overdensity due to the signal candi-
dates will not be appreciable. The threshold ΓL could, in
principle, be optimally placed at the level just above when
this effect begins to take place. However, this is difficult to
determine. By setting CF ≳ 1, we appreciate the smallest
overdensity possible, and hence, ease the dependency of
the procedure on ΓL.
If for some ith clusters, no resolution (no NF value) can

be found that meets the requirement of (7), then only the
seed κlðiÞ is removed from χi and the resulting set of
candidates defines χiþ1. The ith cluster, ϕi, is classified as a
single-occupant cluster.
In Fig. 3, we compare the distribution ofRF

i;k values from
searches run on noise data (blue curve), and on noise data
plus a CW signal (red curve). The red distribution presents
a clear maximum near the seed κlðiÞ, i.e. there is an evident
overdensity of candidates near the seed. We want to
estimate the extent of this overdensity, and cluster the
candidates that form this overdensity together.

C. Cluster size in F-space

For every ith cluster, we use the distribution of distances
RF

i;k in order to determine the cluster radius in F-space: the

cluster radiusRF�
i is the value of the distance defined in (2)

at which we have the first local minimum of nFi;r. Since the
RF

i;k histogram has typically many fluctuations, in order to
estimate more accurately the position of the first minimum
of the underlying distribution, we determine its shape with
a fitting procedure which smooths out the random
fluctuations.
We fit the data nFi;r in two stages. In the first stage, the

data is separately fitted with two functions G (a super-
position of Gaussians) and S (a superposition of sinusoids):

GðxÞ ¼
Xm1

l¼1

GlðxÞ; SðxÞ ¼
Xm2

l¼1

SlðxÞ: ð8Þ

This step is implemented using a compiled MATLAB

executable (using the package fit), which provides support
for m1;m2 ∈ ½1; 8�. For each fit, we choose the highest
value of m1 and m2 that is able to fit the data within the
standard tolerances defined by the program. The fitted
curves G and S are summed and renormalized, and the
output is then fit again with a Gaussian function, yielding
gFi . This second fit smooths out the small scale fluctuations
and leaves us with a clear view of the overdensities in
F-space.
Finally, we can identify the local minimum of gFi closest

to the origin and take that as the radius RF�
i in F-space of

the ith cluster. In Fig. 4, we show an example of the fitting
procedure on purely noise data (top panel) and in data
containing a fake signal (bottom panel).

D. Hill parameters in F-space and further constraints

The distribution of candidates in parameter space is very
diverse, depending on the nature of the noise in the data.
Because of this, even an adaptive procedure, such as the one
described above, may still generate clusters that spuriously
assemble together candidates that are actually independent.

FIG. 3. Distribution of RF
i;k for a noise-only data set (red) and

for a data set also containing a fake signal (blue). Note the
flatness of the distribution for data without any signal. The grid
spacing BF

i;1 in F-space is defined by NF ¼ 50.
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In order to counter this, instead of setting more stringent
criteria, for example a higher threshold CF, it is more
effective to produce a first estimate of the cluster based
on liberal parameters, and then scrutinize its topological
properties in detail, and further accept, discard or modify the
cluster based on these. The topological properties that we
consider for a cluster i are the so-called “hill parameters”1

prominence Pi, dominance Di, and goodness Gi:

Pi ≔
RF�

i

maxkfRF
i;kg

; ð9Þ

Di ≔
gFi ðBF

i;1Þ − gFi ðRF�
i Þ

gFi ðBF
i;1Þ

; ð10Þ

Gi ≔
jnFi;1 − gFi ðBF

i;1Þj
nFi;1 þ gFi ðBF

i;1Þ
: ð11Þ

The cluster candidates from the set χi are further inspected to
check if

Pi ≤ Pth; Di ≥ Dth; Gi ≤ Gth: ð12Þ

These thresholds (Pth, Dth, Gth) on the hill parameters
restrict the topology of clusters: Pth restricts the fraction of
the available parameter space that the cluster occupies; Dth
bounds the contrast between the density of candidates near
the seed and at the cluster edge; Gth specifies the minimum
agreement between the fitted curve and the observed density
near the seed. The nature and the values of the constraints in
(12) are such that they exclude clusters that extend too far in
the F-space, and at the same time, show very little contrast
with respect to the local noise background; thus we shortlist
the kind of clusters that we typically expect from signals.
When a cluster in F-space fails to meet any of the

