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Assuming the existence of a local, analytic, unitary UV completion in a Poincaré invariant scalar field
theory with a mass gap, we derive an infinite number of positivity requirements using the known properties
of the amplitude at and away from the forward scattering limit. These take the form of bounds on
combinations of the pole subtracted scattering amplitude and its derivatives. In turn, these positivity
requirements act as constraints on the operator coefficients in the low energy effective theory. For certain
theories these constraints can be used to place an upper bound on the mass of the next lightest state that
must lie beyond the low energy effective theory if such a UV completion is to ever exist.
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I. INTRODUCTION

The physical requirements of unitarity, locality, and
crossing symmetry are well known to provide powerful
constraints on the scattering matrix of a Lorentz invariant
theory, and were an integral part of the S-matrix program
[1,2]. Relativistic locality and causality is encoded in the
twin requirements of analyticity of the scattering amplitude,
and polynomial boundedness. Taken together, these allow
us to express the scattering amplitude in terms of dispersion
relations with a finite number of subtractions, from which it
is possible to infer bounds on the growth of the scattering
amplitude at high energies.
It is only more recently that these constraints have been

used to infer properties of low energy effective field theories
(LEEFT) [3], with implications across all fields of physics.
LEEFTs are indeed commonly used in areas spanning from
cosmology with the effective description of inflation, large
scale structure and dark energy, to particle physics in
particular for the low-energy description of QCD as well
as for study of physics beyond the standardmodel. Assuming
the existence of a (possibly unknown) local Lorentz invariant
UV completion, one can use its properties to infer relevant
properties of the low-energy physics and infer a set of
“positivity bounds,” i.e. bounds on the sign of coefficients
in the Wilsonian effective action. For example, it is known
that for analytic 2-to-2 scattering amplitudes in the forward
scattering limit, an expansion in powers of the invariant mass
s must have positive coefficients [3]. It has also been
suggested that these can be pushed away from the forward
limit [4–8].
Exploiting unitarity, analyticity and crossing symmetry of

the full (unknown) UV complete theory, we will use the
known properties of the scattering amplitude at and away
from the forward limit to show that there are an infinite

number of such bounds on the pole subtracted scattering
amplitude Bðs; tÞ. These translate into bounds on the
coefficients of every nonredundant (not removable by a field
redefinition) operator that contributes to the 2-to-2 scattering
amplitude at tree level.We first derive theboundson the exact
quantum scattering amplitude, and then show how they may
be applied to the tree-level amplitudes in the LEEFT. In
certain cases, we will show how these constraints lead to an
upper bound of the mass of the first state that necessarily lies
beyond the regime of validity of the LEEFT.
For concreteness, we focus here on the positivity bounds

for the case of massive scalar fields, which by itself already
has implications for many fields of physics and in particular
for cosmology (see for instance [9]). We emphasize
however that these bounds apply generically to fields with
arbitrary spin, with subtleties that are described in [10,11].
Applications of these bounds to higher spin fields are
considered in [12].

II. UNITARITY

The 2-to-2 scattering amplitude is best expressed in terms
of the Mandelstam variables [13]: s, the center of mass
energy, t, the momentum transfer, related to the scattering
angle by cos θ ¼ 1þ 2t

s−4m2, and their conjugate variable
u ¼ 4m2 − s − t. In order to derive positivity bounds
on the scattering amplitude Aðs; tÞ, we make use of unitarity
in the form of the optical theorem, Im½Aðs; 0Þ� ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs − 4m2Þ

p
σðsÞ, together with its implications for the

partial wave expansion,

Aðs; tÞ ¼ 16π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

s − 4m2

r X∞
l¼0

ð2lþ 1ÞPlðcos θÞalðsÞ; ð1Þ

namely ImalðsÞ ¼ jalðsÞj2 þ � � �, where the omitted terms
are proportional to cross section contributions from inelastic
processes,which are positive.Unitarity therefore tells us that,

0 ≤ jalðsÞj2 ≤ ImalðsÞ ≤ 1; for s ≥ 4m2: ð2Þ
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Since the Legendre polynomials satisfy ∂n
t Plð1þ tÞjt¼0 ≥ 0,

it follows from (2) that,

∂n

∂tn Im½Aðs; tÞ�jt¼0 > 0 ∀ n ≥ 0 and s ≥ 4m2: ð3Þ

This is a strict positivity for all n, since equality is only
reached in the case of a free theory [14].

