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Colorelectric and colormagnetic structure of the flux tubes, connecting heavy quark and antiquark, is
investigated in the framework of the field correlator method which describes all resulting fields in terms of
correlators DE and DE

1 . The latter have been computed via gluelumps, which allows us to predict the
resulting distribution of color fields EðrÞ, and colormagnetic currents kðrÞ in the flux tubes. It is shown,
that at large distances r ≫ λ ≈ 0.2 fm the whole structure of fields and relations between them is similar to
that of the dual superconductor theory, but the basic dynamics, including small distances, is given by field
correlators of the real stochastic vacuum. The important contradiction between the strong screening of color
fields in the width of flux tubes and almost no screening in the perturbative QQ̄ potential is resolved.
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I. INTRODUCTION

The flux tubes between heavy quark and antiquark are
considered as a necessary consequence of the color con-
finement mechanism, and were investigated numerically on
the lattice during the last three decades, see, e.g., [1–24].
It was understood that this physical phenomenon should

exist, whatever is the mechanism of color confinement, and
hence only the detailed structure of flux tube fields can
distinguish between different models of confinement.
One of the most popular, however not derived from

QCD, is the model of dual superconductor (MDS) [25,26],
where the QCD vacuum can be represented as a coherent
state of colormagnetic monopoles. The numerous studies,
both in theory and in numerical lattice works, have been
done for the last two decades, trying to find the reasonable
arguments and explicit formalism for MDS, see the review
papers [27,28] and the references therein.
The difficulty of this approach is the lack of color-

magnetic monopoles as real physical objects or Euclidean
solutions of QCD, so that one should consider those as
effective degrees of freedom in the real physical vacuum
of QCD.
Meanwhile the quantitative theory of color confinement

was suggested in [29–31] based on vacuum field correla-
tors, developed in detail for application in hadron properties
[32,33], including theory of Regge trajectories etc., the
theory of chiral symmetry breaking [34], perturbation
theory [35], and the QCD thermodynamics [36].
Field correlators can be found from the solution for

the gluelump Green’s functions of [37–39], which are

connected back to field correlators in a self-consistent way
[40–42], which allows us to define their properties for
distances r > λ, where λ ≈ 0.2 fm is the vacuum correlation
length, λ ∼ 1=Mglp;Mglp is the lowest gluelump mass.
The problem of flux tubes in the framework of field

correlator formalism was discussed in the review papers
[43,44], where it was shown, that the basic properties of
flux tubes are easily obtained from this formalism.
Recently a new formulation of the QCD equation of state

and temperature transition was accomplished [45], which
required a very detailed structure of the confinement
dynamics, i.e., of the properties of field correlators, and
those can be tested in the flux structure.
The latter, as shown below, define all the fields in the flux

tube, and inversely, the study of flux tube fields gives
information about details of field correlators, i.e., the details
of the confinement mechanism.
From this point of view the flux tubes are an important

source of information about the structure of confinement,
including the temperature dependence of its constructing
details.
Recently new lattice measurements of flux tube structure

have been done in [46–48] and specifically in [46] the first
accurate results have been obtained both for SUð3Þ and
2þ 1 QCD. It is the purpose of the present paper to
compare these results with our analytic approach and to
draw some conclusions on the mechanism of flux tubes and
confinement.
The extended study of flux tubes in the framework of field

correlator method (FCM) was done in [44], where the CE
field distribution EðrÞ was found in terms of the confining
correlatorDEðxÞ and perturbative correlatorDE

1 ðxÞ, yielding
the standard picture of the QCD string between two sources
Q and Q̄. In addition an important step was done, defining
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the colormagnetic current kðrÞ, which has the form of rings
around the string, and it was also shown, that the “dual”
London equation rot k ¼ λ−2EðrÞ—is satisfied at large
distances from the string axis, r ≫ λ.
This fact actually supports the idea, that the field

correlator theory of confinement at large distances to some
extent is equivalent to the dual superconductor picture,
however the former allows to describe the flux tube fields at
all distances.
It is one of the aims of our paper, to go further in this

direction and in particular to present the distribution jkðrÞj
as a function of r, which can be further computed numeri-
cally on the lattice.
In addition, an interesting consequence of our theory is

the distribution of the CE field E, which is produced by the
color charges and screened in the transverse, but not
longitudinal direction as described by the correlator DE

1

and has no equivalent in MDS.
Indeed, the FC describe two kinds of CE fields, Eð1Þ and

