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We consider nontopological first-order solitons arising from a gauged CPð2Þ model in the presence of
the Maxwell term multiplied by a nontrivial dielectric function. We implement the corresponding first-
order scenario by minimizing the total energy, thus introducing the corresponding energy lower bound;
such a construction is only possible due to a differential constraint that includes the dielectric function itself
and the self-interacting potential defining the model. We saturate the aforementioned bound by focusing
our attention on those solutions fulfilling a particular set of two coupled first-order differential equations.
Next, in order to solve these equations, we choose the dielectric function explicitly, and also calculate the
corresponding self-interacting potential. We impose appropriate boundary conditions that support non-
topological solitons, from which we verify that the energy of final structures is proportional to the magnetic
flux they engender: both quantities are not quantized, as expected. We depict the new numerical solutions,
while commenting on the main properties they present.
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I. INTRODUCTION

In the context of classical field theories, vortices are
planar solutions coming from highly nonlinear gauged
models [1]. In general, these solutions are calculated
directly from the second-order Euler-Lagrange equations.
However, under very special circumstances, they can also
be obtained via a particular set of first-order differential
equations which minimize the energy of the overall system
[2]. In this case, the energy bound is expected to be
proportional to the quantized magnetic flux the resulting
first-order vortices engender. In particular, first-order
vortices supporting quantized flux were first found within
the canonical Maxwell-Higgs scenario, which gives rise to
topological configurations only [3]. Later, both topological
and nontopological vortices were also shown to exist in the
Chern-Simons-Higgs electrodynamics [4].
Moreover, solitons inherent to nonstandard models were

recently investigated, such as the ones arising from gen-
eralizations of the Abelian-Higgs systems [5], Lorentz-
breaking scenarios [6], and gauged theories presenting
unusual dynamics whose solutions were applied to study
some interesting cosmological issues [7].
Therefore, it is certainly important to consider whether a

gauged CPðN − 1Þ theory supports well-behaved first-
order vortices, especially given that the CPðN − 1Þ model
effectively mimics interesting properties of the Yang-Mills
theories defined in four dimensions [8].
In a recent work [9], vortex solutions inherent to a

gauged CPð2Þ model in the presence of the Maxwell term
were considered, and the corresponding solutions were
obtained directly from the second-order Euler-Lagrange

equations of motion. In addition, the existence of configu-
rations satisfying a particular set of first-order differential
equations was suggested. Then [10], a self-dual framework
was developed that gave rise to the aforecited solutions, and
explicitly introduced the corresponding first-order differ-
ential equations and the energy lower-bound. Moreover, it
has been verified that the energy lower bound that the first-
order solitons saturate is proportional to their magnetic
flux, which is quantized according to the winding number
of such configurations, as expected. Here, it is important
to say that, due to the boundary conditions fulfilling the
finite-energy requirement, such first-order solitons present
topological properties.
In the context of noncanonical models, a rather natural

issue is the study of the gaugedCPð2Þ theory endowed with
the Maxwell term multiplied by a dielectric function
depending on the scalar field only. The motivation regard-
ing this nontrivial coupling comes from supersymmetric
scenarios, in which such a nonstandard kinetic term is
necessary to support a gauged model with a noncompact
gauge group [11]. Also, field models with a dielectric
function have additionally being used to study quarks and
gluons via soliton bag theories [12].
It is known that, under special circumstances, a gauged

theory provided with a nontrivial dielectric function can
support both topological or nontopological solitons. In this
sense, the aim of the present manuscript is to investigate the
way such a noncanonical CPð2Þ model generates non-
topological solitons satisfying a particular set of first-order
differential equations.
In order to introduce our results, this manuscript is

organized as follows. In Sec. II, we introduce the overall
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CPðN − 1Þ model and the definitions inherent to it, from
which we verify that A0 ¼ 0 holds as a legitimate gauge
choice (and thus the theory engenders configurations with
no electric field). Next, for the sake of simplicity, we
particularize our study to theN ¼ 3 case, while focusing on
those static solutions possessing radial symmetry. We then
minimize the total energy, from which we find the
corresponding first-order equations and the lower bound
for the total energy; such a theoretical construction is only
possible due to a differential constraint including the
dielectric function and the self-interacting potential defin-
ing the effective scenario. In Sec. III, we use the first-order
differential equations we have found previously to calculate
genuine nontopological gauged solitons. The point to be
highlighted here is the absence of nontopological profiles
for GðjϕjÞ ¼ 1 (the energy of the resulting structures
vanishes identically). We can contour this problem by
considering convenient nontrivial forms of the dielectric
function. Also, despite the apparent existence of two
different solutions, we verify that the effective theory
provides a unique phenomenology, at least regarding the
nontopological solitons at the classical level. We present
the solutions themselves in Sec. IV, and point out the main
properties they engender. In Sec. V, we end our manuscript
by presenting the final comments and perspectives regard-
ing future contributions.
In what follows, we use ημν ¼ ðþ − −Þ as the metric

signature and the natural units system, for convenience.