criteria given by (12), we shortlist candidates nFi;1 from the
distribution that fall within the first bin BF

i;1 around the seed
and discard all other candidates from the iteration. This is
equivalent to resetting RF�

i ¼ BF
i;1. This choice is justified

because the failing of the hill parameters means that
the shortlisted cluster is not topologically consistent
with what we require from a cluster of that extent.
However, the initial overdensity still remains near the seed
and it might be due to a low amplitude signal. In this regard,
we do not discard the whole cluster. On the other hand, if
the criteria in (12) are met, we shortlist all the candidates,
including the seed, that fall within our estimated cluster
radius RF�

i , and discard all other candidates outside the
cluster radius.
The candidates clustered in F-space constitute the χskyi

set and their clustering properties in the sky are considered
further.

E. A measure of distance in the sky (S-space)

We now want to determine whether the shortlisted
candidates in χskyi show any overdensity in sky around
the seed. If any overdensity is found, the candidates
constituting this overdensity will form the final ith cluster.
As in F-space, for each candidate κk ∈ χskyi , we intro-

duce a distance in the sky,RS
i;k, to the seed of the ith cluster

under consideration:

RS
i;k≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½xk−xlðiÞ�2þ½yk−ylðiÞ�2

q
∀ κk∈ χskyi : ð13Þ

This definition is justified when the search grids are
uniform on some plane (x, y), for example the ecliptic
plane (e.g. see [7]) or the equatorial plane (e.g. see [4]). The
transformation equations between the sky coordinates (α, δ)
and (x, y) for a uniform grid on ecliptic plane (λ; β) are

�
x ¼ cos λ cos β

y ¼ sin λ cos β;
ð14Þ

with

FIG. 4. Fit to the distribution of RF
i;k for a noise-only data set

(top panel) and for a data set also containing a fake signal (bottom
panel). The grid spacing BF

i;1 is defined by NF ¼ 50. We can see
that the fitting procedure contours the shape of the distribution
while ignoring small scale fluctuations, and returns a good
measure of the overdensity.

1We adopt the notion of hill parameters from the concept of
“topographic prominence” used in topography/geography, e.g.
see [11].
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�
λ ¼ tan−1½sin α cosφþtan δ sinφ

cos α �
β ¼ sin−1½sin δ cosφ − sin α cos δ sinφ�:

ð15Þ

In the expressions above, φ ¼ 23.4° is the angle of
obliquity of the ecliptic with respect to the celestial
equatorial plane.2 The ecliptic plane represents the S-space
after this transformation.

F. Distribution of distances in S-space

The binning of the RS
i;k values is performed in a similar

fashion as previously done in F-space. The edges of the
bins, labeled by r, of the ith cluster, satisfy the following
relation:

½BS
i;rþ1�2− ½BS

i;r�2¼½BS
i;1�2 for all bins r¼1;2;3…: ð16Þ

This recursive relation describes concentric circular annuli
in the ðx; yÞ plane enclosing equal areas; the annuli
naturally get thinner as we move away from the seed, as
shown in Fig. 2. The first bin is a circle and its area is
proportional to ½BS

i;1�2.
BS
i;1 is chosen based on the clustering properties of

signals. Precisely, it will depend on the 99% containment
region of the search [7]. This region defines a neighborhood
around a cluster seed originating from a signal, within
which the true signal parameters are contained with
99% confidence. If we indicate with dsky the width of
the search pixels in the ðx; yÞ plane [4,7], and with N99% the
diameter of the 99% containment region expressed in
number of pixels, then we can express Bi;1 as

