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Due to integrability, baryon-baryon scattering in the massless Gross-Neveu model at large N features
only forward elastic scattering. A bare mass term breaks integrability and is therefore expected to induce
backward elastic scattering as well as inelastic reactions. We confirm these expectations by a study of
baryon-baryon scattering in the massive Gross-Neveu model near the nonrelativistic limit. This restriction
enables us to solve the time-dependent Hartree-Fock equations with controlled approximations, using a
combination of analytical methods from an effective field theory and the numerical solution of partial
differential equations.
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I. INTRODUCTION

The massive Gross-Neveu (GN) model [1] is the quan-
tum field theory of N flavors of Dirac fermions with a
scalar-scalar four-fermion interaction and Lagrangian

L ¼
XN
i¼1

ψ̄ ðiÞðiγμ∂μ −m0Þψ ðiÞ þ 1

2
g2
�XN

i¼1

ψ̄ ðiÞψ ðiÞ
�2

: ð1Þ

We only consider the case of 1þ 1 dimensions, where g2 is
dimensionless and the theory is renormalizable. The bare
mass m0 breaks explicitly the discrete chiral symmetry of
the original, massless GN model (ψ → γ5ψ , ψ̄ψ → −ψ̄ψ )
and renders the model nonintegrable. A number of explicit,
analytical results have been obtained in the ’t Hooft limit
(N → ∞, Ng2 ¼ const) of the massive GN model in the
past, using semiclassical methods. Thus, the vacuum [2],
baryons [3,4], multibaryon bound states [5], cold and dense
matter [6] and the phase diagram at finite chemical
potential and temperature [2,7,8] are by now well under-
stood. Somewhat surprisingly, explicit results for static
properties have turned out to be equally accessible in the
massive and massless GN models, despite the fact that only
the massless one is integrable. In particular, scalar mean
fields for baryons are transparent and those for inhomo-
geneous phases of dense matter are finite gap periodic
potentials, irrespective of whether the bare mass m0 is
included or not.
The situation changes once we look at dynamical

problems. In the case of the massless GN model, it has
proven possible to solve time-dependent scattering prob-
lems of multifermion bound states and write down general
results in closed analytical form [9]. The method used was
based on a relativistic version of the time-dependent
Hartree-Fock (TDHF) approximation, supposed to become

exact in the large N limit. Since these results show only
elastic forward scattering and factorized transmission
amplitudes, there is little doubt that integrability is at work
here. By contrast, as pointed out in [10], a similar ansatz
method does not yield self-consistent mean fields for the
massive GN model, despite the fact that individual static
baryons can be correctly described.
The aim of this paper is to elaborate on the difference

between integrable, massless and nonintegrable, massive
GN models. Static properties apparently give no clue about
this difference, at least at largeN. One way of going beyond
static properties is to head towards nonequilibrium thermo-
dynamics, e.g. by studying the bulk viscosity [11]. In that
reference one also finds a pedagogical discussion of the
(non)integrability of GN models in terms of Feynman
diagrams for inelastic processes. Here we propose to follow
another route. We generalize previous baryon-baryon
scattering calculations of the massless GN model to the
massive one, looking directly for nonforward elastic
scattering and inelastic reactions. Clearly, we cannot hope
to carry out such studies without numerical computations.
Due to the Dirac sea, it would be very challenging to do a
numerical TDHF calculation from scratch. Therefore, in
this exploratory study, we set ourselves a more modest
goal. We try to identify the leading order contribution to
backward and inelastic scattering in the vicinity of the
nonrelativistic limit only. This enables us to build on a
previously developed effective low energy theory for the
GN model [12], while keeping numerical computations
manageable. At the same time, by combining analytical and
numerical tools, we hope to get more insight than with a
purely numerical approach.
We finish this introduction with a reminder about

regularization and renormalization of the massive GN
model [2,3]. The Lagrangian (1) has two bare parameters,
g2 and m0. After the regularization/renormalization pro-
cedure at large N, all observables can be expressed through*michael.thies@gravity.fau.de
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two physical parameters,m and γ. The relation between the
bare quantities, an UV cutoff Λ and the physical parameters
is given by the vacuum gap equation

π

Ng2
¼ γ þ ln

Λ
m
; γ ≔

π

Ng2
m0

m
: ð2Þ

In the massless GN model (m0 ¼ 0), the dimensionless
coupling constant g2 gets traded for the dynamical fermion
mass m, an example of dimensional transmutation. In the
massive model, in addition, the bare mass m0 gets replaced
by a physical parameter γ. In condensed matter physics
where the massless and massive Gross-Neveu models can
be used for instance to model trans- and cis-polyacetylene
[13,14], γ is called the “confinement parameter.” It can also
be related to the ratio of the dynamical fermion mass at m0

and m0 ¼ 0,

m½m0�
m½0� ¼ eγ: ð3Þ

The physical parameters (m, γ) are renormalization group
invariant.
The plan of the present paper is as follows. In Sec. II, we

derive the TDHF equations for the massive GN model in
the vicinity of the nonrelativistic limit. After introducing an
appropriate expansion parameter, in Sec. III we simplify
these equations further, exhibiting the leading order (LO)
and next-to-leading order (NLO) equations in detail.
Section IVexplains our method of solving these equations,
whereas numerical results are presented in Sec. V. We close
this paper with a summary and conclusions, Sec. VI.

II. TDHF NEAR THE NONRELATIVISTIC LIMIT

Our starting point is the Dirac equation with scalar
potential S in 1þ 1 dimensions,

ðiγμ∂μ − SÞψ ¼ 0: ð4Þ

In TDHF theory appropriate for the large N limit of the GN
model, S is the self-consistent mean field,

S ¼ −g2hψ̄ψi ¼ −g2
Xocc
α

ψ̄αψα; ð5Þ

where the sum runs over all occupied states, i.e., the filled
Dirac sea and positive energy valence states. The aim
of the present section is to set up the first two terms of a
systematic, nonrelativistic approximation to the full TDHF
problem.
Using the Dirac-Pauli representation (γ0 ¼ σ3, γ1 ¼ iσ2,

γ5 ¼ σ1) and pulling out the fast factor e−imt from the
spinor ψ, we cast Eq. (4) into the Hamiltonian form

i∂t

�
ψ1

ψ2

�
¼

�
S −m −i∂x

−i∂x −S −m

��
ψ1

ψ2

�
: ð6Þ

Next, we eliminate the “small” component ψ2 formally
from (6),

i∂tψ1 ¼ ðS −mÞψ1 − ∂x
1

Sþmþ i∂t
∂xψ1; ð7Þ

use the nonrelativistic expansion

1

Sþmþ i∂t
≈

1

2m
−
ðS −mþ i∂tÞ

4m2
ð8Þ

and arrive at a Schrödinger-type equation for the “large”
component ψ1,

i∂tψ1 ¼
�
S −m −

∂2
x

2m

�
ψ1 þ ∂x

ðS −mþ i∂tÞ
4m2

∂xψ1:

ð9Þ

Replacing i∂tψ1 on the right-hand side by the LO expres-
sion ðS −m − ∂2

x=2mÞψ1, we find

i∂tψ1 ¼
�
S −m −

∂2
x

2m

�
ψ1 −

∂4
x

8m3
ψ1

þ
�
∂x

�
S −m
4m2

�
∂x þ ∂2

x

�
S −m
4m2

��
ψ1: ð10Þ

The first term on the right is of LO, the second term the
NLO correction to the relativistic kinetic energy,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
−m −

p2

2m
≈ −

p4

8m3
: ð11Þ

The third term is non-Hermitian, reflecting the fact that
after elimination of the lower component ψ2, the norm of
the upper component ψ1 is not conserved. To NLO, the
conserved charge is

Q ¼
Z

dxðjψ1j2 þ jψ2j2Þ ≈
Z

dxψ�
1

�
1 −

∂2
x

4m2

�
ψ1:

ð12Þ

Accordingly, we redefine the Hamiltonian and the wave
functions as follows,

H → ~H ¼
�
1 −

∂2
x

4m2

�
1=2

H

�
1 −

∂2
x

4m2

�−1=2

≈H −
1

8m2
½∂2

x; H�;

ψ1 → ~ψ1 ¼
�
1 −

∂2
x

4m2

�
1=2

ψ1 ≈
�
1 −

∂2
x

8m2

�
ψ1: ð13Þ
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This yields the amended version of the Schrödinger
equation (10), now with a manifestly Hermitian
Hamiltonian,

i∂t ~ψ1 ¼
�
−
∂2
x

2m
þ S −m −

∂4
x

8m3

þ 1

8m2
f∂x; f∂x; S −mgg

�
~ψ1: ð14Þ

We have generated the analogue of the Darwin term for a
scalar potential (for a vector potential, replace the anti-
commutators by commutators.) The reader will have
noticed that this calculation follows closely the textbook
evaluation of the fine structure of the hydrogen atom; see
e.g. [15], except for the missing spin-orbit term in 1þ 1
dimensions.
What we have done so far is the nonrelativistic reduction

of the Dirac equation with a classical potential, including
fine structure corrections. From the hydrogen atom, we
already know that this is not the whole story: the Lamb shift
is still missing. It arises from vertex corrections and
vacuum polarization due to Dirac sea. Fortunately, we
have the tools at our hands to include such quantum-field
corrections systematically as well. To this end we turn to an
“effective no-sea theory” of the massive GNmodel, derived
in Ref. [12] by “integrating out” all negative energy states.
The starting point of this approach is the real time, finite
density and temperature Feynman propagator for massive
Dirac fermions taken from Ref. [16]. At zero temperature, it
reduces to

SðpÞ ¼ S−ðpÞ þ SþðpÞ;
S−ðpÞ ¼

i
=p −mþ iϵ

;

SþðpÞ ¼ −2πδðp2 −m2Þð=pþmÞ
× ½θð−p0ÞθðEf − EpÞ þ θðp0Þθð−Ef − EpÞ�:

ð15Þ

One then looks at all Feynman diagrams entering the TDHF
calculation and splits up the Feynman propagator into
“þ=−” pieces according to (15). The “−” pieces are
transferred into extra terms of an effective Lagrangian,
technically possible thanks to a systematic low energy
approximation. To the order needed in the present work, it
is necessary to consider one-, two- and three-loop dia-
grams. The one-loop contribution is the tadpole shown in
Fig. 1(a). Its “−” part is accounted for by a fermion mass
term (mass m). At two-loop order, the relevant diagram is
the one from Fig. 1(b). Here, one cannot truncate the
perturbative series but has to sum up an infinite ladder of
vacuum polarization graphs involving the “−” propagators.
To leading order in the low energy approximation, this just
replaces the bare coupling constant g2 of the GNmodel by a

finite, effective coupling constant g2eff . Since the vacuum
gap equation (2) enters this computation, the effective
coupling constant is modified by a γ-dependent factor at
finite bare fermion masses and reads

g2eff ¼
π

N
1

ð1þ γÞ : ð16Þ

The scalar-scalar four-fermion interaction with this effec-
tive coupling constant can be interpreted as 0-range
approximation to the σ-exchange potential (where σ is
the scalar meson). To next order in the low energy
approximation, finite range effects are included via a
Taylor series, giving rise to four-fermion terms with
derivatives of increasing order in the effective action.
Finally, at three-loop order, diagram Fig. 1(c) is the source
for a new six-fermion term in the effective theory. To the
order of the derivative expansion needed here, one can
replace all three coupling constants by effective coupling
constants and neglect the finite range of the “−” propa-
gators in the inner loop. The final result for the effective
Lagrangian to NLO as needed here is

Leff ¼ ψ̄ði=∂ −mÞψ þ π

2N
1

ð1þ γÞ ðψ̄ψÞ
2

−
π

24m2N
1

ð1þ γÞ2 ð□ψ̄ψÞðψ̄ψÞ

þ π2

6mN2

1

ð1þ γÞ3 ðψ̄ψÞ
3: ð17Þ

In Ref. [12], the reader can find the next-to-next-to-leading
order (NNLO) Lagrangian as well, inferred from perturba-
tive diagrams with up to five loops.
Referring to the original work for additional technical

details and derivations, we now proceed to the results.
Keeping only the NLO effective Lagrangian (17), one finds
for the mean field of the massive GN model

S −m ¼ σ −
1

12m2

1

ð1þ γÞ ∂μ∂μσ −
1

2m
1

ð1þ γÞ σ
2;

σ ¼ −
π

ð1þ γÞ
X
l

νlψ̄lψl: ð18Þ

(c)(b)(a)

FIG. 1. Basic Feynman diagrams from which the effective
Lagrangian (17) has been derived in Ref. [12]. The þ=− signs
indicate whether the vacuum or matter part of the Feynman
propagator (15) has been inserted. See main text for further
explanations.
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Let us briefly explain the various symbols and terms. To
LO, S ¼ mþ σ. Here, m is the dynamical fermion mass
which would arise from the Dirac sea in the full HF
calculation but has to be put in by hand in the effective
theory. This is the one-loop (tadpole) contribution of
Fig. 1(a). The scalar field σ, the field of the σ meson,
has a similar self-consistent structure as S in (5). But here,
the sum over occupied states only extends over the positive
energy valence levels. The coefficient νl ¼ Nl=N denotes
the occupation fraction of the lth bound state, a continuous
parameter in the limit N → ∞. The bare coupling constant
g2 has been replaced by the effective coupling constant
(16). The other two terms on the right-hand side are NLO
and arise from vacuum polarization effects. The derivative
term is the aforementioned finite range correction to the
σ-exchange potential; the term proportional to σ2 is due to
the six-fermion term in the effective Lagrangian, going
back to the diagram in Fig. 1(c). Notice that the truncation
underlying Eq. (18) is consistent with the nonrelativistic
reduction of the Dirac equation above.
The task is now to solve Eq. (14) for all bound

states, using as self-consistency condition Eq. (18).
Although these equations look more complicated than the
original TDHF equations (4) and (5), they are much easier to
solve. It is sufficient to determine positive energy bound
states self-consistently, rather than the whole Dirac sea plus
valence levels. Thus, the structure resembles that of a
nonrelativistic TDHF problem, albeit with a more compli-
cated interaction and self-consistency condition. Relativistic
corrections are included by means of the fine structure terms
as well as the higher order corrections to the no-sea effective
theory. There are no more divergences, as regularization and
renormalization have already been performed when deriving
(18). Since the scalar condensate ψ̄ψ in (18) still contains the
original two-component spinors ψ rather than ~ψ1, the
equations are not yet in a form ready to be solved.
Further simplifications appear once we introduce a small
expansion parameter and truncate all the equations consis-
tently, the goal of the following section.