EðDÞ due to correlators DE and DE
1 respectively, and they

have completely different distributions, in particular, DE

gives the main body of the flux tube,while D1 gives the
screening of the color Coulomb interaction.
Actually in [44], the important problem of the screening

of perturbative fields due to confinement was not fully

investigated, and instead there was a requirement of this
screening at large distances, r ≫ λ, where λ ≈ 0.2 fm is the
vacuum correlation length. Below we give the full answer
to this problem of screening, based on the theory of
confinement.
Another important development of the analysis of flux

tube is its temperature variation, which was done on the
lattice in [49]. This allows to measure the T dependence of
correlators DE, DE

1 , which plays the crucial role in the
temperature transition region, as shown in [45].
The paper is organized as follows. In the next section we

list the basic definitions and equations of the FCM, related
to flux tubes, and in Sec. III we define the fields inside flux
tubes in terms of FC, and magnetic currents. In Sec. IVour
results are shown and compared to existing data for T ¼ 0.
Discussion of results and prospectives are given in the
concluding section.

II. FIELD CORRELATORS IN QCD

The vacuum fields FμνðxÞ in QCD without external
currents are necessarily stochastic and can be characterized
by the set of field correlators (FC), which in the gauge
invariant form for the lowest one, the Gaussian, [29–31]
can be written as

g2Dð2Þ
i4k4ðx − yÞ≡ g2

Nc
htrfðFi4ðxÞΦðx; yÞFk4ðyÞΦðy; xÞi

¼ ðδikÞDEðx − yÞ þ 1

2

� ∂
∂xi ½hk þ perm�

�
DE

1 ðx − yÞ;

hλ ¼ xλ − yx: ð1Þ

The temporal Wilson loop in terms of this basic FC can be written as [29–31] via colorelectric FC, DE and DE
1

WðCÞ ¼ 1

Nc

�
trP exp

�
ig
Z
C
dzμAμðzÞ

��
¼ 1

Nc

�
trP exp

�
ig
Z
Smin

dσμνFμν

��

¼ 1

Nc
trP exp

�
−
g2

2

Z
dσμνdσλρhFμνFλρi þ � � �

�
≅ exp

�
−Smin

1

2

Z
DEðzÞd2z

�
; ð2Þ

which implies that the string tension is expressed via DEðzÞ as

σE ¼ 1

2

Z
d2zDEðzÞ: ð3Þ

In (3) the integration is over the minimal surface Smin inside the Wilson loop C.
UsingDE andDE

1 one can define the instantaneous interaction between fundamental or adjoint color changes, as it shown
in the Appendix.
Note that DEðxÞ, which enters in (2), generates the scalar potential VDðrÞ

VDðrÞ ¼ 2ca

Z
r

0

ðr − λÞdλ
Z

∞

0

dνDEðλ; νÞ ¼ VðlinÞ
D ðrÞ þ Vsat

D ðrÞ: ð4Þ
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The FC DE
1 , which enters in the full derivative in (1),

creates the vectorlike interaction

V1ðrÞ ¼ ca

Z
r

0

λdλ
Z

∞

0

dνDE
1 ðλ; νÞ; cfund ¼ 1;

cadj ¼
C2ðadjÞ
C2ðfÞ

¼ 2N2
c

N2
c − 1

: ð5Þ

Equations (4) and (5) yield the information on correlators
DE, DE

1 , which can be obtained from the study of QQ̄
potentials VDðrÞ; V1ðrÞ. In what follows we shall exploit
another way: on one side we shall define DE and DE

1 via
gluelump Green’s function, on another side we find the
structure of flux tubes with the help of DE, DE

1 . In this way
the data on flux tubes can be predicted and compared with
lattice or experimental sources.
Until now the properties of DE and DE

1 were not defined
and to get information on that, one should exploit their
connection to the gluelump Green’s function, as it was done
in [40–42]. Namely, DEðxÞ is expressed via the two-gluon-
gluelump Green’s function Gð2gÞðx; yÞ

DEðx − yÞ ¼ g4ðN2
c − 1Þ
2

Gð2gÞðx; yÞ
≈ g4NcC2ðfÞGð2gÞðx; yÞ: ð6Þ

The lowest eigenvalues and the asymptotics of Gð2gÞ were
found in [37], namely Mð2glÞ

0 ≈ 2.5 GeV, and from [40–42]

