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The symmetry breakdown pattern is studied in models containing one fermion flavor multiplet and a
multicomponent scalar field, supplemented with a chiral Yukawa-interaction, and in presence of an explicit
symmetry breaking source quadratic in the scalar field. In a detailed investigation of the model with
ULð1Þ ×URð1Þ chiral symmetry, it is shown that by diminishing the strength of quadratic explicit
symmetry breaking, one can still keep stable the mass ratio of the fermionic and the pseudo-Goldstone
excitation. At the same time, the mass ratio of the two bosonic excitations appears to approach a unique
limiting value depending only on the infrared value of the first ratio but not on the microscopic (ultraviolet)
coupling values. These observations receive a general interpretation by the existence of a slowly drifting
partial fixed line located in the symmetric phase. Understanding the general conditions for its existence
allows the construction of a similar theory with ULð2Þ ×URð2Þ chiral symmetry. All results of the present
investigation were obtained with a nonperturbative functional renormalization group technique making use
of the first two approximations to the gradient expansion of the effective action.
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I. INTRODUCTION

Spontaneous symmetry breaking is a central feature of
elementary particle physics. The breakdown of the
SULð2Þ × SURð2Þ chiral symmetry of strong interactions
results in the existence of light pseudo-Goldstone pions [1].
Their nonzero mass is usually attributed to the presence of
an explicit symmetry breaking term in the Lagrangian of
the effective meson theory, linear in the meson fields. In
case of electroweak interactions, the would-be-Goldstone
degrees of freedom transmutate into the longitudinal
polarization modes of the massive vector fields without
any need for explicit symmetry breaking. In this case,
however, the lightness of the Higgs particle awaits some
dynamical explanation, in particular, since its tree level
value would be seriously altered by the quadratically
divergent ultraviolet field fluctuations. By the example
of the strong interactions, a popular idea is to assume that
the Higgs boson itself is a pseudo-Goldstone excitation of
some symmetry hiding the secret of the electroweak
symmetry breaking [2].
In the present paper, we shall investigate the effect of

quantum fluctuations on the particle spectra when the
explicit symmetry breaking is quadratic in the meson
fields, instead of the conventional linear external field.
The strength of this quadratic breaking itself is scale
dependent, and we will be particularly interested in inves-
tigating its effect on the renormalization evolution when its
starting (microscopic) value is chosen many orders of
magnitude smaller than the value of the parameters pre-
serving the symmetry of the respective models.
A model containing a real scalar (the “Higgs” boson) and

a single fermion flavor (the “top”) represents a minimal

framework, which allows us to study the influence of
quantum fluctuations on the Higgs potential [3–13].
Though it possesses only a discrete remnant of the chiral
symmetry, still an acceptable order of magnitude estimate
could have been obtained for the maximal momentum
value up to which the system is stable, and its characteristic
data (the vacuum expectation of the scalar field, the masses
of the top, and of the Higgs boson) can be fixed to their
experimental values. In the present study, we make use of
the simplest extension of this toy model allowing us to
define the Higgs as the pseudo-Goldstone boson in the
broken phase of the global continuous symmetry character-
izing the extension.
The simplest extension is to replace the real scalar by a

complex one and couple it to the single fermion flavor with
a chiral Yukawa interaction. This model has a ULð1Þ ×
URð1Þ global chiral symmetry, and the symmetry breaking
pattern ULð1Þ ×URð1Þ → UVð1Þ will be studied in pres-
ence of an explicit symmetry breaking term in the effective
action. This term, however, will be quadratic in the
complex scalar field [14,15], in contrast to the commonly
assumed linear dependence.
Model systems with an Abelian continuous symmetry

have received constant interest in the past. The symmetric
part of the Lagrangian has the same symmetry as the chiral
one-flavor NJL model, which served as the most trans-
parent illustration of the symmetry breaking mechanism
proposed in the classic publication of Nambu and Jona-
Lasinio [1]. It has been exploited as the simplest example of
dynamical fermion mass generation in discussions of chiral
symmetry breaking in hadrons and nuclei at finite temper-
ature and baryonic density [16]. Detailed investigations of
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its fixed point structure were realized with emphasis on the
Fierz ambiguity of the parametrization of its effective
action [17,18]. Its bosonization with help of a Hubbard-
Stratonovich (HS) transformation [19,20] leads to a
Yukawa-type model rather similar to the one investigated
in this paper. The complex scalar field is of an auxiliary
nature; it stands for a bound fermion-anti-fermion state.
It has no proper dynamics at the scale, where the HS-
transformation is applied, though field fluctuations gen-
erate in the infrared a kinetic term and also higher powers of
the field in its potential energy.
It can be noted that the compositeness scale defined in

[21,22] through the vanishing of the wave function
renormalization constant of the scalar field could be
included also into the present discussion by applying
existing renormalization group techniques [23,24]. The
assumed large amplitude evolution of the field renormal-
ization (the anomalous dimension) of the scalar field due to
the strong Yukawa interaction between the scalar and the
fermion field was the idea behind the suggestion of the
composite (t − t̄ bound state) nature of the Higgs field. Top-
quark condensation was one of the first suggestions
[21,22,25,26] for the mechanism of the electroweak sym-
metry breaking.
Another potential physical application of the Uð1Þ-

symmetric Yukawamodel is the Frogatt-Nielsen mechanism
explaining the hierarchy of lepton masses [27]. The starting
assumption is that different lepton flavors have different
charges under a hypothetical Uð1Þ symmetry, therefore
couple to different powers of the bosonic flavon field in
an effective low-energy model. The mass ratios can be
satisfactorily reproduced by choosing appropriate powers.
The aim of the present study is to take into account the

dynamical effect of quantum fluctuations on all couplings
with help of renomalization group equations (RGE)
[28–30]. For a first exploration of the emerging infrared
physics, the equations will be solved in the local potential
approximation (LPA) and the scalar potential is truncated
at quartic power. The (in)sensitivity of the results to these
restrictions will be discussed at length when higher powers
of the potential and the effects of the wave function
renormalization are switched on (the so-called LPA0).
The initial (ultraviolet) strength of the explicit symmetry

breaking relative to the symmetric mass term of the scalar
field will be varied. This variation is hardly noticeable on
the location of the critical surface separating the symmetric
and broken symmetry phases of the model. At the surface,
an Ising-type phase transition occurs corresponding to a
Zð2Þ-like symmetry left by the quadratic explicit symmetry
breaking term. In the symmetry broken phase, the infrared
spectrum will be fixed to values motivated by the known
spectra of the top-Higgs sector in such a way that the
pseudo-Goldstone boson of the broken UAð1Þ symmetry is
associated with the Higgs particle. The ultraviolet strength
of the explicit symmetry breaking is systematically

diminished keeping the fermion-to-pseudo-Goldstone mass
ratio fixed. One finds that the heavy-boson-to-pseudo-
Goldstone mass ratio is governed by the quartic self-
coupling, and it approaches a unique value in the infrared
irrespective of its starting ultraviolet value. The limiting
value is determined by the occurrence in LPA of a line of
ultraviolet fixed points in the coupling space. The fully
massive fermion-boson spectrum emerging in the symmet-
ric limiting case apparently does not follow Goldstone’s
theorem.
There is an obvious interest in investigating this new

class of theories possessing in the leading order of the
gradient expansion an interacting UV fixed line for the
ultraviolet completion of quantum field theories [31]. A
rather general perturbative analysis of the conditions for the
existence of a UV fixed point was given recently in
Ref. [32]. It was followed by a general discussion of the
stability of the ground state around a UV fixed point [33]
and the way symmetry breaking can be induced radiatively
[34]. Existence of an interacting UV fixed point in a
Yukawa-coupled system of Goldstone bosons and chiral
fermions was discussed perturbatively in Ref. [35].
Necessary and sufficient conditions for asymptotic safety
in general weakly coupled gauged theories were con-
structed [36] and collider based tests of some asymptoti-
cally safe extensions of the Standard Model were
investigated [37]. Nonperturbative exploration has been
achieved for a number of field theoretical models, including
Yukawa-models of chiral fermions and bosons with the
help of functional renormalization group equations [38–
42]. It should be emphasized that the quadratic explicit
symmetry breaking plays a role possibly controlling the
UV quantum fluctuations even in the exact solutions of
these systems.
One notes that this model with dynamically stabilized

quadratic explicit symmetry breaking parameters has been
discussed in the symmetric phase with the help of Dyson-
Schwinger equations with all symmetry preserving cou-
plings held fixed [14,15].
The paper is organized as follows. In Sec. II, the effective