III. EXPANSION PARAMETER, LO
AND NLO TDHF EQUATIONS

In order to arrive at a tractable set of equations and to
avoid the unnecessary computation of complicated higher
order terms, we introduce a formal expansion parameter ϵ.
The regime we are interested in is characterized by
v ∼ ϵ; y ∼ ϵ, with v being the baryon velocity and y the
(inverse) baryon size parameter [3,4]. The first condition is
self-evident for a nonrelativistic expansion. The second
one induces a matching nonrelativistic expansion for the
internal structure of the baryon. The characteristic expo-
nential in the single baryon is exp½2yðx − vtÞ�; hence we
treat ∂x ∼ ϵ; ∂t ∼ ϵ2. Guided by the single baryon results,
we assume the following expansions for S −m and the
spinors,

S −m ¼ ϵ2Sð2Þ þ ϵ4Sð4Þ;

~ψ1 ¼
ffiffiffi
ϵ

p ð ~ψ ð0Þ
1 þ ϵ2 ~ψ ð2Þ

1 Þ;
~ψ2 ¼ ϵ3=2ð ~ψ ð0Þ

2 þ ϵ2 ~ψ ð2Þ
2 Þ: ð19Þ

The small component ~ψ2 is needed later on for the
condensate. Inserting these expressions into the Dirac
equation (14) with S −m from (18) and equating powers
of ϵ then yields the following LO and NLO equations,

i∂t ~ψ
ð0Þ
k;1 ¼

�
−
∂2
x

2m
þ Sð2Þ

�
~ψ ð0Þ
k;1ðLOÞ

i∂t ~ψ
ð2Þ
k;1 ¼

�
−
∂2
x

2m
þ Sð2Þ

�
~ψ ð2Þ
k;1 þ ðSð4Þ − ∂4

x

8m3

þ 1

8m2
f∂x; f∂x; Sð2ÞggÞ ~ψ ð0Þ

k;1ðNLOÞ: ð20Þ

We have added a subscript k labeling the bound states, as
required by the general TDHF problem.
We still need the relation between Sð2Þ; Sð4Þ and the

spinors ~ψ ð0Þ
k;1; ~ψ

ð2Þ
k;1 arising from the self-consistency con-

dition (18) and expansions (19). For each baryon, there is a
size parameter yk and an occupation fraction νk related in a
nonlinear fashion, namely [3,4]

νk
2
¼ arcsin yk

π
þ γ

π

ykffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2k

q : ð21Þ

Since yk ∼ ϵ, νk can be expanded as

νk ¼ ϵνð1Þk þ ϵ3νð3Þk ð22Þ
with

νð1Þk ¼ 2ykð1þ γÞ
π

;

νð3Þk ¼ y3kð1þ 3γÞ
3π

: ð23Þ

Inserting Eqs. (19), (22), and (23) into Eq. (18) yields

σ ¼ ϵ2σð2Þ þ ϵ4σð4Þ;

σð2Þ ¼ −
π

1þ γ

X
l

νð1Þl j ~ψ ð0Þ
l;1j2;

σð4Þ ¼ −
π

1þ γ

X
l

ðνð3Þl j ~ψ ð0Þ
l;1j2 − νð1Þl j ~ψ ð0Þ

l;2j2Þ

−
π

1þ γ

X
l

νð1Þl

�
~ψ ð0Þ
l;1 ~ψ

ð2Þ�
l;1 þ 1

8m2
~ψ ð0Þ
l;1∂2

x ~ψ
ð0Þ�
l;1 þ c:c:

�

ð24Þ
where

~ψ ð0Þ
l;2 ¼ −

i
2m

∂x ~ψ
ð0Þ
l;1: ð25Þ
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The various terms in (24) can be understood as follows. The
scalar density in our representation of the γ-matrices is

ψ̄ψ ¼ jψ1j2 − jψ2j2: ð26Þ

Remembering the different powers of ϵ in (19), this explains
the LO term σð2Þ. To this order, the difference between ψ and
~ψ does not matter. σð4Þ contains all NLO terms, taking into
account the fact that νk has the expansion (22). The last line

in Eq. (24) is due to interference terms between ~ψ ð0Þ
l;1 and

~ψ ð2Þ
l;1, the only NLO contribution to j ~ψl;1j2, and a derivative

term coming from the transformation from ψ to ~ψ ; see (13).
In the jψ2j2 term in (26), only the lowest order is needed, so
that we get away with expression (25).
According to Eqs. (18), (19) and (24), the relationship

between Sð2;4Þ and σð2;4Þ is

Sð2Þ ¼ σð2Þ;

Sð4Þ ¼ σð4Þ þ 1

12m2

1

ð1þ γÞ ∂
2
xσ

ð2Þ −
1

2m
1

ð1þ γÞ ðσ
ð2ÞÞ2:

ð27Þ
Time derivatives in ∂μ∂μσ are of higher order than what is
needed here. Equations (20), (24), and (27) together with
the normalization conditions are a closed set of equations
determining the positive energy bound state spinors in LO
and NLO.
Before going on, it is useful to ease the notation. Since

we can now express everything through the large compo-
nents ψ1, we drop the subscript 1 from all the spinors. We
also omit the tilde on all wave functions, replace σð2Þ

everywhere by Sð2Þ and insert νð1;3Þk . The basic TDHF
equations then read to LO

i∂tψ
ð0Þ
k ¼

�
−
∂2
x

2m
þ Sð2Þ

�
ψ ð0Þ
k ; Sð2Þ ¼ −

X
l

2yljψ ð0Þ
l j2ðLOÞ; ð28Þ

and to NLO

i∂tψ
ð2Þ
k ¼

�
−
∂2
x

2m
þ Sð2Þ

�
ψ ð2Þ
k þ

�
Sð4Þ −

∂4
x

8m3
þ 1

8m2
f∂x; f∂x; Sð2Þgg

�
ψ ð0Þ
k ðNLOÞ;

Sð4Þ ¼ σð4Þ þ 1

12m2

1

ð1þ γÞ ∂
2
xSð2Þ −

1

2m
1

ð1þ γÞ ðS
ð2ÞÞ2;

σð4Þ ¼ −
X
l

�
y3l
3

1þ 3γ

1þ γ
jψ ð0Þ

l j2 − yl
2m2

j∂xψ
ð0Þ
l j2

�
−
X
l

2yl

�
ψ ð0Þ
l ψ ð2Þ�

l þ 1

8m2
ψ ð0Þ
l ∂2

xψ
ð0Þ�
l þ c:c:

�
: ð29Þ

These equations are valid for arbitrary γ.
Let us first look at the LO equation (28) which has the

form of the multicomponent nonlinear Schrödinger (NLS)
equation [17]. We notice that it does not contain γ at all, so
that the same equation is valid independently of the bare
fermion mass. How is this possible? The answer is the same
as for static baryons: The wave functions and mean fields
for a baryon in the massive theory are identical to those for
a baryon in the massless theory, but for a different fermion
number. Indeed, γ still appears in Eq. (21) relating the
occupation fraction and the size parameter. In the potential
Sð2Þ, this is canceled exactly by the γ dependence of the
effective coupling constant. Thus the TDHF equation of the
massive GN model reduces to coupled NLS equations,
independently of the bare mass. In this strict nonrelativistic
limit, we can solve baryon-baryon scattering problems by
simply taking the solution of the massless model and
expanding it in powers of y, v to LO. At this level, there will
be neither backward scattering nor any inelastic reaction.
The model does not yet lose integrability.
We now turn to NLO, Eq. (29). The potential Sð4Þ

consists of several terms with different γ dependencies.
Somewhat surprisingly, one can eliminate the γ dependence

as follows. Let us denote the solutions of Eq. (29) at γ ¼ 0

(chiral limit) by hatted quantities ψ̂ ð2Þ
k ; Ŝð4Þ [we just saw that

ψ̂ ð0Þ
k ¼ ψ ð0Þ

k ; Ŝð2Þ ¼ Sð2Þ]. We then make the following
“scaling” ansatz for the NLO quantities,

ψ ð2Þ
k ¼ ψ̂ ð2Þ

k þ γ

1þ γ
χð2Þk ;

Sð4Þ ¼ Ŝð4Þ þ γ

1þ γ
sð4Þ: ð30Þ

Inserting (30) into (29) and using the fact that the hatted
spinors satisfy Eq. (29) at γ ¼ 0, we arrive at our final set of
equations

i∂tχ
ð2Þ
k ¼

�
−
∂2
x

2m
þ Sð2Þ

�
χð2Þk þ sð4Þψ ð0Þ

k ;

sð4Þ ¼ −
X
l

2ylðψ ð0Þ
l χð2Þ�l þ ψ ð0Þ�

l χð2Þl Þ þ F ;

F ¼ −
2

3

X
l

y3ljψ ð0Þ
l j2 − 1

12m2
∂2
xSð2Þ þ

1

2m
ðSð2ÞÞ2

ð31Þ
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now independent of γ. They have the structure of a system
of inhomogeneous, linear partial differential equations
(PDEs). The only input needed from the massless GN

model is the LO quantities ψ ð0Þ
k ; Sð2Þ. Since the solutions of

Eqs. (29) in the chiral limit can be inferred from the
analytically known exact solutions simply by Taylor
expansion, there is no need to ever solve the complicated
equations (29) at γ ¼ 0. Solving Eq. (31) yields the
solutions for all values of γ at once.
The inhomogeneity has now been isolated in the term

Fψ ð0Þ
k . At this point, before turning to the solution, we can

perform a nontrivial consistency check of our formalism.
Since we know that all corrections must vanish in the static
case, we expect that F ¼ 0 if all solitons are at rest. In the
static case, the x and t variables can be separated by going
to stationary states,

ψ ð0Þ
k ðx; tÞ ¼ eiϵktϕð0Þ

k ðxÞ; ð32Þ

where ϕð0Þ
k ðxÞ is the eigenfunction of the LO Hamiltonian

with eigenvalue ϵk,�
−

1

2m
∂2
x þ Sð2Þ

�
ϕð0Þ
k ðxÞ ¼ ϵkϕ

ð0Þ
k ðxÞ; ϵk ¼ −

my2k
2

:

ð33Þ

Sð2Þ is defined as above, Eq. (28). Choosing the ϕð0Þ
k to be

real, it becomes

Sð2Þ ¼ −
X
l

2ylðϕð0Þ
k Þ2: ð34Þ

A simple exercise with computer algebra is the following:
Evaluate ∂2

xSð2Þ and eliminate the second derivatives of the

time-independent wave functions with the help of the NLS
equations (33) and (34). Then differentiate the resulting F

with respect to x. If one eliminates once again ∂2
xϕ

ð0Þ
k using

(33), one finds that ∂xF ¼ 0, i.e., F is constant in the static
case. Since it obviously vanishes asymptotically, it has to
be identically 0. For time-dependent problems this proof
fails and we cannot avoid solving the inhomogeneous,
linear system of PDEs, Eq. (31).

IV. METHOD OF SOLUTION

So far, things are valid for any number and type of
scatterers. Let us first look at the trivial case of a single
baryon, where we would expect no correction at all, since
there is a frame in which it is static. In this case the
inhomogeneous term in Eq. (31) must vanish, so that the
system of equations admits the trivial solution χð2Þ1 ¼ 0. As
the single baryon of the massive GN model has the same
structure as the original Dashen-Hasslacher-Neveu (DHN)
baryon of the massless model [18], we refer to the single
baryon as the DHN baryon. For the single DHN baryon
with size parameter y and velocity v and using units where
m ¼ 1 from now on, we have

Sð2Þ ¼ −2yjψ ð0Þ
1 j2 ¼ −4y2

U1

ð1þU1Þ2
; U1 ¼ e2yðx−vtÞ:

ð35Þ
This yields indeed F ¼ 0 when inserted into (31).
The first nontrivial example is scattering of two DHN

baryons. In view of the exploratory character of our study,
we simplify things as much as possible. We take two
identical DHN baryons (y1 ¼ y2 ¼ y) in the center-of-mass
(cm) frame (v1 ¼ −v2 ¼ v). Equation (31) then becomes

�
i∂t þ

1

2
∂2
x − Sð2Þ

�
χð2Þk ¼ −2yψ ð0Þ

k

X
l

ðψ ð0Þ
l χð2Þ�l þ ψ ð0Þ�

l χð2Þl Þ þ Fψ ð0Þ
k ;

F ¼ y2

3
Sð2Þ −

1

12
∂2
xSð2Þ þ

1

2
ðSð2ÞÞ2: ð36Þ

The solution of the LO problem is well known [9,10],

Sð2Þ ¼ −4y2v2
v2U1ð1þ 4U2 þU1U2Þ þ ðv2 þ y2ÞU2ð1þU1U2Þ

D2
;

ψ ð0Þ
1 ¼ −iv

ffiffiffiffiffiffiffiffiffiffiffi
2yU1

p vþ ðvþ iyÞU2

D
eiðtðy2−v2Þ=2þvxÞ;

ψ ð0Þ
2 ¼ −i

v − iyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ v2

p v
ffiffiffiffiffiffiffiffiffiffiffi
2yU2

p ðvþ iyÞ þ vU1

D
eiðtðy2−v2Þ=2−vxÞ;

D ¼ v2ð1þU1Þð1þ U2Þ þ y2U2;

