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A next-to-leading order correction to the high-energy factorization limit of radiation spectrum from an
ultra-relativistic electron scattering in an external field is evaluated. Generally, it does not express through
scattering characteristics, and accounts for smoothness of the crossover between the initial and final
electron asymptotes. A few examples of application of this formula are given, including bremsstrahlung in
amorphous matter and undulator radiation.
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I. INTRODUCTION

It is well known [1,2] that differential cross-section of
bremsstrahlung in the limit of vanishing photon frequency
splits into a product of the differential cross-section of
elastic scattering and the photon emission probability. The
latter is essentially determined by classical electrodynam-
ics: even though the underlying scattering process may be
totally quantal, the radiation in the limit ω → 0 is pre-
dominantly generated on large distances during electron
rectilinear motion before and after the scattering, and
rectilinear motion is always semi-classical.
For ultrarelativistic radiating particles, the mentioned

infrared factorization theorem was later superseded by
another one [3–6] stating that essentially the same kind
of factorization may hold even at ℏω ∼ E, granted that its
actual condition is the smallness of the target extent T
compared to the photon formation length1

lfðωÞ ¼
2EE0

m2ω
; E0 ¼ E − ℏω:

Ratio T
lfðωÞ ¼ m2

2EE0 ωT can be small even at ℏω ∼ E, provided

E ≫ m2T
ℏ . The latter condition is usually well satisfied

for ultrarelativistic electrons and microscopic scattering
objects (when T ∼ rB ¼ ℏ2=me2 ¼ 137ℏ=m), but can
break down for macroscopic targets. It may be more
appropriate, therefore, to speak here formally about the
limit T=E → 0 rather than ω → 0.
Case ℏω ∼ E may actually be still treated semiclassi-

cally, in spite that the differential radiation probability
under substantial photon recoil is influenced by electron
spin flips. Spin effects can be incorporated by means of
quantum electrodynamics. More importantly, at E → ∞ the
electron wavelength ℏ=E becomes short enough for the

scattering process to be semiclassical. That definitely
must be so in macroscopic external fields, but may hold
as well in microscopic ones, provided the final electron
is not detected, wherewith interference between different
impact parameters disappears [3,7–9]. The transferred
momentum then becomes a definite function of the impact
parameter, and for each impact parameter there exists
a definite radiation emission probability, as in classical
electrodynamics.
Away from the infrared limit, shapes of semiclassical

radiation can be very diverse, reflecting the diversity of
possible electron motions in external fields. To make
contact with this complexity, it may be valuable to
determine corrections to the infrared limit, as ωT departs
from zero. A step toward this goal was made long ago by
Low [10], who had shown that the next-to-leading order
(NLO) infrared correction to the bremsstrahlung amplitude
expresses through the energy derivative of the elastic
scattering amplitude at fixed momentum transfer, i.e., is
still determined by scattering characteristics. It is easy to
see, however, that such a procedure gives a correction of
order ℏω=E (involving ℏ, and being insensitive to the
external field length and strength), i.e., precisely that
covered by the modified factorization theorem [3–5].
Furthermore, in the ultrarelativistic QED case, when the
elastic scattering amplitude depends on the collision energy
just linearly, its nontrivial part depending on the momen-
tum exchange with the target will factor out, anyway,
reducing the content of the Low’s theorem to that of the
modified factorization theorem. Thus, for ultrarelativistic
particles such an approach seems to add essentially nothing
new,2 and be rather kinematical than related to the electron
dynamics within the target.
In practice, besides that, it often appears that typical

radiation emission angles from high-energy electrons are

*bon@kipt.kharkov.ua
1Focusing on the ultrarelativistic case, we let c ¼ 1.

2Historically, however, Low’s paper [10] preceded generalized
factorization theorem [3–5].
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far too small for experimental resolution, so one is content
to measurement of the angle-integral radiation spectrum.
The task of deriving for it a NLO infrared correction may
be not so straightforward, because in the framework of
classical particle description, ω dependence enters to the
exponent of a plane wave, whereas expanding this expo-
nential to power series and integrating termwise may lead
to divergent or improper integrals.
The aim of the present article is to demonstrate that the

NLO correction to the angle-integral radiation spectrum has
the order O½T=lfðωÞ� as T=lf → 0, and to derive for it a
formula valid for arbitrary external field and ℏω ∼ E,
presuming the electron to be ultrarelativistic. It will then
be instructive to discuss its physical meaning, sign and
magnitude for several physical processes.