BS
i;1 ≔

N99% þ NS

2
dsky; ð17Þ

where, NS is a parameter that has to be tuned as shown in
Sec. IV. Further, (17) says that the first bin in the sky, i.e.
the circle with radius BS

i;1, contains all-sky pixels within the
99% containment region, plus (or minus) a tuning term NS.
We continue binning recursively according to (16) until the
width of the bin becomes smaller than a sky-grid pixel; all
candidates lying more distant than that point are ignored.
We find that in disturbed data that contains a large

number of noise outliers, a single value of NS independent
of the loudness Γi of the cluster seed under consideration,
makes this clustering procedure very slow. The reason is
that very large values of Γi are often associated with many
candidates clustered in F-space (highly populated χFi ) that
are distributed almost isotropically in the sky. In this
situation, if the resolution in the sky (BS

i;1) is high, the
sky-clustering step eliminates one candidate at the time as a

single-occupant cluster, and this is very inefficient. The
solution is to decrease the resolution (increase BS

i;1 by
increasing NS) with Γi.
In Fig. 5, we show the renormalized distribution of RS

i;k

for a fake signal and near-Gaussian noise.

G. Cluster in S-space

In order to estimate the cluster radius in S-space, we
check for overdensities by analyzing the distribution
of RS

i;k.
If the first bin is the most highly populated (i.e.

nSi;1 ¼ maxrfnSi;rg), all the candidates contained within a
distance RS�

i are clustered together:

RS�
i ¼ min

r

�
BS
i;r∶

nSi;r − nSi;rþ1

nSi;r
> CS

�
: ð18Þ

RS�
i is the smallest distance at which we have a relative drop

in the density of candidates above a certain threshold CS. All
candidates withinRS�

i constitute, together with the seed, the
final ith cluster, ϕi. The set of candidates considered for the
next clustering iteration is χiþ1 ¼ χi − ϕi.
The value of CS is chosen based on the localization

properties of signals and leaning on the conservative side, i.e.
toward lower values of CS. For instance, in the bottom panel
of Fig. 6, we see that RS�

i ð1.2Þ>RS�
i ð0.6Þ>RS�

i ð0.3Þ.
Indeed, the lower value of CS clusters less candidates, but
the candidates excluded at this iterationwill likely form their
own separate cluster at the next iteration. If this second set of
points were due a signal, with a lower CS, they would be
associated to the correct seed.
If the first bin is not the most highly populated, the final

cluster ϕi will contain only the seed κlðiÞ. All the other
candidates remain unclustered, and available for associa-
tion with another cluster in the set χiþ1 ¼ χi − κlðiÞ.

FIG. 5. Distribution of RS
i;k values for a noise-only data set

(red) and for a data set also containing a fake signal (blue): BS
i;1

for the noise-only case is defined by NS ¼ 0, while for signal it is
set to NS ¼ 6.

2Note that in (15), λ must be translated to its correct quadrant
by adding 180° or subtracting 180°.
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This recursive procedure continues until there are no
more candidate seeds, i.e. no more candidates with detec-
tion statistic value above the threshold ΓS. In Figs. 8, 9
in the Appendix, we show a snapshot of the procedure for
the first iteration on data χ1 for a fake signal and LIGO
O1 noise.

IV. PERFORMANCE

We characterize the performance of the AdCl procedure
and compare it with the old clustering procedure, used in
[7]. We show how the tuning parameters were chosen in an
actual search [12], with parameters given in Table I.
The two clustering procedures are compared at the same

value of seed threshold ΓS, and with the other parameters
optimally tuned.

A. Clustering parameters

We will consider two different data inputs to the
clustering procedure, one suitable for a high-significance
search (loud signals), and the other for a subthreshold
search (weak signals). In the former search, the detection
statistic is 2F̄ , the corresponding ΓS and ΓL thresholds are

12.0 and 10.5 respectively, and the value of NS for the ith
cluster is

NSð2F̄ iÞ ¼
8<
:

0 if 2F̄ i < 18

2F̄ i − 18 if 18 ≤ 2F̄ i ≤ 48

18 if 2F̄ i > 48:

ð19Þ

Alternatively, for the second search, the detection statistic is
the line- and the transient line-robust statistic β̂S=GLtL

[12,13], the corresponding ΓS and ΓL thresholds are 5.5
and 4, respectively, and NS for the ith cluster is