U1 ¼ λ−1e2yðx−vtÞ; U2 ¼ λe2yðxþvtÞ; λ ¼ vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ y2

p : ð37Þ
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The prefactors λ−1; λ inU1;2 just shift the variables x, t by
a constant and have been chosen so as to slightly simplify
the NLO terms in the chiral limit. The entries in Eq. (37)
can be inferred from the known exact solution by trans-
forming from the chiral representation of Dirac matrices
used in Ref. [9] to the Dirac-Pauli representation, replacing
y → ϵy, v → ϵv, x → ϵ−1x, t → ϵ−2t and performing a
Taylor expansion in ϵ to LO. The phases of the two bound
state spinors are of course arbitrary, but must be chosen
such that there are no linear terms in ϵ in Eq. (19). One can
easily verify that the quantities in (37) satisfy the LO
equations and the normalization condition. Using this
input, F turns out to be significantly simpler than its three
constituent terms,

F ¼ 16v4y4U1U2

D2
: ð38Þ

This is nonzero only when the two baryons overlap.
Asymptotically, F vanishes and one has to deal with

coupled, homogeneous, linear PDEs for χð2Þk ; χð2Þ�k .
Consider the homogeneous system first, since this

already provides us with valuable information about the
possible outcome of a baryon-baryon collision in the
massive GN model. We discuss separately the situation
before and after the collision. The incoming channel con-
sists of two well-separated DHN baryons. Here, we already
know that there are no bare mass corrections, except for
the relationship between y and ν. Hence we can assume the

initial condition χð2Þk ¼ 0 for t → −∞ for k ¼ 1, 2. After
the collision, the possible final states are determined by the
nontrivial solutions of the homogeneous system

�
i∂t þ

1

2
∂2
x þ 2y

X
l

jψ ð0Þ
l j2

�
χð2Þk

¼ −2yψ ð0Þ
k

X
l

ðψ ð0Þ
l χð2Þ�l þ ψ ð0Þ�

l χð2Þl Þ: ð39Þ

Since the TDHF approach cannot give the complete
information about individual reaction channels but treats
them only in an average way (due to the assumption of a
single Slater determinant), we expect a superposition of
different final states. The weights of specific states can only
be determined by solving the full, inhomogeneous system
of PDEs (36) numerically. The homogeneous system (39)
can actually be solved analytically as follows. Suppose we
can find a small deformation of the unperturbed solution

ψ ð0Þ
k of the NLS equation (28) such that the result is again a

solution,

�
i∂t þ

1

2
∂2
x þ 2y

X
l

jψ ð0Þ
l þ δψ ð0Þ

l j2
�
ðψ ð0Þ

k þ δψ ð0Þ
k Þ ¼ 0:

ð40Þ

Linearizing Eq. (40) in δψ ð0Þ
k yields a solution of Eq. (39),

namely χð2Þk ¼ δψ ð0Þ
k . If the deformation can be taken to be

infinitesimal, i.e., if the solution ψ ð0Þ
k þ δψ ð0Þ

k is continuously

connected to the unperturbed solution ψ ð0Þ
k , this solution is

exact. Thus, in order to survey the possible asymptotic

solutions χð2Þk , all we have to do is list the solutions of the
NLS equation that can be obtained by a continuous
deformation of the unperturbed solution (38). This should
already enable us to characterize the possible final states in a
baryon-baryon collision of the massive GN model.
Consider the elastic channel first. A forward scattered

baryon emerges with a time delay and a phase factor. The
first change corresponds to the solutions

χð2Þk ¼ Ax∂xψ
ð0Þ
k ; χð2Þk ¼ At∂tψ

ð0Þ
k ð41Þ

with real coefficients Ax;t. To confirm that these are indeed

exact solutions of (39), start from the NLS equation for ψ ð0Þ
k

and just differentiate this equation with respect to x or t. In
order to describe the phase shift in an analogous way,

multiply ψ ð0Þ
k by eiδk and insert it into the NLS equation.

Differentiating with respect to δk then yields another
solution of (39),

χð2Þk ¼ iAkψ
ð0Þ
k ; ð42Þ

again with real Ak. Clearly, the solutions (41) and (42)
cannot account for elastic backward scattering, expected in
the massive GN model. It is not hard to find the corre-
sponding deformation. The multicomponent NLS equation�

i∂t þ
1

2
∂2
x þ 2y

X
l

jψ ð0Þ
l j2

�
ψ ð0Þ
k ¼ 0 ð43Þ

remains valid under unitary transformations of the ψk, here
under the group U(2) since k ¼ 1, 2 only. An infinitesimal
U(2) transformation can be parametrized as

δψ ð0Þ
k ¼ iðφ1þ θ⃗ · τ⃗ Þklψ ð0Þ

l : ð44Þ
The U(1) part and the τ3 rotation have already been
accounted for by (42), so that the only new solution we
get is

χð2Þ1 ¼ Cψ ð0Þ
2 ; χð2Þ2 ¼ C�ψ ð0Þ

1 ð45Þ

with complex coefficient C. Since ψ ð0Þ
1 and ψ ð0Þ

2 are moving
in opposite directions at the same speed, this is exactly what
it takes to describe elastic backward scattering.
We now look for deformations of ψ ð0Þ

k related to inelastic
processes. The simplest possibility is that the baryon
changes its velocity, i.e.,

χð2Þk ¼ Av∂vψ
ð0Þ
k ð46Þ

BEYOND INTEGRABILITY: BARYON-BARYON BACKWARD … PHYSICAL REVIEW D 96, 076012 (2017)

076012-7



with real Av. The baryon may also change its size parameter
(and thereby fermion number). Due to the factor of 2y in the

potential Sð2Þ, we cannot simply differentiate ψ ð0Þ
k with

respect to y in this case. A simple calculation shows that
following modified expression is an exact solution of (39),

χð2Þk ¼ Ayð2yþ ∂yÞψ ð0Þ
k : ð47Þ

Presumably, this does not yet exhaust all possibilities. It is
known that the (multicomponent) NLS equation possesses
solutions with more than one soliton in each component
[17]. We have not found a simple way of relating these
multisoliton solutions continuously to the standard solu-
tion, but cannot rule out such a possibility. Then these more
complicated solutions of the NLS equation might also play
some role in inelastic processes. In the present work, we do
not consider multisoliton deformations any further, but see
how far we can get with the above, simplest solutions.

Eventually, we must solve the inhomogeneous system of
PDEs (36) numerically. Since this problem amounts to
solving an inhomogeneous, time-dependent Schrödinger
equation with time-dependent Hamiltonian, a number of
numerical methods are available in the literature. We follow
the method described by Puzynin et al. [19]. It is a higher
order stable operator-difference scheme, generalizing the
Crank-Nicolson scheme. It can be derived from the Magnus
expansion of the evolution operator for one time step. We
actually used the second order variant described in detail in
Ref. [19]. In order to solve the equation

i
dψðtÞ
dt

¼ HðtÞψðtÞ þQðtÞ; ð48Þ

one divides the temporal interval ½0; T� into K steps
of length τ (tk ¼ kτ; k ¼ 0; 1;…; K). We also need the
intermediate points tkþ1=2 ¼ tk þ τ=2 and denote ψk ¼
ψðtkÞ;ψkþ1=2 ¼ ψðtkþ1=2Þ. Define

Fk ¼ Hðtkþ1=2Þ þ
τ2

24
Ḧðtkþ1=2Þ − i

τ2

12
½ _Hðtkþ1=2Þ; Hðtkþ1=2Þ�;