II. THE OVERALL MODEL

We begin by presenting the Lagrange density of the
gauged CPðN − 1Þ model we consider in this manuscript,

L ¼ −
GðjϕjÞ

4
FμνFμν þ ðPabDμϕbÞ�PacDμϕc − VðjϕjÞ;

ð1Þ

where greek indices run over time-space coordinates,
and latin ones represent the internal indices of the complex
CPðN − 1Þ field. Here, Fμν ¼ ∂μAν − ∂νAμ is the standard
electromagnetic field-strength tensor, with Pab ¼ δab−
h−1ϕaϕ

�
b being a projection operator introduced in a con-

venient way. Moreover,Dμϕa ¼ ∂μϕa − igAμQabϕb stands
for the covariant derivative, with Qab being a real and
diagonal charge matrix. The function GðjϕjÞ multiplying
the Maxwell term stands for a dielectric function to be
chosen conveniently later below; the resulting model repre-
sents an effective action describing a system in a medium
defined by such a dielectric function. The CPðN − 1Þ field
ϕ itself is constrained to satisfy ϕ�

aϕa ¼ h.
The static Gauss’ law inherent to the model (1) reads

∂jðG∂jA0Þ ¼ J0; ð2Þ

(with j running over spatial coordinates only) with J0, the
charge density, given by

J0 ¼ ig½ðPabD0ϕbÞ�PacQcdϕd − PabD0ϕbðPacQcdϕdÞ��;
ð3Þ

where D0ϕb ¼ −igQbcϕcA0. It is evident that the gauge
A0 ¼ 0 satisfies Eq. (2) identically. Therefore, it is possible
to infer that the resulting time-independent solutions do not
exhibit an electric field.
In what follows, we particularize our investigation to the

case of the gauged CPð2Þ model, for the sake of simplicity.
Then, we focus our attention on those time-independent
radially symmetric configurations defined by the following
ansatz:

Ai ¼ −
1

gr
ϵijnjAðrÞ; ð4Þ

0
B@

ϕ1

ϕ2

ϕ3

1
CA ¼ h

1
2

0
BB@

eim1θ sin ðαðrÞÞ cos ðβðrÞÞ
eim2θ sin ðαðrÞÞ sin ðβðrÞÞ

eim3θ cos ðαðrÞÞ

1
CCA; ð5Þ

wherem1,m2, andm3 ∈ Z are winding numbers, ϵij stands
for the bidimensional Levi-Civita symbol (with ϵ12 ¼ þ1),
and nj ¼ ðcos θ; sin θÞ is the position unit vector.
In such a context, regular configurations possessing no

divergences are attained via those profile functions αðrÞ
and AðrÞ fulfilling

αðr → 0Þ → 0 and Aðr → 0Þ → 0: ð6Þ

Moreover, given that we are interested in nontopological
solitons, the profile functions αðrÞ and AðrÞ must satisfy

αðr → ∞Þ → 0 and A0ðr → ∞Þ → 0; ð7Þ

with Aðr → ∞Þ≡ A∞ finite and arbitrary.
At this point, it is important to clarify that, regarding the

charge matrix Qab and the winding numbers m1, m2, and
m3, there are two different combinations supporting first-
order solutions: (i) Q ¼ λ3=2 and m1 ¼ −m2 ¼ m, and
(ii)Q ¼ λ8=2 andm1 ¼ m2 ¼ m [both withm3 ¼ 0, and λ3
and λ8 standing for the diagonal Gell-Mann matrices: λ3 ¼
diagð1;−1; 0Þ and ffiffiffi

3
p

λ8 ¼ diagð1; 1;−2Þ]. However, it is
known that these two combinations are phenomenologi-
cally equivalent since they simply mimic each other, and
therefore only one effective scenario exists, as demon-
strated in Ref. [9]. Hence, in this work, we consider only
the first choice (i.e., m1 ¼ −m2 ¼ m, m3 ¼ 0, and
Q ¼ λ3=2), for convenience.
The second-order Euler-Lagrange equation for the addi-

tional profile function βðrÞ is
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d2β
dr2

þ
�
1

r
þ 2

dα
dr

cot α

�
dβ
dr

¼ sin2α sin ð4βÞ
r2

�
m −

A
2

�
2

:

ð8Þ

We are interested in solutions where β is a constant; such
solutions are (k ∈ Z)