Gð2gÞðxÞðx ≫ 1=Mð2glÞ
0 Þ ≈ 0.108σ2fe

−Mð2glÞ
0

jxj: ð7Þ

The insertion of (7), (6) into (4) immediately yields

the potential VðlinÞ
D ðrÞ which is linear in whole region

r > 1=Mð2gÞ
0 ≈ 0.1 fm. This fact agrees well with all

experimental and numerical data.
It is interesting, that the same approach of two-gluon

gluelump asymptotics for the colormagnetic function
DHðx − yÞ yields [50] the well-known relation, found also
on the lattice [51]

σH ¼ g4ðN2
c − 1ÞT2cσ; cσ ¼ const: ð8Þ

In contrast to that, the FCDE
1 is expressed via the one-gluon

gluelump Green’s function with the nonperturbative part,
behaving asymptotically as [40–42]

DEðnonpÞ
1 ðxÞ ¼ 2Ncαs

x
Mð1glÞ

0 σfe−M
ð1glÞ
0

jxj ð9Þ

where Mð1glÞ
0 ≅ 1.5 GeV [37–39], while the total form,

containing the perturbative part as shown in Appendix B, is

DEðpertÞ
1 ðxÞ ¼ 2ðN2

c − 1ÞαsK2ðmxÞ
Ncπx2

þOðα2sÞ: ð10Þ

As a result, the FC DE
1 produces the interaction VE

1 ðrÞ

VE
1 ðrÞ ¼ −

ðN2
c − 1Þαse−mr

2Ncr
þOðα2sÞ; where

m ¼ Oð1 GeVÞ: ð11Þ

One should stress at this point, that one-gluon and two-
gluon gluelumps enter separately in their mass measure-
ments both on the lattice [38,39] and analytically [37],
yielding different values (2.5 GeV in (7) and 1.5 GeV in (9)
in both approaches. On the other hand, when computing the
FC via gluelumps, as in [40–42], the mixing term appears

(Dð1Þ
μν;λσ in [40–42]) which mixes up two contributions and

brings in an averaged value M̄ of the order of 1.0 GeV.
The resulting mass m of the order of M̄ in Eq. (11) is the
gluon screening mass.
At this point we turn to the measurements the flux tube

fields, as it is done on the lattice, where one computes the
average value of the contour, shown in Fig. 1, consisting of a
small plaquette at the point x, connected by two fundamental
lines to the Wilson loop of heavy quarks Q, Q̄.
Here appears a new phenomenon, which might be called

“the quenching of the screening gluon mass”, namely, as
shown in Fig. 2, the value of the one-gluon screening mass
M ≅ 1.5 GeV is obtained, when the parallel transporter in
the transverse position is fixed, as shown in Fig. 1, where
the double fundamental line in the transverse direction
defines the form of the confining film in the gluelump
Green’s function.
On the other hand, measuring gluon exchange in the

horizontal plane without any transporters, which limit the
size of the confining film, one obtains, that the resulting
minimal surface is a slightly deformed plane inside the big
contour, as shown in Fig. 3. The energy of deformation is
equal to εplane ¼ σΔSmin ¼ σ h2

L , where h is the average
deflection of gluon path from the plane andL is plane length.
This should be compared with the energy in the gluelump

FIG. 1. The connected probe plaquette at the point x above the
QQ̄ Wilson loop.
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case, εglp ≅ σh, with the result εplane ≪ εglp, meaning a
strong damping of the Coulomb screening MCoul

scr ≪ Mglp.
Moreover, the length L between consecutive gluon

exchanges can be estimated from the action exponent
expð−VCoulðRÞLÞ, as L−1 ∼ VCoulðRÞ ∼ 4

3
αs
R ðNc ¼ 3Þ, lead-

ing to the result εplane ¼ σ h2
L ∼ 4

3
σ h2

R αs. Thus the screening
is additionally damped at large R, for the analytic treatment
of this type of interaction (but without αs=R) see [52].
It is clear from the analysis of [52], that the screening

mass, corresponding to the Fig. 3, is the mass excitation of
the static hybrid of the lengthLwith the transverse excitation
of the order of

ffiffiffiffiffi
12

p
=L and longitudinal ðσ=LÞ1=3. Defining

L as before from the conditionΔtVCoul ¼ Oð1Þ, one obtains
for R ¼ 1 fm for both excitationsΔm ≈ 0.4 GeV instead of
1.4 GeV for the one-gluon gluelump mass. Note also, that
for the single gluon exchange, whenΔt tends to infifnity, the
screening mass Δm tends to zero.
Numerically on the lattice the static QQ̄ potential

demonstrates [53,54] the linear plus pure Coulomb form.
Our discussion above might give an answer to the similar
point, raised recently in [55].