Qk
1 ¼

1

2
QðtkÞ þ

τ

12
½ _QðtkÞ þ iHðtkÞQðtkÞ�;

Qk
2 ¼

1

2
Qðtkþ1Þ −

τ

12
½ _Qðtkþ1Þ þ iHðtkþ1ÞQðtkþ1Þ�: ð49Þ

Then the step from tk to tkþ1 goes as follows,

�
1 −

1

4
ταFk

�
ψkþ1=2 ¼

�
1 −

1

4
τα�Fk

�
ðψk − iτQk

1Þ;�
1þ 1

4
τα�Fk

�
ðψkþ1 þ iτQk

2Þ ¼
�
1þ 1

4
ταFk

�
ψkþ1=2; ð50Þ

with α ¼ 1=
ffiffiffi
3

p
− i. If we choose a spatial grid with M

points, H and F are 4M × 4M matrices due to the coupling
of χ1; χ2; χ�1; χ

�
2. Similarly, ψ and Q1;2 are 4M component

vectors. Consequently, Eqs. (50) are two systems of 4M
linear, inhomogeneous algebraic equations which can be
solved by standard methods. In the particular case at hand,
due to the symmetry of the scatterers and of the initial
conditions, it is actually possible to reduce the dimension
by a factor of 2 by restricting x-space to a half line. The
number of mesh points in time and space were chosen such
that a further increase would not show up in the figures
below. We found that 250 points on the time axis and 250
points on half the space axis were adequate. In this case, all
numerical computations could still be done with Maple.

V. RESULTS

A necessary condition for being able to trust the results is
that we work in a regime where the nonrelativistic

expansion converges well in the massless limit. Since we
know the exact result in this case, this is something which
can be checked. To this end, we have computed the scalar
mean field S and the bound state spinors ψ1;2 for scattering
of two DHN baryons in the cm frame analytically. We
then introduce the parameter ϵ (y → ϵy; v → ϵv; x → x=ϵ;
t → t=ϵ2) and expand potential and spinors in ϵ to NLO.
The resulting expressions are too long to be shown here, but
can readily be generated by computer algebra. We have also
checked that this indeed solves Eq. (29) at γ ¼ 0, a useful
further test of the above formalism. We then compare the
exact results with the LO and NLO approximations by
looking at animations of the corresponding plots through-
out the whole collision process. We identify the region in
(y, v)-parameter space where the difference between LO
and NLO is of the order of 10%, but the difference between
NLO and the exact result is the order of a few % only.
One example of a snapshot of such a survey is shown in
Figs. 2–4 for y ¼ 0.5, v ¼ 0.3. The result of this search is
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the region 0.4 ≤ y ≤ 0.6, 0.1 ≤ v ≤ 0.6. There we are in a
situation where the NLO approximation is quantitatively
reliable in the massless limit. The corrections which we
compute for the nonintegrable, massive model then also

have a good chance of being trustworthy. We cover this
preferred parameter region with 18 points in steps of
Δy ¼ 0.1, Δv ¼ 0.1. Outside this region, the NLO correc-
tions are either negligible or too big to truncate the
nonrelativistic expansion after two terms.
We now turn to the results of solving the inhomogeneous

system of PDEs (31) numerically. In the following sub-
sections, we discuss backward and forward scattering
separately.

A. Backward scattering

Backward scattering has the unique feature that the result
for γ ¼ 0 is strictly 0, due to the integrability of the
massless GN model. Hence the correction proportional

to χð2Þk in Eq. (30) represents the full wave function ψk in
this region. Since this is of Oðϵ2Þ, the density of backward
scattered fermions resulting from the kth bound state,

ρk ¼
�

γ

1þ γ

�
2

jχð2Þk j2; ð51Þ

is correct, although it is of Oðϵ4Þ and we have only been
working to Oðϵ2Þ. Integration over the negative half-axis
then yields the reflection coefficient R and a reduced
reflection coefficient R0,

R ¼
�

γ

1þ γ

�
2

R0; R0 ¼
Z

0

−∞
dxjχð2Þk j2: ð52Þ

These are also of Oðϵ4Þ, but can be trusted for the same
reason.
In Fig. 5, we give an overview of our results for the

backscattered, reduced density [i.e., expression (51) with-
out the γ-dependent factor] for y ¼ 0.5, after the collision.
At the lower velocities, one sees a clear peak, gradually
decreasing towards the highest velocity. For y ¼ 0.4 and
y ¼ 0.6, the results look similar and need not be shown
here.
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FIG. 4. Like Fig. 2, but the imaginary part of bound state wave
function ψ1 (large component).
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FIG. 2. Scalar potential S for baryon-baryon scattering at γ ¼ 0.
Parameters: y ¼ 0.5, v ¼ 0.3, t ¼ 5.0. Thin curve, LO; dashed,
LOþ NLO; fat, full calculation. All curves have been calculated
analytically.
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FIG. 3. Like Fig. 2, but the real part of bound state wave
function ψ1 (large component).
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FIG. 5. Reduced density for backscattered fermions after the
collision, at y ¼ 0.5 and different velocities. Numerical results.
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In order to understand the nature of the peak, we confront
it with our theoretical expectation based on solutions of the
homogeneous PDEs (39). The only candidate for backward
scattering which we have identified in Sec. IV is Eq. (45)
describing elastic scattering. In Figs. 6 and 7 we compare
the numerically calculated jχð2Þ1 j2 and χð2Þ1 at y ¼ 0.5 and
the lowest velocity, v ¼ 0.1, to (45). We get perfect
agreement between numerical calculation and analytical
prediction for the value C ¼ 0.110 − 0.022i. The fact that
backward scattering at the lowest energy is purely elastic is
confirmed by comparable fits at the other two values of y,
yielding C ¼ 0.066 − 0.016i at y ¼ 0.4 and C ¼ 0.167 −
0.027i at y ¼ 0.6.
If we move to higher velocities, a background is

appearing below the elastic peak; see Fig. 8 for an example
of the reduced density at y ¼ 0.5, v ¼ 0.4. At the same
time, the fit to the elastically backscattered wave function
deteriorates; see Fig. 9. The background can only be due to
the onset of inelastic processes at higher energies, but so far

we are lacking a way of analyzing it quantitatively. At
y ¼ 0.5 and the highest velocity, v ¼ 0.6, the background
becomes even more prominent, see Fig. 10, and a fit with
the elastic wave function impossible due to interference
with the large, unknown background. To illustrate the y
dependence, we show the corresponding plots at y ¼ 0.4,
Fig. 11, and y ¼ 0.6, Fig. 12. Evidently, the ratio of elastic
peak to inelastic background increases with decreasing y.
This is what one would expect qualitatively, since the
fermions are more loosely bound for smaller y, cf., Eq. (33).
Finally, Fig. 13 shows the reduced reflection coefficient