NSðβ̂iS=GLtLÞ ¼

8>><
>>:

0 if β̂iS=GLtL < 15

β̂iS=GLtL − 15 if 15 ≤ β̂iS=GLtL ≤ 35

31 if β̂iS=GLtL > 35:

ð20Þ

This is the setup appropriate for a search like [12].
The reason why we consider searches with different

detection statistics is historical: at the time when we started
characterizing the AdCl procedure, we were planning to
use it for a high-significance search on quiet bands, as done
in [4]. In this case, the simplest detection statistic to use is
2F̄ , and all the false alarm and detection efficiency studies
were performed with this statistic. It was only later that we
realized that the quality of the data in the low-frequency
range was such that a high-significance search was not
possible: we would have many candidates above threshold,
and we would have to carry out a large scale follow-up.
Due to these complications, the use of the β̂S=GLtL was
necessary. In the absence of large disturbances, the empiri-
cal relationship between the two detection statistics is
2F̄ ≡ 0.419β̂S=GLtL þ 10.855.
The other parameters are chosen as described in the

previous sections and they are equal for both types of
searches, and their values are

FIG. 6. Clustering properties in the sky for a data set containing
a signal (lower panel) and a noise data set (upper panel). The
values of NS are 6 and 0, respectively for the lower and upper
panels. Note the variation inRS�

i for given values of CS. Note that
the first bin in the pure noise case (top panel) is not the most
highly populated, and hence failed the clustering criteria
(nSi;1 ≠ maxrfnSi;rg), irrespective of the value of CS.

TABLE I. The clustering procedure is applied to the output
from this all-sky search.

Quantity Value

Tobs 4 months
Tcoh 210 hours
Nseg 12
δf 8.3 × 10−7 Hz
δ _f 1.3 × 10−13 Hz=s
dsky (f ¼ 100 Hz) 20 arcmin
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8>><
>>:

NF ∈ ½25; 50�; CF ¼ 1.2

CS ¼ 0.25

Pth ¼ 0.25; Dth ¼ 0.05; Gth ¼ 0.1:

ð21Þ

On the other hand, the old clustering uses a fixed cluster
size corresponding to the 99% containment regions in the
various dimensions. In case of the high-threshold 2F̄
search:

2F̄ ≡

8>><
>>:

Δf ¼ 1.15 × 10−4 Hz;

Δḟ ¼ 5.6 × 10−11 Hz=s;

Δsky ¼ 6 × 6 sky-pixels;

ð22Þ

while for the subthreshold β̂S=GLtL search:

β̂S=GLtL ≡

8>><
>>:

Δf ¼ 1.85 × 10−4 Hz;

Δḟ ¼ 8.5 × 10−11 Hz=s;

Δsky ¼ 9 × 9 sky-pixels:

ð23Þ

B. Safety

Naturally, the clustering procedure needs to be safe, i.e. it
should not discard real signals. Thus, we choose the
clustering parameters to yield the lowest false alarm rate
for a very low false dismissal rate. We now show the
detection efficiencies for the clustering parameters outlined
in (19), (20), (21).
We estimate the detection efficiency by performing

Monte Carlo simulations of gravitational wave signals in
real data taken from the LIGO O1 run. By using the real
LIGO data instead of fake Gaussian noise, we derive a
realistic benchmark of the performance. In a nutshell, the
fake signals are added to the real data, the search is run, and
the clustering procedure is applied.
The population of signals have parameters reasonably

uniformly distributed in frequency, spin-down and sky
position, and with amplitudes that yield the detection
statistic values shown in Fig. 7.
The detection efficiency E is defined as the ratio of the

number of candidates from signals recovered by the
clustering procedure with the total number of signals with
detection statistic value above ΓS. For a signal to be
recovered by the clustering procedure, we require that
the signal parameters lie within the 99% containment
region of the seed parameters (we remind the reader that
the detection statistic value of the seed must also exceed
ΓS). This means that if there were a follow-up stage on the
cluster seeds, the true signal parameters would lie within
the searched region, and if there were no follow-ups, the
signal parameters would lie within the quoted parameter
uncertainties.