II. DOUBLE TIME INTEGRAL REPRESENTATION

As has already been mentioned, the infrared limit of
bremsstrahlung emission probability may be inferred from
classical electrodynamics. The generic representation for
the spectral-angular distribution of classical radiation
reads [11,12]

dI
dωd2n

¼ e2
���� ω2π

Z
∞

−∞
dteiω½t−n·rðtÞ�n × vðtÞ

����2 ð1aÞ

≡e2
���� 1

2π

Z
∞

−∞
dteiω½t−n·rðtÞ�

d
dt

n × vðtÞ
1 − n · vðtÞ

����2: ð1bÞ

At ω → 0 the exponential factor within the domain of
action of the external field may be neglected, whereupon
the time integral is trivially taken to give

dIBH
dω

¼ e2

ð2πÞ2
Z

d2n

���� n × vfðtÞ
1 − n · vfðtÞ

−
n × viðtÞ

1 − n · viðtÞ
����2

¼ 2e2

π

0
B@ 2þ γ2v2fi

γvfi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2v2fi=4

q arsinh
γvfi
2

− 1

1
CA: ð2Þ

It is a function of single variable γvfi, where vfi ¼ vf − vi
[with vi ¼ vð−∞Þ, vf ¼ vðþ∞Þ] is the electron scatter-
ing angle.
At ℏω ∼ E, quantum electrodynamics gives

dIBH
dω

¼ 2e2

π

2
642mð1þ E2þE02

EE0
q2

4m2Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

4m2

q arsinh
q
2m

− 1

3
75; ð3Þ

where q≃ q⊥ is the momentum transfer to the target,
which is predominantly transverse (qz ≪ q⊥).
The situation becomes more intricate when one aims to

derive a next-to-leading order correction to (2). If one
attempts to expand the radiation amplitude into power

series in ω via expanding the exponential in (1) into
Maclaurin series,

eiωt−ik·rðtÞ ¼ 1þ iω½t − n · rðtÞ� þOðω2T2Þ;

the square of the corresponding amplitude would give a real
Oðω2T2Þ correction, but the angular integral from it will
diverge, making such an approach for the radiation spec-
trum rather ineffectual. Hence, it may be inappropriate to
this end to expand the entire phase factor. As will be shown
below, in fact, the expansion of dI

dω beyond the IR factori-
zation limit begins with a term OðωTÞ.
Better suited for expansion of the spectrum in powers

of ωT (or T=lf) is representation [8,13–16]

dI
dω

¼ ω
e2

π

Z
∞

−∞
dt2

Z
t2

−∞

dt1
t2 − t1

×

��
γ−2 þ E2 þ E02

4EE0 ½vðt2Þ − vðt1Þ�2
�

× sin
ωE
E0 ½t2 − t1 − jrðt2Þ − rðt1Þj�

− γ−2 sin
ωE
E0 ð1 − vÞðt2 − t1Þ

�
; ð4Þ

where the trajectory describes a nonradiating particle with
the initial conditions of the incoming electron (having
energy E), while the block ð1 − vÞðt2 − t1Þ þ vðt2 − t1Þ −
jrðt2Þ − rðt1Þj entering the argument of the
first sine may be expressed through transverse velocity
components as

vðt2 − t1Þ − jrðt2Þ − rðt1Þj

≃ 1

2vðt2 − t1Þ
�
v2ðt2 − t1Þ2 −

�Z
t2

t1

dtvðtÞ
	
2
�

≃ 1

2v

�Z
t2

t1

dtv2⊥ðtÞ −
1

t2 − t1

�Z
t2

t1

dtv⊥ðtÞ
	
2
�
: ð5Þ

The latter expression is rotation invariant, but in practice,
it may be advantageous to recast it a manifestly rotation
invariant form

vðt2 − t1Þ − jrðt2Þ − rðt1Þj

¼ 1

2v

�
1

t2 − t1

Z
t2

t1

dt½vf − vðtÞ� ·
Z

t2

t1

dt½vðtÞ − vi�

−
Z

t2

t1

dt½vf − vðtÞ� · ½vðtÞ − vi�
�

ð6Þ

with arbitrary vi, vf. If vi is chosen to be the initial, and vf
the final electron velocity, the velocity differences appear-
ing in Eq. (6) will vanish correspondingly at t → −∞ and at
t → þ∞, ensuring the convergence of the integrals at
large times.