βðrÞ ¼ β1 ¼
π

4
þ π

2
k or βðrÞ ¼ β2 ¼

π

2
k; ð9Þ

which apparently splits our investigation into two distinct
branches. However, it is important to say that, when
considering topological first-order solitons, these two
branches engender the very same phenomenology, and
are thus physically equivalent. Below, we demonstrate that
such an equivalence also holds regarding nontopological
solitons.
We now look for first-order differential equations pro-

viding genuine solutions of the model (1) by minimizing its
total energy. In this case, given the radially symmetric
ansatz (4) and (5), the effective energy reads

E
2π

¼
Z �

1

2
GB2 þ V

�
rdr

þ h
Z ��

dα
dr

�
2

þW
r2

�
A
2
−m

�
2

sin2α

�
rdr; ð10Þ

with W ¼ Wðα; βÞ ¼ 1 − sin2 α cos2 ð2βÞ, where the func-
tion βðrÞ is necessarily one of those presented in Eq. (9),
and BðrÞ ¼ −A0=gr stands for the magnetic field (here, a
prime denotes a derivative with respect to the radial
coordinate r). We then write the expression (10) in the form

E
2π

¼
Z �

G
2

�
B∓

ffiffiffiffiffiffi
2V
G

r �2

�B
ffiffiffiffiffiffiffiffiffiffi
2GV

p �
rdr

þh
Z �

dα
dr

∓
ffiffiffiffiffi
W

p

r

�
A
2
−m

�
sinα

�2
rdr

∓
Z �

dðA− 2mÞ
dr

ffiffiffiffiffiffiffiffiffiffi
2GV

p

g
þðA− 2mÞh

ffiffiffiffiffi
W

p dcosα
dr

�
dr:

ð11Þ

In what follows, we impose the constraint

d
dr

ð
ffiffiffiffiffiffiffiffiffiffi
2GV

p
Þ ¼ gh

ffiffiffiffiffi
W

p d
dr

cos α; ð12Þ

via which we rewrite Eq. (11) as

E ¼ Ebps þ π

Z
G

�
B ∓

ffiffiffiffiffiffi
2V
G

r �2

rdr

þ 2πh
Z �

dα
dr

∓
ffiffiffiffiffi
W

p

r

�
A
2
−m

�
sin α

�2
rdr; ð13Þ

with the energy bound Ebps given by

Ebps ¼ 2π

Z
rεbpsdr; ð14Þ

where

εbps ¼∓ 2

gr
d
dr

��
A
2
−m

� ffiffiffiffiffiffiffiffiffiffi
2GV

p �
; ð15Þ

with the upper (lower) sign holding for negative (positive)
values ofm. In this case, the lower bound (14) can be easily
calculated, i.e.,

Ebps ¼∓ 2π

g
½ðA∞ − 2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G∞V∞

p
þ 2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G0V0

p
�; ð16Þ

where G0≡Gðr→ 0Þ, V0 ≡ Vðr → 0Þ, G∞ ≡Gðr → ∞Þ,
and V∞ ≡ Vðr → ∞Þ, with G0V0 andG∞V∞ non-negative
and finite.
Now, given the expression (13), one concludes that the

field solutions saturating the energy lower bound (16) are
those satisfying

B ¼ �
ffiffiffiffiffiffi
2V
G

r
; ð17Þ

and

dα
dr

¼ � sin α
r

�
A
2
−m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2αcos2ð2βÞ

q
; ð18Þ

which stand for the first-order equations related to the
effective radially symmetric scenario. Here, it is important
to highlight that the self-duality supporting the first-order
equations (17) and (18) holds only in the presence of
the constraint (12), as such a constraint allows us to rewrite
the energy (10) in the form (13) via the Bogomol’nyi
prescription [2].
It is also interesting to calculate the magnetic flux ΦB

that the radially symmetric configurations support. It reads

ΦB ¼ 2π

Z
rBðrÞdr ¼ −

2π

g
A∞; ð19Þ

with A∞ ≡ Aðr → ∞Þ being not necessarily proportional to
the winding number m, as both the magnetic flux and the
energy lower bound (16) are not quantized.
In the next section, we show how the first-order

expressions we have introduced above can be used to
generate well-behaved nontopological structures possess-
ing finite energy; these configurations satisfy the radially
symmetric Euler-Lagrange equations, and thus represent
legitimate solutions of the corresponding model. In this
manuscript, for simplicity, we consider those cases ful-
filling G0V0 ¼ G∞V∞, where the energy of the resulting
configurations is
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E ¼ Ebps ¼∓ 2π

g
A∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G∞V∞

p
; ð20Þ

with G∞V∞ being positive and finite.