quantum action investigated in this paper is introduced and
the RGE’s of its couplings are presented in LPA0 both in the
symmetric and the broken symmetry phase based on the
general Wetterich equation, supplemented with a linear
cutoff function [43]. In Sec. III, the phase structure is
mapped out in LPA for different initial strengths of the
explicit quadratic symmetry breaking term with a quartic
scalar potential. It is shown that a critical Yukawa coupling
value separates the phases of broken and unbroken UAð1Þ
symmetry for each initial set of the couplings character-
izing the potential energy of the scalar field. This value is
determined first from solving the RGE’s with a scale
independent Yukawa coupling. Next, it is argued that both
the effect of the Yukawa-running and of the initial strength
of the explicit symmetry breaking on the location of the
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critical surface is negligible. In Sec. IV, the curves of
constant pseudo-Goldstone-to-fermion mass ratios are
found in the coupling space, and the accessible range of
the heavy-boson-to-pseudo-Goldstone mass ratio is deter-
mined. The analysis of the mass spectra is systematically
repeated upon diminishing the relative strength of the
quadratic explicit symmetry breaking. The infrared value
of the heavy-to-pseudo-Goldstone mass ratio appears to
approach a unique limiting value. The emergence of this
limiting solution is interpreted in Sec. V with the help of a
line of fixed points arising in LPA in the symmetric phase
of the theory. The stability of the fixed point structure is
confirmed when higher dimensional operators with mod-
erate strength are included into the scalar potential. In
Sec. VI, the ansatz for the effective action is extended to
include the effects of wave function renormalization
(LPA0). Although the slow (logarithmic) evolution of the
Yukawa coupling effaces the interacting fixed line, but
remarkably only an “adiabatic drift” closely following the
change in the LPA RG-flow pattern with the variation of
the Yukawa coupling is produced. The LPA fixed line still
attracts the RG trajectories from the UV region again
leading to a narrowing of the range of mass ratios of the
scalar masses when the strength of the explicit symmetry
breaking gets weaker. A summary of our results accompa-
nied with an outline of its possible extension to more general
field theoretical models is given in Sec. VII. An appendix
provides detailed explicit information on the renormalization
group equations (RGE’s) used in this study.

II. THE MODEL AND ITS RGE’S

The invariant part of the action is the following:

ΓINV ¼
Z

ddx½Zψ ψ̄∂ψ þ Zϕ∂mΦ�∂mΦþ UðΦ�ΦÞ

þ hðψ̄RψLΦ� þ ψ̄LψRΦÞ�;

Φ ¼ 1ffiffiffi
2

p ðΦ1ðxÞ þ iΦ2ðxÞÞ; ψR=L ¼ 1

2
ð1� γ5Þψ :

ð1Þ

For the potential, one writes in the symmetric phase

UðINVÞ ¼ M2Φ�Φþ λ

6
ðΦ�ΦÞ2 þ λ3ðΦ�ΦÞ3; ð2Þ

while in presence of a condensate the parametrization

UðSSBÞ ¼ λ

6

�
Φ�Φ −

v2

2

�
2

þ λ3

�
Φ�Φ −

v2

2

�
3

ð3Þ

is more convenient. The ∼ðΦ�ΦÞ3 piece, which completes
the perturbatively renormalizable part of the potential, will
be used in Sec. V as a small perturbation for testing the
robustness of the findings obtained with quartic potential.

In other sections, we set λ3 ¼ 0. No attempt will be made to
explore the region λ < 0; λ3 > 0.
The action (1) has two global Uð1Þ symmetries. The first

corresponds to the fermion number conservation,

ψ → eiαψ ; Φ → Φ; ð4Þ

the second is generated by axial Uð1Þ transformations,

ψ → eiγ5Θψ ; ψ̄ → ψ̄eiγ5Θ; Φ → e−2iΘΦ; ð5Þ

which is written for the fermions of definite chiral projec-
tion as

ψL → e−iΘψL; ψR → eiΘψR: ð6Þ

This last symmetry does not allow the presence of a
chirality changing mass term for the fermions and also

requires vanishing of Γð2Þ
ΦΦ ¼ δ2Γ=δΦ2 and Γð2Þ

Φ�Φ� ¼
δ2Γ=δΦ�2 in the effective action. Dynamical emergence
of the corresponding terms in the course of the RG
evolution corresponds to dynamical symmetry breaking
(DSB) of the axial UAð1Þ symmetry,

ΓDSB ¼
Z
p
½ΠΦð−pÞΦðpÞ þ Π�Φ�ð−pÞΦ�ðpÞ�

þ
Z
p
½ΣLRψ̄Lð−pÞψRðpÞ þ ΣRLψ̄Rð−pÞψLðpÞ�:

ð7Þ

In the present investigation, we set ΣRL ¼ ΣLR ¼ 0, which
means that the fermion mass is fully due to the spontaneous
breaking of the UAð1Þ symmetry. Then there is a Zð2Þ-like
remaining discrete symmetry of the system,

Φ → −Φ; ψL → iψL; ψR → −iψR: ð8Þ

A. RGE’s of the system without scalar condensate

The Wetterich equation for a fermion-boson system can
be partitioned in the following form [44,45]:

∂tΓ¼ 1

2
∂̂tSTr logðΓð2Þ þRkÞ ¼−

1

2
∂̂tTr logðΓð2Þ

F þRF
k Þ

þ 1

2
∂̂tTr logðΓð2Þ

B þRB
k Þ

þ 1

2
∂̂tTr log ½1− ðΓð2Þ

B þRB
k Þ−1Γð2Þ

BFðΓð2Þ
F þRF

k Þ−1Γð2Þ
FB�:
ð9Þ

Here, Γð2Þ denotes the full second functional derivative of

the effective action, while Γð2Þ
B and Γð2Þ

F refer to its purely

bosonic and purely fermionic sector, respectively. Γð2Þ
FB and
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Γð2Þ
BF each contain one fermionic and one bosonic functional

derivative. The last term is present when the system is
immersed in a nonzero fermionic background as was
discussed at length in Refs. [44,45]. It contributes to
specific n-point functions defined through a number of
fermionic functional derivatives even if the fermionic
condensate is not present. The cutoff functions RB=F

k restrict
the functional trace to field components with momenta
larger than the actual scale k. The operation ∂̂t ¼ k∂̂k acts
only on the scale dependence of the cutoff functions RB=F

k .
The bosonic part of Γð2Þ can be written with U given in

(2) in the following matrix form when one uses the row
vector ðΦ�;ΦÞ and its adjungated column vector as
independent variables:

Γð2Þ
B ðq; q0Þ ¼ δðqþ q0Þ

ð2πÞd
�
Zϕq2R þM2 2Π�

2Π Zϕq2R þM2

�
;

ð10Þ

where q2R ¼ q2 þ RBðqÞ. It gives the propagator

GBðq;q0Þ ¼
ð2πÞdδðqþ q0Þ

Δðq2RÞ
�
Zϕq2R þM2 −2Π

−2Π� Zϕq2R þM2

�
:

ð11Þ

The zeros of the determinant of Γð2Þ
B determine the bosonic

spectra at the actual scale,

Δðq2RÞ ¼ ðZϕq2R þM2Þ2 − 4jΠj2;
m2

hb ¼ M2 − 2jΠj; m2
G ¼ M2 þ 2jΠj: ð12Þ

The meaning of the indices “hb” and “G” will be clarified
when discussing the spontaneously broken phase. In the
symmetric phase, the fermion has a massless propagator,
and no mass term is generated in this phase by the quantum
fluctuations either.
In the symmetric phase, the RGE’s of the parameters

characterizing the quartic potential and the Yukawa inter-
action are the following:

∂tM2¼−2h2
Z
q
∂̂t

1

Z2
ψq2R

þ2λ

3

Z
q
∂̂t
Zϕq2RþM2

Δðq2RÞ
;

∂tλ¼ 6h4
Z
q
∂̂t

1

Z4
ψq4R

−
λ2

3

Z
q
∂̂t
5ðZϕq2RþM2Þ2þ16jΠj2

Δ2ðq2RÞ
;

∂th¼ h3Π
Z
q
∂̂t

1

Z2
ψq2RΔðq2RÞ

: ð13Þ

The evolution of the explicit quadratic symmetry breaking
parameter is driven by itself,

∂tΠ ¼ −
λΠ
3

Z
q
∂̂t

1

Δðq2RÞ
: ð14Þ

The condition for the existence of the symmetric phase
with vanishing scalar background Φb ¼ Φ�

b ¼ u=
ffiffiffi
2

p
can

be read off from the one-point equation,

δΓ
δΦ

����
Φb

¼ U0Φ�
b þ 2ΠΦb ¼

�
M2 þ 2Πþ λ

6
u2
�

uffiffiffi
2

p ¼ 0:

ð15Þ

The phase transition to the broken symmetry phase occurs
where M2 þ 2Π vanishes. For this reason, it is convenient
to choose Π < 0. At the phase transition, one has to change
the parametrization of the potential to (3).
The ∂̂t operation has been applied to the integrands of

(13) and (14) with the choice of the linear (or optimized)
cutoff functions [43]. Then introducing the rescaled
variables

Πr ¼
Π

Zϕk2
; h2r ¼ Z−2

ψ Z−1
ϕ h2kd−4;

M2
r ¼

M2

Zϕk2
; λr ¼ Z−2

ϕ λkd−4;

ur ¼ Z1=2
ϕ ukð2−dÞ=2; vr ¼ Z1=2

ϕ vkð2−dÞ=2; ð16Þ

one finds the explicit expressions for the RGE’s in terms of
dimensionless quantities in LPA0. The complete set,
including the RG running of the anomalous dimensions ηi,

ηψ ¼ −∂t lnZψ ; ηϕ ¼ −∂tZϕ ð17Þ

is given in the Appendix.