In our case, where a part of parallel transporters is in the
transverse direction, as in Fig. 1, one expects, that our mass
m satisfies MCoul

scr < m < Mglp, and we choose explicitly in
what follows for transverse r⊥ distributions, m ¼ 1 GeV,
whichwe shall use to define thevacuumcorrelation length λ,

λ ¼ 1

m
¼ 0.2 fm: ð12Þ

To complete the picture of potentials VD and V1 one
should mention another important feature of resulting
potentials in (4), (11): as it is shown in the Appendix of

[45], the terms Vsat
D ðrÞ in (4) and VðnpÞ

1 ðrÞ have different
signs and almost fully compensate each other for low
temperatures. As a result the interaction between two static
charges acquires the well established form, confirmed on
the lattice and in experiment:

VQQ̄ðrÞ ¼ VðpertÞ
1 ðrÞ þ VðlinÞ

D ðrÞ: ð13Þ

As we shall see below, this cancellation holds only for
potentials, which are in-plane integrals of the FC, as in (4),
(5). However, for the flux tube probes, which are mostly the
out-of-plane integrals of FC, this full cancellation does not
take place, and one has a possibility of defining the FC
through the measurements of flux tube probes, which is
especially interesting for nonzero T, and around T ¼ Tc
[56–58].
In the next section we define the connected flux tube

probes via field correlators, following [43,44] and adding a

new contribution from the correlation DðnpÞ
1 .

III. FLUX TUBE FIELDS VIA FIELD
CORRELATORS

To measure field distributions around the static color
charges Q, Q̄, one can use the connected probe, defined by
the contour C, shown in Fig. 1, as it is done on the lattice
[1–24], and calculated in the FCM, see e.g. [43,44].
As shown in [44], Eq. (30), the resulting effective field

FμνðxÞ is expressed via the FC, Eq. (1),

FμνðxÞ ¼
Z
S
dσαβðyÞg2Dð2Þ

αβμνðx − yÞ: ð14Þ

Inserting (1) in (14) one obtains as in [44] the expression
for the colorelectric probe Eiðr;RÞ

Eiðr;RÞ ¼ nk

Z
R

0

dl
Z

∞

−∞
dt

�
δikDEðzÞ þ 1

2

∂ðziDE
1 ðzÞÞ

∂zk
�
;

ð15Þ

where z ¼ ðr − nl; tÞ, and n ¼ R
R is along the axis x3,

where the charges Q, Q̄ are placed at the distance R,
see Fig. 1.

FIG. 3. The minimal area surface for the gluon exchange
interaction.

FIG. 2. The 1g gluelump configuration for the transverse probe.
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Inserting the perturbative part DEðpertÞ
1 from (10), one

obtains the screened color Coulomb field

Eð1ÞðrÞ ¼ ðN2
c − 1Þ
2Nc

�
αsrχðmrÞ

r3
−
αsðr−RÞ
ðr−RÞ3 χðmjr−RjÞ

�
;

ð16Þ

where the screening factor is χðzÞ ¼ ð1þ zÞe−z, and at the
midpoint between the charges one has

Eð1Þ
�
R
2

�
¼ 4ðN2

c − 1Þ
Nc

αsR
R3

χ

�
mR
2

�
: ð17Þ

Equation (17) contains both the standard perturbative
part Eð1Þ ∼ αs

R2, at R ≪ 1
m and the nonperturbative screening

Eð1Þ ∼ αsm
R e−mR at R ≫ 1

m. For the field correlators, as in
(14), the mass, m ≈ 1 GeV, while the screening in the one
gluon exchange potential V1ðrÞ Eq. (11), is much softer, as
discussed in [59], see also Appendix B.

From (17) one can estimate Eð1Þ
3 at R ¼ 0.2 fm, m ¼

1 GeV and r⊥ ¼ 0. Eð1Þ
3 ð0.5 fm; 0Þ ¼ 0.122αs GeV2 ≈

0.05 GeV2 for αs ≅ 0.4. In a similar way, using the
asymptotics (7), and the relation (3), one has

DðzÞ ¼ σ

πλ2
exp

�
−
jzj
λ

�
; λ−1 ≅ 1 GeV; ð18Þ

which yields for the colorelectric probe, following (15)

ED ¼ n
2σ

π

Z
R=λ

0

dl

				ln −
r
λ

				K1

�
jln −

r
λ
j
�
: ð19Þ

For R → ∞ one obtains from (19) the saturated color-
electric field at the distance r⊥ from the axis

ED
3 ðr⊥Þ ¼ 2σ

�
1þ r⊥

λ

�
exp

�
−
r⊥
λ

�
ð20Þ

and the saturated on-axis value Esat
3 ðon axisÞ ¼ 2σ.