M. V. BONDARENCO PHYSICAL REVIEW D 96, 076009 (2017)

076009-2



Finally, by virtue of fair straightness of the electron
trajectory at high energy, it can as well be reexpressed
through the trajectory of an electron with the same impact
parameter but energy E0, or, more symmetrically, through
momentum exchange with the target qðtÞ ¼ R

t dtFðtÞ,
which is accumulated continuously regardless of whether
the photon was emitted or not. In terms of the latter,
qðtÞ ¼ Ev⊥ðtÞ, the radiation spectrum expresses as

dI
dω

¼ ω
e2

πγ2

Z
∞

−∞
dt2

Z
t2

−∞

dt1
t2 − t1

×

��
1þ E2 þ E02

4EE0m2
½qðt2Þ − qðt1Þ�2

�

× sin
t2 − t1 þ Δsðt1; t2Þ

lfðωÞ
− sin

t2 − t1
lfðωÞ

�
; ð7Þ

with

Δsðt1; t2Þ ¼
1

m2

�
1

τ

Z
t2

t1

dt½qf − qðtÞ� ·
Z

t2

t1

dt½qðtÞ − qi�

−
Z

t2

t1

dt½qf − qðtÞ� · ½qðtÞ − qi�
�
: ð8Þ

III. FACTORIZATION LIMIT AND
NLO CALCULATION

The Bethe-Heitler limit results from Eqs. (4), (6) if the
electron trajectory is replaced by its counterpart corre-
sponding to an instantaneous momentum transfer equal to
qfi (say, at time t ¼ 0):

dIBH
dω

¼ ω
e2

πγ2

Z
∞

0

dt2

Z
0

−∞

dt1
t2 − t1

×

(�
1þ E2 þ E02

4EE0m2
q2fi

�
sin

τ − t1t2
τ

q2fi
m2

lfðωÞ
− sin

τ

lfðωÞ

)
:

ð9Þ
Passage here to variables τ ¼ t2 − t1, w ¼ t2=τ [17]
reduces it to a single algebraic integral:

dIBH
dω

¼ ω
e2

πγ2

Z
1

0

dw
Z

∞

0

dτ

×

��
1þ E2 þ E02

4EE0m2
q2fi

�
sin

½1þ q2fi
m2 wð1 − wÞ�τ
lfðωÞ

− sin
τ

lfðωÞ
�

¼ 2e2

π

E0

E

8<
:
Z

1

0

dw
1þ E2þE02

4EE0m2 q2fi

1þ q2fi
m2 wð1 − wÞ

− 1

9=
;;

which is taken to give (3). To evaluate a correction to it, one
has to subtract (9) from (4), and investigate the difference in
the limit T=lfðωÞ → 0.
To this end, it is convenient to select a finite domain

0 < t < T, containing all the deflecting fields, so that
outside of it one may let qðt ≤ 0Þ ¼ qi, qðt ≥ TÞ ¼ qf.
In the double time integral, it is then possible to replace
the lower limit for t2 by 0, and split the t1 integral asR
t2
−∞ dt1… ¼ R

0
−∞ dt1…þ R t2

0 dt1…. That gives

dI
dω

−
dIBH
dω

¼ I1 þ I2

with

I1 ¼ ω
e2

πγ2

Z
∞

0

dt2

Z
0

−∞

dt1
τ

×

(�
1þ E2 þ E02

4EE0m2
½qðt2Þ − qi�2

�
sin

τ þ Δsðt1; t2Þ
lfðωÞ

−
�
1þ E2 þ E02

4EE0m2
q2fi

�
sin

τ − t1t2
τm2 q2fi

lfðωÞ

)
; ð10Þ

[the last term stemming from Eq. (9)] and

I2 ¼ ω
e2

πγ2

Z
∞

0

dt2

Z
t2

0

dt1
τ

×

��
1þ E2 þ E02

4EE0m2
½qðt2Þ − qðt1Þ�2

�
sin

τ þ Δsðt1; t2Þ
lfðωÞ

− sin
τ

lfðωÞ
�
: ð11Þ

In I1, according to Eq. (6), the nonlinear part of the phase
of the first sine can be written