C. Noise rejection

We estimate the false alarm rate by applying the
clustering procedure to the same search output data as
described in the previous section, just without fake signals.
The input to the clustering procedure areN in candidates,

with detection statistic values greater than ΓS. At the output
of the clustering procedure, we have N out candidates. We
define the noise reduction factor NR as

NR ≔ 1 −
N out

N in
on noise: ð24Þ

Naturally, 0 ≤ NR ≤ 1, and higher values of NR denote
lower number of noise candidates after the clustering
procedure.

D. Results

The performance results for the AdCl and the old
clustering procedures are shown in Table II. For a high-
significance search, the detection efficiency, exceeding
95%, is high for both the procedures, but the new clustering
has a noise rejection which is significantly higher (nearly

FIG. 7. Distribution of the values of the detection statistics of
the subthreshold and high-significance signals added to the data to
characterize the performance of the clustering procedure. Note that
the high-significance signal population is not purely “high signifi-
cance”; it also contains a few signals at low values of the detection
statistic (less than 10%below 2F̄ ¼ 14.0≡ β̂S=GLtL ¼ 7.5).Mean-
while, the subthreshold search may be considered as purely
subthreshold (none above β̂S=GLtL ¼ 10.5≡ 2F̄ ¼ 15.3).
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66% versus 40%) than the one achieved by the previous
method.
In a subthreshold search, we set a low enough threshold

on the detection statistic of the seed (ΓS) such that we
expect a large number of candidates to exceed this limit,
just due to random noise. The underlying idea behind this is
that with successive follow-up stages, one is able to weed
out the noise and identify a signal that, at the first stage of
the hierarchy, was hidden by a multitude of false alarms. In
this regime, the clustering procedure operates in an envi-
ronment of the most uniformly and densely populated
candidates. The signal signature used by the clustering
procedure are local overdensities around the cluster seed,
coincident in F-space and S-space. But the cluster seed is,
at every iteration i, the loudest candidate in the set χi, and
when the signal is weak, i.e. its amplitude is comparable to
the amplitude of many of the candidates, it might not be
picked as a seed. For this reason, the detection efficiency is
lower for a subthreshold search with respect to a high-
threshold search. In order to compare the performance of
AdCl procedure with the old procedure, we fix the
detection efficiency at >95% by lowering ΓL to 3.4 for
the old procedure (keeping ΓL ¼ 4.0 for AdCl procedure).
In this case, the AdCl procedure improves the NR by 22%
over the old procedure.
The results of Table II refer to signal-frequency bands

where the data is fairly uniformly distributed in parameter
space, i.e. there are no extended regions of the parameter
space that host enhanced values of the detection statistic
values, as in the case of the top panel of Fig. 1. Moreover,
the AdCl procedure performs very well in disturbed
conditions, and this is important because the disturbed
regions typically yield a lot of spurious candidates.
In noisy regions, the new clustering procedure has a NR

of 98.9%, compared to ≤91.1% for the old procedure in a
2F̄ search. We expect similar results for noisy data in a
β̂S=GLtL search. The NR values in the disturbed bands are
higher than those in quiet bands because each cluster
comprises more candidates above ΓS in noisy bands than in
the quiet bands. This is expected merely due to higher
density of disturbances. The new clustering procedure has a
higher NR than the old method because it adapts the cluster
size to the local overdensity and can get as big (or small) as
it needs, in order to accommodate the features in the data.

A rigorous quantitative assessment of the detection
efficiency in disturbed bands is hard to make because
the results would depend not only on the location of the
fake signals in parameter space but also their numbers with
respect to the disturbances. In such scenarios, there is no
unbiased way to pick the fake signal population. However,
based on the fact that for a cluster to be identified, we only
require a seed above threshold and concurrent clustering
around that seed in both F-space and in S-space, we do not
expect the presence of more candidates due to disturbances
(which generally do not cluster in the parameter space) to
interfere too much with the identification of the signal
clusters. On the contrary, the old procedure does not require
a local overdensity around the seed and it might happen that
a signal candidate gets associated with a higher random
fluctuation; this cluster may not satisfy the overdensity
criteria in the AdCl procedure which may have led to a
wrong estimation of the follow-up region. Thus, by
requiring the seed to be centered at a local overdensity,
the new procedure avoids this type of occurrence. This
might slightly favor the detection efficiency of the AdCl
procedure with respect to the old one.