Summing up the contributions of (17), (19) for the field
E3 at the midpoint on the axis ðr⊥ ¼ 0Þ, one has ðNc ¼ 3Þ

Etot
3

�
R
2
; r⊥ ¼ 0

�
¼ 32αs

3R2
χ

�
mR
2

�
þ 2σ

π

Z
R=λ

0

dx · xK1ðxÞ:

ð21Þ

Another interesting characteristics of flux tabes is the E3

dependence on the distance to the QQ̄ axis, i.e., on r⊥.
Using (16), (19) one can write

E3ðr⊥Þ≡ E3

�
r⊥;

R
2

�
¼ ED

3

�
r⊥;

R
2

�
þ Eð1Þ

3

�
r⊥;

R
2

�
;

ð22Þ

where

ED
3

�
r⊥;

R
2

�
¼ 2σ

π

Z R
2λ

−R
2λ

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2⊥

λ2

s
K1

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2⊥

λ2

s !
;

ð23Þ

Eð1Þ
3 is given in (16),

Eð1Þ
3

�
r⊥;

R
2

�
¼ 4

3
αs

Rχðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊥ þ R2

4

q
Þ

ðr2⊥ þ R2

4
Þ3=2 : ð24Þ

In the next section we compare our results for E3ðr⊥Þ
and Etot

3 ðR
2
Þ with the lattice data [46].

We now turn to the effective magnetic monopole picture,
which can be derived from our method, to compare it with
the dual superconductor model.
To this end we as in [44] define first of all the magnetic

current k,

k ¼ rotEðr;RÞ ¼ rotðEDðrÞ þ Eð1ÞðrÞÞ≡ kD þ kð1Þ;

ð25Þ

One can deduce from (16), that Eð1Þ at r3 ¼ R
2
(at the

midpoint) does not have component along axis 1 and 2, so
that it can be written as Eð1Þðr3 ¼ R

2
; r⊥Þ ¼ nfð1Þðr2⊥Þ, and

hence fð1Þðr2⊥Þ ¼ Eð1Þ
3 ðr⊥; R2Þ given in (22).

The same is true for ED, Eq. (19), so that the total
k ¼ kð1Þ þ kD is perpendicular to n, as shown in Fig. 4.
Therefore kz ¼ 0, and kx ¼ 2yf0; ky ¼ −2xf0 so that

kr ¼ 0, which means, that vectors k form circular loops

FIG. 4. Colormagnetic current k around the flux tube.
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around the ðQ; Q̄Þ axis. The function fð1Þðr2⊥Þ ¼ Eð1Þ
3 is

given in (24), and one can calculate the r⊥ dependence

jkð1Þ
⊥ ðr⊥Þj2 ¼ ðkð1Þx ðr⊥ÞÞ2 þ ðkð2Þy ðr⊥ÞÞ2,

ðkð1Þðr⊥ÞÞ2 ¼ 4r2⊥
�∂Eð1Þ

3

∂r2⊥
�2

: ð26Þ

The function kDðr⊥Þ is obtained from (23), where one
can use the relation d

dz ðzK1ðzÞÞ ¼ −zK0ðzÞ, with the result

k2
Dðr⊥Þ ¼

4σ2r2

π2λ4

 Z R
2λ

−R
2λ

dxK0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2⊥

λ2

s !!2

ð27Þ

In the case when kD and kð1Þ can be both nonzero, the
resulting kðr⊥Þ is

kðr⊥Þ ¼ kð1Þ þ kD

¼ −ðnÞφr⊥
 
2σ

πλ2

Z R
2λ

−R
2λ

dxK0

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2⊥

λ2

s !
þ ∂fð1Þ

∂r2⊥

!

ð28Þ

and nφr⊥ ¼ 0;n2
φ ¼ 1.