Δs ¼ 1

m2

�
1

τ

�
−t1qfi þ

Z
∞

−∞
dtt

dq
dt

�

·

�
t2qfi −

Z
∞

−∞
dtt

dq
dt

�

−
Z

∞

−∞
dt½qf − qðtÞ� · ½qðtÞ − qi�

�

¼ −
t1t2
τm2

q2fi þOðTq2fi=m2Þ; ð12Þ

which thus appears to be close to that in the second sine.
Being devided by lfðωÞ, the first term in (12) can still be
nonvanishing as T=lf → 0, because both typical contrib-

uting times expand proportionally to lfðωÞ, but T
lf

q2fi
m2 does

vanish in this limit. Therefore, there is complete cancella-
tion between the last two lines in Eq. (10) when t2 > T. In
the difference of those terms, concentrated at t2 < T, it is
justified to neglect Δs=lf in the phase of the first sine,
wherewith this sine factors out:
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I1 ≃ ω
e2

π

E2 þ E02

4E3E0

Z
∞

0

dt2

Z
0

−∞

dt1
τ

×f½qðt2Þ − qi�2 − q2fig sin
τ

lfðωÞ
: ð13Þ

Now passage to variable φ ¼ τ=lfðωÞ,

I1 ≃ ω
e2

π

E2 þ E02

4E3E0

Z
∞

0

dt2f½qðt2Þ − qi�2 − q2fig

×
Z

∞

t2=lfðωÞ

dφ
φ

sinφ; ð14Þ

proves that it tends to

I1 ⟶
T=lfðωÞ→0

ω
e2

2

E2 þ E02

4E3E0

×
Z

∞

0

dt2f½qðt2Þ − qi�2 − ½qf − qi�2g: ð15Þ

(Note that in deriving this limit we did not expand the sine
in powers of ω, thus avoiding spurious divergences.)
In I2, the leading contribution comes from

R
∞
T dt2 ×R

T
0 dt1…, since ω

R
T
0 dt2

R t2
0 dt1… ¼ OðT2=l2fÞ (being of a

higher order of smallness), because there, for finite inte-
gration limits and T=lf → 0, the sine in the integrand can
be linearized, bringing an extra T=lf factor. In the band
0 < t1 < T, t2 > T (a region symmetrical to that making
the leading contribution to I1), we can linearize the phase

by omitting term t1t2
lfτ

q2fi
m2 (now because for finite t1,

t1t2
lfτ

q2fi
m2 !

lf→∞
0), and in the limit lf → ∞ get

I2 ≃ ω
e2

π

E2 þ E02

4E3E0

Z
T

0

dt1½qf − qðt1Þ�2
Z

∞

T

dt2
τ

sin
τ

lfðωÞ

¼ ω
e2

π

E2 þ E02

4E3E0

Z
T

0

dt1½qf − qðt1Þ�2
Z

∞

ðT−t1Þ=lfðωÞ

dφ
φ

sinφ

⟶
T=lfðωÞ→0

ω
e2

2

E2 þ E02

4E3E0

Z
T

0

dt1½qf − qðt1Þ�2 ð16Þ

(again, avoiding troublesome expansion of sinφ to power
series).
Combining (15) and (16), on account of identity

ðq− qiÞ2 þ ðqf − qÞ2 − ðqf − qiÞ2 ¼ −2ðqf − qÞ · ðq− qi

�
;

we are led to

dI
dω

≃
T=lfðωÞ→0

dIBH
dω

�
qfi
m

;
ℏω
E

�
þ C1ωþO½T2=l2fðωÞ� ð17Þ

with

C1 ¼ −e2
E2 þ E02

4E3E0

Z
∞

−∞
dt½qðtÞ − qi� · ½qf − qðtÞ� ð18aÞ

¼ −e2
E2 þ E02

4E3E0

Z
∞

−∞
dt

Z
t

−∞
dt0F⊥ðt0Þ ·

Z
∞

t
dt00F⊥ðt00Þ:

ð18bÞ
Here the lower and upper integration limits were replaced
by infinity, presuming the integrand to vanish rapidly
enough at t < 0 and t > T. Let us stress that expression
(18), being quadratic in q (or F⊥), nonetheless implies no
restrictions on ratio q=m, i.e., on the dipole or nondipole
character of the radiation. Evidently, integral (18) takes into
account the smoothness of the crossover between the
rectilinear asymptotes of the electron trajectory.
For ℏω ≪ E, Eq. (18) reduces to