B. RGE’s of the system with scalar condensate

The equation for the condensate takes now the form,

�
λ

6
ðu2 − v2Þ þ 2Π

�
uffiffiffi
2

p ¼ 0: ð18Þ

It has a positive solution for u2 under the condition
λv2 − 12Π > 0. This inequality is automatically fulfilled
for negative values of Π. Below everywhere jΠj will be
displayed.
The particle spectra is determined by the following

expressions:

Δðq2RÞ¼
�
Zϕq2Rþ

λ

3
v2þ4jΠj

�
ðZϕq2Rþ4jΠjÞ;

m2
hb ¼

λ

3
v2þ4jΠj ¼ λ

3
u2; m2

G¼ 4jΠj; mψ ¼ h
uffiffiffi
2

p :

ð19Þ
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The pseudo-Goldstone mass is given by mG, the mass of the heavy boson is denoted by mhb.
In the broken symmetry phase, the parameter v2 replaces M2. In this phase, it is more convenient to solve the RG

equations of the masses, where one exploits the relation λv2=3 ¼ m2
hb −m2

G which follows (18) and (19). The RGE of jΠj
differs from that of m2

G only by a trivial 1=4 factor. One writes the following two equations:

3

4
∂tm2

G ¼ −2h2∂̂t

Z
q

1

Z2
ψq2R þm2

ψ
þ λ

6
∂̂t

Z
q

4Zϕq2R þm2
hb þm2

G

Δðq2RÞ
;

∂tm2
hb ¼ 2h2∂̂t

Z
q

−Z2
ψq2R þm2

ψ

ðZ2
ψq2R þm2

ψÞ2
þ λ

6
∂̂t

Z
q

1

Δðq2RÞ
�
4Zϕq2R þ 7m2

hb þ 3m2
G −

m2
hb

Δðq2RÞ
ð4Zϕq2R þm2

hb þm2
GÞ2

�
: ð20Þ

In order to have sufficient number of equations, one makes use of the equation of h and λ, expressing their rates through
the masses. The RGE for the Yukawa coupling is the following:

∂th ¼ −
h3

2
ðm2

hb −m2
GÞ∂̂t

Z
q

−Z2
ψq2R þm2

ψ

ðZ2
ψq2R þm2

ψÞ2Δðq2RÞ
þ h3m2

hb

4
∂̂t

Z
q

1

Z2
ψq2R þm2

ψ

�
3

ðZϕq2R þm2
hbÞ2

−
1

ðZϕq2R þm2
GÞ2

�
: ð21Þ

The second term on the right-hand side of the equation is the
result of the Φ dependence of the boson propagator and is
present only in the broken symmetry phase. For the quartic
coupling, the simplest is to use its original definition:
ð3=2Þδ4Γ=ðδΦ2δΦ�2Þ. One finds a rather lengthy expression
due to the complicated dependence of the determinant Δ on
Φ and Φ�. Therefore, we give its explicit expression only in
the Appendix, together with the LPA0 equations for the
scaled (dimensionless) coupling strengths.

III. PHASE STRUCTURE IN LPA

The phase structure of the system in d ¼ 4 has been
mapped out in the three-dimensional coupling space of the
microscopic parameters ðλΛ;M2

rΛ; hΛÞ characterizing the
system at the UV scale Λ. RG evolutions starting from
the symmetric phase were followed to k ¼ 0, since it is
natural to assume that the “microscopic” theory is in the
symmetric phase. The RG trajectory of the system was

traced for various initial ratios jΠΛj=M2
Λ, and our goal was

to see to what extent the resulting physical picture depends
on this ratio. In the exploratory RG runs, the Yukawa
coupling h was kept constant, which was a fortunate
choice, since this turned out to be increasingly good
approximation with diminishing the ratio jΠΛj=M2

Λ. In
fact, in the symmetric phase, the rate of variation of h is
proportional to ΠðkÞ [see Eq. (13)]. The Yukawa coupling
turned out to control the borderline between the symmetric
and the broken UAð1Þ symmetry phase of the model.
A typical run is displayed in Fig. 1, for the starting ratio

jΠΛj=M2
Λ ¼ 0.01. The initial data of this run is chosen to

end up at k ¼ 0 with M2
0=Λ2 ¼ 2jΠ0j=Λ2, e.g., in a point

on the critical surface separating the symmetric and the
spontaneously broken phases as one sees when overlaying
the two curves in Fig. 2. Although the small value of
jΠΛj=Λ2 drops by circa 2%, it is stabilized quickly and
actually attracts the value of M2

k=Λ2 starting much higher

FIG. 1. A typical RG evolution of 2jΠj (left) and M2 (right) measured in units of Λ2 for jΠΛj=M2
Λ ¼ 0.01.
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and steeply decreasing by the term corresponding to the
quadratic divergence of the conventional perturbation
theory. This qualitative behavior is universal in the sense
that it is independent of the initial jΠΛj=M2

Λ ratio.
It turns out that for every initial (M2

rΛ; λΛ) pair, the
trajectory stays in the symmetric phase when one chooses
0 < hΛ < hcðM2

rΛ; λΛÞ. The critical surface hcðM2
rΛ; λΛÞ is

displayed in Fig. 3, where the surface is cut by the “physical”
value of hphys ¼ 173=246, corresponding to the toy Higgs-
top model. Since the physical world realizes the sponta-
neously broken phase, the allowed region of the parameter
space is nearly triangular, where hphys > hcðM2

rΛ; λΛÞ.
The variation of the surface (and also of the edge of the

region belonging to the broken symmetry phase) observed

for larger values of jΠΛj=M2
Λ, becomes unobservably small

when jΠΛj=M2
Λ ≪ 0.01 is chosen. The critical surface

converges to a limiting shape essentially coinciding with
the surface displayed in the figure. Also, it is important to
note that the effect of the RG running of h in the final values
of either M2ðk ¼ 0Þ=Λ2 or 2jΠðk ¼ 0Þj=Λ2 shows up only
in the fifth decimal place.
The universality class of the phase transition can be

characterized by the power of the dependence of the
difference M2ðk ¼ 0Þ=2jΠðk ¼ 0Þj − 1 on h − hc, as
approached from the symmetric phase. Since the lower
mass in this phase has a squared mass M2 − 2jΠj, this
difference describes the infinite increase of the correlation
length (the inverse mass) when the critical surface is
approached. Its scaling was tested in several points of
the critical surface and found to be linear, which corre-
sponds to a critical exponent ν ≈ 1=2, coinciding with the
mean-field value of the correlation length exponent of the
Ising model. This conclusion is in agreement with the fact
that the quadratic explicit symmetry breaking leaves for the
full system a Zð2Þ-like symmetry intact [see Eq. (8)].
The order parameter and the excitation spectra in the

broken symmetry phase, however, reflects the UAð1Þ
symmetry. In particular, one finds a pseudo-Goldstone-
Nambu boson (PNGB) excitation in this phase. It is rather
interesting that a sort of level crossing phenomenon is
produced through the critical surface. The pseudo-
Goldstone mode is continuously connected with the more
massive mode of the symmetric phase, while the heavy
mode of the broken symmetry phase develops from the
critical excitation.