III. ANALYTICITY

It is usually postulated that the amplitudeAðs; tÞ is analytic
in the whole complex Mandelstam plane, except for poles
and branch cuts implied by unitarity [13] and crossing
symmetry. However, many of the consequences of
Mandelstam’s proposal can be obtained by assuming much
weaker provable analyticity conditions [15,16], which imply
that Aðs; tÞ is analytic in the disk jtj < 4m2 for fixed s and in
the twice cut plane of s for fixed t (excluding, of course, the
possible poles of s and t) [17,18]. This is consistent with the
statement that the scattering amplitude is analytic (modulo
poles) in the Mandelstam triangle, 0 ≤ s; t; u < 4m2.
In a scalar theory, we expect the amplitude to have a

simple t-channel pole at t ¼ m2, whose residue is s
independent (since it is determined by the on-shell vertex
function which for a scalar theory can contain no remaining
momentum dependence). This residue is necessarily real,
and so ImAðs; tÞ has no poles at t ¼ m2. This implies that
ImAðs; tÞ is analytic with no poles in the region jtj < 4m2.
The positivity properties (3) can therefore be continued to
finite positive t, i.e. away from the forward limit,

∂n

∂tn Im½Aðs; tÞ� > 0 ∀ s ≥ 4m2; 0 ≤ t < 4m2: ð4Þ

This is the key property which can be used to derive
positivity requirements of the low energy scattering away
from the forward scattering limit.
Furthermore, analyticity can be combined with the uni-

tarity condition (2) to derive the Froissart-Martin bound for
the behavior of the scattering amplitude at fixed t [15,16,19]

lim
s→∞

jAðs; tÞj < Cs1þϵðtÞ; 0 ≤ t < 4m2; ð5Þ

where C is constant and ϵðtÞ can depend on t. The results of
[16] imply that ϵðtÞ < 1 in the range 0 ≤ t < 4m2, which in
turn implies that the fixed t amplitude may be expressed as a
dispersion relation with only two subtractions, just as in the
forward limit t ¼ 0. This is the second key result we shall
make use of.

IV. DISPERSION RELATION

We begin with the assumption that the scattering
amplitude at fixed momentum transfer, 0 ≤ t < 4m2 (away
from the t ¼ m2 pole), is an analytic function of s, modulo
poles and branch cuts in the usual places. Then by Cauchy’s
integral formula,

Aðs; tÞ ¼ 1

2πi

I
C
ds0

Aðs0; tÞ
s0 − s

; ð6Þ

where C is a counterclockwise contour inside of which A is
analytic. One can deform C into an infinite circular contour
going around the two branch cuts plus two infinitesimal
clockwise circles around the simple poles at s0 ¼ m2 and
uðs0; tÞ ¼ m2 to obtain

Aðs; tÞ ¼ λ

m2 − s
þ λ

m2 − u
þ
Z
C�∞

ds0
Aðs0; tÞ
s0 − s

þ
Z

∞

4m2

dμ
π

�
ImAðμ; tÞ
μ − s

þ ImAðμ; tÞ
μ − u

�
; ð7Þ

where C�∞ is the semicircle with radius s0 → ∞ in the upper/
lower half plane, and we have used the Schwarz reflection
principle Aðs�; tÞ ¼ A�ðs; tÞ to relate the discontinuity
along the cuts to the imaginary part of the amplitude,
and s ↔ u crossing symmetry to infer the discontinuity on
the left hand cut. Crossing symmetry guarantees that the
pole residues Resu¼m2Aðs; tÞ ¼ −Ress¼m2Aðs; tÞ ¼ λ and
for scalar particles these residues are independent of t. The
Froissart-Martin bound (5) suggests that the contour
integrals along C�∞ are not finite in the limit s0 → ∞,
and so the standard remedy is to perform two subtractions.
In practice, this comes from the identity

ImAðμ; tÞ
μ− s

¼ ðs−μpÞ2
ðμ−μpÞ2

ImAðμ; tÞ
μ− s

þ2
ðs−μpÞ
ðμ−μpÞ2

ImAðμ; tÞþ ðμ− sÞ
ðμ−μpÞ2

ImAðμ; tÞ:

ð8Þ

The subtraction point μp is arbitrary so may be chosen for
convenience and can depend on t. By s ↔ u crossing
symmetry, the amplitude (7) may be rewritten as