The most important point for the connection to the
superconducting model is the dual London equation
rotk ¼ λ−2E, which, as shown in [44], is supported
asymptotically ðr⊥ → ∞Þ by the relation for the saturated
string ðR → ∞Þ

rotkD ¼ γDðr⊥Þλ−2EðDÞðr⊥Þ;

γDðr⊥Þ ¼
r⊥=λ − 2

r⊥=λþ 1
; γð∞Þ ¼ 1: ð29Þ

IV. FIELD CORRELATORS VS DUAL
SUPERCONDUCTOR MODEL

At this point it is interesting to compare the FCM and
MDS approaches, their results and interpretation.
In the MDS the basic Lagrangian refers to the 4d version

of the Ginzburg-Landau, or the Abrikosov-Nielsen Olesen
(the Abelian Higgs) model

L ¼ −
1

4
F2
μν − jDμφj2 −

λ

4
ðjφj2 − φ2

0Þ; ð30Þ

where the Higgs field φ provides the mass of the electric
field,m2 ¼ δ−2 ¼ 2e2ϕ2

0, while the Higgs massm2
ϕ ¼ 2λϕ2

0

defines the correlation length ξ. For the standard type II
superconductor one has δ ≫ ξ.
It is argued, that in general the flux tubes can occur for a

wide region of δ, ξ values, including the type I case, δ≲ ξ.

In the DSM interpretation of the lattice data one uses
λ;φ0 as fitting parameters and it was found in [46], that they
correspond to the type I superconductor. There are three
main properties in the MDS approach, which need
clarification:
(1) The typical consequence of (30) is the exponential

screening of the electric field at large transverse
distances r⊥ in agreement with London equations, as
we discussed above, but also a logarithmic diver-
gence at small r⊥, which is not seen numerically on
the lattice. To avoid this divergence the authors of
[46] exploit an approximate variational solution
from [60], containing extra parameters.

(2) It is argued in [61], that at the large distances
between charges the physical picture of flux tubes
corresponds to the effective string theory of the
Nambu-Goto type, rather than to the DSM.

(3) In general the Lagrangian (30) contains scalar massive
fields as extra degrees of freedom, which should
display themselves in some way, especially for
δ ∼ ξ, andwhich are not seen inQCDand in numerical
lattice data. In contrast to that, the FCM does not
contain any extra parameters, and defines all param-
eters in termof string tension σ, which can be observed
and computed numerically. In terms of σ can be
expressed also of all the gluelump masses, defining
the screening of flux tubes at the scale of 0.2 fm.

(4) One of the most important predictions of FCM for
the flux tubes is the asymptotic value of the on-axis
field E3ðRÞ at large R equal to 2σ, which is well
supported by lattice data [46]. On the MDS side
unfortunately there are no explicit predictions, and
the values given by the MDS variational equation of
the type of Ref. [60], depend on extra parameters.

(5) Practically very important is the existence of the
color Coulomb interaction, which is superimposed
on the scalar confinement,with almost no screening
at large distances, as discussed above and well
known in experiment and on the lattice. One should
stress at this point, that the main properties of the
confinement follow from the Wilson loop structure
of the QQ̄ interaction, with the surface of minimal
area, which implies, that an additional adjoint line of
color Coulomb interaction should belong to this
surface. This fact strongly suppressed the fluctuation
of the gluon trajectory and as a result also the gluon
screening mass, as we have discussed in Sec. II.
It is not clear how one can describe the scalar

confinement and the vector color Coulomb inter-
action simultaneously in the framework of the MDS
or any theory of the Abelian Higgs type.

(6) As a final point of our comparison, we discuss the
Lorentz properties of the confining interaction.
Indeed, there exists a strong limitation on the vector
admixture in the confining interaction. As shown
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in [62,63], the spectrum of the Dirac equation with
the dominating confining vector part does not
contain bound states. This feature is connected to
the Klein paradox with multiple qq̄ pair production.
On the physical side the observed experimentally
negative spin-orbit term in the qq̄ interaction is due
to scalar confinement, thus supporting its scalar
nature.

Now it is important, that in the FCM one generates
confinement with scalar properties, as it was shown in
[63,64] and also in connection with chiral symmetry
breaking, in [65]. The same result one obtains using
MDS, if one finds the correspondence between field
correlators in MDS and FCM, as it was done in [59].
Thus summarizing, one can conclude, that in the MDS one
is able to construct reasonable approximate solutions of
the Lagrangian of Abrikosov-Nielsen-Olesen type, which
can be similar to the FCM scalar confinement flux tubes,
but this correspondence at present does not cover all details
and types of interaction.