IV. SPECTRA OF THE BROKEN SYMMETRY
PHASE IN LPA

As a first step of the exploration of the spectra, one can
locate the starting ðλΛ;M2

rΛÞ points wherefrom a fixed
infraredm2

G=m
2
ψ ratio can be reached. In the allowed region

(h > hc), which has a triangular shape when looking at it
almost parallel to the h axis, these points form an almost
linear curve in the λΛ −M2

rΛ-plane as one can see from
Fig. 3. This figure is based on the RG evolutions done with
jΠΛj=M2

Λ ¼ 0.01, but its variation had not affected the
qualitative features of the fixed mass-ratio curves. It is
remarkable that the red-colored line which corresponds to
the ratio when the pseudo-Goldstone is identified with the
Higgs boson, and the fermion with the mass of the top,
passes extremely close to criticality. This circumstance
explains that even in the broken symmetry phase, the
Yukawa coupling is hardly changing. In this region, the
additional term ∼m2

hb of its rate of evolution is also rather
small, see Eq. (21).
Next, one can investigate the ratio m2

hb=m
2
G along this

line in order to see the existence of any bound for the heavy
mass. The separate evolution of the two scalar masses in

FIG. 2. An RG evolution of M2 and 2jΠj ending on the critical
surface for jΠΛj=M2

Λ ¼ 0.01.

FIG. 3. The critical surface determined for the ratio jΠΛj=M2
Λ ¼

0.01 (yellow). The region belonging to the broken symmetry
phase lies above the critical surface, the plane corresponding to
the fixed value of the Yukawa coupling is colored blue. Further
decreasing the value of the relative strength of the explicit
symmetry breaking causes essentially no change in the shape
of the critical surface. Also lines of equal infrared values of the
m2

G=m
2
ψ ratio are displayed for two different values.
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the broken symmetry phase displays a rather nontrivial
evolution. Also the fermion (“top”) mass displays a sort of
“walking” evolution around the same value of t ¼ lnðk=ΛÞ
as can be seen from Fig. 4.
The ratio m2

hb=m
2
G shows monotonic increase with

decreasing M2
rΛ (or equivalently, increasing λΛ). Figure 5

clearly shows that there is an upper bound at the present
starting jΠΛj=M2

Λ ratio.
The interesting question is to see how this upper bound

modifies when the strength of the explicit symmetry
breaking is systematically diminished. Since the form of
the effective action is unchanged, one has for the mass
ratios [see Eq. (19)],

m2
G

m2
ψ
¼ 8jΠðk ¼ 0Þj

h2u2ðk ¼ 0Þ ;

m2
G

m2
hb

¼ 12jΠðk ¼ 0Þj
λðk ¼ 0Þu2ðk ¼ 0Þ ¼

3h2ðk ¼ 0Þ
2λðk ¼ 0Þ

m2
G

m2
ψ
: ð22Þ

The first ratio and mψ=u=
ffiffiffi
2

p
were fixed to prescribed

values. Then the variation of the second simply reflects the

variation of λðk ¼ 0Þ with the initial data. The obvious
question is to see the dependence of λðk ¼ 0Þ on ΠΛ=M2

Λ
when its evolution starts with an arbitrary λΛ.
In Fig. 6, this variation is displayed in LPA for λΛ ¼ 0.5,

0.8, 0.94, 1.0, 1.4 (this figure contains information also
concerning the behavior in LPA0, which will be discussed
in Sec. VI). The first thing to observe is a definite
dependence with diminishing ΠΛ=M2

Λ in the range
10−3–10−7. This is rather different from the case of the
linear explicit symmetry breaking [∼HðΦþΦ�Þ], where λ
does not depend on the strength H of the explicit breaking.
Actually, there is a specific λΛ value equal to λs ¼ 0.9400,
where jΠΛj=M2

Λ does not have any effect on m2
G=m

2
hb. It

appears on the figure that themass ratios arising in the region
λΛ>λs are increasing,while those falling into region λΛ < λs
decrease when the ratio jΠΛj=M2

Λ is diminished. The best fit
is of the form aþ bðjΠΛj=M2

ΛÞc. The values b ¼ 0.3103,
c ¼ 0.0268 were fitted, while a was fixed to the mass ratio
belonging to λΛ ¼ λs ¼ 0.9400: m2

G=m
2
hb → 0.4340. These

infrared parameters vary with values of m2
G=m

2
ψ and of

h as will be discussed shortly on an other numerical
example below.
For λΛ ¼ λs, it turns out that all couplings and masses

evolve along the same RG trajectory, irrespective the
starting jΠΛj=M2

Λ ratio. Just for a smaller starting value,
the evolution in the symmetric phase becomes longer in t.
The length of the t interval needed for the buildup of the
broken symmetry characteristics is always the same. There
is a mapping from the “RG time” t on the values of
jΠΛj=M2

Λ. This observation is the key for the RG-flow
interpretation of the apparent focusing of λðk ¼ 0Þ and with
it of the mass ratio m2

hb=m
2
G on a unique finite value, when

the quadratic explicit symmetry breaking tends to zero.
The generic nature of the solution described above is

confirmed also when one works out another parametriza-
tion suggested by the pion-sigma-constituent quark system
of strong interactions. There we chose u=

ffiffiffi
2

p
≈ 100 MeV,

mq ≈ 300 MeV, andmπ ≈ 140 MeV. The convergence to a

FIG. 4. RG evolution of the dimensionless squared fermion and
boson masses (the PNGB is the lightest at t ¼ −∞). Note that the
evolutions of the masses are displayed only in the broken
symmetry phase (therefore, m2

hb and m2
ψ start from zero).

FIG. 5. Monotonic variation of the heavy-light scalar mass ratio
with M2

rΛ for jΠΛj=M2
Λ ¼ :01.

FIG. 6. Variation of m2
G=m

2
hb in LPA with ΠΛ=M2

Λ for various
λΛ values (hΛ ¼ 173=246). Stability of results obtained in LPA is
checked with LPA0 for parameter sets, indicated in the figure
(black triangles and dash-dotted black horizontal line).
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unique limiting m2
π=m2

σ value is much faster in this case as
can be seen in Fig. 7. This example is characterized by the
couplings λs ≈ 17; h ¼ 3, clearly much beyond the pertur-
bative regime. Avery good power-law fit is displayed which
was determined to the data: λΛ ¼ 8; jΠΛj=M2

Λ ¼ 0.01. The
best fit parameters area ¼ 0.5307,b ¼ 0.0308, c ¼ 0.8318.
The value of the exponent c is very different from that
obtained in the previous numerical example. Its compatibility
with universality is far from obvious.
At this point of the discussion, one should retain that in

case of the quadratic explicit symmetry breaking, there is
an alternative to the conventional picture of spontaneous
symmetry breakdown in the limit of vanishing explicit
breaking where one keeps the pseudo-Goldstone excitation
massive (its ratio to the fermion mass is kept fixed and
finite). According to this solution, the mass of its heavy
boson partner is uniquely predicted in LPA. In the next
section, it is shown that for any choice of the initial λΛ, the
RG flow unavoidably approaches the renormalized trajec-
tory starting from a UV fixed point λ�UV to which λs
converges when jΠΛj=M2

Λ → 0.

V. RG FLOW IN LPA FOR THE LIMITING
CASE jΠΛj=M2

Λ → 0

It can be very strange, even counterintuitive that, despite
we decrease the strength of the explicit breaking, the system
does not approach the spectrum expected in the phases of the
fully symmetric theory. In this section, the reason for this
unexpected behavior is revealed.
Let us start with an analogy that helps us to understand

this phenomenon. In pure Yang-Mills theories, the only
parameter that characterizes the system is the coupling
constant g. It is very natural to think that a system with a
large coupling is strongly interacting, while a small
coupling means weak interaction, and in the zero coupling
limit, the system becomes free. Still, this expectation does
not work in Yang-Mills theories. If the coupling is strictly
zero, there is no interaction, of course. But for an arbitrarily
small positive UV value of the coupling, all choices

describe the same physics in the IR limit. The reason is
that the coupling g actually depends on the scale, that is
g ¼ gðkÞ, and in the UV limit, the coupling goes to zero
gðk → ∞Þ ¼ 0 (asymptotic freedom)—or stated another
way, the system possesses an UV fixed point at g ¼ 0.
There is a one-to-one correspondence between the value of
the coupling and the scale. This means, however, that
giving the value of the coupling only tells us the scale,
where we are actually looking at the system (this
phenomenon is called dimensional transmutation), and
has nothing to do with the strength of the interaction in
the infrared.
Basically, the same dimensional transmutation occurs

here in our model, with some important modifications. We
have four couplings, λðkÞ, hðkÞ, ΠðkÞ, and M2ðkÞ. Their
scale dependence in the symmetric phase is described in
LPA by Eq. (A4) after putting ηi ¼ 0. Inspecting these
equations, we find that there is in the system an (interact-
ing) UV fixed point. Assuming M2

r ≪ 1 (this can be
verified a posteriori), we arrive at the formulas

λ�2UV
h4UV

≈
18

5
;