R0 for all calculated points. It differs from the reflection
coefficient R by a γ-dependent factor; see Eq. (52). It is
impossible to neatly separate elastic scattering from the
inelastic background, since everything is coherent in
TDHF. To get at least a rough idea, we have fitted the
smooth background by a second order polynomial in x and
subtracted it, assuming incoherence. Figure 13 shows both
the total and elastic values of R0 thus obtained.
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FIG. 7. Like Fig. 6, but with imaginary part (upper dots)
and real part (lower dots) of χð2Þ1 shown. Solid lines: Real and

imaginary parts of Cψ ð0Þ
2 with best fit parameter C ¼ 0.11−

0.022i.
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FIG. 6. Fitting the reduced density of backscattered fermions
in state 1 at y ¼ 0.5, v ¼ 0.1, t ¼ 75.4. Line: LO density of

state 2, jψ ð0Þ
2 j2. Points: numerical calculation, multiplied by a

factor of 79.
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FIG. 8. Like Fig. 6, but at higher velocity (y ¼ 0.5, v ¼ 0.4,

t ¼ 21.8). Line: jψ ð0Þ
2 j2. Points: numerical calculation, multiplied

by a factor of 439.
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FIG. 9. Same parameters as Fig. 8, but imaginary (upper
points) and real part (lower points) of χð2Þ1 . Solid lines: Real

and imaginary parts of Cψ ð0Þ
2 with best fit parameter C ¼ 0.037−

0.030i.
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B. Forward scattering

In the case of forward scattering it would not make sense
to plot the density jχð2Þk j2. Since the LO contribution is
nonvanishing, a quantity of Oðϵ4Þ cannot be trusted here.
The relevant physical observable of Oðϵ2Þ is the NLO
change in density due to the bare fermion mass,

δρ1 ¼
�

γ

1þ γ

�
2

δρ01; δρ01 ¼ ψ ð0Þ
1 χð2Þ�1 þ ψ ð0Þ�

1 χð2Þ1 :

ð53Þ

We first give an overview of our numerical results for δρ01 at
y ¼ 0.5 in Fig. 14. The solution of the TDHF equation
yields the whole time evolution of δρ01, but here we only
show a snapshot taken after the collision. As v increases,
the curves transform from an antisymmetric into a sym-
metric shape. In order to highlight the transition between
these two extrema, we have included one extra point along
the v-axis where δρ01 is close to 0 (v ¼ 0.45). The shapes of
the extremal curves at v ¼ 0.1 and v ¼ 0.6 have a simple
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FIG. 11. Like Fig. 10, but at lowest y value (y ¼ 0.4, v ¼ 0.6,

t ¼ 17.9). Line: jψ ð0Þ
2 j2. Points: numerical calculation, multiplied

by a factor of 12500.
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FIG. 10. Like Fig. 8, but at the highest velocity considered
(y ¼ 0.5, v ¼ 0.6, t ¼ 14.9) to illustrate rise of inelastic back-

ground. Line: jψ ð0Þ
2 j2. Points: numerical calculation, multiplied by

a factor of 1780.
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FIG. 12. Like Fig. 10, but at highest y value (y ¼ 0.6, v ¼ 0.6,

t ¼ 12.9). Line: jψ ð0Þ
2 j2. Points: numerical calculation, multiplied

by a factor of 415.
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FIG. 14. Reduced change in fermion density due to bare mass,
Eq. (53), forward scattering. The points are computed numeri-
cally at y ¼ 0.5 and all velocities considered.
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FIG. 13. Reduced reflection coefficient R0, related to reflection
coefficient R by a γ-dependent factor; see Eq. (52). From top to
bottom, y ¼ 0.6, 0.5, 0.4. Upper (solid) curves, including back-
ground; lower (dashed) curves, elastic only. Points are calculated;
lines are drawn to guide the eye.
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interpretation. Since δρ01 is the difference between two bell-
shaped densities, at v ¼ 0.1 the curves indicate a spatial
shift between the densities, as expected in purely elastic
scattering. The shape at v ¼ 0.6 on the other hand is
suggestive of a change in the width of the density,
consistent with inelastic reactions where the size parameter
y (and therefore fermion number) changes.
Let us test this interpretation against the analytical,

asymptotic predictions discussed in Sec. IV. If baryon-
baryon scattering in the massive GN model is purely
elastic, χð2Þ1 must be proportional to a linear combination

of ∂xψ
ð0Þ
k , ∂tψ

ð0Þ
k and iψ ð0Þ

k with real coefficients; see
Eqs. (41) and (42). The first two solutions account for a
change in time delay and cannot be distinguished here; the
third accounts for a change in the forward scattering phase
shift. Figures 15 and 16 show a corresponding fit at
y ¼ 0.5, v ¼ 0.1,

δρ0 ¼ A∂xjψ ð0Þ
1 j2; χð2Þ1 ¼ ðA∂x þ iBÞψ ð0Þ

1 ; ð54Þ

with A ¼ −0.130, B ¼ −0.0707. Thus at the lowest veloc-
ity v ¼ 0.1, everything is consistent with purely elastic
scattering, both in forward and backward direction.
At higher values of v, it is difficult to find any

satisfactory fit with the available basis functions. By
way of example, consider y ¼ 0.5, v ¼ 0.6 where inelastic
processes are expected to be important. In Fig. 17, we have
tried to fit δρ01 with a linear combination of solutions (41)
and (47), i.e.,

δρ01 ¼ ½A∂x þ Bð4yþ ∂yÞ�jψ ð0Þ
1 j2: ð55Þ

Even the best fit values A ¼ 0.00195, B ¼ −0.00599 are
not satisfactory, although the shape of the curve is quali-
tatively reproduced. Taking into account the further inelas-
tic solution (46) does not improve matters, so that our
parametrization of the inelastic solutions is obviously
incomplete. As mentioned in Sec. IV, one could perhaps
generate further candidates by considering multisoliton
solutions of the single component NLS equation, but this
is left for future work.
So far, all results for forward scattering shown refer to

y ¼ 0.5. We have performed the same kind of calculations
at y ¼ 0.4 and 0.6 as well. The plots analogous to Fig. 14
look similar, except that the transition from shift to
“broadening” type shapes happens around v ¼ 0.35 at y ¼
0.4 and v ¼ 0.55 at y ¼ 0.6. Thus, elastic scattering
prevails up to higher energies for larger values of y, as
already noticed in backward scattering. For all three values
of y, the fit (54) is excellent at v ¼ 0.1, with parameters
A ¼ −0.0826, B ¼ −0.0527 at y ¼ 0.4 and A ¼ −0.150,
B ¼ −0.081, at y ¼ 0.6, confirming elastic scattering
dominance at the lowest velocity considered.
Recall that there are two independent corrections to the

fermion density of Oðϵ2Þ. The first one arises from
relativistic corrections to the NLS equation at γ ¼ 0 (fine
structure and vacuum polarization-type effects), discussed
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FIG. 15. Fitting the reduced change of density for forward
scattering with ansatz implying purely elastic scattering. Param-
eters: y ¼ 0.5, v ¼ 0.1, t ¼ 75.4. Line, ∂xjψ ð0Þ