V. RESULTS AND DISCUSSION

To compare with recent accurate lattice data [46], we are
using the data, shown in Fig. 4 of this paper for two types of
behavior: first, we are using the data [46] for Etot

3 ðRÞ
here R ¼ 0.76 fm, 0.95 fm, 1.14 fm, 1.33 fm and calculate
our E3 from Eq. (21) for these values of R. The results
are shown in Fig. 5 with αs ¼ 0.4, m ¼ 1 GeV,
σ ¼ 0.18 GeV2. One can see a reasonable agreement of
our theory with the data,where a slow decrease of Etot

3 ðRÞ is
due to Eð1Þ

3 , while the saturation at E3 ¼ 2σ is due to ED
3 .

To check the r⊥ dependence, we again are using data
of [46] and present our results for the quoted values of R in
Figs. 6–9. One can see again a reasonable agreement at the
level of Oð5%Þ for r⊥ < 0.5 fm. Note, that our parameters
αs, m, σ are fixed at the physically relevant values,
αsðQ ∼ 1 GeVÞ ¼ 0.4, σ ¼ 0.18 GeV2.
Finally, in Fig. 10 we demonstrate the r⊥ dependence of

the modulus of jkðr⊥Þj, given by Eqs. (26), (28). One can
see the exponential decay at large r⊥, typical for the color
screening of massive gluon fields.
At this point one can compare our results with the MDS

picture. In general, one can treat the dual Abelian Higgs
picture and different versions of MDS in the same language
as in FC, calculating DE, DE

1 via solutions of Ginzburg-
Landau equations etc.
This type of analysis was done in [59], where DE, DE

1

have been related with the dual filed propagator in the
Abelian Higgs model. However, parameters of the model
and the form of D, D1 are not fixed, e.g the connection of
sigma and the mass m ¼ 1=λ, whereas in the FC approach
in QCD the product σλ2 is fixed by the gluelump mecha-
nism and ensures Casimir scaling, observed on the lattice.
Summarizing, in the FC approach all observables are

defined by the only nonperturbative scale (in addition to
quark masses), which can be chosen as σ.
In [46] the theoretical form of E3ðr⊥Þ was chosen,

according to the solutions of the Ginzburg-Landau

FIG. 5. Etot
3 ¼ Etot

3 ðR
2
; r⊥ ¼ 0Þ. The tube length dependence of

the CE field strength at the midpoint. The shaded region
corresponds to αs ¼ 0.4 (lower curve) and αs ¼ 0.45 (upper
curve). The points with error bars are from the lattice measure-
ments in [46].

FIG. 6. E3 ¼ E3ðr⊥; R ¼ 0.76 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 0.76 fm. The dots with error bars are from the lattice
measurements in [46].
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equations, suggested in [60], with parameters, ensuring
a good agreement with the lattice data. These para-
meters correspond to the superconductor of the first order,
where the coherence length ξ is larger, than the penetration

length λ. However, the three flux tube parameters depend
(moderately) on the length of the flux tube R.
Summarizing,we have derived two components of the

CE fields in the flux tube and have shown the strong
transverse screening of CE fields on the length λ ¼ 0.2 fm.
We also found the slight decrease and saturation of the
on-axis field E3ðRÞ at large R. We have found a reasonably

FIG. 7. E3 ¼ E3ðr⊥; R ¼ 0.95 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 0.95 fm. The dots with error bars are from the lattice
measurements in [46].

FIG. 8. E3 ¼ E3ðr⊥; R ¼ 1.14 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 1.14 fm. The dots with error bars are from the lattice
measurements in [46].

FIG. 9. E3 ¼ E3ðr⊥; R ¼ 1.33 fmÞ. The transverse radius
dependence of the CE field strength for the fixed flux tube
length R ¼ 1.33 fm. The dots with error bars are from the lattice
measurements in [46].

FIG. 10. The transverse radius dependence of the CM current
jkðr⊥Þj at R ¼ 0.76 fm.
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good agreement of our results with the latest lattice data of
[46], confirming the applicability of our theory using
standard parameters, independent of R.
Finally, we have presented arguments, why the in-plane

screening of the gluon exchange (color Coulomb inter-
action) is strongly damped, as compared with the transverse
screening of the same interaction.
In the previous section we have compared our approach

with the MDS model in the interpretation of the lattice
results. We have argued, that in the MDS there is still no
strictly defined formalism with fixed parameters, which is
able to reproduce the whole set of phenomena, including
both confinement and gluon exchanges, which is the basics
of strong interaction in QCD, while it is well described by
the FCM.
To extend our discussion of possible applications of the