III. NONTOPOLOGICAL FIRST-ORDER
SCENARIOS

We now go further in our investigation by using the first-
order framework we have introduced previously to obtain
finite-energy nontopological solitons. We proceed accord-
ing the following prescription. First, we pick a particular
solution for the function βðrÞ coming from Eq. (9), from
which we solve the differential constraint (12) in order to
get a concrete relation between the dielectric function
GðjϕjÞ and the self-interacting potential VðjϕjÞ. We then
choose GðjϕjÞ conveniently, and thus get the potential
VðjϕjÞ defining that particular model, and also write down
the corresponding first-order equations (17) and (18). We
particularize the expression for the radially symmetric
energy density coming from Eq. (10), with the functions
αðrÞ and AðrÞ obeying the asymptotic boundary conditions
(7). Finally, we use such conditions together with those in
Eq. (6) in order to solve the first-order differential equations
numerically, from which we depict the resulting profiles for
αðrÞ, AðrÞ, the magnetic field, and the energy density they
engender. We also calculate the corresponding total energy
(20) and magnetic flux (19) explicitly.
It is important to discuss the absence of nontopological

solitons within the usual model, i.e., for GðjϕjÞ ¼ 1. In this
case, the energy lower bound (20) reduces to
E ¼ Ebps ¼∓ 2πg−1A∞

ffiffiffiffiffiffiffiffiffiffi
2V∞

p
. The point to be raised is

that, in order to fulfill the finite-energy requirement
εðr → ∞Þ → 0, the self-interacting potential must satisfy
V∞ ≡ Vðr → ∞Þ → 0, from which one also gets Ebps ¼ 0,
as the corresponding solutions are energetically irrelevant.
Therefore, in this work, in order to avoid the afore-

mentioned scenario, we consider nontrivial expressions for
the dielectric function GðjϕjÞ.
Next, we study the cases with βðrÞ ¼ β1 and βðrÞ ¼ β2

separately.

A. The βðrÞ= β1 case

It was demonstrated recently [10] that such a case gives
rise to well-behaved first-order topological solitons with
radial symmetry. Now, we go a little bit further by
investigating the nontopological structures βðrÞ ¼ β1 sup-
ports. In this sense, we choose

βðrÞ ¼ β1 ¼
π

4
þ π

2
k; ð21Þ

via which the differential constraint (12) can be reduced to

d
dr

ð
ffiffiffiffiffiffiffiffiffiffi
2GV

p
Þ ¼ d

dr
ðgh cos αÞ; ð22Þ

and its solution defines the potential VðαÞ in terms of the
dielectric function GðαÞ, i.e.,

VðαÞ ¼ g2h2

2GðαÞ cos
2α; ð23Þ

where the integration constant was conveniently set to zero.
Here, given the expression (23), one notes that G ¼ 1

(the standard case, in the absence of the dielectric function)
leads to a self-interacting potential with no symmetric
vacuum, therefore giving rise to topological configurations
only. In this sense, the dielectric function in Eq. (23) must
be chosen in order to engender a potential exhibiting a
symmetric vacuum, as such a symmetric point supports the
existence of nontopological solitons. We then proceed by
fixing

GðαÞ ¼ ðcos αÞ2−2M
1 − cos α

; ð24Þ

where M ¼ 1, 2, 3 and so on. In this case, we get the
potential

VðαÞ ¼ g2h2

2
ðcos αÞ2Mð1 − cos αÞ; ð25Þ

which is positive for all values of the parameter M [the
resulting energy is itself positive, which justifies the wayM
enters the definition (24)]. Thus, the general first-order
equations (17) and (18) are reduced to

1

r
dA
dr

¼ �λ2ðcos αÞ2M−1ðcos α − 1Þ; ð26Þ

dα
dr

¼ � sin α
r

�
A
2
−m

�
; ð27Þ

respectively, where the parameter λ stands for

λ ¼
ffiffiffiffiffiffiffi
g2h

q
: ð28Þ

We summarize the scenario as follows: given the
dielectric function (24) and the self-interacting potential
(25), the gauged CPðN − 1Þ model (1) (with N ¼ 3)
supports radially symmetric time-independent solitons of
the form (4) and (5) [with βðrÞ as in Eq. (21)] satisfying the
first-order equations (26) and (27), while behaving accord-
ing to the boundary conditions in Eqs. (6) and (7). Here, it
is worthwhile to point out that, for fixed values ofM and λ,
the equations (26) and (27) support well-behaved solutions
only for those values of m for which the condition 0 ≤
αðrÞ < π=2 is fulfilled.
The energy density for such nontopological solitons

satisfying the first-order differential equations is
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εðrÞ ¼ g2h2ð1 − cos αÞðcos αÞ2M