1 j2; points, numeri-

cal results for ψ ð0Þ
1 χð2Þ�1 þ ψ ð0Þ�

1 χð2Þ1 , rescaled by a factor of −7.70.
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FIG. 16. Like Fig. 15, but imaginary part (upper points) and
real part (lower points) of χð2Þ1 . Solid lines: Real and imaginary

parts of best fit with function ð−0.130∂x − i0.0707iÞψ ð0Þ
1 .
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FIG. 17. Attempt to fit the reduced change of density for
forward scattering with ansatz implying elastic and inelastic
scattering. Parameters: y ¼ 0.5, v ¼ 0.6, t ¼ 14.9. Line:

½0.002∂x þ 0.006ð4yþ ∂yÞ�jψ ð0Þ
1 j2. Points: numerical results

for ψ ð0Þ
1 χð2Þ�1 þ ψ ð0Þ�

1 χð2Þ1 .
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above in the context of Figs. 2–4. It is present in the
massless GN model, does not destroy integrability and can
be computed in closed analytical form. The second one is
δρ1 from Eq. (53) originating from the bare mass term and
to be computed numerically. It is interesting to compare
these two corrections to the LO density and to each other.
This is done in Fig. 18 for y ¼ 0.5, v ¼ 0.1 (purely elastic
scattering) and in Fig. 19 for y ¼ 0.5, v ¼ 0.6 (important
inelastic contribution). For better visibility, the two NLO
corrections have been multiplied by 5. In the elastic
scattering case, Fig. 18, the two corrections almost
coincide, but this is most likely accidental. Both corrections
go into the same direction of decreasing the time delay. In
Fig. 19 where inelastic scattering plays a role, the relativ-
istic correction is an order of magnitude larger than the
mass correction and has opposite sign, but the shapes of the
curves are again similar. The sign of the mass correction is
such that the unperturbed density gets broadened, as one
would expect from inelastic reactions where y (and there-
fore fermion number) should decrease.

We finish with a remark about conservation of fermion
number. The integral over the x-axis of both NLO con-
tributions to the density in forward scattering vanishes, as
we have checked numerically. The LO density is normal-
ized to 1. Hence the total number of forward scattered
fermions is the same in the massless and massive models.
Nevertheless, we have computed a reflection coefficient of
Oðϵ4Þ in the massive GN model, whereas it vanishes in the
massless limit. There is no contradiction between these
findings. In forward direction, all we have shown is the
vanishing of the Oðϵ2Þ contribution. In order to check the
expected reduction of the forward scattered fermions of
Oðϵ4Þ, it would be necessary to do a full NNLO calculation.
This is clearly impossible with the formalism developed
so far.

VI. SUMMARY AND CONCLUSIONS

Recent progress on baryon-baryon scattering in the
massless GN model owes much to the fact that this is
an integrable quantum-field theory. This enables us to
compute analytically processes as complex as the collision
between relativistic, composite particles. Unfortunately, the
physical phenomena which can be studied in this manner
are also severely limited by integrability. As is often the
case, the same facts which make a system exactly solvable
also render it somewhat unphysical. Only elastic forward
scattering is allowed, no matter at what energy one collides
which types of projectiles. This motivates us to turn our
attention to nonintegrable toy models promising a richer
dynamics, like backscattering and inelastic reactions.
Unlike real particle production, break-up processes
should not be suppressed at large N, so that the massive
GN model is a good candidate for exploring the transition
from integrable to nonintegrable systems with semiclassical
methods.
Since a full numerical TDHF calculation seems to be

exceedingly hard even in such a toy model, we had to
compromise and focus on the vicinity of the nonrelativistic
regime. In this case, one can take advantage of the benefits
offered by an effective no-sea theory applicable here. This
enables us to formulate the TDHF problem in a manner
close to nonrelativistic many-body theory, based on a time-
dependent Schrödinger equation and systematically calcu-
lable relativistic and quantum field theoretic corrections.
The result of such a calculation is a quantitative field
theoretic calculation with controlled approximations and
without adjustable parameters. This paper is actually the
first successful application of the effective no-sea theory of
Ref. [12] to a problem which has not been addressed by any
other method before.
Our first important result was rather easy to get at, but is

nonetheless quite interesting: In the nonrelativistic limit,
the multicomponent NLS equation can be used to solve
scattering problems both in the massless and massive
GN models. To LO, integrability is maintained, even in
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FIG. 18. Solid line: LO fermion density, jψ ð0Þ
1 j2, for forward

scattering (y ¼ 0.5, v ¼ 0.1, t ¼ 75.4). The other two curves are
NLO contributions, multiplied by a factor of 5 for better visibility.
Dashed curve, relativistic corrections at γ ¼ 0; points, bare mass
corrections, δρ1 of Eq. (53).
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FIG. 19. Like Fig. 18, but at the highest velocity (y ¼ 0.5,
v ¼ 0.6, T ¼ 14.9).
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time-dependent problems. This extends the region of
applications where the massive and massless GN models
are equally tractable by analytical methods from static and
thermodynamic problems to dynamical problems, at least at
very low energies.
The second and more difficult part of the investigation

concerns the NLO corrections. This is more interesting,
because it shows the onset of physical processes absent in
integrable models, like backscattering and inelastic reac-
tions. Relativistic and quantum field theoretic corrections
usually associated with spectroscopy (fine structure, Lamb
shift) now break integrability and induce these forbidden
processes. Thanks to our restriction to a certain parameter
range, we could reduce the task to a system of coupled,
inhomogeneous, linear PDEs amenable to numerical sol-
ution by standard methods. The possible final states of a
baryon-baryon collision can be obtained analytically by
solving the corresponding homogeneous system. They are
related to a certain class of solutions of the multichannel
NLS equation.
The picture emerging from backward scattering is

perhaps the cleanest. We find a prominent elastic peak
at low velocities above a smooth background. This
background is steadily rising with increasing energy.
Quantitative agreement with density and wave functions
at the lowest velocity has been achieved by assuming
purely elastic backward scattering. It is possible to deter-
mine the reflection coefficient and the phase of the back-
scattered wave function quantitatively. At higher velocities,

a similar analysis is hampered by our inability to para-
metrize the inelastic background. A well-known problem
characteristic of the TDHF approach is the fact that
different reaction channels are hard to disentangle,
since they enter in a coherent, average way due to the
assumption of a single Slater determinant. Interesting
findings are the fact that the γ dependence is somehow
trivial, so that one does not have to repeat the calculation
for different γ’s, and that a reflection coefficient of Oðϵ4Þ
can be computed reliably, even though the whole calcula-
tional scheme is truncated at Oðϵ2Þ. This is unique for a
correction to an integrable model where backscattering
vanishes to LO.
In forward scattering, since the LO term does not

vanish, the NLO terms are always interference terms and
harder to interpret. Again, the cleanest result is elastic
scattering which exhausts what we see at v ¼ 0.1. We
can compute the change in time delay and in scattering
phase shift due to the bare mass, again with a factorized
γ dependence. The interference with inelastic processes
on the other hand is impossible to analyze in detail with
our methods. At the highest velocity studied, we see
qualitatively that the density is broadened in x-space,
corresponding to lower y or loss of fermion number. The
qualitative change in the density from shift to broadening
with increasing energy and at all y-values is conspicuous.
Thus there is no doubt that we have seen both back-
scattering and inelastic reactions in the NLO calculation,
unlike at LO.
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