M�2
r;UV

h2UV
≈ 2vd

�
1 −

ffiffiffi
2

5

r �
; Π�

r;UV ¼ 0;

ð23Þ

while for the value of hUV, we do not have any restriction,
except that it still should be larger than hcðM2

rΛ; λΛÞ. This
means that in fact we have a fixed line, not just a point.
Before continuing the analysis of the RG map, we

discuss on the example of the operator λ3ρ3, the persistence
of the UV fixed line in LPA. The λ3ðΦ�ΦÞ3 term provides a
tadpole contribution to the evolution of λ, proportional to
λ3. The bosonic contribution to the evolution of λ3 consists
of two terms as can be checked with (A10), one is
proportional to λ3λ, the other to λ3. There is also a fermionic
contribution, Eq. (A11) proportional to h6. One can solve
the fixed point equation of λ3r ¼ λ3k2 and substitute its
expression into the fixed point equation of λ. For a first
estimate of the effect of this term on the location of λ�UV,
one can neglect the M2

r dependence of the new term
and substitute into it for λ�UV its crude expression (23).
Obviously, the whole contribution will be ∼h6. Comparing
this to the ∼h4 term, one instantly derives an upper bound
for h2 as a negligibility condition for the λ3ρ

3 operator.
One can look for a numerical solution of the exact fixed
point equations for any given value of h. For instance,
choosing h ¼ 173=246, one finds λ�3UV ¼ 5.85 × 10−4

resulting in the following shift λ�UV∶ 0.9400 → 0.9450,
M�2

rUV∶ 1.152 × 10−3 → 1.142 × 10−3. RG trajectories
starting from the neighborhood of the new position of
the fixed point will quickly find their way back to the
trajectories determined with the quartic potential, since λ3r
diminishes quadratically towards the infrared.

FIG. 7. Variation of m2
G=m

2
hb in LPA with ΠΛ=M2

Λ in case of
parameters suggested by strong interactions (hΛ ¼ 3).
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Let us return to the analysis of the RG map obtained with
quartic scalar potential. In the λ −M2

r space, we can map out
the flow diagram as shown in Fig. 8. In this figure, we
restricted ourselves to those UV values that lead to sponta-
neous symmetry breaking (SSB) in the IR. We can recover
the UV fixed point at some definite λ� andM�2

r position, and
we see that the fixed point coordinates coincide rather well
with the estimate (23) for the chosen value of h. Moreover,
using the approximate expression of λ�UV in (22), one finds for
the scalar mass ratio corresponding to the renormalized
trajectorym2

G=h
2
hb ¼ 0.42, which is in very good agreement

with the numerical solution. If we are on a RG trajectory
where λ > λ�UV, then λðkÞwill run into a Landau pole at some
k ¼ ΛL scale, whereM2

r → −∞: this is the upper part of this
figure.On the other hand, ifwe have λ < λ�UV at a given scale,
λðkÞ will cross zero at some k ¼ Λ0 value (vacuum stability
bound), where M2

rðkÞ remains finite. We remark that
although it seems from this figure that the RG trajectories
merge, but this apparent phenomenon is just due to the finite
resolution: two RG trajectories must never merge or cross
each other.
The RG flow of Πr is very dull: it goes to Πr ¼ 0 with an

exponent very close to −2, i.e., ΠrðkÞ ¼ C=k2 for large k
values.But this alsomeans that near theUV fixed pointΠ=M2

scales as ∼1=k2. So, similarly to the QCD case, the quantity
Π=M2 has nothing to do with the strength of the explicit
breaking, but tells us the scale, at whichwe look at the system.
In the above limiting process towards the vanishing of

the explicit symmetry breaking, we keep λΛ constant, while

decreasing the value of jΠΛj=M2
Λ. As we have seen,

jΠj=M2 → 0 implies increasing scale k → ∞, while we
keep the coupling λΛ fixed upon this process. But, as we
also analyzed, at large scales a generic λ blows up or
crosses zero, so the fact alone that at a large scale k, it is
forced to assume a finite positive value, means that the RG
trajectory on which it actually lies is closer and closer to the
renormalized trajectory. Therefore, the corresponding IR
value λðk ¼ 0Þ will converge to the one evolving along the
renormalized trajectory from the fixed point value λ�UV and
to the mass ratio determined by λ�UV=h

2
UV.

This qualitative analysis can be followed more directly in
Fig. 9, where we map the renormalization trajectories in the
λ − logðM2=jΠjÞ plane. In this figure, the UV fixed point is
shifted to infinity. One easily recognizes that the process
which increasesM2

Λ=jΠΛjwith λΛ kept fixed, singles out RG
trajectories closer and closer to the renormalized trajectory
originating from the point ðλ�UV; logðM�2

UV=jΠ�
UVjÞ ¼ ∞Þ.

For a quantitative analysis, we will assume that the above
process is governed by a single UV fixed point. We
introduce the usual fixed point scaling laws,

δλ¼ λ−λ�UV ¼ðC1kÞ2ζ; δM2 ¼M2
r −M�2

rUV ¼ðC2kÞ−ν0 :
ð24Þ

The powers ζ; ν0 can be found by linearizing the LPA-form
of the RGE’s (A4) around the fixed point (23). Expanding
the eigenvalues to the same order in the small quantity

FIG. 8. Flow diagram in the λ −M2
r space, restricting to those

initial values that lead to SSB. We can recover the UV fixed point
at the analytically determined λ�UV and M�2

rUV position (red
diamond). The arrows point in the direction of increasing the
RG time t. The apparent merging of the RG flows along the
UV-unstable direction is fake, it is just the consequence of the
finite resolution of the picture.

FIG. 9. RG running with increasing t in the λ − logðM2=jΠjÞ
plane and in the symmetric phase. The position of UV fixed point
is now pushed to ∞ along the x axis. The dashed line indicates
that the solution at a fixed value of λΛ while approaching Π ¼ 0
forces the system to run on trajectories closer and closer to the
trajectory originating from ðλ�UV;M�2

rUV).
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λ�UVvd=ð1þM�2
rUVÞ3, the expressions for the scaling powers

are the following:

2ζ ≈
1

2π2

ffiffiffi
5

2

r
h2; ν0 ≈ 2 −

2

5
ζ: ð25Þ

We introduce

ρ ¼ M2
r

Πr
: ð26Þ

Near the fixed point, at large values of ρ, we find

ρ ≈
M�2

r

C=k2
∼ k2: ð27Þ

Therefore, near the UV fixed point, we can write

δλðkÞ ¼ CρζðkÞ: ð28Þ

For smaller values of ρ, we extend its functional form as

δλðkÞ ¼ CðρðkÞ þ ρ0ÞζðkÞ: ð29Þ

In the IR limit, ρ runs into a constant (actually a negative
value, due to SSB), and δλ also reaches a constant value.
Therefore, we have

δλIR ¼ δλUV
ðρIR þ ρ0Þζ0
ðρUV þ ρ0Þζ

: ð30Þ

This means that for large values of ρUV

λIR ¼ λ�IR þ κρ−ζUV: ð31Þ

This suggests a power-law approach to the limiting infrared
value as was found in the numerical examples of the
previous section. The above approximate expression for ζ
leads to ζðh ¼ 173=246Þ ¼ 0.0198, which agrees satisfac-
torily with the numerically found value of the power for this
case. For the second case (h ¼ 3), the agreement is worse,
probably because it lies beyond the perturbative regime.
The increasing tendency with h2 is qualitatively confirmed.