þ 2h
sin2α
r2

�
A
2
−m

�
2

; ð29Þ

which is explicitly positive and attains the finite-energy
condition εðr → ∞Þ → 0.
It is interesting to investigate the way the profile

functions αðrÞ and AðrÞ behave near the boundaries. In
this sense, we linearize the first-order equations (26) and
(27), from which we calculate the behavior of these
functions near the origin, i.e.,

αðrÞ ≈ CmðλrÞm −
C3
m

16ðmþ 1Þ2 ðλrÞ
3mþ2 þ � � � ; ð30Þ

AðrÞ ≈ C2
m

4ðmþ 1Þ ðλrÞ
2mþ2

−
ð12M − 5ÞC4

m

48ð2mþ 1Þ ðλrÞ4mþ2 þ � � � ; ð31Þ

where the asymptotic behavior (i.e., for r → ∞) reads

αðrÞ ≈ C
ðλrÞδm þ � � � ; ð32Þ

AðrÞ ≈ 2mþ 2δm −
C2

4ðδm − 1ÞðλrÞ2δm−2 þ � � � ; ð33Þ

where we have set A∞ ≡ Aðr → ∞Þ ¼ 2mþ 2δm, and Cm,
C, and δm stand for real and positive constants to be
determined numerically by requiring the proper behavior
near the origin and asymptotically, respectively.
It is known that the solution βðrÞ ¼ β2 ¼ πk=2 gives rise

to first-order topological configurations possessing finite
energy. Next, we discuss the way such a solution engenders
nontopological solitons as well.

B. The βðrÞ= β2 case

We now investigate the first-order nontopological
configurations that βðrÞ ¼ β2 supports. In this sense, we
choose

βðrÞ ¼ β2 ¼
π

2
k; ð34Þ

and the constraint (12) can be rewritten in the form

d
dr

ð
ffiffiffiffiffiffiffiffiffiffi
2GV

p
Þ ¼ d

dr

�
gh
2
cos2α

�
; ð35Þ

whose solution is

VðαÞ ¼ g2h2

32GðαÞ cos
2ð2αÞ; ð36Þ

where the integration constant was chosen to be −gh=4.
Again, we have found a relation between the dielectric
function and the potential defining the model.
We proceed in the very same way as before, i.e., in

order to have a potential with a symmetric vacuum
[which therefore supports nontopological profiles; see
the discussion just before Eq. (24)], we choose the
dielectric function as

GðαÞ ¼ ðcos ð2αÞÞ2−2M
1 − cos ð2αÞ : ð37Þ

(As we demonstrate below, the factor 2α was introduced in
Eq. (37) in order to make the two a priori different
scenarios phenomenologically equivalent via a suitable
redefinition.) Then, we get

VðαÞ ¼ g2h2

32
ðcos ð2αÞÞ2Mð1 − cos ð2αÞÞ; ð38Þ

where the potential itself and its energy density are positive
for all M, and thus the corresponding first-order equa-
tions (17) and (18) are

1

r
dA
dr

¼ � g2h
4

ðcos ð2αÞÞ2M−1ðcos ð2αÞ − 1Þ; ð39Þ

dα
dr

¼ � sin ð2αÞ
2r

�
A
2
−m

�
; ð40Þ

respectively. In order to obtain nontopological structures,
the above first-order equations must be solved according to
the boundary conditions (6) and (7), with the energy
density of the resulting solutions being

εðrÞ ¼ g2h2

16
ðcos ð2αÞÞ2Mð1 − cos ð2αÞÞ

þ h
2

sin2ð2αÞ
r2

�
A
2
−m

�
2

: ð41Þ

It is known that, regarding the first-order topological
configurations, the two a priori different scenarios that the
solutions for βðrÞ in Eq. (9) engender simply mimic each
other, and therefore only one effective case exists. Here, it
is important to highlight that such a correspondence also
holds regarding the first-order nontopological structures we
have introduced above, i.e., both the dielectric function in
Eq. (24) and the self-interacting potential in Eq. (25) can be
rewritten as those in Eqs. (37) and (38), respectively,
depending on whether we implement the redefinitions
α → 2α and h → h=4. The corresponding first-order equa-
tions (26) and (27) then reduce to Eqs. (39) and (40); thus,
only one effective scenario exists, at least regarding the
nontopological radially symmetric first-order solitons in the
presence of a nontrivial dielectric function.
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Therefore, from now on, we investigate only the case
defined by βðrÞ ¼ β1, and the resulting first-order equa-
tions are Eqs. (26) and (27).