V. CONCLUSIONS

The clustering procedure that we propose in this paper is
more effective at reducing the number of candidates to be
considered in follow-up stages while achieving compa-
rable, if not better, detection efficiency with respect to the
procedure used in previous searches. Since we operate at
fixed computing budget, the number of candidates that a
given follow-up stage can search, is fixed. Hence, a higher
noise rejection means a lower detection threshold. In a
search like the Einstein@Home O1 low-frequency search
[12], the new clustering has allowed us to lower the β̂S=GLtL

threshold. In disturbed bands, the noise rejection is even
higher.
There are two main reasons for the observed improve-

ments. The first reason is that the AdCl procedure is more
demanding than the old one, i.e. a cluster has to display a
more pronounced overdensity of candidates compared to
nearby noise. The second reason is that, since the cluster
size is estimated on the data itself, the clustering algorithm
adapts itself to it and is capable of bundling together a large
number of candidates arising from extended regions of
parameter space.
Another advantage of the AdCl procedure compared to

the old one is that, by relying on local overdensities of
candidates, the false alarm rate does not increase with a
decreasing value of the threshold ΓL, which is significantly
necessary for low-significance searches.
However, the AdCl procedure may well go through

many iterations before discarding a single candidate as a
single occupancy cluster and restoring the rest of the
candidates for future consideration. This, especially in
noisy bands, can make it rather slow. The variable binning

TABLE II. Comparison of the noise rejection (NR) and the
detection efficiencies (E) of high-significance and subthreshold
searches between the new and old clustering procedures.

AdCl Procedure Old Procedure

High-significance NR 65.9% ≤ 40.0%
2F̄ search E 97.6% 95.1%
Subthreshold NR 90.5% ≤ 74.1%
β̂S=GLtL search E 95.5% > 95.0%
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in the sky depending on the seed amplitude is a way to
ease this issue, and quite certainly, further use will inspire
other ways to make the procedure faster in all noise
conditions.
Currently, the tuning parameters (NF, CF, NS, CS) and

the hill parameters (Pth, Dth, Gth) are chosen to represent
the approximate topology of the clusters that we expect
from signals. These approximate values are chosen upon
visual inspection of the fake signals injected in LIGO data
at many values of the signal amplitude h0. To improve the
estimates on these parameters, one would require us to
perform a much larger number of Monte Carlo simulations
(in λ and h0), and then estimate the cluster properties. This
remains a difficult task due to limited computational
resources and very large parameter space of the tuning
and hill parameters. The modeling of clusters arising from
non-Gaussian noise (such as instrumental artifacts) is even
more difficult, especially for unknown sources of disturb-
ances. In principle, this modeling could however help better
discern between signals and noise.
There are certainly other possible ways to perform

adaptive clustering. One of the methods is to employ
machine learning. Besides that, one could also perform
more complex parameter space correlation studies of the
detection statistic values, similar to the studies done for

cosmic microwave background surveys [14] and large scale
structure surveys [15]. However, such complex analysis
methods require much cleaner data, and they are certainly
an overkill for the current data sets.
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APPENDIX: THE FIRST CLUSTER

We now illustrate the different phases of the first iteration
of the clustering procedure on two small snippets of data
from the LIGO O1 run with and without a fake signal
(Fig. 8, Fig. 9).

FIG. 8. (Signal case) The orange points are the candidates in χsky1 ; the blue points are the subset of these that form the final cluster ϕ1.
The corresponding distributions forRF

i;k andR
S
i;k are shown in the second row of plots. The shaded regions extend up toRF�

i (left plot)

andRS�
i (right plot). The seed is marked with aþ. The numbers in the brackets by theþ denote hf; ḟ; i;Γii in F-space and hα; δ; i;Γii in

S-space, where Γ≡ 2F̄ .
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