VI. EFFECT OF WAVE FUNCTION
RENORMALIZATION (LPA0)

The qualitatively new effect arising from taking into
account anomalous dimensions is the nontrivial evolution
of the Yukawa coupling, which suppresses the existence of
the interacting LPA fixed point in the ultraviolet. As one
can see from combining (A4) with (A5) in the neighbor-
hood of the fixed point determined in LPA, the variation of
the Yukawa coupling is well described as

h2rðtÞ ¼
h2rðt0Þ

1− 2h2rðt0ÞCðt− t0Þ
; C≈ v4

�
4þ 2

1þM�2
rUV

�
:

ð32Þ

This logarithmic variation is rather slow compared to the
powerlike scaling of the other couplings (in particular,
since jCj < 0.02). Therefore, one expects an “adiabatic”
adaptation of the RG flow found in LPA to the actual value
of hrðtÞ, which means that the flow described for fixed
hrðΛÞ in the previous section suffers only smooth defor-
mation as hrðtÞ changes.
This argument is valid near the LPA fixed point. More

generally, one compares Fig. 8 to the flow diagram
determined with LPA0, e.g., Fig. 10. The figure displays
the flow for jΠΛj=M2

Λ ¼ 10−4, but its characteristic features
do not change for weakening relative strength of the
explicit symmetry breaking. Similar figures arise when
hrðΛÞ is varied.
Since there is no fixed point, the flow lines leading to the

broken symmetry phase cover the complete positive quarter
of the λr −M2

r plane. The most noticeable structural feature
of the flow is a well recognizable remnant of the LPA
separatrix as an almost straight line along which the RG
trajectories go through a sharp (though continuous) change
(see the right-hand plot in Fig. 10). Left from this line the
RG trajectories essentially coincide with those found
in LPA.
With the help of a certain λ0s, one divides on the λr −M2

r
plane the RG trajectories into two distinct classes. The
trajectories which at criticality have λrðM2

r ¼ M2
r;critÞ <

λ0sðhrðΛÞÞ cross in the symmetric phase at some momentum
scale through λr ¼ 0, defining the scale of instability.
Trajectories which have on the critical surface
λrðM2

r ¼ M2
r;critÞ > λ0sðhrðΛÞÞ eventually reach a Landau

singularity. There is a borderline trajectory, clearly
recognizable on the left of Fig. 10, separating these
classes. This “neutral” trajectory is selected by choosing
λrðM2

r ¼ M2
r;critÞ ¼ λ0sðhrðΛÞÞ. This trajectory displays a

linear λrðM2
rÞ dependence towards ultraviolet. The

sequence of fixed points found in LPA also form a straight
line, only with slightly different slope as one sees in
Fig. 11. The moderate shift is the result of the “adiabatic”
deformation of the trajectories.
The predetermined m2

ψ=m2
G and

ffiffiffi
2

p
mψ=u ¼ hrðk ¼ 0Þ

values select some hrðΛÞ and jΠrðΛÞj. The “adiabatic”
nature of the RG-flow deformation allows us to find this
initial values rather close to the LPA values. When one
decreases jΠΛj=M2

Λ, one finds the appropriate initial
couplings just lying somewhat farther into UV along the
LPA0 RG trajectory.
The focusing array of RG trajectories is attracted by the

neighborhood of the partial (LPA) fixed line labeled in
the λr, Πr;M2

r subspace by h2Λ. For ΠΛ=M2
Λ ¼ 10−2–10−4,

the initial values are rather close to the former separatrix.
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The effect of the wave function renormalization is minimal
(ηi are both rather small) along the trajectory. Therefore, the
LPA0 predictions for the mass ratio mG=mhb are almost
indistinguishable from the LPA results. This can be seen

clearly in Fig. 6 for λΛ ¼ 0.5, 1.4. The mass ratio belonging
to λ0s is slightly different relative to the LPA case, as one can
see comparing the two horizontal lines in the same figure.
Eventually, it can be argued that similar phenomenon can

be observed for the ratio mG=mhb when weakening the
relative strength of the explicit symmetry breaking what has
been described above in LPA. Let us keep λrðk ¼ ΛÞ fixed
at some value above λ0sðM2

r ¼ M2
r;critÞ. With decreasing

jΠΛj=M2
Λ, one moves first over to trajectories closer to the

trajectory of λ0s (the “neutral” trajectory). This means that
first one approaches the mass ratio belonging to λ0s. In
contrast to LPA, now one will cross the “neutral” trajectory
and the corresponding λrðMr;critÞ moves away from this
line, further increasing the predicted bosonic mass ratio.
However, each trajectory in this region reaches a maximum
at some M2

r;max. The chosen λrðΛÞ touches upon this
turning point belonging to a certain RG trajectory. When
passing beyondM2

r;max, one crosses again trajectories lying
closer and closer to the “neutral” one. When one fixes an
initial λΛ below λ0s, one repeats the second half of this
analysis. When the starting trajectory has no maximum at
all, then with decreasing jΠΛj=Mr;Λ, one approaches
monotonically to the ratio belonging to the “neutral”
trajectory. In view of this qualitative analysis, one expects
that the ratio of the scalar masses at k ¼ 0 will approach in
the limit of vanishing explicit symmetry breaking the set of
IR couplings reached along the continuation of the
“neutral” trajectory into the broken symmetry phase. The
only change relative to LPA is that the convergence is now
nonmonotonic.

FIG. 10. Flow diagram in the λ −M2
r space. All trajectories start with hrðΛÞ ¼ 0.7. There is no fixed point in LPA0, still the

neighborhood of the partial (LPA) fixed point attracts the trajectories from the whole positive quarter. Left: The trajectory separating the
regions of UV instability from that of trajectories ending in a Landau singularity is clearly recognizable. Right:Magnified figure allows
the comparison of the RG trajectories derived in LPA (orange) and LPA0 (blue). It emphasizes the close coincidence of the LPA-phase-
separatrix (dashed red straight line) with the set of points where a sharp change in the character of the LPA0 flow occurs. The arrows lead
the eyes along the evolution towards infrared.

FIG. 11. The trajectories taking the same M2 ¼ 2jΠj and h2r
values, but different λr at the critical surface reach the “neutral”
line in the λ −M2

r plane at different hr. Next to the branching
points also the LPA fixed points corresponding to these hr values
are displayed. Points of the partial LPA fixed line (see the dash-
dotted line) as well as of the “neutral” line are labeled by the value
of the Yukawa coupling. The two lines nearly coincide for lower
values of hr.
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VII. SUMMARY OF THE RESULTS
AND EXTENSIONS

In this paper, we have shown that in the local potential
approximation of nonperturbative renormalization group
equations aULð1Þ ×URð1Þ symmetric Yukawa theory with
a quadratic explicit symmetry breaking term possesses a
UV fixed line in the symmetric phase, characterized by
vanishing strength of the explicit symmetry breaking. It is
the value of the Yukawa coupling, an RG invariant in this
approximation, which parametrizes the line of fixed points
in the three-dimensional ðλΛ; hΛ;M2

ΛÞ coupling space.
Although theYukawa coupling starts to evolve logarithmi-

cally in the next order of the gradient expansion of the
effective action, effacing in this way the partial fixed line, it
was found that a slightly displaced neighborhood of theLPA
fixed line (λ�rðhΛÞ;M2�

r ðhΛÞ) still attracts the RG trajectories
from the far ultraviolet (λr > λ�rðhΛÞ;M2

r > M2�
r ðhΛÞ). In the

region λr < λ�rðhΛÞ;M2
r < M2�

r ðhΛÞ, the RG flow of the
LPA and LPA0 essentially coincide.
The mechanism behind this focusing effect is made

explicit by comparing the RG flow in LPA and LPA0. It
appears useful to summarize in this conclusion first the
general features which lead to the existence of a partial UV
fixed point and comment on the changes occurring to its
effects in the next approximation steps at the end.
The UV fixed point was found in LPA with a quartic

local potential. The part of the RG flow was mapped out
which crosses the critical surface, bordering the phase of
broken UAð1Þ symmetry. The renormalized trajectory
starting from the fixed point characterized by some fixed
value of h has in the symmetric phase a constant λ ¼ λs.
Above this value, flow lines of the trajectories arrive from
the neighborhood of Landau poles, restricting the range of
allowed momenta. Below the renormalized trajectory, the
physically allowed portion of the trajectories is restricted by
the stability requirement λ > 0.
An important feature is that trajectories passing near the

unique fixed point of the quadratic symmetry breaking
(Π�

r ¼ 0), in the broken symmetry are able to sustain stable
fermion-to-boson and boson-to-boson mass ratios not
enforcing in the limiting case the validity of Goldstone’s
theorem.
The key points needed for the establishment of such an

LPA fixed line in a certain theory are the following:
(i) The RG evolution of the explicit quadratic symmetry

breaking parameter Π is driven by itself in the
symmetric phase, resulting from a convenient can-
cellation among the contributions from the bosons as
well, as a complete cancellation of the fermionic
contribution.

(ii) The rate of the RG evolution of the Yukawa coupling
h is also proportional to the explicit symmetry
breaking parameter Π, resulting from a convenient
cancellation among the bosonic contributions.

(iii) The existence of the interacting LPA fixed point
(λ�UV;M

�
rUV) is made possible by the compensation

of the bosonic contributions (proportional to some
power of the self-coupling λ) through the fermionic
contribution (proportional to the nonrunning
Yukawa coupling). It is a nontrivial requirement to
find this fixed point in the physically allowed range.