IV. THE SOLUTIONS

It is instructive to point out that the first-order equa-
tions (26) and (27) support approximate analytical solutions
describing the corresponding nontopological configura-
tions. In what follows, we investigate these solutions by
choosing m > 0 only (i.e., the lower signs in the first-order
expressions), for simplicity. We also suppose that αðrÞ ≪ 1
for all values of λr. In this sense, the first-order equations (26)
and (27) reduce, respectively, to

1

r
dA
dr

¼∓ λ2

2
α2; ð42Þ

dα
dr

¼ � α

r

�
A
2
−m

�
; ð43Þ

which can be combined to form the Liouville equation for
the profile function αðrÞ, i.e.,

d2ðln α2Þ
dr2

þ 1

r
dðln α2Þ

dr
þ λ2

2
α2 ¼ 0; ð44Þ

whose general solution is [13]

αðrÞ ¼ 4C
λr0

ð rr0ÞC−1
1þ ð rr0Þ2C

; ð45Þ

with C and r0 standing for integration constants. Here, it is
interesting to note that this solution satisfies the conditions
αðr → 0Þ → 0 and αðr → ∞Þ → 0 for C > 1 only.
In addition, given the solution (45), the first-order

equation (43) provides

AðrÞ ¼ 2ðmþ 1Þ − 2Cþ
4Cð rr0Þ2C
1þ ð rr0Þ2C

; ð46Þ

which fulfills Aðr → 0Þ → 0 only for C ¼ mþ 1.
Therefore, the approximate solutions (45) and (46) can
be rewritten, respectively, as

αmðrÞ ¼
4ðmþ 1Þ

λr0

ð rr0Þm
1þ ð rr0Þ2mþ2

; ð47Þ

AmðrÞ ¼ 4ðmþ 1Þ
ð rr0Þ2mþ2

1þ ð rr0Þ2mþ2
; ð48Þ

from which one also gets approximate expressions for the
magnetic field,

BmðrÞ ¼ −
gh
2
α2m; ð49Þ

and the energy density,

εbps;mðrÞ ¼
g2h
2

α2m þ 2h
α2m
r2

�
Am

2
−m

�
2

; ð50Þ

with αmðrÞ and AmðrÞ being given by Eqs. (47) and (48),
respectively. The approximate value for A∞ ≡ Aðr → ∞Þ
can be calculated exactly, i.e.,

A∞;m ≡ Amðr → ∞Þ ¼ 4ðmþ 1Þ: ð51Þ

The maximum value of Eq. (47) is given by

αmðrmaxÞ ¼
2ðmþ 2Þ

λr0

�
m

mþ 2

� m
2ðmþ1Þ

; ð52Þ

where

rmax ¼ r0

�
m

mþ 2

� 1
2ðmþ1Þ

; ð53Þ

which approximates r0 for large values of m. Our previous
assumption αðrÞ ≪ 1 holds if the additional condition

λr0 ≫ 2ðmþ 2Þ
�

m
mþ 2

� m
2ðmþ1Þ ð54Þ

is fulfilled. Therefore, for fixed values of g, h, and r0, only
some values of the integer winding number m are allowed.
We highlight that, given the dielectric function (24), the

self-interacting potential (25), and the boundary value (51),
the resulting energy bound (20) can be calculated explicitly
(remember that m > 0):

Ebps ¼ 8πðmþ 1Þh; ð55Þ

where we have used G0V0 ¼ G∞V∞ ¼ g2h2=2 (thus
verifying our previous conjecture). The corresponding
magnetic flux (19) reads

ΦB ¼ −
8π

g
ðmþ 1Þ; ð56Þ

from which we get that Ebps ¼ −ghΦB. Thus, the energy of
the first-order solitons is proportional to their magnetic
flux, as expected.
In what follows, we numerically study the first-order

equations (26) and (27) by means of the finite-difference
scheme, while using the boundary conditions (6) and (7).
We adopt m > 0 (lower signs) and M ¼ g ¼ h ¼ 1, for
simplicity. In this sense, we plot the numerical solutions to
the profile functions αðrÞ and AðrÞ, the magnetic field BðrÞ,
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and the energy density εbpsðrÞ. In these figures, we use the
dimensionless variable λr in order to depict the numerical
profiles, and the only remaining free parameter remaining
is λr0.
We begin our analysis by depicting the numerical

profiles corresponding to the approximate expressions in
Eqs. (47) and (48). We choosem ¼ 1, while varying λr0, as
the analytical solutions approximate the numerical ones for
large values of such a parameter. Here, the dashed lines
represent the numerical solutions, and the dotted lines
represent the approximate ones (see Figs. 1–4).
In Fig. 1, we show the solutions to the profile function