Aðs; tÞ ¼ aðtÞ þ λ

m2 − s
þ λ

m2 − u

þ
Z

∞

4m2

dμ
π

�ðs − μpÞ2ImAðμ; tÞ
ðμ − μpÞ2ðμ − sÞ

þ ðu − μpÞ2ImAðμ; tÞ
ðμ − μpÞ2ðμ − uÞ

�
; ð9Þ

where aðtÞ absorbs all the remaining integral contributions
and is undetermined by analyticity. However by t ↔ s
crossing symmetry Aðs; tÞ ¼ Aðt; sÞ, we can determine aðtÞ
up to a constant. Since full crossing symmetry implies that
the amplitude must have poles in all three channels, it is
convenient to remove these and define
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Bðs; tÞ ¼ Aðs; tÞ − λ

m2 − s
−

λ

m2 − u
−

λ

m2 − t
: ð10Þ

For later convenience we choose μ̄p ¼ −t̄=2, where the
bar denotes x̄ ≔ x − 4m2=3, redefine the subtraction func-
tion bðtÞ ¼ aðtÞ − λ

m2−t, and replace s with the variable
v ¼ s̄þ t̄=2. In terms of u and v, the s ↔ u crossing
symmetry implies a v ↔ −v crossing symmetry. Since
Bðs; tÞ is crossing symmetric, it has to be given by an
analytic function of v2 in the Mandelstam triangle,
Bðs; tÞ ¼ ~Bðvðs; tÞ; tÞ where

~Bðv; tÞ ¼ bðtÞ þ
Z

∞

4m2

dμ
πðμ̄þ t̄=2Þ

2v2ImAðμ; tÞ
ðμ̄þ t̄=2Þ2 − v2

: ð11Þ

This is the final form of the dispersion relation that we shall
make use of.

V. POSITIVITY BOUNDS

For N ≥ 1, we define,

Bð2N;MÞðtÞ ¼ 1

M!
∂2N
v ∂M

t
~Bðv; tÞjv¼0; ð12Þ

which can be expressed in terms of the positive integrals,

Iðq;pÞðtÞ ¼ q!
p!

2

π

Z
∞

4m2

dμ∂p
t ImAðμ; tÞ

ðμ̄þ t̄=2Þqþ1
> 0; ð13Þ

where we have now made use of the unitarity condition (4).
Explicitly,

Bð2N;MÞðtÞ ¼
XM
k¼0

ð−1Þk
k!2k

Ið2Nþk;M−kÞ: ð14Þ

The left-hand side is a derivative of the pole subtracted
amplitude evaluated at s ∼m2, which can be computed in
the LEEFT. This known quantity is related to the integrals
Iðq;pÞ, which depend on the details of the full UV
completion, and are therefore not explicitly known—how-
ever, as we have argued, they are required to be positive by
unitarity and analyticity. The goal is now to use (14) to
translate the positivity of the integrals (13) into a bound on
the different derivatives of the low energy amplitudes.

VI. WITH NO t DERIVATIVES

With no t derivatives, this is straightforward:
Bð2N;0ÞðtÞ > 0. This is a generalization of the now familiar
constraint on the forward scattering amplitude at t ¼ 0 [3].
In particular we note that for t ¼ 0, then Bð2N;0Þð0Þ are just
the coefficients in the expansion of the following quantity

fðspÞ ¼
1

2πi

I
C0
ds0

Aðs0; 0Þ
ðs0 − spÞ3

¼ 1

2

∂2Bðs; 0Þ
∂s2

����
s¼sp

¼
X∞
N¼1

s2N−2
p

2ð2N − 2Þ!B
ð2N;0Þð0Þ > 0; ð15Þ

for 0 ≤ sp < 4m2, where the contour C0 is the same as C but
without the circles around the poles. The extension of this
bound to 0 ≤ t < 4m2 has previously been noted and used
in [4–8].

VII. FOR HIGHER t DERIVATIVES

For higher t derivatives, the Bð2N;MÞðtÞ do not immedi-
ately satisfy a positivity condition due to the alternating
sign structure ð−1Þk in (14). To deal with this, we first note
that the various integrals satisfy the inequality,

Iðq;pÞ <
q

M2
Iðq−1;pÞ; ð16Þ

where M2 is the minimum value of ðμ̄þ t̄=2Þ within the
region of integration for μ. For now we could simply set
M2 ¼ ðtþ 4m2Þ=2, but when dealing with tree-level
amplitudes we shall see later that M may take much larger
values. To see how the previous inequality can be used to
our advantage, consider a single t derivative,

Bð2N;1Þ ¼ Ið2N;1Þ −
1

2
Ið2Nþ1;0Þ > Ið2N;1Þ −

2N þ 1

2M2
Ið2N;0Þ:

Since Bð2N;0Þ ¼ Ið2N;0Þ, we can immediately infer that the
quantity Yð2N;1ÞðtÞ defined as follows