In order to demonstrate the generic nature of the
construction leading to such a UV fixed line, we shortly
demonstrate its existence in a well-known model with a
larger symmetry group. Let consider the ULð2Þ ×URð2Þ
symmetric chiral “quark-meson” theory. The bosonic fields
of the model are written in a 2 × 2 matrix with complex
elements and transform as follows:

U¼ σþ iηþðsaþ iπaÞτa;
U→ULUU†

R; UL ∈ SUð2ÞL; UR ∈ SUð2ÞR: ð33Þ

The part of the action invariant under ULð2Þ ×URð2Þ is the
following:

ΓINV ¼
Z
x

�
1

4
Tr∂αU†∂αU þ ψ̄∂ψ

þ VðρÞ þ hðψ̄LUψR þ ψ̄RU†ψLÞ
�
; ð34Þ

with ρ ¼ ð1=4ÞTrU†U. The fermion field ψL=R represents
an SUL=Rð2Þ doublet. The quadratic explicit symmetry
breaking is chosen in the following specific form, closed
upon the RG evolution:

ΓDSB ¼
Z
x
Π̄ðTrU2 þ TrðU†Þ2Þ: ð35Þ

Assuming a nonzero background for the σ field, one
quickly finds the expression for Γð2Þ and one proceeds to
the straightforward derivation of the RGE’s, noting the fact
that in a pure σ background with the above explicit
symmetry breaking Gπ ¼ Gη in both phases and Gs ¼
Gσ in the symmetric phase. The RGE’s for the σ and π
fields in the symmetric phase (V 0 ¼ M2; V 00 ¼ λ=3) are the
following:

∂tðM2 þ Π̄Þ ¼ λ

3
∂̂t

Z
q
ð3Gσ þ 2GπÞ − 8h2∂̂t

Z
q

1

q2R
;

∂tðM2 − Π̄Þ ¼ λ

3
∂̂t

Z
q
ð2Gσ þ 3GπÞ − 8h2∂̂t

Z
q

1

q2R
; ð36Þ

or
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∂tM2 ¼ 5λ

6
∂̂t

Z
q
ðGσ þGπÞ − 8h2∂̂t

Z
q

1

q2R
;

∂tΠ̄ ¼ λ

6
∂̂t

Z
q
ðGσ −GπÞ ¼ −

λΠ̄
3
∂̂t

Z
q

1

ðq2R þM2Þ2 − Π̄2
:

ð37Þ

Clearly, the explicit symmetry breaking parameter is driven
by itself, and it has the fixed point Π̄� ¼ 0.
In the symmetric phase, only fermions contribute to the

RGE of the Yukawa coupling,

∂th ¼ −
h3

3
∂̂t

Z
q

1

q2R
½Gσ −Gη þ 3ðGS − GπÞ�

¼ −
4

3
h3∂̂t

Z
q

1

q2R
ðGσ −GπÞ; ð38Þ

which is proportional to Π̄ by the difference Gσ −Gπ as
was the case of the RGE (21) (compare with the first two
points of the general scheme). Therefore, any chosen value
of hmight represent a fixed point solution ofM2

r and λ. The
RGE of λ is structurally the same as was the case of the
Uð1Þ symmetric theory,

∂tλ¼48h4∂̂t

Z
q

1

q4R
−
λ2

2
∂̂t

Z
q

�
G2

sþ
4

3
G2

πþ3G2
σ

�
: ð39Þ

Analyzing the RGE’s, one quickly finds the following
approximate fixed point equations for any chosen value of
h2 valid in the ultraviolet under the condition of the
negligibility of M2

r on the right-hand side of the RGE’s:

Π�
UV ¼ 0;

8

3
λ�2UV ¼ 48h4;

2M�2
rUV ¼ 2vd

�
8h2 −

5

3
λ�UV

�
; ð40Þ

having the solution

Π�
UV ¼ 0; λ�UV ¼

ffiffiffiffiffi
18

p
h2; M�2

rUV ¼ 1

32π2
ð8− 5

ffiffiffi
2

p
Þh2:
ð41Þ

This solution is physical, since the bracket in the expression
ofM�2

rUV is positive. It is also compatible with the condition

M�2
rUV ≪ 1, and the RG flow should be rather similar in its

neighborhood to that described in detail for the Uð1Þ case.
The particle spectra in the broken symmetry phase is far
from the phenomenologically interesting case of strong
interactions; therefore, the interest of the quadratic explicit
symmetry breaking is doubtful for the phenomenology of
any realistic two-flavor quark-meson theory.
The generality of the constructional requirements makes

it clear that including higher (perturbatively irrelevant)
powers of the invariant ρ into the potential VðρÞ will only
slightly influence the result of the analysis for moderate
values of the Yukawa coupling. The upper bound on h will
depend on the algebraic structure of the model.
Nonzero anomalous dimensions (the so-called LPA0)

efface the fixed line. Since the logarithmic evolution of the
Yukawa coupling in the region of the LPA fixed line is
parametrically slower than the scaling of the other cou-
plings, some kind of “adiabatic” deformation of the RG
flow found in LPA has a chance to occur. The coefficient
governing the logarithmic variation depends on the sym-
metry group of the theory; therefore, this expectation
should be checked numerically case by case.
Possible significance of theories, whose fully massive

infrared spectra is dominated by the remnants of a partial
UV fixed line in the limit of vanishing explicit symmetry
breaking, for consistent ultraviolet completion should be
investigated in the future systematically. It would be also of
interest to reconstruct the features of this study from a
purely fermionic version of this model (inverse Hubbard-
Stratonovich transformation). Lattice realization of the RG
evolution would provide a nonperturbative check of the
findings of the present paper.
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APPENDIX: EXPLICIT RENORMALIZATION
GROUP EQUATIONS

The RGE’s were derived with the linear (optimized)
cutoff functions of Litim [43],

RBðqÞ ¼ q2
�
k2

q2
− 1

�
Θ
�
k2

q2
− 1

�
; RFðqÞ ¼ q

�
k
q
− 1

�
Θ
�
k2

q2
− 1

�
: ðA1Þ

In the symmetric phase, the following basic relations are used:
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∂̂t

Z
q

1

ðZ2
ψq2R þm2

ψÞn
¼ −2nvdkdþ2

1

ðZ2
ψk2 þm2

ψ Þnþ1

�
1 −

ηψ
dþ 1

�
;

∂̂t

Z
q

1

ððZϕq2R þM2Þ2 − 4Π2Þn ¼ −4nvdkdþ2
Zϕk2 þM2

ððZϕk2 þM2Þ2 − 4Π2Þnþ1

�
1 −

ηϕ
dþ 2

�
; ðA2Þ

where vd ¼ Sd=ðdð2πÞdÞwith Sd denoting the surface of the d-dimensional unit sphere. In the broken symmetry phase, the
following general relation is used in the derivation of the RGE’s:

∂̂t

Z
q
Gl

Gðq2RÞGn
hbðq2RÞ ¼ −2vdkdþ2Gl

Gðk2ÞGn
hbðk2ÞðlGGðk2Þ þ nGhbðk2ÞÞ

�
1 −

ηϕ
dþ 2

�
;

GGðq2RÞ ¼
1

ZΦq2R þm2
G
; Ghbðq2RÞ ¼

1

ZΦq2R þm2
hb

: ðA3Þ

In the symmetric phase and in four dimensions [v4 ¼ ð32π2Þ−1], the following set is obtained for the couplings defining
the ansatz for the effective action as the sum of ΓINV and ΓDSB, when one takes into account wave function renormalization
and a quartic scalar potential:

∂tΠr þ ð2 − ηϕÞΠr ¼
4λrΠrv4

3

1þM2
r

ðð1þM2
rÞ2 − 4Π2

rÞ2
�
1 −

ηϕ
6

�
;

∂tM2
r þ ð2 − ηϕÞM2

r ¼ 4h2rv4

�
1 −

ηψ
5

�
−
4λrv4
3

ð1þM2
rÞ2 þ 4Π2

r

ðð1þM2
rÞ2 − 4Π2

rÞ2
�
1 −

ηϕ
6

�
;

∂tλr − 2ηϕλr ¼ −24h4rv4
�
1 −

ηψ
5

�
þ 4λ2rvdð1þM2

rÞ
3ðð1þM2

rÞ2 − 4Π2
rÞ3

ð5ð1þM2
rÞ2 þ 52Π2

rÞ
�
1 −

ηϕ
6

�
;

∂th2r − ðηϕ þ 2ηψÞh2r ¼ −
4Πrh4rv4

ð1þM2
rÞ2 − 4Π2

r

�
2ð1þM2

rÞ
ð1þM2

rÞ2 − 4Π2
r

�
1 −

ηϕ
6

�
þ 1 −

ηψ
5

�
: ðA4Þ

The algebraic equations determining the anomalous dimensions look like

ηψ ¼ h2rv4
ð1þM2

rÞ2 þ 4Π2
r

ðð1þM2
rÞ2 − 4Π2

rÞ2
�
1 −

ηϕ
5

�
; ηϕ ¼ h2rv4ð4 − ηψÞ: ðA5Þ

A test of the robustness of the conclusions obtained in LPA with a quartic potential is performed by investigating the

effect of the next term of the expansion of the scalar potential λ3ðΦ�ΦÞ3 ≡ λ3ρ
3. The determinant of Γð2Þ