αðrÞ for λr0 ¼ 15 (blue lines), λr0 ¼ 20 (red lines), and
λr0 ¼ 30 (black lines). We see that the resulting profiles are
rings centered at the origin, and their amplitudes (radii)
decrease (increase) as λr0 itself increases. The numerical
results fulfill our previous assumption [i.e., that αðrÞ ≪ 1
for all λr)], and the approximate solutions fit relatively well.
The solutions to the field AðrÞ are those shown in Fig. 2,

from which we see that these profiles approach the
approximate boundary condition Amðr→∞Þ ¼ 4ðmþ 1Þ
in a monotonic way whenever λr0 increases. In particular,
one gets the numerical values A1ðr → ∞Þ ≈ 8.07855
for λr0 ¼ 15, A1ðr → ∞Þ ≈ 8.04565 for λr0 ¼ 20, and
A1ðr → ∞Þ ≈ 8.02063 for λr0 ¼ 30.
In Fig. 3, we depict the numerical solutions to the

magnetic field BðrÞ, in units of gh. These profiles behave
like those for αðrÞ: their amplitudes (radii) decrease

(increase) as λr0 increases. The new solutions also vanish
in the asymptotic limit r → ∞, thus fulfilling the finite-
energy requirement εðr → ∞Þ → 0.
The solutions to the energy density εbpsðrÞ are shown

in Fig. 4, in units of ðghÞ2, which shows that the

FIG. 1. Solutions to αðrÞ for λr0 ¼ 15 (blue lines), λr0 ¼ 20
(red lines), and λr0 ¼ 30 (black lines). Here,
M ¼ g ¼ h ¼ m ¼ 1; the dashed lines stand for the numerical
solutions, and the dotted lines stand for the approximate ones
coming from Eq. (47). The profiles are rings centered at the
origin.

FIG. 2. Solutions to AðrÞ. Conventions are as in the Fig. 1. The
approximate results are given by Eq. (48). The numerical
solutions approach the approximate value Amðr → ∞Þ ¼
4ðmþ 1Þ in a monotonic way whenever λr0 increases.

FIG. 3. Solutions to the magnetic field BðrÞ, in units of gh.
Conventions are as in the Fig. 1. The approximate solutions come
from Eq. (49). Here, the corresponding amplitudes (radii)
decrease (increase) as λr0 itself increases.
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corresponding nontopological structures are localized in
space. Here, we highlight the manner in which εbpsðr ¼ 0Þ
depends on λr0: the value increases from 0 (zero) as this
free parameter decreases.
It is also interesting to point out the existence of another

class of numerical solutions that cannot be predicted by an

approximate analytical treatment, as the condition
αðrÞ ≪ 1 for all λr is not satisfied anymore. These new
profiles are calculated for finite (but not large) values of the
free parameter λr0, and in this way they differ from the
solutions presented above (see Figs. 5–8).
In order to introduce the aforecited profiles, we again

solve Eqs. (26) and (27) numerically, for m > 0 and
M ¼ g ¼ h ¼ 1, via the conditions (6) and (7).
However, now we choose λr0 ¼ 1, while varying the
winding number—m ¼ 1 (solid red line), m ¼ 2 (dashed
black line), and m ¼ 3 (dash-dotted green line)—and we
plot the corresponding solutions with respect to the
dimensionless variable λr.
In this sense, the solutions to αðrÞ are those depicted in

Fig. 5, from which we see that these profiles behave in a
similar manner as before, being rings centered at the origin,
with both amplitudes and radii increasing as the vorticity
increases.
Figure 6 shows the results for the functionAðrÞ, where the

additional dotted blue line stands for m ¼ 4. Here, it is
worthwhile to note the appearance of an interesting internal
structure for intermediary values of the dimensionless
variable λr. It is also interesting to highlight that the new
solutions do not fulfill the previous condition (51), with the
new values being A1ðr → ∞Þ ≈ 9.64900, A2ðr → ∞Þ≈
15.01548, A3ðr → ∞Þ ≈ 20.78517, and A5ðr → ∞Þ≈
26.98683.
The numerical profiles for the magnetic field BðrÞ are

plotted in Fig. 7, in units of gh, from which we see that
these solutions are drastically different from the ones
appearing in Fig. 3: the new configurations are double

FIG. 4. Solutions to the energy density εbpsðrÞ, in units of
ðghÞ2. Conventions are as in the Fig. 1. The approximate profiles
represent Eq. (50). The nontopological structures are well
localized in space.

FIG. 5. Solutions to αðrÞ for m ¼ 1 (solid red line), m ¼ 2
(dashed black line), and m ¼ 3 (dash-dotted green line). Now,
M ¼ g ¼ h ¼ λr0 ¼ 1, and the profiles are rings centered at the
origin.