C1 ¼ −
e2

2

Z
∞

−∞
dt½vðtÞ − vi� · ½vf − vðtÞ�; ð19Þ

i.e., for a given trajectory it does not depend on the electron
Lorentz-factor; that can be attributed to the radiophysical
character of the radiation process in this limit (cf. [17]).
To precisely understand the physical meaning of the

obtained result, note that structure (18), (19) coincides with
that of the second term in the right-hand side (rhs) of
Eq. (6). Since the meaning of its left-hand side is clear
enough (being a time delay due to the trajectory curvature),
it remains to figure out the meaning of the first term in the
rhs at t1 → −∞, t2 → ∞. To this end, integrating by parts
as in Eq. (12), rewrite it asZ

t2

t1

dt½vf − vðtÞ� ·
Z

t2

t1

dt½vðtÞ − vi�

≃
t1→−∞
t2→∞

−
�
t1vfi −

Z
∞

−∞
dtt

dv
dt

�
·

�
t2vfi −

Z
∞

−∞
dtt

dv
dt

�
:

ð20Þ
Choosing the zero time such that

R∞
−∞ dtt dvdt ¼ 0 (which is

always possible, e.g., when the motion is planar), integralsR t2
t1 dt½vf − vðtÞ� and R t2

t1 dt½vðtÞ − vi� (representing the par-
ticle transverse coordinates with respect to vf or vi) at
t1 → −∞, t2 → ∞ are proportional correspondingly to t1
and t2, i.e., both the initial and the final trajectory
asymptotes issue from the origin. Correspondingly, in that
limit the first term in the rhs of Eq. (6) tends to the time
delay vðt2 − t1Þ − jrðt2Þ − rðt1Þj for a trajectory having the
shape of an angle along the initial and final electron
asymptotes. The second term thus represents a difference
between the time delay for the actual trajectory and for its
angle-shaped approximation. If it is impossible to adjust the
time origin such that

R∞
−∞ dtt dvdt ¼ 0, it suffices to demand

that vfi ·
R
∞
−∞ dtt dvdt ¼ 0.

Generally, for monotonous electron deflection, C1 ≤ 0
(the particle “cuts the corner”), whereas for an oscillatory
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electron motion within the target,C1 ≥ 0. As a cross-check,
note that for classical radiation at double scattering through
angles χ 1 and χ 2 with a time separation t21, Eq. (19) gives

C1 ¼ −
e2

2
χ 1 · χ 2t21;

which coincides with the result obtained in [17]. After
an initial decline, however, the spectrum will start rising,
due to resolution of smaller parts of the electron trajectory.
In case of a monotonous electron deflection, as in a

magnet of length T, C1 grows with T cubically, wherefore
at low ω it may compete with the “volume" (synchrotron-
like) contribution, which is proportional to T.
In case of undulator radiation, when F⊥ðtÞ ¼ F0 cos 2πtT1

within the interval 0 < t < NT1, with N ≫ 1 being the
number of oscillation periods, from (18b) we get

C1

NT1

≃
N→∞

e2
E2 þ E02

8E3E0

�
F0T1

2π

�
2

: ð21Þ

Finally, in an amorphous medium modeled by action of a
delta-correlated (Langevin) force, averaging of (18b) gives
zero: 
Z

t

−∞
dt0F⊥ðt0Þ ·

Z
∞

t
dt00F⊥ðt00Þ

�

∝
Z

t

−∞
dt0

Z
∞

t
dt00δðt0 − t00Þ ¼ 0: ð22Þ

IV. SUMMARY

The distinctions of our result (18) from the Low theorem
[10] are that it applies to: (i) the angle-integral radiation
spectrum, which is a more inclusive quantity than the
radiation amplitude considered in [10]; (ii) ultrarelativistic
electrons and small-angle photon emission, allowing for
ℏω ∼ E, whereas the small parameter is T=lfðωÞ. From the
physical point of view, it is essential that the NLO
expansion for dI=dω begins with OðT=lfÞ, since in the
double time integral representation (4) it originates from the
region where only one of the contributing times is large: jt1j
for I1 and t2 for I2.
The obtained correction, by virtue of its simplicity,

can be used for accurate connection of the infrared (or
generalized factorization) limit of the bremsstrahlung
spectrum with its behavior at higher ω, probing the
interior of the target. At its application, it is worth
minding that the correction is insensitive to nondipole
radiation effects. For instance, relation (21), well
known for dipole undulators, must hold as well for
wigglers.
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