Yð2N;1Þ ¼ Bð2N;1Þ þ 2N þ 1

2M2
Bð2N;0Þ > Ið2N;1Þ > 0; ð17Þ

is manifestly positive.
Proceeding onto a second t derivative, we have,

Bð2N;2Þ ¼ Ið2N;2Þ −
1

2
Ið2Nþ1;1Þ þ 1

8
Ið2Nþ2;0Þ: ð18Þ

Since only one of the terms enters negatively it would be
possible to perform just one addition and end up with a
quantity which is manifestly positive,

Bð2N;2Þ þ 2N þ 1

2M2
Yð2N;1Þ > Ið2N;2Þ þ 1

8
Ið2Nþ2;0Þ > 0:

We can however construct a more restrictive bound by
performing a second subtraction that also removes the
integral Ið2Nþ2;0Þ ¼ Bð2ðNþ1Þ;0Þ as a result, the following
quantity is manifestly positive,
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Yð2N;2Þ ¼ Bð2N;2Þ þ 2N þ 1

2M2
Yð2N;1Þ −

1

8
Bð2ðNþ1Þ;0Þ > 0:

The previous examples illustrated how to construct positive
quantities involving up to two t derivatives of the ampli-
tude. We now present the general procedure for any number
of t derivatives.
Motivated by the previous constructions, we now con-

sider a linear combination of B’s. On dimensional grounds,
if we want to be dealing with up toM t derivatives and 2N v
derivatives, then one should consider

XM=2

r¼0

crBð2Nþ2r;M−2rÞ ¼
XM=2

k¼0

αkIð2Nþ2k;M−2kÞ

−
XðM−1Þ=2

k¼0

ð−1ÞkβkIð2Nþ2kþ1;M−2k−1Þ;

ð19Þ

where for each B, we have split its sum (14) into odd and
even parts, and we have defined

αk ¼
Xk
r¼0

22ðr−kÞcr
ð2k − 2rÞ! ;

βk ¼ ð−1Þk
Xk
r¼0

22ðr−kÞ−1cr
ð2k − 2rþ 1Þ! : ð20Þ

Now the coefficients cr can be chosen precisely so as to
remove every integral Ið2q;pÞ with p < M on the first line of
(19), i.e. so that αk ¼ δk;0. This requirement sets

c0 ¼ 1 and ck ¼ −
Xk−1
r¼0

22ðr−kÞcr
ð2k − 2rÞ! ; ∀ k ≥ 1: ð21Þ

These coefficients are easily computed to any desired order,
and one can check that βk ≥ 0. It follows that the following
quantity is manifestly positive,

XM=2

r¼0

crBð2Nþ2r;M−2rÞ þ
XðM−1Þ=2

keven

βkIð2Nþ2kþ1;M−2k−1Þ

¼ Ið2N;MÞ þ
XðM−1Þ=2

kodd

βkIð2Nþ2kþ1;M−2k−1Þ > 0: ð22Þ

Now using the integral inequalities (16), we can recursively
construct the Yð2N;MÞ’s as follows

Yð2N;MÞ ¼
XM=2

r¼0

crBð2Nþ2r;M−2rÞ

þ 1

M2

XðM−1Þ=2

keven

ð2ðN þ kÞ þ 1Þβk

× Yð2ðNþkÞ;M−2k−1Þ > 0; ð23Þ

where cr and βk are given by (20) and (21) and for
now M2 ¼ ðtþ 4m2Þ=2. By construction, Yð2N;MÞðtÞ ≥
Ið2N;MÞ > 0 for all N ≥ 1, all M ≥ 0 and for any
0 ≤ t < 4m2.
As a result, we have successfully constructed combina-

tions of derivatives of the LEEFTamplitude, Yð2N;MÞ, which
must be positive if there were to ever exist a local, analytic
and Lorentz invariant UV completion. Although we have
used N ≥ 1 in the derivation, note that s ↔ t crossing
means that Yðq;pÞ and Yðp;qÞ are not truly independent
quantities, and so our list of bounds is exhaustive (as we
have included the case M ¼ 0, if not N ¼ 0).