FIG. 6. Solutions to AðrÞ. Conventions are as in the Fig. 5. The
additional dotted blue line represents m ¼ 4, and the correspond-
ing solution highlights the existence of an internal structure.
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rings centered at r ¼ 0, and the magnetic field vanishes in
the asymptotic limit.
Finally, Fig. 8 shows the solutions to εbpsðrÞ, again in

units of ðghÞ2. These profiles also represent double rings
centered at the origin. However, in this case, the amplitude
of the inner ring is always greater than that of the outer one,
and εbpsðr ¼ 0Þ vanishes for m ≠ 1.

V. FINAL COMMENTS AND PERSPECTIVES

In this manuscript, we have studied the CPð2Þ model
endowed with the Maxwell term in the presence of an
a priori arbitrary dielectric functionGðjϕjÞ, from which we
have attained nontopological first-order vortices possessing
finite energy and nonquantized magnetic flux.
We have presented the particular model and the defi-

nitions inherent to it, from which we have verified that
A0 ¼ 0 satisfies the static Gauss’ law identically, and the
resulting time-independent solutions do not support an
electric field. We have particularized our investigation to
the case N ¼ 3, for simplicity. Then, we focused our
attention on those radially symmetric configurations
described by the ansatz defined in Eqs. (4) and (5) while
satisfying the boundary conditions (6) and (7). We intro-
duced convenient choices regarding the charges and wind-
ing numbers inherent to the aforementioned ansatz. Then,
we calculated the solutions (9) for the additional profile
function βðrÞ.
We rewrote the expression for the radially symmetric

energy (10) as that in Eq. (13), while defining the general
first-order equations (17) and (18) satisfied by the fields
αðrÞ and AðrÞ. In addition, we found the corresponding
lower bound for the total energy [see Eq. (13) itself and
Eq. (20)]. The point to be highlighted here is that such
construction was only possible due to the differential
constraint (12) including GðjϕjÞ and the self-interacting
potential VðjϕjÞ. We also calculated a general result for the
magnetic flux ΦB in Eq. (19).
We discussed the absence of nontopological solitons for

GðjϕjÞ ¼ 1; the energy of these structures vanishes. In
order to avoid such a scenario, we considered only non-
trivial forms for the dielectric function.
We first studied the case defined by βðrÞ ¼ β1 [Eq. (21)],

from which we wrote the constraint (12) as in Eq. (22),
whose solution is Eq. (23). Then, we chose the dielectric
function as shown in Eq. (24), from which we obtained the
potential (25) and the first-order equations (26) and (27).
We also linearized these equations in order to define the
way the nontopological solutions behave near the
boundaries.
We also implemented the same prescription for βðrÞ ¼

β2 (34), from which we calculated the corresponding first-
order expressions. We noticed that the two scenarios
defined by the different solutions for βðrÞ can be verified
to mimic each other via the redefinitions α → 2α, λ → λ=4,
and h → h=4; therefore, only one effective case exists. In
this sense, we only focused our attention on the case
βðrÞ ¼ β1.
We supposed that αðrÞ ≪ 1 for all λr (with λ2 ¼ g2h),

from which we combined the first-order equations (26) and
(27); thus, we verified that the function αðrÞ satisfies the
Liouville equation whose analytical solution gives the
profiles (47) and (48), and we also calculated the boundary
value Aðr → ∞Þ → 4ðmþ 1Þ. In addition, we verified

FIG. 7. Solutions to the magnetic field BðrÞ, in units of gh.
Conventions are as in the Fig. 5. The new profiles are double
rings centered at r ¼ 0.

FIG. 8. Solutions to the energy density εbpsðrÞ, in units of
ðghÞ2. Conventions are as in Fig. 5. Here, εbpsðr ¼ 0Þ vanishes
for m ≠ 1.
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explicitly that the energy bound is proportional to the
magnetic flux inherent to the resulting solitons, and that
both quantities are not necessarily quantized, as expected.
We depicted the numerical results we found for αðrÞ,

AðrÞ, the magnetic field BðrÞ, and the energy density
εbpsðrÞ, for different values of the vorticity m and the
parameter λr0, from which we pointed out the existence of
two different classes of solutions: those coming from large
values of λr0 [which are reasonably well described by the
analytic expressions in Eqs. (47) and (48)], and those
solutions related to small values of λr0 (which do not
possess an approximate counterpart).
Here, it is important to highlight that the results we have

introduced in this work hold only for those time-indepen-
dent solitons described by the ansatz in Eqs. (4) and (5). In
this sense, it is not possible to say that the general model (1)
supports regular first-order solutions outside the radially

symmetric scenario, as such a question lies beyond the
scope of the present investigation.
Moreover, ideas regarding future works include the study

of the CPð2Þ model in the presence of the Chern-Simons
action (instead of the Maxwell one) and the first-order
configurations the resulting theory possibly supports. This
issue is now under consideration, and we hope to report
relevant results in a future publication.
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