B supplemented with
this term in LPA has the following expression:

Δðq2R;Φ;Φ�Þ ¼
�
q2R þM2 þ 2λ

3
ρþ 9λ3ρ

2

�
2

−
�
2Πþ λ

3
Φ�2 þ 6λ3ρΦ�2

��
2Πþ λ

3
Φ2 þ 6λ3ρΦ2

�
: ðA6Þ

It affects the bosonic contribution to ΓΦ2Φ�2 and ΓΦ3Φ�3 . The derivatives of Δ with respect to Φ and Φ� are denoted as

Δnm ¼ δnþmΔ
δΦnδΦ�m : ðA7Þ

The nonvanishing derivatives at the origin are the following:

Δ̄11 ¼
4λ

3
ðq2 þM2Þ; Δ̄22 ¼ 4

�
λ2

3
þ 18λ3ðq2 þM2Þ

�
; Δ̄33 ¼ 288λλ3;

Δ̄20 ¼ Δ̄02 ¼ −
4λ

3
Π; Δ̄31 ¼ Δ̄13 ¼ −72λ3Π: ðA8Þ

One checks readily that the tadpole integral computed with the 6-leg term contributes to the right-hand side of ΓΦ2Φ�2 , that is
to the running of 2λ=3,
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18λ3∂̂t

Z
ðGGðq2RÞ þGhbðq2RÞÞ; GG ¼ 1

q2R þM2 − 2Π
; Ghb ¼

1

q2R þM2 þ 2Π
: ðA9Þ

Taking further two derivatives, one finds the bosonic contribution to the RGE of λ3 (after dividing both sides by 36),

∂̂t
δ6

δΦ3δΦ�3
1

72

Z
q
logΔðq2R;Φ;Φ�Þ ¼ 1

72
∂̂t

Z
q

�
Δ33

Δ
−

3

Δ2
ð3Δ11Δ22 þ 2Δ20Δ31Þ þ

6

Δ3
ð2Δ3

11 þ 3Δ2
20Δ11Þ

�
: ðA10Þ

The fermionic contribution to ∂tλ3 is given with help of the massless fermion propagator GF and the chiral projectors P�,

−
1

36

δ6

δΦ3δΦ�3 ∂̂tTr logΓ
ð2Þ
F ¼ 1

3
h6TrðGFPþGFP−GFPþGFP−GFPþGFP−Þ

¼ −
2

3
h6

Z
q
∂̂t

1

ðP2
FðqÞq2Þ3

: ðA11Þ

In the broken symmetry phase, it is convenient to introduce a separate notation for the scaled propagators in LPA0,

dG ¼ 1

1þ μ2G
; dhb ¼

1

1þ μ2hb
; dψ ¼ 1

1þ μ2ψ
: ðA12Þ

One writes for the Yukawa coupling and the scaled masses after a lengthy but straightforward computation the following
RGE’s:

μ2G ¼ m2
G

Zϕk2
; μ2hb ¼

m2
hb

Zϕk2
; μ2ψ ¼ m2

ψ

Z2
ψk2

ðA13Þ

3

4
ð∂tμ

2
G þ ð2 − ηϕÞμ2GÞ ¼ 4h2rv4d2ψ

�
1 −

ηψ
5

�
−
λr
3
v4

�
1 −

ηϕ
6

�
½2d2hb þ 2d2G − ðμ2hb þ μ2GÞð2þ μ2hb þ μ2GÞd2hbd2G�;

∂tμ
2
hb þ ð2 − ηϕÞμ2hb ¼ 4h2rv4ð1 − μ2ψÞd3ψ

�
1 −

ηψ
5

�

−
4λr
3

v4

�
1 −

ηϕ
6

��
d2G þ 3

4
ðμ2hb þ μ2GÞdGdhbðdG þ dhbÞ − 2μ2hbðd3hb þ d3G þ dhbdGðdhb þ dGÞÞ

þ 4μ2hbðμ2hb þ μ2GÞðd3hbdG þ dhbd3G þ d2hbd
2
GÞ −

μ2hb
2

ðμ2hb þ μ2GÞ2d2hbd2Gðdhb þ dGÞÞ
�
;

∂th2r − ðηϕ þ 2ηψÞh2r ¼ 2h4rv4

��
1 −

ηψ
5

�
d2ψ

�
μ2hb

�
1

2
d2G −

3

2
d2hb − dGdhb

�
þ μ2GdGdhb þ 4μ2ψðμ2hb − μ2GÞdGdhbdψ

�

þ
�
1 −

ηϕ
6

�
dψ ½ðμ2G − μ2hbÞð1 − 2μ2ψdψÞdGdhbðdG þ dhbÞ þ μ2hbðd3G − 3d3hbÞ�

�
: ðA14Þ

The equations of the anomalous dimensions smoothly join those valid in the symmetric phase,

ηϕ ¼ 2λr
3

v4μ2hb

�
2d2Gd

2
hb þ

1

4
ðd2G þ d2hbÞ2

�
þ h2rv4ð1 − μ2ψÞd3ψð2 − ηψ þ 2dψ Þ;

ηψ ¼ 1

2
h2rv4

�
1 −

ηϕ
5

�
dψðd2G þ d2hbÞ: ðA15Þ

The fermionic contribution to the evolution of 2λ=3 is given by the fermionic quadrangle diagram,

2

3
∂F
t λ ¼ 4h4∂̂t

Z
p
G2

ψ ½1 − 4m2
ψGψ þm4

ψG2
ψ �; Gψ ¼ 1

Z2
ψP2

Fðq2Þq2 þm2
ψ
: ðA16Þ
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The bosonic contribution is much more cumbersome therefore only a semiexplicit expression is given here with help of
appropriate Φ and Φ� derivatives of the bosonic determinant

Δðq2R;Φ;Φ�Þ ¼
�
ZΦq2R þ λ

3

�
2ΦΦ� −

v2

2

��
2

−
�
2Πþ λ

3
Φ2

��
2Πþ λ

3
Φ�2

�
: ðA17Þ

The bosonic contribution to 2∂tλ=3 takes the following form:

2

3
∂B
t λ ¼

1

2
∂̂t

Z
p

�
Δ22

Δ
−

1

Δ2
½2Δ12Δ10 þ 2Δ21Δ01 þ 2Δ2

11 þ Δ20Δ02�

þ 2

Δ3
½Δ20Δ2

01 þ Δ02Δ2
10 þ 4Δ11Δ10Δ01� −

6Δ2
10Δ2

01

Δ4

	
: ðA18Þ

One finds the explicit expression when each quantity appearing on the right-hand side is evaluated atΦ ¼ Φ� ¼ u=
ffiffiffi
2

p
. One

has to substitute the following nonzero quantities, when a quartic potential is being used:

Δ̄10 ¼ Δ̄01 ¼
2λ

3

uffiffiffi
2

p
�
2ZΦq2R þ λ

2
u2 −

λ

3
v2 − 2Π

�
;

Δ̄11 ¼
2λ

3

�
2ZΦq2R þ λu2 −

λ

3
v2
�
; Δ̄22 ¼

4λ2

3
;

Δ̄20 ¼ Δ02 ¼
λ

3
ðλu2 − 4ΠÞ; Δ̄21 ¼ Δ12 ¼

4λ2

3

uffiffiffi
2

p ;

Δ̄ ¼
�
ZΦq2R þ λ

3
u2
�
ðZΦq2R − 4ΠÞ: ðA19Þ

The relevant combinations can be expressed through the bosonic masses, taking into account that at Φ ¼ Φ� ¼ u=
ffiffiffi
2

p
,

Δnm ¼ Δmn,

Δ ¼ ðq2R þm2
hbÞðq2R þm2

GÞ; Δ11 ¼
2λ

3
ðG−1

hb þ G−1
G þm2

hbÞ; Δ22 ¼
4λ2

3
;

Δ2
01 ¼

λ

6
m2

hbðG−1
hb þ 3G−1

G Þ2; Δ01Δ12 ¼
2λ2

3
m2

hbðG−1
hb þ 3G−1

G Þ; Δ02 ¼
λ

3
ð3m2

hb þm2
GÞ: ðA20Þ

Using these in the bosonic contribution to the RGE of λ, one can express the integrand in powersGl
hbG

k
G to which one easily

applies the ∂̂t operation.
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