VIII. TREE LEVEL BOUNDS

The previous positivity bounds were placed on the exact
all loop scattering amplitude. It is for this reason that the
threshold on the μ integrals was taken to be μ ¼ 4m2,
associated with elastic scattering, e.g. one-loop processes
with two intermediate scalars. However, a more practical
use of these bounds is to bound coefficients in the tree-level
Lagrangian of the LEEFT. In doing this, there is a
fundamental difference in approach since at tree level in
the low energy effective theory, nonzero ImAðs; tÞ can only
arise at and above the threshold μ ¼ Λ2

th defined as the mass
of the first state that lies outside of the effective theory, i.e.
the cutoff of the LEEFT. Contributions in the region 4m2 ≤
μ < Λ2

th come from loops of light particles already included
in the LEEFT and so will not show up in the tree level
amplitude. At a pragmatic level this means that since
Λ2
th ≫ 4m2, the lower limit of the μ integrals may be taken

to be Λ2
th and we may make use of stronger integral

inequalities (16) with M2 ¼ Λ2
th, and define Yð2N;MÞ

tree

through (23) with M2 ¼ Λ2
th, where B is now understood

to be the pole subtracted amplitude computed to tree level
only in the LEEFT. The tree level bounds are then

Yð2N;MÞ
tree ðt;ΛthÞ > 0; ð24Þ

and may in some cases provide additional constraints on
Λth in terms of the LEEFT coefficients and the mass m.

IX. MATCHING AGAINST THE LOW ENERGY
EFFECTIVE THEORY

To see the power of these bounds, consider a general
effective theory tree amplitude, with poles subtracted
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Bðs; tÞ. Any such amplitude, may be given by an analytic
function of the crossing symmetric variables

x ¼ −ðs̄ t̄þt̄ ūþū s̄Þ and y ¼ −s̄ t̄ ū; ð25Þ

with s̄þ t̄þ ū ¼ 0, so that

Bðs; tÞ ¼
X
nm

anm
Λ4nþ6m xnym; ð26Þ

where Λ is some theory specific scale introduced to make
the anm dimensionless. Note that x ¼ v2 þ 3

4
t̄2 and

y ¼ t̄v2 − 1
4
t̄3. For concreteness, in what follows we

evaluate the derivatives of B at t ¼ 4m2=3, corresponding
to the maximally crossing symmetric point s ¼ t ¼ u.
Then the derivatives Bð2N;MÞ in terms of the anm are

Bð2N;MÞ ¼ ð2NÞ!
X
q

dq
Λ4Nþ2M aN−Mþ3q;M−2q; ð27Þ

where q!dq¼ð3=4Þqð3qþN−MÞ2F1ð−q;2q−M;1−Mþ
Nþ2q;−1=3Þ. Up to eighth order in energy, we have four
EFT coefficients ða00; a10; a01; a20Þ, which are bounded by,

Yð2;0Þ∶ a10 > 0 ð28Þ

Yð2;1Þ∶ a01 > −
3Λ2

2Λ2
th

a10 ð29Þ

Yð4;0Þ∶ a20 > 0; ð30Þ

and the bound provided by Yð2;2Þ ends up being automati-
cally satisfied by the previous ones. These bounds clearly
distinguish two separate cases. If for a particular theory a01
were found to be positive, then the bounds are satisfied
provided a10, a20 > 0 regardless of Λth. However, if for a
theory a01 is negative (see [9] for a simple example of this
scenario), then for that theory we can put an upper bound
on the threshold Λth,

Λ2
th <

3a10
2ja01j

Λ2: ð31Þ

This bound on the cutoff of the theory is logically separate
from the scale at which perturbative unitarity is broken.
If we build an EFT from the bottom up, without initial

knowledge of the true scale Λth, then we can separately
compute Λpert, the scale at which perturbative unitarity is
violated, and if a01 < 0, Λth the scale at which analyticity is
broken. If Λth is found to be lower than Λpert then this
implies we should have added irrelevant operators sup-
pressed by Λth.

X. DISCUSSION

In this work, we have paved the way towards con-
straining all LEEFTs in a novel way and have found an
infinite number of new bounds that remain valid even away
from the forward scattering limit. Violating any of this
infinite number of bounds directly implies that the LEEFT
can never enjoy any possible local, unitary and Lorentz
invariant UV completion. These results are derived under
the assumption of a mass gap, principally to make use
of the Froissart-Martin bound, and to ensure the existence
of the analytic Mandelstam triangle. For a massless theory
that is polynomial bounded and has a sufficiently large
analytical region, the same positivity bounds, with possibly
different number of subtractions, can be derived. As a by-
product we have shown how, together with the assumption
of analyticity, the scale of new physics can be further
constrained, beyond what would be possible from using
perturbative unitarity alone. In certain cases, the stricter
requirement of analyticity implies a lower cutoff on the
EFT than would be implied by standard perturbative
unitarity considerations. The details of applications of
our positivity bounds to a few LEEFTs with various spins
can be found in [9,12]. In these explicit cases, we show that
more information about the Wilson coefficients can be
extracted from these nonforward and higher order positivity
bounds, and the strongest constraints often come from a
nonforward limit.
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