FCM and MDS, we refer to the interesting results in [66],
concerning the flux tubes in the (qq̄g) (hybrid) system. In
this case the object was a system of static quark-adjoint
charge-antiquark system of variable forms, which included

convolution of qq̄, transforming two adjacent fundamental
strings into one adjoint string. This configuration corre-
sponds to two fundamental Wilson loops having one side in
common with varying sizes and angle between surfaces.
This problem is actually the problem of two interacting
Wilson loops, and the general formalism for its solution
was given in [67]. The extension of the results of [67] to the
case of static hybrid, considered in [66], can be done in the
same formalism and would be of great interest.
Finally we mention another interesting possible develop-

ment of the FCM formalism in treating arbitrary gauge
groups instead of SUðNcÞ, considered above—for a review
and references see [68–70]. It is clear, that the main result
of [65], establishing the Casimir scaling of the string
tension for the group G2, is well reproduced in the
FCM, provided the Gaussian approximation (keeping only
quadratic terms hFFi) holds.
Indeed, the confinement is best illustrated by the Wilson

loop form for any group, where neglecting higher order
OðhFFFFiÞ terms one can write

hWðCÞi ¼
�
exp

�
ig
Z
C
Aμdzμ

��
¼
�
exp

�
ig
Z
S
FμνðuÞdσμν

��

≅ exp

�
−
�Z

gF̂μνðuÞdσμνðuÞgF̂λσðvÞdσλσðvÞ
��

≅ expð−σaSminÞ; ð31Þ

σa ∼ ðtrgTigTjÞ ∼ C2ðaÞ, where F̂μν ¼ FðiÞ
μνTi.

In this way Eq. (31) establishes the Casimir scaling of the
string tension (and gluon exchange) for any gauge group,
where the Gaussian approximation holds. The latter, as
shown in [43] is defined by the parameter σλ2 ¼ σ=M2,
where M is the gluelump mass. In SU(3) the value of M is
around 4

ffiffiffi
σ

p
which establishes the Oð5%Þ accuracy of the

Casimir scaling and at same time the mass M defines the
flux tube screening mass, the average value of around
1 GeV, taken above in this paper.
Now turning to another gauge group, e.g. G2, one

must calculate the gluelump masses, corresponding to
one or two adjoint charges connected by confinement to

the static adjoint charge, i.e. Mð1glÞ
0 and Mð2glÞ

0 in Eqs. (9)
and (7) respectively. In this way one finds DE and DE

1 in
(1) and all flux tube distributions, like (15) are fully
defined.
However, one should stress the possible differences

between SUðNcÞ and other gauge groups, e.g. G2 or F4.
Namely, in [68] it was found, that linear confinement is
screened at large R even for fundamental charges, because
the string breaks into multiple adjoint charges [impossible
for SUðNcÞ]. Second, in [69] the G2 thermodynamics
exhibits the large role of the diquark modes with the nearly
Goldstone nature. It is clear, that this interesting field
requires additional study, which can be done with the FCM
formalism.
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APPENDIX: CALCULATION OF THE
CORRELATOR D1 VIA THE GLUELAMP

GREEN’S FUNCTION

Consider the field correlator Eq. (1), and take into
account, that Fμν ¼ ∂μAν − ∂νAμ − ig½AμAν�. The contri-
bution of the first terms with derivatives immediately yields
the lowest contribution in the form

DE
1 ðxÞ ¼ −

2g2

N2
c

dGðxÞ
dx2

; ðA1Þ

where GðxÞ is the one-gluon gluelump Green’s function

Gð1gÞ
μν ðx; yÞ ¼ hTraAμðxÞΦ̂ðx; yÞAνðyÞi ¼ δμνGðx − yÞ

ðA2Þ

and Φ̂ðx; yÞ is the parallel transporter in the adjoint
representation and we have exploited the Feynman gauge.
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To simplify the matter we consider the gluelump Green’s
function as a relativistic Green’s function of scalar particle
with mass m (neglecting internal degrees of freedom in the
first approximation), which yields

GðxÞ ¼ ðN2
c − 1ÞNc

4π2
m
jxjK1ðmjxjÞ; ðA3Þ

whereK1 is the modified Bessel function. Taking derivative
in (A1), one has

DE
1 ðxÞ ¼

g2m2

4π2
ðN2

c − 1Þ
Nc

K2ðmjxjÞ
x2

: ðA4Þ

In the limit m → 0 Eq. (A4) yields the standard one-
gluon form DE

1 ðxÞ ¼ 16αs
3πx4, which generates according to (5)

the color Coulomb interaction V1ðrÞ ¼ − 4αs
3r .

In the paper the form (A4) is used to predict the field
distribution in the flux tube.
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